modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Kamer/bert-base-uncased-eurlex
Kamer
2023-09-02T08:14:26Z
109
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:nlpaueb/bert-base-uncased-eurlex", "base_model:finetune:nlpaueb/bert-base-uncased-eurlex", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T07:18:39Z
--- license: cc-by-sa-4.0 base_model: nlpaueb/bert-base-uncased-eurlex tags: - generated_from_trainer model-index: - name: bert-base-uncased-eurlex results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-eurlex This model is a fine-tuned version of [nlpaueb/bert-base-uncased-eurlex](https://huggingface.co/nlpaueb/bert-base-uncased-eurlex) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4164 - eval_Accuracy: 0.9224 - eval_F1_macro: 0.9301 - eval_F1_class_0: 0.8941 - eval_F1_class_1: 0.9388 - eval_F1_class_2: 0.9412 - eval_F1_class_3: 0.9730 - eval_F1_class_4: 0.9148 - eval_F1_class_5: 0.9573 - eval_F1_class_6: 0.9399 - eval_F1_class_7: 0.9685 - eval_F1_class_8: 0.9630 - eval_F1_class_9: 0.9495 - eval_F1_class_10: 0.8574 - eval_F1_class_11: 0.9241 - eval_F1_class_12: 0.8677 - eval_F1_class_13: 0.9442 - eval_F1_class_14: 0.9055 - eval_F1_class_15: 0.9022 - eval_F1_class_16: 0.8929 - eval_F1_class_17: 0.9811 - eval_F1_class_18: 0.8870 - eval_F1_class_19: 1.0 - eval_runtime: 154.2922 - eval_samples_per_second: 32.918 - eval_steps_per_second: 4.116 - epoch: 0.52 - step: 3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Xmm/led-large-16384-cnn_dailymail
Xmm
2023-09-02T08:09:40Z
98
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "led", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-17T03:05:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: led-large-16384-cnn_dailymail results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.3869876274946419 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-large-16384-cnn_dailymail This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.5544 - Rouge1: 0.3870 - Rouge2: 0.1736 - Rougel: 0.2599 - Rougelsum: 0.3653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.9531 | 0.4 | 500 | 1.8639 | 0.3485 | 0.1441 | 0.2275 | 0.3288 | | 1.9563 | 0.8 | 1000 | 1.8260 | 0.3538 | 0.1482 | 0.2315 | 0.3343 | | 1.7176 | 1.2 | 1500 | 1.8208 | 0.3628 | 0.1527 | 0.2383 | 0.3433 | | 1.7197 | 1.6 | 2000 | 1.8162 | 0.3696 | 0.1602 | 0.2434 | 0.3486 | | 1.8086 | 2.0 | 2500 | 1.7924 | 0.3558 | 0.1533 | 0.2334 | 0.3361 | | 1.2448 | 2.4 | 3000 | 1.8510 | 0.3703 | 0.1591 | 0.2447 | 0.3483 | | 1.3574 | 2.8 | 3500 | 1.8277 | 0.3741 | 0.1593 | 0.2422 | 0.3540 | | 1.0966 | 3.2 | 4000 | 1.8924 | 0.3682 | 0.1576 | 0.2424 | 0.3479 | | 0.9938 | 3.6 | 4500 | 1.8957 | 0.3723 | 0.1599 | 0.2451 | 0.3511 | | 1.0735 | 4.0 | 5000 | 1.8772 | 0.3653 | 0.1557 | 0.2399 | 0.3454 | | 0.9106 | 4.4 | 5500 | 1.9401 | 0.3720 | 0.1585 | 0.2436 | 0.3504 | | 1.015 | 4.8 | 6000 | 1.9320 | 0.3725 | 0.1570 | 0.2429 | 0.3515 | | 1.7854 | 0.36 | 6500 | 1.7800 | 0.3624 | 0.1544 | 0.2390 | 0.3422 | | 1.9079 | 0.39 | 7000 | 1.7629 | 0.3573 | 0.1553 | 0.2352 | 0.3370 | | 1.7606 | 3.34 | 7500 | 1.6902 | 0.3783 | 0.1673 | 0.2521 | 0.3570 | | 1.7571 | 3.57 | 8000 | 1.6563 | 0.3802 | 0.1691 | 0.2538 | 0.3587 | | 1.6602 | 3.79 | 8500 | 1.6439 | 0.3814 | 0.1693 | 0.2548 | 0.3600 | | 1.6614 | 4.01 | 9000 | 1.6312 | 0.3812 | 0.1691 | 0.2544 | 0.3599 | | 1.668 | 4.24 | 9500 | 1.6189 | 0.3815 | 0.1689 | 0.2550 | 0.3603 | | 1.6491 | 4.46 | 10000 | 1.6172 | 0.3799 | 0.1681 | 0.2540 | 0.3586 | | 1.5994 | 4.68 | 10500 | 1.6132 | 0.3825 | 0.1702 | 0.2560 | 0.3610 | | 1.6493 | 4.9 | 11000 | 1.6093 | 0.3828 | 0.1701 | 0.2561 | 0.3613 | | 1.6769 | 5.13 | 11500 | 1.6074 | 0.3831 | 0.1706 | 0.2569 | 0.3619 | | 1.6554 | 5.35 | 12000 | 1.6044 | 0.3817 | 0.1695 | 0.2559 | 0.3605 | | 1.6155 | 5.57 | 12500 | 1.6010 | 0.3825 | 0.1700 | 0.2561 | 0.3608 | | 1.5863 | 5.8 | 13000 | 1.5981 | 0.3829 | 0.1704 | 0.2569 | 0.3614 | | 1.6306 | 6.02 | 13500 | 1.6004 | 0.3831 | 0.1702 | 0.2563 | 0.3618 | | 1.6425 | 6.24 | 14000 | 1.5987 | 0.3821 | 0.1698 | 0.2561 | 0.3610 | | 1.6863 | 6.46 | 14500 | 1.5876 | 0.3837 | 0.1710 | 0.2569 | 0.3622 | | 1.6085 | 6.69 | 15000 | 1.5815 | 0.3836 | 0.1717 | 0.2573 | 0.3621 | | 1.6267 | 6.91 | 15500 | 1.5792 | 0.3852 | 0.1722 | 0.2579 | 0.3633 | | 1.5637 | 7.13 | 16000 | 1.5768 | 0.3830 | 0.1709 | 0.2568 | 0.3611 | | 1.5586 | 7.36 | 16500 | 1.5740 | 0.3833 | 0.1706 | 0.2567 | 0.3617 | | 1.5389 | 7.58 | 17000 | 1.5689 | 0.3858 | 0.1729 | 0.2590 | 0.3640 | | 1.5694 | 7.8 | 17500 | 1.5645 | 0.3853 | 0.1731 | 0.2589 | 0.3636 | | 1.5265 | 8.02 | 18000 | 1.5621 | 0.3871 | 0.1733 | 0.2596 | 0.3654 | | 1.5273 | 8.25 | 18500 | 1.5624 | 0.3861 | 0.1726 | 0.2588 | 0.3646 | | 1.5148 | 8.47 | 19000 | 1.5602 | 0.3866 | 0.1733 | 0.2592 | 0.3651 | | 1.532 | 8.69 | 19500 | 1.5599 | 0.3859 | 0.1732 | 0.2593 | 0.3642 | | 1.5113 | 8.92 | 20000 | 1.5602 | 0.3877 | 0.1748 | 0.2606 | 0.3658 | | 1.5133 | 9.14 | 20500 | 1.5595 | 0.3855 | 0.1725 | 0.2587 | 0.3637 | | 1.4875 | 9.36 | 21000 | 1.5572 | 0.3873 | 0.1741 | 0.2600 | 0.3654 | | 1.5038 | 9.59 | 21500 | 1.5557 | 0.3860 | 0.1728 | 0.2590 | 0.3641 | | 1.5062 | 9.81 | 22000 | 1.5544 | 0.3870 | 0.1736 | 0.2599 | 0.3653 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0+cu118 - Datasets 2.10.1 - Tokenizers 0.13.2
maroti/dqn-SpaceInvadersNoFrameskip-v4
maroti
2023-09-02T08:07:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T08:07:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 507.00 +/- 124.00 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga maroti -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga maroti -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga maroti ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Hemanth-thunder/kazuki_kurusu_lora_xl
Hemanth-thunder
2023-09-02T08:02:49Z
1
2
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-02T06:23:41Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of a kazuki kurusu tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Hemanth-thunder/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of a kazuki kurusu using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Johnlhugface/ppo-Huggy
Johnlhugface
2023-09-02T07:55:02Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-02T07:54:57Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Johnlhugface/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
02shanky/Reinforce-base1
02shanky
2023-09-02T07:54:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T07:53:56Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-base1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 176.70 +/- 77.98 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
StefanoCaloni/q-FrozenLake-v1-4x4-noSlippery
StefanoCaloni
2023-09-02T07:42:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T06:35:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="StefanoCaloni/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
StefanoCaloni/taxi
StefanoCaloni
2023-09-02T07:42:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T06:40:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="StefanoCaloni/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Jakir057/finetuned-indian-food
Jakir057
2023-09-02T06:53:08Z
192
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T06:19:35Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-indian-food results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7056 | 0.1 | 100 | 0.5113 | 0.8881 | | 0.3027 | 0.21 | 200 | 0.1280 | 0.9796 | | 0.2823 | 0.31 | 300 | 0.1580 | 0.9656 | | 0.3273 | 0.42 | 400 | 0.0879 | 0.9837 | | 0.1808 | 0.52 | 500 | 0.0812 | 0.9822 | | 0.2101 | 0.63 | 600 | 0.0339 | 0.9937 | | 0.1495 | 0.73 | 700 | 0.0568 | 0.9833 | | 0.1296 | 0.84 | 800 | 0.0629 | 0.9844 | | 0.1462 | 0.94 | 900 | 0.0886 | 0.9733 | | 0.0519 | 1.04 | 1000 | 0.0544 | 0.9870 | | 0.3192 | 1.15 | 1100 | 0.0892 | 0.9726 | | 0.158 | 1.25 | 1200 | 0.0632 | 0.98 | | 0.0266 | 1.36 | 1300 | 0.0233 | 0.9944 | | 0.1832 | 1.46 | 1400 | 0.0292 | 0.9930 | | 0.1212 | 1.57 | 1500 | 0.0489 | 0.9852 | | 0.0994 | 1.67 | 1600 | 0.0142 | 0.9974 | | 0.0219 | 1.78 | 1700 | 0.0277 | 0.9930 | | 0.0664 | 1.88 | 1800 | 0.0158 | 0.9974 | | 0.0834 | 1.99 | 1900 | 0.0124 | 0.9978 | | 0.1093 | 2.09 | 2000 | 0.0140 | 0.9974 | | 0.1726 | 2.19 | 2100 | 0.0147 | 0.9963 | | 0.0476 | 2.3 | 2200 | 0.0058 | 0.9993 | | 0.0257 | 2.4 | 2300 | 0.0424 | 0.9911 | | 0.0215 | 2.51 | 2400 | 0.0076 | 0.9989 | | 0.0748 | 2.61 | 2500 | 0.0099 | 0.9974 | | 0.0059 | 2.72 | 2600 | 0.0053 | 0.9993 | | 0.0527 | 2.82 | 2700 | 0.0149 | 0.9963 | | 0.0203 | 2.93 | 2800 | 0.0041 | 0.9993 | | 0.0791 | 3.03 | 2900 | 0.0033 | 0.9989 | | 0.0389 | 3.13 | 3000 | 0.0033 | 0.9989 | | 0.0459 | 3.24 | 3100 | 0.0044 | 0.9989 | | 0.0276 | 3.34 | 3200 | 0.0031 | 0.9996 | | 0.0139 | 3.45 | 3300 | 0.0028 | 0.9996 | | 0.0076 | 3.55 | 3400 | 0.0055 | 0.9985 | | 0.0097 | 3.66 | 3500 | 0.0027 | 0.9996 | | 0.0193 | 3.76 | 3600 | 0.0026 | 0.9996 | | 0.0471 | 3.87 | 3700 | 0.0027 | 0.9996 | | 0.0282 | 3.97 | 3800 | 0.0027 | 0.9996 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
