modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
samaresh55/autotrain-finance_data_classification-2694580522
samaresh55
2023-01-06T08:53:08Z
6
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:samaresh55/autotrain-data-finance_data_classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T05:28:40Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - samaresh55/autotrain-data-finance_data_classification co2_eq_emissions: emissions: 4.221526489857838 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2694580522 - CO2 Emissions (in grams): 4.2215 ## Validation Metrics - Loss: 0.227 - Accuracy: 0.950 - Macro F1: 0.931 - Micro F1: 0.950 - Weighted F1: 0.950 - Macro Precision: 0.956 - Micro Precision: 0.950 - Weighted Precision: 0.950 - Macro Recall: 0.914 - Micro Recall: 0.950 - Weighted Recall: 0.950 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/samaresh55/autotrain-finance_data_classification-2694580522 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("samaresh55/autotrain-finance_data_classification-2694580522", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("samaresh55/autotrain-finance_data_classification-2694580522", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt",truncation=True) outputs = model(**inputs) ```
muhtasham/small-mlm-glue-rte-custom-tokenizer
muhtasham
2023-01-06T08:46:57Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-06T08:35:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-rte-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-rte-custom-tokenizer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.7825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0178 | 1.6 | 500 | 6.5548 | | 6.2645 | 3.21 | 1000 | 6.7443 | | 6.1376 | 4.81 | 1500 | 6.6115 | | 5.9631 | 6.41 | 2000 | 6.7825 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
jungwhank/ppo-LunarLander-v2
jungwhank
2023-01-06T08:28:06Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T08:27:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.17 +/- 19.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PaddlePaddle/ernie-layoutx-base-uncased
PaddlePaddle
2023-01-06T07:58:48Z
0
13
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie_layout", "en", "zh", "arxiv:2210.06155", "license:apache-2.0", "region:us" ]
null
2023-01-06T07:45:21Z
--- library_name: paddlenlp license: apache-2.0 language: - en - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/ernie-layoutx-base-uncased ## Introduction Recent years have witnessed the rise and success of pre-training techniques in visually-rich document understanding. However, most existing methods lack the systematic mining and utilization of layout-centered knowledge, leading to sub-optimal performances. In this paper, we propose ERNIE-Layout, a novel document pre-training solution with layout knowledge enhancement in the whole workflow, to learn better representations that combine the features from text, layout, and image. Specifically, we first rearrange input sequences in the serialization stage, and then present a correlative pre-training task, reading order prediction, to learn the proper reading order of documents. To improve the layout awareness of the model, we integrate a spatial-aware disentangled attention into the multi-modal transformer and a replaced regions prediction task into the pre-training phase. Experimental results show that ERNIE-Layout achieves superior performance on various downstream tasks, setting new state-of-the-art on key information extraction, document image classification, and document question answering datasets. More detail: https://arxiv.org/abs/2210.06155 ## Available Models - ernie-layoutx-base-uncased ## How to Use? Click on the *Use in paddlenlp* button on the top right! ## Citation Info ```text @article{ernie2.0, title = {ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich Document Understanding}, author = {Peng, Qiming and Pan, Yinxu and Wang, Wenjin and Luo, Bin and Zhang, Zhenyu and Huang, Zhengjie and Hu, Teng and Yin, Weichong and Chen, Yongfeng and Zhang, Yin and Feng, Shikun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:2210.06155}, year = {2022}, } ```
cleanrl/DoubleDunk-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-06T07:43:05Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "DoubleDunk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T07:43:01Z
--- tags: - DoubleDunk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DoubleDunk-v5 type: DoubleDunk-v5 metrics: - type: mean_reward value: -0.20 +/- 0.60 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DoubleDunk-v5** This is a trained model of a PPO agent playing DoubleDunk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id DoubleDunk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'DoubleDunk-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
takapy/xlm-roberta-base-finetuned-panx-de
takapy
2023-01-06T07:41:57Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-06T07:14:52Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
PaddlePaddle/uie-senta-medium
PaddlePaddle
2023-01-06T07:38:07Z
0
0
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "license:apache-2.0", "region:us" ]
null
2023-01-06T04:08:33Z
--- library_name: paddlenlp license: apache-2.0 language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-senta-medium Sentiment analysis is a research hotspot in recent years, aiming at analyzing, processing, summarizing and reasoning emotionally subjective texts. Sentiment analysis has a wide range of application scenarios and can be applied to consumer decision making, public opinion mining, personalized recommendation and so on. According to the analysis granularity, it can be roughly divided into three categories: document-level sentiment analysis, sentence-level sentiment analysis and aspect-level sentiment analysis. Among them, aspect-level sentiment analysis includes multiple subtasks, such as aspect term extraction, opinion term extraction, aspect-opinion-sentiment triplet extraction, etc. UIE-Senta is a type of Chinese sentiment analysis model, which uses UIE as backbone and further trained based on large amount of samples related to sentiment analysis. So it has a stronger ability to understand sentiment knowledge and handle the related samples. Currently, UIE-Senta supports most of basic sentiment analysis capabilities, including sentiment-level sentiment classification, aspect-term extraction, opinion-term extraction, aspect-sentiment pair extraction, aspect-opinion pair extraction, aspect-opinion-sentiment triple extraction. You could perform sentiment analysis with UIE-Senta to improve your business analysis capabilities. <div align="center"> <img src="https://user-images.githubusercontent.com/35913314/199965793-f0933baa-5b82-47da-9271-ba36642119f8.png" /> </div> ## Available Models | Model Name | Model Config | | :---------------: | :-----------------------------: | | `uie-senta-base` | 12-layers, 768-hidden, 12-heads | | `uie-senta-medium` | 6-layers, 768-hidden, 12-heads | | `uie-senta-mini` | 6-layers, 384-hidden, 12-heads | | `uie-senta-micro` | 4-layers, 384-hidden, 12-heads | | `uie-senta-nano` | 4-layers, 312-hidden, 12-heads | ## Performance on Text Dataset We conducted experiments to compare the performance different Models based on a in-house test set, which containing samples from multiple fields, such as hotel, restaurant,clothes and so. The comparison results are as follows. | Model Name | Precision | Recall | F1 | | :----------------: | :--------: | :--------: | :--------: | | `uie-senta-base` | 0.93403 | 0.92795 | 0.93098 | | `uie-senta-medium` | 0.93146 | 0.92137 | 0.92639 | | `uie-senta-mini` | 0.91799 | 0.92028 | 0.91913 | | `uie-senta-micro` | 0.91542 | 0.90957 | 0.91248 | | `uie-senta-nano` | 0.90817 | 0.90878 | 0.90847 | > Detailed Info: https://github.com/1649759610/PaddleNLP/tree/develop/applications/sentiment_analysis/unified_sentiment_extraction
PaddlePaddle/ernie-2.0-base-zh
PaddlePaddle
2023-01-06T07:35:11Z
0
0
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "arxiv:1907.12412", "license:apache-2.0", "region:us" ]
null
2023-01-06T03:06:45Z
--- library_name: paddlenlp license: apache-2.0 language: - zh --- # PaddlePaddle/ernie-2.0-base-zh ## Introduction Recently, pre-trained models have achieved state-of-the-art results in various language understanding tasks, which indicates that pre-training on large-scale corpora may play a crucial role in natural language processing. Current pre-training procedures usually focus on training the model with several simple tasks to grasp the co-occurrence of words or sentences. However, besides co-occurring, there exists other valuable lexical, syntactic and semantic information in training corpora, such as named entity, semantic closeness and discourse relations. In order to extract to the fullest extent, the lexical, syntactic and semantic information from training corpora, we propose a continual pre-training framework named ERNIE 2.0 which builds and learns incrementally pre-training tasks through constant multi-task learning. Experimental results demonstrate that ERNIE 2.0 outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several common tasks in Chinese. More detail: https://arxiv.org/abs/1907.12412 ## Available Models - ernie-2.0-base-en - ernie-2.0-large-en - ernie-2.0-base-zh - ernie-2.0-large-zh ## How to Use? Click on the *Use in paddlenlp* button on the top right! ## Citation Info ```text @article{ernie2.0, title = {ERNIE 2.0: A Continual Pre-training Framework for Language Understanding}, author = {Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:1907.12412}, year = {2019}, } ```
PaddlePaddle/ernie-2.0-base-en
PaddlePaddle
2023-01-06T07:34:32Z
0
1
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "en", "arxiv:1907.12412", "license:apache-2.0", "region:us" ]
null
2023-01-06T03:14:56Z
--- library_name: paddlenlp license: apache-2.0 language: - en --- # PaddlePaddle/ernie-2.0-base-en ## Introduction Recently, pre-trained models have achieved state-of-the-art results in various language understanding tasks, which indicates that pre-training on large-scale corpora may play a crucial role in natural language processing. Current pre-training procedures usually focus on training the model with several simple tasks to grasp the co-occurrence of words or sentences. However, besides co-occurring, there exists other valuable lexical, syntactic and semantic information in training corpora, such as named entity, semantic closeness and discourse relations. In order to extract to the fullest extent, the lexical, syntactic and semantic information from training corpora, we propose a continual pre-training framework named ERNIE 2.0 which builds and learns incrementally pre-training tasks through constant multi-task learning. Experimental results demonstrate that ERNIE 2.0 outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several common tasks in Chinese. More detail: https://arxiv.org/abs/1907.12412 ## Available Models - ernie-2.0-base-en - ernie-2.0-large-en - ernie-2.0-base-zh - ernie-2.0-large-zh ## How to Use? Click on the *Use in paddlenlp* button on the top right! ## Citation Info ```text @article{ernie2.0, title = {ERNIE 2.0: A Continual Pre-training Framework for Language Understanding}, author = {Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:1907.12412}, year = {2019}, } ```