trieudemo11/llama_7b_attrb_cate_b6_l320_low_10
trieudemo11
2023-09-02T06:41:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T06:41:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 rsions - PEFT 0.6.0.dev0
NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4
NobodyExistsOnTheInternet
2023-09-02T06:23:16Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-09-02T05:20:49Z
--- license: mit --- Trained on Math Chain of thought, Chemistry and Physics domain knowledge, and chat V1
gg-ai/twhin-bert-base-p-tuning
gg-ai
2023-09-02T06:08:04Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T06:08:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Hellstar1337/freyaLoRA
Hellstar1337
2023-09-02T05:45:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T05:41:39Z
--- license: creativeml-openrail-m ---
Imxxn/AudioCourseU6-TextToSpeech
Imxxn
2023-09-02T05:38:00Z
80
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-02T05:18:20Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: AudioCourseU6-TextToSpeech results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AudioCourseU6-TextToSpeech This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEcons
NobodyExistsOnTheInternet
2023-09-02T05:34:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-09-01T15:12:04Z
--- license: mit --- Trained on Math Chain of thought, Chemistry and Physics domain knowledge, and chat V1
johaanm/test-planner-alpha-V5.9
johaanm
2023-09-02T05:14:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T05:14:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
substratusai/weaviate-gorilla-v3
substratusai
2023-09-02T05:13:22Z
8
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-01T22:50:07Z
## Prompt ``` {input} {output} ``` Example: of entry used for finetuning ``` Your task is to write an API request for a new schema given the API reference and an example. The user command is: "Get me the details of 2 music tracks that are similar to the given vector." Here is the API reference for a query that will help with this command and an example of how to use it: {Get {JeopardyQuestion (limit: 2,nearVector: {vector: [-0.0125526935, -0.021168863, -0.01076519, ...]}}}}} Could you please formulate this query for the following schema? {"class": "Track","description": "A music track.","properties": [{"name": "trackId","dataType": ["uuid"],"description": "A unique identifier for each track.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "title","dataType": ["text"],"description": "The title of the track.","moduleConfig": {"text2vec-transformers": {"skip": false,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "duration","dataType": ["int"],"description": "The duration of the track in seconds.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "artist","dataType": ["Artist"],"description": "The artist of the track.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "album","dataType": ["Album"],"description": "The album of the track.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}}} VERY IMPORTANT! Please only output the GraphQL for the query and nothing else! { Get { Track ( limit: 2, nearVector: { vector: [-0.0125526935, -0.021168863, -0.01076519, ...] } ) { trackId title duration artist { artistId name } album { albumId title } } }} ```
gg-ai/roberta-peft-p-tuning
gg-ai
2023-09-02T05:05:59Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T05:05:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
vita-group/llama-2-7b_magnitude_unstructured
vita-group
2023-09-02T05:03:13Z
9
0
null
[ "license:mit", "region:us" ]
null
2023-09-01T15:03:37Z
--- license: mit --- # Compressed LLM Model Zone The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang. License: [MIT License](https://opensource.org/license/mit/) Setup environment ```shell pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.31.0 pip install accelerate ``` How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer base_model = 'llama-2-7b' comp_method = 'magnitude_unstructured' comp_degree = 0.2 model_path = f'vita-group/{base_model}_{comp_method}' model = AutoModelForCausalLM.from_pretrained( model_path, revision=f's{comp_degree}', torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` | | Base Model | Model Size | Compression Method | Compression Degree | |---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | | 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | | 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | | 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | | 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | | 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | | 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | | 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | | 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | | 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | | 10 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | | 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | | 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | | 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | | 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
vita-group/llama-2-7b_sparsegpt_unstructured
vita-group
2023-09-02T05:02:59Z
19
0
null
[ "license:mit", "region:us" ]
null
2023-09-01T15:05:45Z
--- license: mit --- # Compressed LLM Model Zone The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang. License: [MIT License](https://opensource.org/license/mit/) Setup environment ```shell pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.31.0 pip install accelerate ``` How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer base_model = 'llama-2-7b' comp_method = 'magnitude_unstructured' comp_degree = 0.2 model_path = f'vita-group/{base_model}_{comp_method}' model = AutoModelForCausalLM.from_pretrained( model_path, revision=f's{comp_degree}', torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` | | Base Model | Model Size | Compression Method | Compression Degree | |---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | | 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | | 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | | 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | | 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | | 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | | 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | | 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | | 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | | 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | | 10 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | | 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | | 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | | 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | | 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
xiaoygv/xiaos
xiaoygv
2023-09-02T04:56:48Z
0
0
asteroid
[ "asteroid", "dataset:PygmalionAI/PIPPA", "license:afl-3.0", "region:us" ]
null
2023-09-02T04:55:25Z
--- license: afl-3.0 datasets: - PygmalionAI/PIPPA metrics: - bleu library_name: asteroid ---
minh21/results
minh21
2023-09-02T04:56:45Z
0
0
null
[ "generated_from_trainer", "base_model:google/flan-t5-large", "base_model:finetune:google/flan-t5-large", "license:apache-2.0", "region:us" ]
null
2023-09-01T07:33:03Z
--- license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 860 | nan | | 0.0 | 2.0 | 1720 | nan | | 0.0 | 3.0 | 2580 | nan | | 0.0 | 4.0 | 3440 | nan | | 0.0 | 5.0 | 4300 | nan | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Alexshan/Dreamshaper
Alexshan
2023-09-02T04:44:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T04:36:41Z
--- license: creativeml-openrail-m ---
cfchase/stable-diffusion-rhteddy
cfchase
2023-09-02T04:30:11Z
3
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-21T02:50:44Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license --- # Red Hat Teddy ## Fine Tuned from Stable Diffusion v1-5 This model was based on [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and finetuned to generate pictures of `rhteddy`. ![redhat dog](redhat-dog-small.jpg) ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "cfchase/stable-diffusion-rhteddy" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of rhteddy on the beach" image = pipe(prompt).images[0] image ```
erickdp/beto-base-peft-p-tuning
erickdp
2023-09-02T04:12:54Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T04:12:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
intanm/baseline001-25L-20230901
intanm
2023-09-02T04:10:56Z
120
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "base_model:intanm/mbert-squadv2", "base_model:finetune:intanm/mbert-squadv2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-02T04:04:19Z
--- license: apache-2.0 base_model: intanm/mbert-squadv2 tags: - generated_from_trainer model-index: - name: baseline001-25L-20230901 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline001-25L-20230901 This model is a fine-tuned version of [intanm/mbert-squadv2](https://huggingface.co/intanm/mbert-squadv2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 50 | 3.1546 | | No log | 2.0 | 100 | 3.2274 | | No log | 3.0 | 150 | 3.5274 | | No log | 4.0 | 200 | 3.9318 | | No log | 5.0 | 250 | 4.2708 | | No log | 6.0 | 300 | 4.8027 | | No log | 7.0 | 350 | 4.9737 | | No log | 8.0 | 400 | 5.0809 | | No log | 9.0 | 450 | 5.1268 | | 1.1872 | 10.0 | 500 | 5.1941 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-robust_train_halfcheetah_level-0209_0247-99
dt-and-vanilla-ardt
2023-09-02T04:05:19Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T01:49:10Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_halfcheetah_level-0209_0247-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_halfcheetah_level-0209_0247-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gg-ai/beto-base-peft-p-tuning-sentiment
gg-ai
2023-09-02T04:00:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T04:00:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Aniya/llama2-7b-instruction-gen
Aniya
2023-09-02T03:56:02Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-29T12:58:11Z
--- license: llama2 --- # Alpaca style Instruction generating This model is used for creating the instructions, which we can then use to fine-tune the base model of Llama 2 to follow our instructions. # Prompt๏ผš Use the Input below to create an instruction, which could have been used to generate the input using an LLM. ๆ นๆฎไธ‹้ข็š„ๆ–‡ๆœฌ่พ“ๅ…ฅ็”Ÿๆˆไธ€ไธชๆŒ‡ไปค๏ผŒๅฏไปฅ็”จๆฅ่ฎฉๅคง่จ€่ฏญๆจกๅž‹ๆ นๆฎ่ฟ™ๆกๆŒ‡ไปค็”Ÿๆˆ่ฟ™ๆฎตๆ–‡ๆœฌใ€‚ # Examples๏ผš ### 1. Input๏ผš็›‘็ฃๅญฆไน ๆ˜ฏไธ€็งๆœบๅ™จๅญฆไน ็ฑปๅž‹๏ผŒๅ…ถไธญๆ ‡่ฎฐ่ฟ‡็š„ๆ•ฐๆฎ็”จไบŽๅˆ›ๅปบๅฏไปฅๅฏนๆœชๆ ‡่ฎฐๆ•ฐๆฎ่ฟ›่กŒ้ข„ๆต‹็š„ๆจกๅž‹ใ€‚ๅœจ็›‘็ฃๅญฆไน ไธญ๏ผŒ่ฎญ็ปƒๆ•ฐๆฎ้›†็”ฑๅทฒ็ป็”จๆญฃ็กฎ็š„่พ“ๅ‡บๆˆ–็›ฎๆ ‡ๅ€ผๆ ‡่ฎฐ็š„ๆ•ฐๆฎ็ป„ๆˆใ€‚็„ถๅŽ็ฎ—ๆณ•ไปŽ่ฟ™ไบ›ๆ ‡่ฎฐๆ•ฐๆฎไธญๅญฆไน ๏ผŒๅนถ่ƒฝๅคŸๅœจๆ–ฐ็š„ใ€ไน‹ๅ‰ๆœช่ง่ฟ‡็š„ๆ•ฐๆฎไธŠๅšๅ‡บ้ข„ๆต‹ใ€‚็›‘็ฃๅญฆไน ้€šๅธธๅœจๅ›พๅƒ่ฏ†ๅˆซ๏ผŒ่‡ช็„ถ่ฏญ่จ€ๅค„็†ไปฅๅŠๅคงๅคšๆ•ฐๆœบๅ™จๅญฆไน ไปปๅŠกไธญไฝฟ็”จใ€‚ Response๏ผš่งฃ้‡Šไป€ไนˆๆ˜ฏ็›‘็ฃๅผๆœบๅ™จๅญฆไน  ### 2. Input๏ผšI see a lot of folks saying that minimum wage jobs are just intended for students. I wonder who they think makes their egg McMuffin at 8am or their chicken McNuggets at lunch? Folks who work a full-time job should be able to afford housing and food. Itโ€™s not that hard. Response๏ผšๅ›žๅคไปฅไธ‹่ฏ„่ฎบ๏ผŒ็”จไธ่ถ…่ฟ‡100ไธชๅ•่ฏใ€‚ " Minimum wages are just for students." ### 3. Input๏ผšGet ready for an anonymous cross-chain bridge coming to #MaxxChain courtesy of @BlockBlendIO! Transact with over 10 of the most prominent cryptocurrencies and receive #PWR through a single, untraceable transaction. Experience true DeFi freedom. Deployment slated for next week. Response๏ผšๅ‘ๅธƒไธ€ๆกๆŽจๆ–‡๏ผŒๅฎฃไผ ๆ–ฐ็š„ๅŠ ๅฏ†่ดงๅธๆกฅใ€‚ ### 4. Input๏ผš Radial substructures have now been observed in a wide range of protoplanetary discs (PPDs), from young to old systems, however their formation is still an area of vigorous debate. Recent magnetohydrodynamic (MHD) simulations have shown that rings and gaps can form naturally in PPDs when non-ideal MHD effects are included. However these simulations employ ad-hoc approximations to the magnitudes of the magnetic diffusivities in order to facilitate ring growth. We replace the parametrisation of these terms with a simple chemical network and grain distribution model to calculate the non-ideal effects in a more self-consistent way. We use a range of grain distributions to simulate grain formation for different disc conditions. Including ambipolar diffusion, we find that large grain populations (> 1{\mu}m), and those including a population of very small polyaromatic hydrocarbons (PAHs) facilitate the growth of periodic, stable rings, while intermediate sized grains suppress ring formation. Including Ohmic diffusion removes the positive influence of PAHs, with only large grain populations still producing periodic ring and gap structures. These results relate closely to the degree of coupling between the magnetic field and the neutral disc material, quantified by the non-dimensional Elsasser number {\Lambda} (the ratio of magnetic forces to Coriolis force). For both the ambipolar-only and ambipolar-ohmic cases, if the total Elsasser number is initially of order unity along the disc mid-plane, ring and gap structures may develop. Response๏ผšๅˆ›ๅปบไธ€็ฏ‡ๅ…ณไบŽ่กŒๆ˜Ÿ็›˜ไธญ่พๅฐ„็ป“ๆž„็š„็ ”็ฉถ่ฎบๆ–‡ใ€‚
gdhdp/xiao
gdhdp
2023-09-02T03:52:50Z
0
0
diffusers
[ "diffusers", "dataset:Open-Orca/OpenOrca", "arxiv:1910.09700", "license:openrail", "region:us" ]
null
2023-09-02T03:50:57Z
--- license: openrail datasets: - Open-Orca/OpenOrca library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wangrongsheng/Baichuan-13B-Chat-sft-merge
wangrongsheng
2023-09-02T03:38:05Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T03:36:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
dt-and-vanilla-ardt/ardt-vanilla-robust_train_walker2d_level-0209_0306-33
dt-and-vanilla-ardt
2023-09-02T03:36:52Z
29
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T02:08:08Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_walker2d_level-0209_0306-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_walker2d_level-0209_0306-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
unggulP/unggul
unggulP
2023-09-02T03:19:04Z
0
0
keras
[ "keras", "id", "license:openrail", "region:us" ]
null
2023-09-02T03:16:12Z
--- license: openrail language: - id library_name: keras ---
dt-and-vanilla-ardt/ardt-vanilla-robust_train_hopper_level-0209_0334-99
dt-and-vanilla-ardt
2023-09-02T03:14:50Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T02:35:16Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_hopper_level-0209_0334-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_hopper_level-0209_0334-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
nightdude/config_81190
nightdude
2023-09-02T02:59:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T02:58:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
FelipeCasali-USP/lgpd_pii_identifier
FelipeCasali-USP
2023-09-02T02:00:33Z
10
3
transformers
[ "transformers", "distilbert", "token-classification", "pt", "doi:10.57967/hf/1026", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-27T01:45:54Z