PaddlePaddle/uie-senta-base
PaddlePaddle
2023-01-06T07:16:04Z
0
2
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "license:apache-2.0", "region:us" ]
null
2023-01-06T04:07:09Z
--- library_name: paddlenlp license: apache-2.0 language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-senta-base Sentiment analysis is a research hotspot in recent years, aiming at analyzing, processing, summarizing and reasoning emotionally subjective texts. Sentiment analysis has a wide range of application scenarios and can be applied to consumer decision making, public opinion mining, personalized recommendation and so on. According to the analysis granularity, it can be roughly divided into three categories: document-level sentiment analysis, sentence-level sentiment analysis and aspect-level sentiment analysis. Among them, aspect-level sentiment analysis includes multiple subtasks, such as aspect term extraction, opinion term extraction, aspect-opinion-sentiment triplet extraction, etc. UIE-Senta is a type of Chinese sentiment analysis model, which uses UIE as backbone and further trained based on large amount of samples related to sentiment analysis. So it has a stronger ability to understand sentiment knowledge and handle the related samples. Currently, UIE-Senta supports most of basic sentiment analysis capabilities, including sentiment-level sentiment classification, aspect-term extraction, opinion-term extraction, aspect-sentiment pair extraction, aspect-opinion pair extraction, aspect-opinion-sentiment triple extraction. You could perform sentiment analysis with UIE-Senta to improve your business analysis capabilities. <div align="center"> <img src="https://user-images.githubusercontent.com/35913314/199965793-f0933baa-5b82-47da-9271-ba36642119f8.png" /> </div> ## Available Models | Model Name | Model Config | | :---------------: | :-----------------------------: | | `uie-senta-base` | 12-layers, 768-hidden, 12-heads | | `uie-senta-medium` | 6-layers, 768-hidden, 12-heads | | `uie-senta-mini` | 6-layers, 384-hidden, 12-heads | | `uie-senta-micro` | 4-layers, 384-hidden, 12-heads | | `uie-senta-nano` | 4-layers, 312-hidden, 12-heads | ## Performance on Text Dataset We conducted experiments to compare the performance different Models based on a in-house test set, which containing samples from multiple fields, such as hotel, restaurant,clothes and so. The comparison results are as follows. | Model Name | Precision | Recall | F1 | | :----------------: | :--------: | :--------: | :--------: | | `uie-senta-base` | 0.93403 | 0.92795 | 0.93098 | | `uie-senta-medium` | 0.93146 | 0.92137 | 0.92639 | | `uie-senta-mini` | 0.91799 | 0.92028 | 0.91913 | | `uie-senta-micro` | 0.91542 | 0.90957 | 0.91248 | | `uie-senta-nano` | 0.90817 | 0.90878 | 0.90847 | > Detailed Info: https://github.com/1649759610/PaddleNLP/tree/develop/applications/sentiment_analysis/unified_sentiment_extraction
muhtasham/small-mlm-glue-qnli-custom-tokenizer
muhtasham
2023-01-06T07:14:46Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-06T05:17:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-qnli-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-qnli-custom-tokenizer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.2117 | 0.4 | 500 | 6.7997 | | 6.5734 | 0.8 | 1000 | 6.6026 | | 6.4063 | 1.2 | 1500 | 6.5514 | | 6.2622 | 1.6 | 2000 | 6.4092 | | 6.2126 | 2.0 | 2500 | 6.3653 | | 6.1191 | 2.4 | 3000 | 6.3054 | | 6.0669 | 2.8 | 3500 | 6.2685 | | 5.9877 | 3.2 | 4000 | 6.2077 | | 5.8901 | 3.6 | 4500 | 6.1328 | | 5.8306 | 4.0 | 5000 | 6.1574 | | 5.8053 | 4.4 | 5500 | 6.0958 | | 5.7117 | 4.8 | 6000 | 6.0377 | | 5.7372 | 5.2 | 6500 | 6.0045 | | 5.6595 | 5.6 | 7000 | 5.9655 | | 5.6579 | 6.0 | 7500 | 5.9410 | | 5.6323 | 6.4 | 8000 | 5.9121 | | 5.5978 | 6.8 | 8500 | 5.8435 | | 5.5634 | 7.2 | 9000 | 5.9205 | | 5.4642 | 7.6 | 9500 | 5.8433 | | 5.4851 | 8.0 | 10000 | 5.8122 | | 5.4272 | 8.4 | 10500 | 5.8350 | | 5.357 | 8.8 | 11000 | 5.7860 | | 5.3638 | 9.2 | 11500 | 5.7262 | | 5.3088 | 9.6 | 12000 | 5.7529 | | 5.3052 | 10.0 | 12500 | 5.7783 | | 5.2628 | 10.4 | 13000 | 5.7124 | | 5.2923 | 10.8 | 13500 | 5.7053 | | 5.1727 | 11.2 | 14000 | 5.7031 | | 5.1474 | 11.6 | 14500 | 5.6445 | | 5.145 | 12.0 | 15000 | 5.6299 | | 5.102 | 12.4 | 15500 | 5.6858 | | 5.0612 | 12.8 | 16000 | 5.6089 | | 5.0928 | 13.2 | 16500 | 5.6404 | | 4.9953 | 13.6 | 17000 | 5.5769 | | 5.0163 | 14.0 | 17500 | 5.5935 | | 4.9591 | 14.4 | 18000 | 5.5862 | | 5.0046 | 14.8 | 18500 | 5.5974 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
ranajoy98/adverseevent_bertclassifier
ranajoy98
2023-01-06T06:48:06Z
0
0
null
[ "pytorch", "text-classification", "en", "region:us" ]
text-classification
2023-01-06T06:33:18Z
--- language: - en metrics: - accuracy pipeline_tag: text-classification ---
PaddlePaddle/uie-base
PaddlePaddle
2023-01-06T06:01:00Z
3
19
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "arxiv:2203.12277", "license:apache-2.0", "region:us" ]
null
2022-12-13T06:15:40Z
--- license: apache-2.0 library_name: paddlenlp language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-base Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. UIE Paper: https://arxiv.org/abs/2203.12277 PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data. ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png) ## Available Models | Model Name | Usage Scenarios | Supporting Tasks | | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- | | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction | | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction | | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction | | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables | ## Performance on Text Dataset We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance: <table> <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86 <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68 <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38 <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22 <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35 <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b> <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13 <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65 </table> 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot). > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md
PaddlePaddle/uie-medium
PaddlePaddle
2023-01-06T06:00:24Z
0
0
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "arxiv:2203.12277", "license:apache-2.0", "region:us" ]
null
2023-01-06T04:12:28Z
--- license: apache-2.0 library_name: paddlenlp language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-medium Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. UIE Paper: https://arxiv.org/abs/2203.12277 PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data. ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png) ## Available Models | Model Name | Usage Scenarios | Supporting Tasks | | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- | | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction | | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction | | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction | | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables | ## Performance on Text Dataset We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance: <table> <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86 <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68 <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38 <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22 <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35 <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b> <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13 <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65 </table> 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot). > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md
PaddlePaddle/uie-micro
PaddlePaddle
2023-01-06T05:59:39Z
0
0
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "en", "zh", "arxiv:2203.12277", "license:apache-2.0", "region:us" ]
null
2023-01-06T04:14:04Z
--- license: apache-2.0 library_name: paddlenlp language: - en - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-micro Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. UIE Paper: https://arxiv.org/abs/2203.12277 PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data. ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png) ## Available Models | Model Name | Usage Scenarios | Supporting Tasks | | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- | | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction | | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction | | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction | | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables | ## Performance on Text Dataset We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance: <table> <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86 <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68 <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38 <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22 <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35 <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b> <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13 <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65 </table> 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot). > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md
PaddlePaddle/uie-m-base
PaddlePaddle
2023-01-06T05:57:57Z
2
0
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie_m", "en", "zh", "arxiv:2203.12277", "license:apache-2.0", "region:us" ]
null
2022-12-13T06:21:52Z