--- language: pt license: apache-2.0 widget: - text: "123.456.789-0" example_title: "CPF" - text: "75528899000119" example_title: "CNPJ (sem pontuaรงรฃo)" - text: "Nome Completo" example_title: "Felipe Casali Silva" - text: "Dados diversos" example_title: "Felipe Casali Silva, Teste, Rio de Janeiro, RJ" --- # lgpd_pii_identifier : LGPD PII Identifier lgpd_pii_identifier is a pre-trained NLP model to identify sensitive data in the scope of LGPD (Lei Geral de Proteรงรฃo de Dados) The goal is to have a tool to identify document numbers like CNPJ, CPF, people's names and other kind of sensitive data, allowing companies to find and anonymize data according to their businness needs, and governance rules. ## Applications ### Identify PII (Personal Identifiable Information) in the scope of LGPD # WIP (Add image here) ## Usage In order to use the model, you need to get the HuggingFace auth token. You can get it [here](https://huggingface.co/settings/token). ```python from transformers import DistilBertModel, DistilBertTokenizer import numpy as np pred_mapper = { 0: "cnpj", 1: "cpf", 2: "nome", 3: "estado" } tokenizer = DistilBertTokenizer.from_pretrained("FelipeCasali-USP/lgpd_pii_identifier") lgpd_pii_identifier = DistilBertModel.from_pretrained("FelipeCasali-USP/lgpd_pii_identifier") tokens = tokenizer(["String to be analized"], return_tensors="pt", padding=True, truncation=True, max_length=512) lgpd_pii_identifier_outputs = lgpd_pii_identifier(**tokens) preds = [pred_mapper[np.argmax(pred)] for pred in lgpd_pii_identifier_outputs.logits.cpu().detach().numpy()] ``` ## Author - [Felipe Casali](https://www.linkedin.com/in/felipecasali/) ## Paper - Paper: WIP - MBA thesis: [lgpd_pii_identifier: Proteรงรฃo de Dados Sensรญveis na Era da Inteligรชncia Artificial](WIP)
DmatryMakeev/diamonic-v3
DmatryMakeev
2023-09-02T01:57:43Z
31
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-02T01:53:06Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### DIAMONIC_V3 Dreambooth model trained by DmatryMakeev with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
germanchelo/example_fastai
germanchelo
2023-09-02T01:48:16Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:48:13Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Laly/intel_image_classification_fastai
Laly
2023-09-02T01:47:48Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:47:44Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Isaacf/intel_image_classification_fastai
Isaacf
2023-09-02T01:44:54Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:44:50Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
baibaibai/baini_VoiceBank
baibaibai
2023-09-02T01:44:46Z
0
0
null
[ "UTAU", "diffsinger", "ja", "zh", "license:cc-by-nc-4.0", "region:us" ]
null
2023-09-01T13:36:24Z
--- license: cc-by-nc-4.0 language: - ja - zh tags: - UTAU - diffsinger --- ไฝ ๅฅฝๆ„Ÿ่ฐขๆ‚จไฝฟ็”จ็™ฝๆบบ็š„ๆญŒๅฃฐๆ•ฐๆฎๅบ“ใ€‚ ไฝฟ็”จ่ง„็บฆ๏ผš 1.็ฆๆญข็”จไบŽ ๅฎ—ๆ•™ ๆ”ฟๆฒป๏ผŒ็ญ‰็ญ‰๏ผŒไปปไฝ•่ฟๅๆณ•ๅพ‹ๅ†…ๅฎน็š„ๅˆ›ไฝœใ€‚ 2.็ฆๆญขๅฐ†ๆœฌ้Ÿณๆบไฝฟ็”จไบŽๅคงไผ—้›ท็‚น็›ธๅ…ณๅ†…ๅฎน็š„ๅˆ›ไฝœ๏ผˆไพ‹ๅฆ‚๏ผšไธบๆœ‰ไธ่‰ฏ่กŒไธบ็š„ไบบๆˆ–็‰ฉ่ฟ›่กŒไบŒๅˆ›๏ผ‰ 3.ๅ…่ฎธ็”จไบŽ้žๅ•†ไธš็”จ้€”ไธ”ไธ่ฟๅ่ง„็บฆ็š„ๅˆ›ไฝœใ€‚ 4.็”จไบŽๅ•†ไธš็”จ้€”ๆˆ–่€…็›ˆๅˆฉ๏ผŒ้œ€่ฆๅ‘้Ÿณๆบ็ฎก็†่€…็”ณ่ฏทๆŽˆๆƒใ€‚ไธ€่ˆฌๆฅ่ฏด้ƒฝๆ˜ฏๅ…่ดน็š„ใ€‚ 5.ไฝฟ็”จๆœฌ้Ÿณๆบ๏ผŒไธ่ฎบๆ˜ฏๅ•†ไธš่ฟ˜ๆ˜ฏ้žๅ•†๏ผŒไธ่ฎบๆ˜ฏไธปๅ”ฑ่ฟ˜ๆ˜ฏๅ’Œๅฃฐ็ญ‰่Œไฝ๏ผŒ้ƒฝๅบ”ๆธ…ๆ™ฐๆ˜Žไบ†็š„ๆ ‡ๆณจๅฃฐๅบ“ๅไปฅๅŠๆ‰€ๅฑžไฝ็ฝฎ๏ผˆไพ‹๏ผšๅ’Œๅฃฐ๏ผš็™ฝๆบบ) 6.ๆœฌ้Ÿณๆบ็š„otoๆ–‡ไปถไปฅๅŠwavๅ๏ผŒwavๆ–‡ไปถ๏ผŒๅผ•ๆ“Žๆจกๅž‹ๆ–‡ไปถ็ญ‰็ญ‰๏ผŒ่ฟ™็ฑป็”ฑๆœฌ้Ÿณๆบ้…ๅธƒ็š„ๅ†…ๅฎนไปฅๅŠ้…ๅธƒๅ†…ๅฎนไบŒๆฌก็”Ÿๆˆ็š„็‰ฉๅ“๏ผŒๆœช่ฏดๆ˜Žๅ…่ฎธไบŒๆฌก้…ๅธƒ็š„๏ผŒ้ƒฝ่ง†ไธบไธๅ…่ฎธไบŒๆฌก้…ๅธƒ๏ผŒไนŸไธๅ…่ฎธ็”จไบŽ่ฟๅๆญค่ง„็บฆ็š„ๅˆ›ไฝœใ€‚๏ผˆๆณจ๏ผšไฝฟ็”จๆœฌ้Ÿณๆบๆ‰€้…ๅธƒ็š„ๅ†…ๅฎน๏ผŒ่ฟ›่กŒaiๆˆ–่€…ๅ…ถไป–็š„็ฑปไผผ็จ‹ๅบ็š„่ฎญ็ปƒๅญฆไน ็ญ‰็ญ‰๏ผŒๆˆ–ๅ…ถไป–่ฟ‘ไผผ็š„่กŒไธบใ€‚ๅฑžไบŽๅฏนๅทฒ้…ๅธƒๅ†…ๅฎน็š„ไบŒๆฌก็”Ÿๆˆ็‰ฉ๏ผŒไธๅ…่ฎธไปฅไปปไฝ•ๅฝขๅผ็š„ๅˆ†ๅ‘๏ผ‰ 7.ๆ›ดไธๅ…่ฎธ๏ผŒๅฐ†ๆญค้ŸณๆบไธŽๅ…ถไป–้ŸณๆบไบŒๆฌกๆ‹ผๆŽฅ่ตทๆฅๅ‘ฝๅไธบๆ–ฐ็š„้Ÿณๆบใ€‚ไนŸไธๅ…่ฎธๅˆถไฝœ่ฏฅ้Ÿณๆบ็š„ไบš็ง๏ผŒๅฆ‚ๆžœๆœ‰ไบš็ง้œ€ๆฑ‚๏ผŒ่ฏทไปฅ้Ÿณ่‰ฒ็š„ๅไน‰ๅ‘ๅธƒ๏ผˆไพ‹ๅฆ‚๏ผš็™ฝๆบบยท็ง‹้ฃŽ๏ผ‰ใ€‚ไธๅ…่ฎธๅฏน้Ÿณๆบ็š„ๆ–‡ไปถ่ฟ›่กŒไบŒๆฌกไฟฎๆ”นๅŽไปฅๆ–ฐ็š„ๅ‘ฝๅๅ‘ๅธƒใ€‚ ้œ€่ฆ่ฟๅ่ง„็บฆ็š„ไบ‹ๆƒ…๏ผŒๆˆ–่€…่ง„็บฆๆฒกๆœ‰ๅ†™ๆ˜Ž็™ฝ็š„ไบ‹ๆƒ…๏ผŒ่ฏทๅ’จ่ฏขๅฃฐๅบ“็ฎก็†่€…๏ผŒๅฃฐๅบ“็ฎก็†่€…ๆ‹ฅๆœ‰ๆœฌ่ง„็บฆ็š„ๆœ€็ปˆ่งฃ้‡Šๆƒใ€‚ ๆญŒๆ‰‹ๅŸบ็ก€ไฟกๆฏ๏ผš ๆญŒๆ‰‹ไฟกๆฏ๏ผš ๅง“ๅ๏ผš็™ฝๆบบ ๆ€งๅˆซ๏ผš็”ท ็”Ÿๆ—ฅ๏ผš7ๆœˆ20ๆ—ฅ ไธญไน‹ไบบ๏ผšๅฐ็™ฝ่Œ๏ผˆๅฐ้›จๅคฉ๏ผ‰ ๅฃฐๅบ“็ฎก็†่€…/็‰ˆๆƒๅฝ’ๅฑž๏ผšๅฐ็™ฝ่Œ่Œ https://space.bilibili.com/207917768 ้€š่ฟ‡้‚ฎ็ฎฑ่”็ณปๆˆ‘๏ผš[email protected]๏ผˆๆˆ‘ๅฏ่ƒฝๅชๆ˜ฏๅถๅฐ”็œ‹ไธ€็œผ๏ผ‰
Dagaviri/intel_image_classification_fastai
Dagaviri
2023-09-02T01:33:22Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:33:18Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Jdex01/intel_image_classification_fastai
Jdex01
2023-09-02T01:31:58Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:31:54Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
dacuervo1/intel_image_classification_fastai
dacuervo1
2023-09-02T01:30:29Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:30:25Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
lauracata/intel_image_classification_fastai
lauracata
2023-09-02T01:30:23Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:30:18Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
AshtakaOOf/itpiki
AshtakaOOf
2023-09-02T01:30:11Z
0
1
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-06-13T20:31:18Z
--- license: cc-by-nc-sa-4.0 --- # MOVED HERE: [AshtakaOOf/ash-networks](https://huggingface.co/AshtakaOOf/ash-networks)
AshtakaOOf/csm-bg
AshtakaOOf
2023-09-02T01:29:49Z
0
4
null
[ "art", "anime", "chainsaw-man", "loha", "text-to-image", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-image
2023-05-25T00:35:39Z
--- license: cc-by-nc-sa-4.0 pipeline_tag: text-to-image thumbnail: "https://media.discordapp.net/attachments/1102319457180856411/1113586206836535396/00145-2181918707.png" tags: - art - anime - chainsaw-man - loha --- # MOVED HERE: [AshtakaOOf/ash-networks](https://huggingface.co/AshtakaOOf/ash-networks) <details id="Dropdown"> <summary style="font-size: 1.10em"><strong>Old README.md</strong> (click to open the dropdown)</summary> <p align="center", style="font-size: 2.8rem; font-weight: bold; color: #f6df00;">Chainsaw Man LoHa</p> <p align="center", style="font-size: 1.2rem; font-weight: bold; color: #bf5a5f;">Use at 0.6 to 0.8 weight for best quality</p> <p align="center"><img src="https://media.discordapp.net/attachments/1102319457180856411/1113583145128833135/00118-1819962614.png" width="512"> <img src="https://media.discordapp.net/attachments/1102319457180856411/1113586206836535396/00145-2181918707.png" width="512"></p> <p align="center">Trained by AshtakaOOf</p> <p align="center">Dataset provided by High Speed Rail Enjoyer</p> # Main Token: ``` M,A,P ``` # Characters Tokens: ``` denji_(chainsaw_man) makima_(chainsaw_man) power_(chainsaw_man) hayakawa_aki himeno_(chainsaw_man) higashiyama_kobeni ``` # Examples: ![Denji](https://media.discordapp.net/attachments/1102319457180856411/1113575202400505948/tmpnc7puytv.png?width=466&height=657) ``` 1boy, male focus, solo, shirt, smile, teeth, sky, blonde hair, cloud, sharp teeth, white shirt, upper body, day, brown eyes, spiked hair, looking at viewer, cloudy sky, red eyes, grin, ((masterpiece)), denji_(chainsaw_man) ``` ![Power](https://media.discordapp.net/attachments/1102319457180856411/1113546405190053988/00015-3514920506.png?width=467&height=657) ``` 1girl, horns, solo, teeth, sharp teeth, sky, open mouth, cross-shaped pupils, long hair, cloud, hair over one eye, looking at viewer, demon horns, blue sky, day, outdoors, yellow eyes, hood, blonde hair, anime coloring, red horns, cloudy sky, jacket, ((masterpiece)), power_(chainsaw_man), M,A,P ``` ![Himeno Ramen](https://media.discordapp.net/attachments/1102319457180856411/1113571030326325371/tmpmwkbo72r.png?width=996&height=563) ``` 1girl, solo, breasts, looking_at_viewer, short_hair, bangs, shirt, black_hair, holding, white_shirt, food, necktie, collared_shirt, indoors, medium_hair, cup, v, eyepatch, table, plant, black_necktie, plate, bowl, cigarette, chopsticks, spoon, noodles, holdingcigarette, ramen, restaurant, himeno(chainsaw_man), M, A, P ``` </details>
JmGarzonv/intel_image_classification_fastai
JmGarzonv
2023-09-02T01:27:35Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T01:27:24Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
KingKazma/xsum_gpt2_p_tuning_500_4_50000_6_e0_s6789_v4_l4_v100
KingKazma
2023-09-02T01:26:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T01:26:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KhalfounMehdi/dermatology_vit
KhalfounMehdi
2023-09-02T01:24:24Z
193
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "autotrain", "dataset:KhalfounMehdi/dermatology_anomaly_detection_vit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T01:23:50Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - KhalfounMehdi/dermatology_anomaly_detection_vit --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg No validation metrics available
justina/undersampled-review-clf
justina
2023-09-02T01:20:18Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:justina/yelp_boba_reviews", "base_model:cardiffnlp/twitter-roberta-base-sentiment-latest", "base_model:finetune:cardiffnlp/twitter-roberta-base-sentiment-latest", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T00:44:50Z