--- license: apache-2.0 library_name: paddlenlp language: - en - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-m-base Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. UIE Paper: https://arxiv.org/abs/2203.12277 PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data. ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png) ## Available Models | Model Name | Usage Scenarios | Supporting Tasks | | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- | | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction | | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction | | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction | | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables | ## Performance on Text Dataset We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance: <table> <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86 <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68 <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38 <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22 <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35 <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b> <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13 <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65 </table> 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot). ## Performance on Multimodal Datasets** We experimented on the zero-shot performance of UIE-X on the in-house multi-modal test sets in three different domains of general, financial, and medical: <table> <tr><th ><th>General <th>Financial<th colspan='2'>Medical <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>65.03<td>73.51<td>84.24 </table> The general test set contains complex samples from different fields and is the most difficult task. > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md
aplnestrella/pegasus-samsum-2
aplnestrella
2023-01-06T05:57:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-06T04:16:52Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum-2 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8437 | 0.14 | 500 | 1.5538 | | 1.6136 | 0.27 | 1000 | 1.4801 | | 1.5287 | 0.41 | 1500 | 1.4405 | | 1.6311 | 0.54 | 2000 | 1.4238 | | 1.6707 | 0.68 | 2500 | 1.4052 | | 1.7293 | 0.81 | 3000 | 1.3998 | | 1.5427 | 0.95 | 3500 | 1.3928 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
PaddlePaddle/uie-x-base
PaddlePaddle
2023-01-06T05:54:58Z
2
18
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie_layout", "en", "zh", "arxiv:2203.12277", "license:apache-2.0", "region:us" ]
null
2022-12-13T06:40:12Z
--- license: apache-2.0 library_name: paddlenlp language: - en - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-x-base **Try out our space at [https://huggingface.co/spaces/PaddlePaddle/UIE-X](https://huggingface.co/spaces/PaddlePaddle/UIE-X)!** Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. UIE Paper: https://arxiv.org/abs/2203.12277 PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data. ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png) ## Available Models | Model Name | Usage Scenarios | Supporting Tasks | | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- | | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction | | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction | | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction | | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables | ## Performance on Text Dataset We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance: <table> <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86 <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68 <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38 <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22 <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35 <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b> <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13 <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65 </table> 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot). ## Performance on Multimodal Datasets** We experimented on the zero-shot performance of UIE-X on the in-house multi-modal test sets in three different domains of general, financial, and medical: <table> <tr><th ><th>General <th>Financial<th colspan='2'>Medical <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>65.03<td>73.51<td>84.24 </table> The general test set contains complex samples from different fields and is the most difficult task. > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md
PaddlePaddle/ernie-3.0-nano-zh
PaddlePaddle
2023-01-06T05:35:40Z
3
4
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "arxiv:2107.02137", "arxiv:2106.02241", "arxiv:2112.12731", "license:apache-2.0", "region:us" ]
null
2022-11-16T08:03:30Z
--- license: apache-2.0 library_name: paddlenlp language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/ernie-3.0-nano-zh ## Intro [ERNIE 3.0 Models](https://github.com/paddlepaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0) are lightweight models obtained from Wenxin large model ERNIE 3.0 using distillation technology. The model structure is consistent with ERNIE 2.0, and has a stronger Chinese effect than ERNIE 2.0. For a detailed explanation of related technologies, please refer to the article [_解析全球最大中文单体模型鹏城-百度·文心技术细节_](https://www.jiqizhixin.com/articles/2021-12-08-9) ## How to Use Click on the "Use in paddlenlp" on the top right corner! ## Performance ERNIE 3.0 open sources six models: **ERNIE 3.0 _XBase_**, **ERNIE 3.0 _Base_**, **ERNIE 3.0 _Medium_**, **ERNIE 3.0 _Mini_**, **ERNIE 3.0 _Micro_**, **ERNIE 3.0 _Nano_**: - **ERNIE 3.0-_XBase_** (_20-layer, 1024-hidden, 16-heads_) - **ERNIE 3.0-_Base_** (_12-layer, 768-hidden, 12-heads_) - **ERNIE 3.0-_Medium_** (_6-layer, 768-hidden, 12-heads_) - **ERNIE 3.0-_Mini_** (_6-layer, 384-hidden, 12-heads_) - **ERNIE 3.0-_Micro_** (_4-layer, 384-hidden, 12-heads_) - **ERNIE 3.0-_Nano_** (_4-layer, 312-hidden, 12-heads_) Below is the **precision-latency graph** of the small Chinese models in PaddleNLP. The abscissa represents the latency (unit: ms) tested on CLUE IFLYTEK dataset (maximum sequence length is set to 128), and the ordinate is the average accuracy on 10 CLUE tasks (including text classification, text matching, natural language inference, Pronoun disambiguation, machine reading comprehension and other tasks), among which the metric of CMRC2018 is Exact Match (EM), and the metric of other tasks is Accuracy. The closer the model to the top left in the figure, the higher the level of accuracy and performance.The top left model in the figure has the highest level of accuracy and performance. The number of parameters of the model are marked under the model name in the figure. For the test environment, see [Performance Test](https://github.com/paddlepaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0#%E6%80%A7%E8%83%BD%E6%B5%8B%E8%AF%95) in details. precision-latency graph under CPU (number of threads: 1 and 8), batch_size = 32: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852121-2798b5c9-d122-4ac0-b4c8-da46b89b5512.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852129-bbe58835-8eec-45d5-a4a9-cc2cf9a3db6a.png"></a></td> </tr> </table> precision-latency graph under CPU (number of threads: 1 and 8), batch_size = 1: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852106-658e18e7-705b-4f53-bad0-027281163ae3.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852112-4b89d675-7c95-4d75-84b6-db5a6ea95e2c.png"></a></td> </tr> </table> precision-latency graph under GPU, batch_size = 32, 1: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175854679-3247f42e-8716-4a36-b5c6-9ce4661b36c7.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175854670-57878b34-c213-47ac-b620-aaaec082f435.png"></a></td> </tr> </table> As can be seen from the figure, the comprehensive performance of the ERNIE Tiny 3.0 models has been comprehensively ahead of UER-py, Huawei-Noah and HFL in terms of accuracy and performance. And when batch_size=1 and the precision mode is FP16, the inference performance of the wide and shallow model on the GPU is more advantageous. The precision data on the CLUE **validation set** are shown in the following table: <table style="width:100%;" cellpadding="2" cellspacing="0" border="1" bordercolor="#000000"> <tbody> <tr> <td style="text-align:center;vertical-align:middle"> <span style="font-size:18px;">Arch</span> </td> <td style="text-align:center"> <span style="font-size:18px;">Model</span> </td> <td style="text-align:center"> <span style="font-size:18px;">AVG</span> </td> <td style="text-align:center"> <span style="font-size:18px;">AFQMC</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">TNEWS</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">IFLYTEK</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CMNLI</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">OCNLI</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CLUEWSC2020</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CSL</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CMRC2018</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CHID</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">C<sup>3</sup></span> </td> </tr> <tr> <td rowspan=3 align=center> 24L1024H </td> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Large-cw</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.03</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">75.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.65</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>85.09</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.73</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>93.09</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.53</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>74.22/91.88</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>88.57</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.54</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 2.0-Large-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.90</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.23</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>59.33</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">61.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.85</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">89.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.95/90.31</span> </td> <td style="text-align:center"> <span style="font-size:18px">86.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.12</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoBERTa-wwm-ext-large</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.61</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.88</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.81</span> </td> <td style="text-align:center"> <span style="font-size:18px">90.79</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.67</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.58/89.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">85.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.26</span> </td> </tr> <tr> <td rowspan=1 align=center> 20L1024H </td> <td style="text-align:center"> <span style="font-size:18px"><b>ERNIE 3.0-Xbase-zh</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>78.39</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.16</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>59.55</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>61.87</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.40</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.73</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>88.82</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.60</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>75.99/93.00</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>86.78</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.98</b></span> </td> </tr> <tr> <td rowspan=9 align=center> 12L768H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_base_zh.pdparams"> ERNIE 3.0-Base-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">76.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.02</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>80.10</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">86.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.71/90.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">84.26</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>77.88</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Base-zh-cw</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.47</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.07</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">57.86</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.91</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.41</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">79.58</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>89.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.42</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>72.88/90.78</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.68</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">76.98</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE-Gram-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.28</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.88</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.87</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.82/90.38</span> </td> <td style="text-align:center"> <span style="font-size:18px">84.04</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.69</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">Langboat/Mengzi-BERT-Base</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.69</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.76</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.16</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.04/88.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.74</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.70</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 2.0-Base-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.65</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.25</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.08/87.46</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.19</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Base-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.84</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>58.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.25</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">81.68</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.58</span> </td> <td style="text-align:center"> <span style="font-size:18px">85.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.32/87.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.68</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoBERTa-wwm-ext</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.60</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.92</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.49</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.39/88.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.43</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.03</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">BERT-Base-Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.57</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.30/86.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.01</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.38</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Base</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.89</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.14</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.01</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.58</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.80</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.87/84.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.76</span> </td> </tr> <tr> <td rowspan=1 align=center> 8L512H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Medium</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.06</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.10</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.09</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.63/78.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.84</span> </td> </tr> <tr> <td rowspan=5 align=center> 6L768H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_medium_zh.pdparams"> ERNIE 3.0-Medium-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>72.49</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>73.37</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>57.00</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">60.67</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>80.64</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.88</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.28</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.60</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>65.83/87.30</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>69.73</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">HLF/RBT6, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.06</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.45</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.36</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.67</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.72/84.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.85</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">TinyBERT<sub>6</sub>, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.70</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.12</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.03/83.75</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.11</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoFormerV2 Small</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.53</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>60.72</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">76.37</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.97/83.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.66</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.41</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-L6-H768</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.09</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.54</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.49</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.04</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.74/75.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.73</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.40</span> </td> </tr> <tr> <td rowspan=1 align=center> 6L384H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_mini_zh.pdparams"> ERNIE 3.0-Mini-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">66.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.85</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.24</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.19</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.30</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.53/81.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.60</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L768H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBT4, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.42</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.34</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.30/81.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.45</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L512H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Small</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.25</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.21</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.552</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.80</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">46.75/69.69</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.59</span> </td> <td style="text-align:center"> <span style="font-size:18px">50.92</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L384H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_micro_zh.pdparams"> ERNIE 3.0-Micro-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">64.21</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.15</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.81</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.77/77.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.53</span> </td> </tr> <tr> <td rowspan=2 align=center> 4L312H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_nano_zh.pdparams"> ERNIE 3.0-Nano-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.97</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.51</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>54.57</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>48.36</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>74.97</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.61</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">68.75</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>75.93</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>52.00/76.35</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>58.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>55.11</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">TinyBERT<sub>4</sub>, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">39.