--- base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - accuracy model-index: - name: undersampled-review-clf results: [] datasets: - justina/yelp_boba_reviews --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # undersampled-review-clf This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on [justina/yelp-boba-reviews](https://huggingface.co/datasets/justina/yelp_boba_reviews) dataset. Undersampling techniques were used to optimize the model for predicting Yelp review ratings. It achieves the following results on the evaluation set: - Loss: 0.4412 - F1 Macro: 0.7799 - Aucpr Macro: 0.8286 - Accuracy: 0.8464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | Aucpr Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:| | 0.9348 | 1.22 | 100 | 0.7286 | 0.6132 | 0.6244 | 0.6962 | | 0.7438 | 2.44 | 200 | 0.7857 | 0.6232 | 0.6215 | 0.6735 | | 0.6275 | 3.66 | 300 | 0.8317 | 0.5976 | 0.6092 | 0.6778 | | 0.5561 | 4.88 | 400 | 0.8176 | 0.6200 | 0.6238 | 0.6868 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
sam2ai/falcon-1b-odia-lora-pt
sam2ai
2023-09-02T01:07:21Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:57:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
aibatik/batik_bakaran
aibatik
2023-09-02T00:57:41Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "license:unknown", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-02T00:40:30Z
--- license: unknown pipeline_tag: text-to-image library_name: diffusers ---
nightdude/config_8119
nightdude
2023-09-02T00:53:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:52:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
peppe243439/my_awesome_model
peppe243439
2023-09-02T00:50:02Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T00:32:27Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_4_1000_8_e1_s6789_v4_l4_r4
KingKazma
2023-09-02T00:40:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:40:25Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
placeholdereet/Lfgc
placeholdereet
2023-09-02T00:39:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-14T15:23:18Z
--- license: creativeml-openrail-m ---
KingKazma/xsum_t5-small_lora_500_4_150_8_e2_s6789_v4_l4_r4
KingKazma
2023-09-02T00:23:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:14:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_4_150_8_e1_s6789_v4_l4_r4
KingKazma
2023-09-02T00:22:54Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:14:24Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
stfamod/fine-tuned-bert-financial-sentiment-analysis
stfamod
2023-09-02T00:06:19Z
124
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "sentiment", "sentiment-analysis", "financial", "fine-tuned", "fine-tuned-bert", "bert-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T23:06:32Z
--- license: mit tags: - sentiment - sentiment-analysis - financial - fine-tuned - fine-tuned-bert - bert-uncased --- ### Model Overview: This NLP model is fine-tuned with a focus on analyzing sentiment in financial text and news headlines. It was fine-tuned using the [bert-base-uncased](https://huggingface.co/bert-base-uncased) model on the [financial_phrasebank](https://huggingface.co/datasets/financial_phrasebank) and [auditor_sentiment](https://huggingface.co/datasets/FinanceInc/auditor_sentiment) datasets. **Accuracies:** \ **financial_phrasebank:** 0.993\ **auditor_senitment:** 0.974 ### Training Hyperparameters: **Learning Rate:** 2e-05\ **Train Batch Size:** 16\ **Eval Batch Size:** 16\ **Random Seed:** 42\ **Optimizer:** AdamW-betas(0.9, 0.999)\ **Learning Rate Scheduler:** Linear\ **Number of Epochs:** 6\ **Number of Warmup Steps:** 0.2 * Number of Training Steps ### How To Use: ``` from transformers import pipeline pipe = pipeline("sentiment-analysis", model="mstafam/fine-tuned-bert-financial-sentimental-analysis") text = "Example company has seen a 5% increase in revenue this quarter." print(pipe(text)) [{'label': 'Positive', 'score': 0.9993795156478882}] ```
ardt-multipart/ardt-multipart-robust_train_halfcheetah_level-0109_2225-66
ardt-multipart
2023-09-01T23:46:16Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T21:27:13Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_halfcheetah_level-0109_2225-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_halfcheetah_level-0109_2225-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
frankkuete/electra-large-cuad-qa
frankkuete
2023-09-01T23:40:06Z
114
1
transformers
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "legal", "en", "dataset:cuad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-02T15:09:45Z
--- license: apache-2.0 tags: - generated_from_trainer - legal datasets: - cuad model-index: - name: electra-large results: [] language: - en widget: - text: "Highlight the parts (if any) of this contract related to 'Document Name' that should be reviewed by a lawyer. Details: The name of the contract" context: "AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES \n This AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES (โ€œAgreementโ€), effective as of December 28, 2014 (โ€œEffective Dateโ€), is by and between Aquarius Cannabis Inc, a Nevada C-Corporation, with offices located at 2214 Clarendon Street, Suite 230, Woodland Hills, CA 91367 (โ€œAquariusโ€), and Sysco Pancho LLC, a Washington limited liability company, with offices located at 6262 cambell rd peshastin wa 98847 (โ€œClientโ€). 1.Marketing and Brand Development Services. Aquarius will perform services for Client in connection with the planning, provision, creation and/or placing of branding, research, advertising, marketing, consulting, creative and/or digital services for Client, during the Term, as provided in the attached (Attachment A) Statement of Work (โ€œSOWโ€), incorporated herein by reference (such services are collectively referred to as โ€œServicesโ€). During the term of this agreement, Client may wish to assign additional projects, products, or services to Aquarius beyond the Services outlined in the SOW (โ€œOut-of-Scope Assignmentsโ€). Aquarius agrees to accept such Out-of-Scope Assignments only upon a separate written agreement with Client regarding additional compensation to be paid to Aquarius and other relevant terms and conditions. Nothing in this Agreement will be deemed to require Aquarius to undertake any act or perform any services which in its good faith judgment would be misleading, false, libelous, unlawful, in breach of a contract, or otherwise prejudicial to Clientโ€™s or Aquariusโ€™s interests. 2.Subcontractors. Client acknowledges that Aquarius may, in the rendition of the Services hereunder, engage third party suppliers and other vendors and subcontractors (โ€œSubcontractorsโ€) from time to time to provide certain services. Aquarius shall supervise such services and endeavor to guard against any loss to Client as the result of the failure of Subcontractors to properly execute their commitments, but Aquarius shall not be responsible for their failure, acts or omissions, except where such failure, acts or omissions are due to Aquariusโ€™s negligence or willful misconduct. If Client enters into arrangements with third party vendors, subcontractors or suppliers regarding the provision of materials or services (โ€œPreferred Suppliersโ€) and requests that Aquarius utilize such Preferred Suppliers in the discharge of Aquariusโ€™s obligations hereunder, Client remains solely responsible for such Preferred Suppliers. 3.Client Approval of Materials. Aquarius shall submit to Client for its approval all elements of any materials to be produced or placed hereunder, including, but not limited to, all copy, layouts, slogans, websites artworks, graphic materials, and photography (collectively, โ€œMaterialsโ€). Submission for prior approval of Materials will not be required to the extent that they are preliminary only. 4.Services to Clientโ€™s Designees. Should Client request Aquarius to make purchases for or render services to any parent, subsidiary, or affiliate of Client (โ€œClient Affiliateโ€), Client and such Client Affiliate shall be jointly and severally liable to Aquarius even though Aquarius may render invoices to, or in the name of, such Client Affiliate." - text: "Highlight the parts (if any) of this contract related to 'Agreement Date' that should be reviewed by a lawyer. Details: The date of the contract" context: "AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES \n This AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES (โ€œAgreementโ€), effective as of December 28, 2014 (โ€œEffective Dateโ€), is by and between Aquarius Cannabis Inc, a Nevada C-Corporation, with offices located at 2214 Clarendon Street, Suite 230, Woodland Hills, CA 91367 (โ€œAquariusโ€), and Sysco Pancho LLC, a Washington limited liability company, with offices located at 6262 cambell rd peshastin wa 98847 (โ€œClientโ€). 