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.94</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.59</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.07</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">75.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">46.04/69.34</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">52.18</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L256H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Mini</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.40</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">41.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.40</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.36</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">5.96/17.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">51.19</span> </td> <td style="text-align:center"> <span style="font-size:18px">39.68</span> </td> </tr> <tr> <td rowspan=1 align=center> 3L1024H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBTL3, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.14</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.74</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.50/80.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.03</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.56</span> </td> </tr> <tr> <td rowspan=1 align=center> 3L768H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBT3, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.73/78.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.93</span> </td> </tr> <tr> <td rowspan=1 align=center> 2L128H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Tiny</span> </td> <td style="text-align:center"> <span style="font-size:18px">44.45</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">51.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">20.28</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.73</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.43</span> </td> <td style="text-align:center"> <span style="font-size:18px">3.08/14.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">23.57</span> </td> <td style="text-align:center"> <span style="font-size:18px">28.12</span> </td> </tr> <tbody> </table> <br /> ## Citation Info ```text @article{sun2021ernie, title={Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation}, author={Sun, Yu and Wang, Shuohuan and Feng, Shikun and Ding, Siyu and Pang, Chao and Shang, Junyuan and Liu, Jiaxiang and Chen, Xuyi and Zhao, Yanbin and Lu, Yuxiang and others}, journal={arXiv preprint arXiv:2107.02137}, year={2021} } @article{su2021ernie, title={Ernie-tiny: A progressive distillation framework for pretrained transformer compression}, author={Su, Weiyue and Chen, Xuyi and Feng, Shikun and Liu, Jiaxiang and Liu, Weixin and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:2106.02241}, year={2021} } @article{wang2021ernie, title={Ernie 3.0 titan: Exploring larger-scale knowledge enhanced pre-training for language understanding and generation}, author={Wang, Shuohuan and Sun, Yu and Xiang, Yang and Wu, Zhihua and Ding, Siyu and Gong, Weibao and Feng, Shikun and Shang, Junyuan and Zhao, Yanbin and Pang, Chao and others}, journal={arXiv preprint arXiv:2112.12731}, year={2021} } ```
speech31/wav2vec2-large-english-TIMIT-phoneme_v3
speech31
2023-01-06T05:34:43Z
1,627
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-15T05:37:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-english-TIMIT-phoneme_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base960-english-phoneme_v3 This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the TIMIT dataset. It achieves the following results on the evaluation set: - Loss: 0.3697 - Cer: 0.0987 ## Training and evaluation data Training: TIMIT dataset training + validation set Evaluation: TIMIT dataset test set ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Per | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2678 | 6.94 | 500 | 0.2347 | 0.0874 | | 0.25 | 13.88 | 1000 | 0.3358 | 0.1122 | | 0.2126 | 20.83 | 1500 | 0.3865 | 0.1131 | | 0.1397 | 27.77 | 2000 | 0.4162 | 0.1085 | | 0.0916 | 34.72 | 2500 | 0.4429 | 0.1086 | | 0.0594 | 41.66 | 3000 | 0.3697 | 0.0987 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1.post201 - Datasets 2.5.2.dev0 - Tokenizers 0.12.1
PaddlePaddle/ernie-3.0-medium-zh
PaddlePaddle
2023-01-06T05:34:16Z
0
2
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "arxiv:2107.02137", "arxiv:2106.02241", "arxiv:2112.12731", "license:apache-2.0", "region:us" ]
null
2023-01-06T03:24:25Z
--- license: apache-2.0 library_name: paddlenlp language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/ernie-3.0-medium-zh ## Intro [ERNIE 3.0 Models](https://github.com/paddlepaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0) are lightweight models obtained from Wenxin large model ERNIE 3.0 using distillation technology. The model structure is consistent with ERNIE 2.0, and has a stronger Chinese effect than ERNIE 2.0. For a detailed explanation of related technologies, please refer to the article [_解析全球最大中文单体模型鹏城-百度·文心技术细节_](https://www.jiqizhixin.com/articles/2021-12-08-9) ## How to Use Click on the "Use in paddlenlp" on the top right corner! ## Performance ERNIE 3.0 open sources six models: **ERNIE 3.0 _XBase_**, **ERNIE 3.0 _Base_**, **ERNIE 3.0 _Medium_**, **ERNIE 3.0 _Mini_**, **ERNIE 3.0 _Micro_**, **ERNIE 3.0 _Nano_**: - **ERNIE 3.0-_XBase_** (_20-layer, 1024-hidden, 16-heads_) - **ERNIE 3.0-_Base_** (_12-layer, 768-hidden, 12-heads_) - **ERNIE 3.0-_Medium_** (_6-layer, 768-hidden, 12-heads_) - **ERNIE 3.0-_Mini_** (_6-layer, 384-hidden, 12-heads_) - **ERNIE 3.0-_Micro_** (_4-layer, 384-hidden, 12-heads_) - **ERNIE 3.0-_Nano_** (_4-layer, 312-hidden, 12-heads_) Below is the **precision-latency graph** of the small Chinese models in PaddleNLP. The abscissa represents the latency (unit: ms) tested on CLUE IFLYTEK dataset (maximum sequence length is set to 128), and the ordinate is the average accuracy on 10 CLUE tasks (including text classification, text matching, natural language inference, Pronoun disambiguation, machine reading comprehension and other tasks), among which the metric of CMRC2018 is Exact Match (EM), and the metric of other tasks is Accuracy. The closer the model to the top left in the figure, the higher the level of accuracy and performance.The top left model in the figure has the highest level of accuracy and performance. The number of parameters of the model are marked under the model name in the figure. For the test environment, see [Performance Test](https://github.com/paddlepaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0#%E6%80%A7%E8%83%BD%E6%B5%8B%E8%AF%95) in details. precision-latency graph under CPU (number of threads: 1 and 8), batch_size = 32: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852121-2798b5c9-d122-4ac0-b4c8-da46b89b5512.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852129-bbe58835-8eec-45d5-a4a9-cc2cf9a3db6a.png"></a></td> </tr> </table> precision-latency graph under CPU (number of threads: 1 and 8), batch_size = 1: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852106-658e18e7-705b-4f53-bad0-027281163ae3.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852112-4b89d675-7c95-4d75-84b6-db5a6ea95e2c.png"></a></td> </tr> </table> precision-latency graph under GPU, batch_size = 32, 1: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175854679-3247f42e-8716-4a36-b5c6-9ce4661b36c7.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175854670-57878b34-c213-47ac-b620-aaaec082f435.png"></a></td> </tr> </table> As can be seen from the figure, the comprehensive performance of the ERNIE Tiny 3.0 models has been comprehensively ahead of UER-py, Huawei-Noah and HFL in terms of accuracy and performance. And when batch_size=1 and the precision mode is FP16, the inference performance of the wide and shallow model on the GPU is more advantageous. The precision data on the CLUE **validation set** are shown in the following table: <table style="width:100%;" cellpadding="2" cellspacing="0" border="1" bordercolor="#000000"> <tbody> <tr> <td style="text-align:center;vertical-align:middle"> <span style="font-size:18px;">Arch</span> </td> <td style="text-align:center"> <span style="font-size:18px;">Model</span> </td> <td style="text-align:center"> <span style="font-size:18px;">AVG</span> </td> <td style="text-align:center"> <span style="font-size:18px;">AFQMC</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">TNEWS</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">IFLYTEK</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CMNLI</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">OCNLI</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CLUEWSC2020</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CSL</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CMRC2018</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CHID</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">C<sup>3</sup></span> </td> </tr> <tr> <td rowspan=3 align=center> 24L1024H </td> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Large-cw</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.03</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">75.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.65</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>85.09</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.73</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>93.09</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.53</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>74.22/91.88</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>88.57</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.54</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 2.0-Large-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.90</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.23</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>59.33</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">61.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.85</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">89.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.95/90.31</span> </td> <td style="text-align:center"> <span style="font-size:18px">86.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.12</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoBERTa-wwm-ext-large</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.61</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.88</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.81</span> </td> <td style="text-align:center"> <span style="font-size:18px">90.79</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.67</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.58/89.