1.Marketing and Brand Development Services. Aquarius will perform services for Client in connection with the planning, provision, creation and/or placing of branding, research, advertising, marketing, consulting, creative and/or digital services for Client, during the Term, as provided in the attached (Attachment A) Statement of Work (โ€œSOWโ€), incorporated herein by reference (such services are collectively referred to as โ€œServicesโ€). During the term of this agreement, Client may wish to assign additional projects, products, or services to Aquarius beyond the Services outlined in the SOW (โ€œOut-of-Scope Assignmentsโ€). Aquarius agrees to accept such Out-of-Scope Assignments only upon a separate written agreement with Client regarding additional compensation to be paid to Aquarius and other relevant terms and conditions. Nothing in this Agreement will be deemed to require Aquarius to undertake any act or perform any services which in its good faith judgment would be misleading, false, libelous, unlawful, in breach of a contract, or otherwise prejudicial to Clientโ€™s or Aquariusโ€™s interests. 2.Subcontractors. Client acknowledges that Aquarius may, in the rendition of the Services hereunder, engage third party suppliers and other vendors and subcontractors (โ€œSubcontractorsโ€) from time to time to provide certain services. Aquarius shall supervise such services and endeavor to guard against any loss to Client as the result of the failure of Subcontractors to properly execute their commitments, but Aquarius shall not be responsible for their failure, acts or omissions, except where such failure, acts or omissions are due to Aquariusโ€™s negligence or willful misconduct. If Client enters into arrangements with third party vendors, subcontractors or suppliers regarding the provision of materials or services (โ€œPreferred Suppliersโ€) and requests that Aquarius utilize such Preferred Suppliers in the discharge of Aquariusโ€™s obligations hereunder, Client remains solely responsible for such Preferred Suppliers. 3.Client Approval of Materials. Aquarius shall submit to Client for its approval all elements of any materials to be produced or placed hereunder, including, but not limited to, all copy, layouts, slogans, websites artworks, graphic materials, and photography (collectively, โ€œMaterialsโ€). Submission for prior approval of Materials will not be required to the extent that they are preliminary only. 4.Services to Clientโ€™s Designees. Should Client request Aquarius to make purchases for or render services to any parent, subsidiary, or affiliate of Client (โ€œClient Affiliateโ€), Client and such Client Affiliate shall be jointly and severally liable to Aquarius even though Aquarius may render invoices to, or in the name of, such Client Affiliate." - text: "Highlight the parts (if any) of this contract related to 'Parties' that should be reviewed by a lawyer. Details: The two or more parties who signed the contract" context: "AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES \n This AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES (โ€œAgreementโ€), effective as of December 28, 2014 (โ€œEffective Dateโ€), is by and between Aquarius Cannabis Inc, a Nevada C-Corporation, with offices located at 2214 Clarendon Street, Suite 230, Woodland Hills, CA 91367 (โ€œAquariusโ€), and Sysco Pancho LLC, a Washington limited liability company, with offices located at 6262 cambell rd peshastin wa 98847 (โ€œClientโ€). 1.Marketing and Brand Development Services. Aquarius will perform services for Client in connection with the planning, provision, creation and/or placing of branding, research, advertising, marketing, consulting, creative and/or digital services for Client, during the Term, as provided in the attached (Attachment A) Statement of Work (โ€œSOWโ€), incorporated herein by reference (such services are collectively referred to as โ€œServicesโ€). During the term of this agreement, Client may wish to assign additional projects, products, or services to Aquarius beyond the Services outlined in the SOW (โ€œOut-of-Scope Assignmentsโ€). Aquarius agrees to accept such Out-of-Scope Assignments only upon a separate written agreement with Client regarding additional compensation to be paid to Aquarius and other relevant terms and conditions. Nothing in this Agreement will be deemed to require Aquarius to undertake any act or perform any services which in its good faith judgment would be misleading, false, libelous, unlawful, in breach of a contract, or otherwise prejudicial to Clientโ€™s or Aquariusโ€™s interests. 2.Subcontractors. Client acknowledges that Aquarius may, in the rendition of the Services hereunder, engage third party suppliers and other vendors and subcontractors (โ€œSubcontractorsโ€) from time to time to provide certain services. Aquarius shall supervise such services and endeavor to guard against any loss to Client as the result of the failure of Subcontractors to properly execute their commitments, but Aquarius shall not be responsible for their failure, acts or omissions, except where such failure, acts or omissions are due to Aquariusโ€™s negligence or willful misconduct. If Client enters into arrangements with third party vendors, subcontractors or suppliers regarding the provision of materials or services (โ€œPreferred Suppliersโ€) and requests that Aquarius utilize such Preferred Suppliers in the discharge of Aquariusโ€™s obligations hereunder, Client remains solely responsible for such Preferred Suppliers. 3.Client Approval of Materials. Aquarius shall submit to Client for its approval all elements of any materials to be produced or placed hereunder, including, but not limited to, all copy, layouts, slogans, websites artworks, graphic materials, and photography (collectively, โ€œMaterialsโ€). Submission for prior approval of Materials will not be required to the extent that they are preliminary only. 4.Services to Clientโ€™s Designees. Should Client request Aquarius to make purchases for or render services to any parent, subsidiary, or affiliate of Client (โ€œClient Affiliateโ€), Client and such Client Affiliate shall be jointly and severally liable to Aquarius even though Aquarius may render invoices to, or in the name of, such Client Affiliate." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-large This model is a fine-tuned version of [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on the cuad dataset for the question-answering task. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Contract Understanding Atticus Dataset (CUAD) is an extractive question-answering dataset on legal contracts proposed by the Atticus Project, a non-profit organization of legal experts, designed with the help of many experts in the legal field. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2
dt-and-vanilla-ardt/ardt-vanilla-robust_train_halfcheetah_level-0109_2214-33
dt-and-vanilla-ardt
2023-09-01T23:31:49Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T21:16:41Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_halfcheetah_level-0109_2214-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_halfcheetah_level-0109_2214-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mihirtw/med-train-llama
mihirtw
2023-09-01T23:17:57Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-01T21:43:00Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: true thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [h2oai/h2ogpt-4096-llama2-7b](https://huggingface.co/h2oai/h2ogpt-4096-llama2-7b) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.31.0 ``` Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave `token=True` in the `pipeline` and login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCES_TOKEN>) ``` - Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline` ```python from transformers import pipeline generate_text = pipeline( model="mihirtw/med-train-llama", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, token=True, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "mihirtw/med-train-llama", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "mihirtw/med-train-llama", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "mihirtw/med-train-llama" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
C57Box/bert-finetuned-squad
C57Box
2023-09-01T23:06:55Z
116
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-01T20:52:03Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
AltamashAhmed/TTS_speecht5_finetuned_voxpopuli_it
AltamashAhmed
2023-09-01T23:03:49Z
75
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "it", "dataset:facebook/voxpopuli", "endpoints_compatible", "region:us" ]
text-to-audio
2023-08-31T18:27:02Z
--- language: - it base_model: SpeechT5 tags: - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: microsoft/speecht5_tts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft/speecht5_tts This model is a fine-tuned version of [SpeechT5](https://huggingface.co/SpeechT5) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5472 | 6.13 | 1000 | 0.5091 | | 0.5229 | 12.26 | 2000 | 0.4946 | | 0.5122 | 18.39 | 3000 | 0.4898 | | 0.5159 | 24.52 | 4000 | 0.4889 | | 0.511 | 30.65 | 5000 | 0.4873 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
lsoni/bert-finetuned-ner-word-embedding
lsoni
2023-09-01T23:01:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-31T14:37:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-word-embedding results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-word-embedding This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the combined training dataset(tweetner7(train_2021)+augmented dataset(train_2021) using word embedding technique). It achieves the following results on the evaluation set: - Loss: 0.5502 - Precision: 0.6522 - Recall: 0.4973 - F1: 0.5643 - Accuracy: 0.8615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7144 | 1.0 | 624 | 0.5837 | 0.7042 | 0.4422 | 0.5433 | 0.8601 | | 0.5257 | 2.0 | 1248 | 0.5522 | 0.6575 | 0.4803 | 0.5551 | 0.8610 | | 0.4564 | 3.0 | 1872 | 0.5502 | 0.6522 | 0.4973 | 0.5643 | 0.8615 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.10.1 - Tokenizers 0.12.1
Whybother/version-3
Whybother
2023-09-01T22:58:56Z
47
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T22:56:11Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Version_3 Dreambooth model trained by Whybother with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
KingKazma/xsum_gpt2_p_tuning_500_4_50000_6_e-1_s6789_v4_l4_v100
KingKazma
2023-09-01T22:56:15Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-01T22:56:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
U-sama/wav2vec2-base-demo-colab
U-sama
2023-09-01T22:49:04Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-01T20:37:29Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4908 - eval_wer: 0.3950 - eval_runtime: 62.3995 - eval_samples_per_second: 26.923 - eval_steps_per_second: 3.365 - epoch: 12.0 - step: 1500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
hmcgovern/gpt-j-6b_text_detection
hmcgovern
2023-09-01T22:46:19Z
0
0
null
[ "generated_from_trainer", "base_model:EleutherAI/gpt-j-6b", "base_model:finetune:EleutherAI/gpt-j-6b", "license:apache-2.0", "region:us" ]
null
2023-09-01T18:24:54Z
--- license: apache-2.0 base_model: EleutherAI/gpt-j-6b tags: - generated_from_trainer model-index: - name: gpt-j-6b_text_detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-j-6b_text_detection This model is a fine-tuned version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2716 | 1.0 | 384 | 0.0529 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_walker2d_level-0109_2144-33
ardt-multipart
2023-09-01T22:37:32Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T20:46:28Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_walker2d_level-0109_2144-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_walker2d_level-0109_2144-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Whybother/private
Whybother
2023-09-01T22:23:34Z
1
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T22:19:37Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Private() Dreambooth model trained by Whybother with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
marcdemory/SDXL-lora-MADeMory-v1-0-1
marcdemory
2023-09-01T22:18:40Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-01T14:25:12Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a MADeMory person tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - marcdemory/SDXL-lora-MADeMory-v1-0-1 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on photo of a MADeMory person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Yaxin1992/codellama-13b-multi-3500
Yaxin1992
2023-09-01T21:28:14Z
0
0
null
[ "generated_from_trainer", "base_model:codellama/CodeLlama-34b-hf", "base_model:finetune:codellama/CodeLlama-34b-hf", "license:llama2", "region:us" ]
null
2023-08-31T18:01:45Z
--- license: llama2 base_model: codellama/CodeLlama-34b-hf tags: - generated_from_trainer model-index: - name: codellama-13b-multi-3500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codellama-13b-multi-3500 This model is a fine-tuned version of [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_halfcheetah_level-0109_2000-33
ardt-multipart
2023-09-01T21:25:13Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:01:43Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_halfcheetah_level-0109_2000-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_halfcheetah_level-0109_2000-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dreamboat26/bert-finetuned-ner
dreamboat26
2023-09-01T21:20:54Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-01T20:47:01Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: dreamboat26/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dreamboat26/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0219 - Validation Loss: 0.0516 - Epoch: 2 ## Model description Find the entities (such as persons, locations, or organizations) in a sentence. This can be formulated as attributing a label to each token by having one class per entity and one class for โ€œno entity.โ€ ## Intended uses & limitations Academic Use ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0216 | 0.0516 | 0 | | 0.0222 | 0.0516 | 1 | | 0.0219 | 0.0516 | 2 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_hopper_level-0109_2125-99
ardt-multipart
2023-09-01T21:09:35Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T20:26:47Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_hopper_level-0109_2125-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_hopper_level-0109_2125-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ameerazam08/person_train
ameerazam08
2023-09-01T20:58:04Z
35
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T19:46:33Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of dkjfgkj tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - ameerazam08/person_train These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of dkjfgkj using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Syedian123/rachel
Syedian123
2023-09-01T20:48:52Z
2
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T20:43:17Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Rachel Dreambooth model trained by Syedian123 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
gustavodemoura/ppo-LunarLander-v2
gustavodemoura
2023-09-01T20:42:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-01T20:19:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.60 +/- 20.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cmvgia/loratest2
cmvgia
2023-09-01T20:37:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T20:36:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
ardt-multipart/ardt-multipart-robust_train_hopper_level-0109_2041-66
ardt-multipart
2023-09-01T20:25:15Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:43:05Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_hopper_level-0109_2041-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_hopper_level-0109_2041-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ajani/lesson-summarization
Ajani