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">85.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.26</span> </td> </tr> <tr> <td rowspan=1 align=center> 20L1024H </td> <td style="text-align:center"> <span style="font-size:18px"><b>ERNIE 3.0-Xbase-zh</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>78.39</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.16</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>59.55</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>61.87</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.40</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.73</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>88.82</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.60</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>75.99/93.00</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>86.78</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.98</b></span> </td> </tr> <tr> <td rowspan=9 align=center> 12L768H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_base_zh.pdparams"> ERNIE 3.0-Base-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">76.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.02</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>80.10</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">86.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.71/90.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">84.26</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>77.88</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Base-zh-cw</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.47</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.07</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">57.86</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.91</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.41</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">79.58</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>89.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.42</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>72.88/90.78</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.68</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">76.98</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE-Gram-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.28</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.88</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.87</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.82/90.38</span> </td> <td style="text-align:center"> <span style="font-size:18px">84.04</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.69</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">Langboat/Mengzi-BERT-Base</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.69</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.76</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.16</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.04/88.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.74</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.70</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 2.0-Base-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.65</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.25</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.08/87.46</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.19</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Base-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.84</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>58.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.25</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">81.68</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.58</span> </td> <td style="text-align:center"> <span style="font-size:18px">85.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.32/87.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.68</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoBERTa-wwm-ext</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.60</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.92</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.49</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.39/88.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.43</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.03</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">BERT-Base-Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.57</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.30/86.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.01</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.38</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Base</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.89</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.14</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.01</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.58</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.80</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.87/84.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.76</span> </td> </tr> <tr> <td rowspan=1 align=center> 8L512H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Medium</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.06</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.10</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.09</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.63/78.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.84</span> </td> </tr> <tr> <td rowspan=5 align=center> 6L768H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_medium_zh.pdparams"> ERNIE 3.0-Medium-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>72.49</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>73.37</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>57.00</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">60.67</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>80.64</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.88</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.28</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.60</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>65.83/87.30</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>69.73</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">HLF/RBT6, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.06</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.45</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.36</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.67</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.72/84.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.85</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">TinyBERT<sub>6</sub>, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.70</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.12</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.03/83.75</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.11</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoFormerV2 Small</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.53</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>60.72</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">76.37</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.97/83.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.66</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.41</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-L6-H768</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.09</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.54</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.49</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.04</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.74/75.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.73</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.40</span> </td> </tr> <tr> <td rowspan=1 align=center> 6L384H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_mini_zh.pdparams"> ERNIE 3.0-Mini-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">66.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.85</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.24</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.19</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.30</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.53/81.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.60</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L768H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBT4, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.42</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.34</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.30/81.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.45</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L512H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Small</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.25</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.21</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.552</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.80</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">46.75/69.69</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.59</span> </td> <td style="text-align:center"> <span style="font-size:18px">50.92</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L384H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_micro_zh.pdparams"> ERNIE 3.0-Micro-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">64.21</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.15</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.81</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.77/77.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.53</span> </td> </tr> <tr> <td rowspan=2 align=center> 4L312H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_nano_zh.pdparams"> ERNIE 3.0-Nano-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.97</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.51</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>54.57</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>48.36</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>74.97</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.61</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">68.75</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>75.93</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>52.00/76.35</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>58.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>55.11</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">TinyBERT<sub>4</sub>, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">39.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.94</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.59</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.07</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">75.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">46.04/69.34</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">52.18</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L256H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Mini</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.40</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">41.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.40</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.36</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">5.96/17.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">51.19</span> </td> <td style="text-align:center"> <span style="font-size:18px">39.68</span> </td> </tr> <tr> <td rowspan=1 align=center> 3L1024H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBTL3, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.14</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.74</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.50/80.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.03</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.56</span> </td> </tr> <tr> <td rowspan=1 align=center> 3L768H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBT3, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.73/78.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.93</span> </td> </tr> <tr> <td rowspan=1 align=center> 2L128H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Tiny</span> </td> <td style="text-align:center"> <span style="font-size:18px">44.45</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">51.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">20.28</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.73</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.43</span> </td> <td style="text-align:center"> <span style="font-size:18px">3.08/14.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">23.57</span> </td> <td style="text-align:center"> <span style="font-size:18px">28.12</span> </td> </tr> <tbody> </table> <br /> ## Citation Info ```text @article{sun2021ernie, title={Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation}, author={Sun, Yu and Wang, Shuohuan and Feng, Shikun and Ding, Siyu and Pang, Chao and Shang, Junyuan and Liu, Jiaxiang and Chen, Xuyi and Zhao, Yanbin and Lu, Yuxiang and others}, journal={arXiv preprint arXiv:2107.02137}, year={2021} } @article{su2021ernie, title={Ernie-tiny: A progressive distillation framework for pretrained transformer compression}, author={Su, Weiyue and Chen, Xuyi and Feng, Shikun and Liu, Jiaxiang and Liu, Weixin and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:2106.02241}, year={2021} } @article{wang2021ernie, title={Ernie 3.0 titan: Exploring larger-scale knowledge enhanced pre-training for language understanding and generation}, author={Wang, Shuohuan and Sun, Yu and Xiang, Yang and Wu, Zhihua and Ding, Siyu and Gong, Weibao and Feng, Shikun and Shang, Junyuan and Zhao, Yanbin and Pang, Chao and others}, journal={arXiv preprint arXiv:2112.12731}, year={2021} } ```
PaddlePaddle/ernie-3.0-mini-zh
PaddlePaddle
2023-01-06T05:33:54Z
0
1
paddlenlp
[ "paddlenlp", "paddlepaddle", "ernie", "zh", "arxiv:2107.02137", "arxiv:2106.02241", "arxiv:2112.12731", "license:apache-2.0", "region:us" ]
null
2023-01-06T03:25:14Z
--- license: apache-2.0 library_name: paddlenlp language: - zh --- [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/ernie-3.0-mini-zh ## Intro [ERNIE 3.0 Models](https://github.com/paddlepaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0) are lightweight models obtained from Wenxin large model ERNIE 3.0 using distillation technology. The model structure is consistent with ERNIE 2.0, and has a stronger Chinese effect than ERNIE 2.0. For a detailed explanation of related technologies, please refer to the article [_解析全球最大中文单体模型鹏城-百度·文心技术细节_](https://www.jiqizhixin.com/articles/2021-12-08-9) ## How to Use Click on the "Use in paddlenlp" on the top right corner! ## Performance ERNIE 3.0 open sources six models: **ERNIE 3.0 _XBase_**, **ERNIE 3.0 _Base_**, **ERNIE 3.0 _Medium_**, **ERNIE 3.0 _Mini_**, **ERNIE 3.0 _Micro_**, **ERNIE 3.0 _Nano_**: - **ERNIE 3.0-_XBase_** (_20-layer, 1024-hidden, 16-heads_) - **ERNIE 3.0-_Base_** (_12-layer, 768-hidden, 12-heads_) - **ERNIE 3.0-_Medium_** (_6-layer, 768-hidden, 12-heads_) - **ERNIE 3.0-_Mini_** (_6-layer, 384-hidden, 12-heads_) - **ERNIE 3.0-_Micro_** (_4-layer, 384-hidden, 12-heads_) - **ERNIE 3.0-_Nano_** (_4-layer, 312-hidden, 12-heads_) Below is the **precision-latency graph** of the small Chinese models in PaddleNLP. The abscissa represents the latency (unit: ms) tested on CLUE IFLYTEK dataset (maximum sequence length is set to 128), and the ordinate is the average accuracy on 10 CLUE tasks (including text classification, text matching, natural language inference, Pronoun disambiguation, machine reading comprehension and other tasks), among which the metric of CMRC2018 is Exact Match (EM), and the metric of other tasks is Accuracy. The closer the model to the top left in the figure, the higher the level of accuracy and performance.The top left model in the figure has the highest level of accuracy and performance. The number of parameters of the model are marked under the model name in the figure. For the test environment, see [Performance Test](https://github.com/paddlepaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0#%E6%80%A7%E8%83%BD%E6%B5%8B%E8%AF%95) in details. precision-latency graph under CPU (number of threads: 1 and 8), batch_size = 32: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852121-2798b5c9-d122-4ac0-b4c8-da46b89b5512.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852129-bbe58835-8eec-45d5-a4a9-cc2cf9a3db6a.png"></a></td> </tr> </table> precision-latency graph under CPU (number of threads: 1 and 8), batch_size = 1: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852106-658e18e7-705b-4f53-bad0-027281163ae3.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175852112-4b89d675-7c95-4d75-84b6-db5a6ea95e2c.png"></a></td> </tr> </table> precision-latency graph under GPU, batch_size = 32, 1: <table> <tr> <td><a><img src="https://user-images.githubusercontent.com/26483581/175854679-3247f42e-8716-4a36-b5c6-9ce4661b36c7.png"></a></td> <td><a><img src="https://user-images.githubusercontent.com/26483581/175854670-57878b34-c213-47ac-b620-aaaec082f435.png"></a></td> </tr> </table> As can be seen from the figure, the comprehensive performance of the ERNIE Tiny 3.0 models has been comprehensively ahead of UER-py, Huawei-Noah and HFL in terms of accuracy and performance. And when batch_size=1 and the precision mode is FP16, the inference performance of the wide and shallow model on the GPU is more advantageous. The precision data on the CLUE **validation set** are shown in the following table: <table style="width:100%;" cellpadding="2" cellspacing="0" border="1" bordercolor="#000000"> <tbody> <tr> <td style="text-align:center;vertical-align:middle"> <span style="font-size:18px;">Arch</span> </td> <td style="text-align:center"> <span style="font-size:18px;">Model</span> </td> <td style="text-align:center"> <span style="font-size:18px;">AVG</span> </td> <td style="text-align:center"> <span style="font-size:18px;">AFQMC</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">TNEWS</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">IFLYTEK</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CMNLI</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">OCNLI</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CLUEWSC2020</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CSL</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CMRC2018</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">CHID</span> </td> <td style="text-align:center;"> <span style="font-size:18px;">C<sup>3</sup></span> </td> </tr> <tr> <td rowspan=3 align=center> 24L1024H </td> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Large-cw</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.03</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">75.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.65</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>85.09</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.73</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>93.09</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.53</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>74.22/91.88</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>88.57</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.54</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 2.0-Large-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.90</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.23</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>59.33</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">61.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.85</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">89.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.95/90.31</span> </td> <td style="text-align:center"> <span style="font-size:18px">86.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.12</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoBERTa-wwm-ext-large</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.61</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.88</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.81</span> </td> <td style="text-align:center"> <span style="font-size:18px">90.79</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.67</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.58/89.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">85.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.26</span> </td> </tr> <tr> <td rowspan=1 align=center> 20L1024H </td> <td style="text-align:center"> <span style="font-size:18px"><b>ERNIE 3.0-Xbase-zh</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>78.39</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.16</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>59.55</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>61.87</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.40</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.73</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>88.82</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.60</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>75.99/93.00</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>86.78</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.98</b></span> </td> </tr> <tr> <td rowspan=9 align=center> 12L768H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_base_zh.pdparams"> ERNIE 3.0-Base-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">76.