2023-09-01T20:14:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-23T17:25:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: lesson-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lesson-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.8198 | 3.12 | 200 | 2.8048 | | 2.5358 | 6.25 | 400 | 2.6645 | | 2.333 | 9.38 | 600 | 2.6123 | | 2.2096 | 12.5 | 800 | 2.5807 | | 2.0783 | 15.62 | 1000 | 2.5703 | | 1.9919 | 18.75 | 1200 | 2.5653 | | 1.89 | 21.88 | 1400 | 2.5602 | | 1.7865 | 25.0 | 1600 | 2.5650 | | 1.7149 | 28.12 | 1800 | 2.5812 | | 1.6651 | 31.25 | 2000 | 2.5813 | | 1.5662 | 34.38 | 2200 | 2.5997 | | 1.5333 | 37.5 | 2400 | 2.6097 | | 1.4336 | 40.62 | 2600 | 2.6389 | | 1.3986 | 43.75 | 2800 | 2.6564 | | 1.352 | 46.88 | 3000 | 2.6720 | | 1.3072 | 50.0 | 3200 | 2.6863 | | 1.2773 | 53.12 | 3400 | 2.6931 | | 1.2079 | 56.25 | 3600 | 2.7350 | | 1.1768 | 59.38 | 3800 | 2.7521 | | 1.1749 | 62.5 | 4000 | 2.7553 | | 1.0857 | 65.62 | 4200 | 2.7921 | | 1.0883 | 68.75 | 4400 | 2.7840 | | 1.0307 | 71.88 | 4600 | 2.8110 | | 1.0255 | 75.0 | 4800 | 2.8365 | | 0.9992 | 78.12 | 5000 | 2.8358 | | 0.9516 | 81.25 | 5200 | 2.8554 | | 0.9363 | 84.38 | 5400 | 2.8742 | | 0.91 | 87.5 | 5600 | 2.8923 | | 0.895 | 90.62 | 5800 | 2.9057 | | 0.8371 | 93.75 | 6000 | 2.9234 | | 0.8588 | 96.88 | 6200 | 2.9443 | | 0.8237 | 100.0 | 6400 | 2.9612 | | 0.8147 | 103.12 | 6600 | 2.9633 | | 0.7936 | 106.25 | 6800 | 2.9641 | | 0.7883 | 109.38 | 7000 | 2.9711 | | 0.7589 | 112.5 | 7200 | 2.9744 | | 0.7277 | 115.62 | 7400 | 2.9879 | | 0.7505 | 118.75 | 7600 | 2.9974 | | 0.705 | 121.88 | 7800 | 3.0033 | | 0.7111 | 125.0 | 8000 | 3.0032 | | 0.7005 | 128.12 | 8200 | 3.0055 | | 0.6961 | 131.25 | 8400 | 3.0168 | | 0.6543 | 134.38 | 8600 | 3.0339 | | 0.6482 | 137.5 | 8800 | 3.0312 | | 0.6807 | 140.62 | 9000 | 3.0393 | | 0.6365 | 143.75 | 9200 | 3.0413 | | 0.648 | 146.88 | 9400 | 3.0461 | | 0.6275 | 150.0 | 9600 | 3.0454 | | 0.6284 | 153.12 | 9800 | 3.0552 | | 0.6062 | 156.25 | 10000 | 3.0514 | | 0.6312 | 159.38 | 10200 | 3.0487 | | 0.6244 | 162.5 | 10400 | 3.0525 | | 0.5792 | 165.62 | 10600 | 3.0547 | | 0.5997 | 168.75 | 10800 | 3.0491 | | 0.5972 | 171.88 | 11000 | 3.0542 | | 0.5891 | 175.0 | 11200 | 3.0624 | | 0.582 | 178.12 | 11400 | 3.0717 | | 0.5934 | 181.25 | 11600 | 3.0683 | | 0.5803 | 184.38 | 11800 | 3.0761 | | 0.5724 | 187.5 | 12000 | 3.0777 | | 0.6015 | 190.62 | 12200 | 3.0784 | | 0.5874 | 193.75 | 12400 | 3.0792 | | 0.5531 | 196.88 | 12600 | 3.0801 | | 0.5863 | 200.0 | 12800 | 3.0801 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu116 - Datasets 2.12.0 - Tokenizers 0.13.3
trieudemo11/llama_7b_attrb_cate_8m_1
trieudemo11
2023-09-01T20:12:01Z
5
0
peft
[ "peft", "region:us" ]
null
2023-09-01T20:11:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
KatMarie/wav2vec2-large-xls-r-300m-euskera2.1-colab
KatMarie
2023-09-01T20:11:37Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-17T17:51:50Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-euskera2.1-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: eu split: test args: eu metrics: - name: Wer type: wer value: 0.2787176738226604 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-euskera2.1-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2291 - Wer: 0.2787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1152 | 1.49 | 700 | 0.3510 | 0.4973 | | 0.1969 | 2.98 | 1400 | 0.2552 | 0.3643 | | 0.1027 | 4.47 | 2100 | 0.2379 | 0.3108 | | 0.0648 | 5.96 | 2800 | 0.2291 | 0.2787 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Frorozcol/speecht5_finetuned_voxpopuli_nl
Frorozcol
2023-09-01T20:10:46Z
76
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-08-31T16:01:04Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4622 | 105.26 | 1000 | 0.4629 | | 0.4376 | 210.53 | 2000 | 0.4654 | | 0.4274 | 315.79 | 3000 | 0.4635 | | 0.422 | 421.05 | 4000 | 0.4642 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
trieudemo11/llama_7b_attrb_cate_b6_l320_low_9
trieudemo11
2023-09-01T20:10:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T20:09:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 rsions - PEFT 0.6.0.dev0
anik424/SD_xl_base_madras_checks
anik424
2023-09-01T20:06:23Z
1
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-30T18:11:49Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Photo of madras check pattern" tags: - text-to-image - diffusers - autotrain inference: true ---
DavidHuggingFace1/Concept-Phrase
DavidHuggingFace1
2023-09-01T20:04:55Z
0
0
peft
[ "peft", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:57:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
KingKazma/xsum_t5-small_lora_500_2_300_8_e2_s6789_v4_l4_r4
KingKazma
2023-09-01T19:55:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T19:50:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_2_300_8_e1_s6789_v4_l4_r4
KingKazma
2023-09-01T19:54:55Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-01T19:45:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
LarryAIDraw/ScyllaOnlySchool
LarryAIDraw
2023-09-01T19:52:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-01T19:48:05Z
--- license: creativeml-openrail-m --- https://civitai.com/models/26602/scylla-azur-lane-school-uniform-and-2in1-and
KatMarie/wav2vec2-large-xls-r-300m-eu
KatMarie
2023-09-01T19:47:42Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-30T20:11:45Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-eu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: eu split: test args: eu metrics: - name: Wer type: wer value: 0.4967706508380619 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-eu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4355 - Wer: 0.4968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5405 | 0.85 | 400 | 0.8115 | 0.8949 | | 0.5355 | 1.7 | 800 | 0.6292 | 0.7331 | | 0.405 | 2.56 | 1200 | 0.5805 | 0.6699 | | 0.3261 | 3.41 | 1600 | 0.5308 | 0.6513 | | 0.2496 | 4.26 | 2000 | 0.4755 | 0.5850 | | 0.1878 | 5.11 | 2400 | 0.4926 | 0.5448 | | 0.1342 | 5.96 | 2800 | 0.4355 | 0.4968 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
zapadaz/ppo-Huggy
zapadaz
2023-09-01T19:43:25Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-01T19:43:21Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: zapadaz/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
ardt-multipart/ardt-multipart-robust_train_hopper_level-0109_2000-33
ardt-multipart
2023-09-01T19:41:40Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:01:16Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_hopper_level-0109_2000-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_hopper_level-0109_2000-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
swl-models/Yorunohitsuji-v1.1
swl-models
2023-09-01T19:32:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-01T16:18:36Z
--- license: creativeml-openrail-m ---
santyzenith/amazon_es_reviews
santyzenith
2023-09-01T19:19:25Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "base_model:BSC-LT/roberta-base-bne", "base_model:finetune:BSC-LT/roberta-base-bne", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T18:52:13Z
--- license: apache-2.0 base_model: BSC-TeMU/roberta-base-bne tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: amazon_es_reviews results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.9295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon_es_reviews This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2246 - Accuracy: 0.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1939 | 1.0 | 938 | 0.2086 | 0.93 | | 0.0999 | 2.0 | 1876 | 0.2246 | 0.9295 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ameerazam08/sd_train
ameerazam08
2023-09-01T18:38:04Z
30
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T18:23:53Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - ameerazam08/sd_train This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
facebook/mms-tts-tzo-dialect_chamula
facebook
2023-09-01T18:25:20Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T18:25:04Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tzotzil Text-to-Speech This repository contains the **Tzotzil (tzo-dialect_chamula)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the ๐Ÿค— Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the ๐Ÿค— Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tzo-dialect_chamula") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tzo-dialect_chamula") text = "some example text in the Tzotzil language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.