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.02</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>80.10</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">86.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.71/90.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">84.26</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>77.88</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Base-zh-cw</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.47</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.07</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">57.86</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.91</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.41</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">79.58</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>89.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>83.42</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>72.88/90.78</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>84.68</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">76.98</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE-Gram-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.28</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.88</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.87</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.82/90.38</span> </td> <td style="text-align:center"> <span style="font-size:18px">84.04</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.69</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">Langboat/Mengzi-BERT-Base</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.69</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.76</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.16</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.04/88.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.74</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.70</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 2.0-Base-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.65</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.25</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.08/87.46</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.19</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">ERNIE 1.0-Base-zh</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.84</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>58.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.25</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">81.68</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.58</span> </td> <td style="text-align:center"> <span style="font-size:18px">85.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.32/87.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.68</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoBERTa-wwm-ext</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.60</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.92</span> </td> <td style="text-align:center"> <span style="font-size:18px">88.49</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.39/88.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">83.43</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.03</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">BERT-Base-Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.57</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.30/86.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">82.01</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.38</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Base</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.89</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">61.14</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.01</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.58</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.80</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.87/84.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.76</span> </td> </tr> <tr> <td rowspan=1 align=center> 8L512H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Medium</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.06</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.10</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.35</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.09</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.63/78.91</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.84</span> </td> </tr> <tr> <td rowspan=5 align=center> 6L768H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_medium_zh.pdparams"> ERNIE 3.0-Medium-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>72.49</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>73.37</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>57.00</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">60.67</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>80.64</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>76.88</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.28</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>81.60</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>65.83/87.30</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>79.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>69.73</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">HLF/RBT6, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.06</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.45</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.36</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.67</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.72/84.77</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.85</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">TinyBERT<sub>6</sub>, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.62</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.70</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.12</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">80.17</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.03/83.75</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.11</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">RoFormerV2 Small</span> </td> <td style="text-align:center"> <span style="font-size:18px">68.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.53</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>60.72</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">76.37</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">75.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">81.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.97/83.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.66</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.41</span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-L6-H768</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.09</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.54</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.49</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.00</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.04</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.74/75.52</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.73</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.40</span> </td> </tr> <tr> <td rowspan=1 align=center> 6L384H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_mini_zh.pdparams"> ERNIE 3.0-Mini-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">66.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.85</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.24</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.48</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.19</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">79.30</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.53/81.97</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.60</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L768H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBT4, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.42</span> </td> <td style="text-align:center"> <span style="font-size:18px">72.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">77.34</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">78.23</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.30/81.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.45</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L512H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Small</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.25</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.21</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.552</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.64</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.80</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.78</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">46.75/69.69</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.59</span> </td> <td style="text-align:center"> <span style="font-size:18px">50.92</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L384H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_micro_zh.pdparams"> ERNIE 3.0-Micro-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px">64.21</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.15</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.05</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.83</span> </td> <td style="text-align:center"> <span style="font-size:18px">74.81</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.08</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.50</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.77/77.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">62.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.53</span> </td> </tr> <tr> <td rowspan=2 align=center> 4L312H </td> <td style="text-align:center"> <span style="font-size:18px"> <a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_nano_zh.pdparams"> ERNIE 3.0-Nano-zh </a> </span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>62.97</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.51</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>54.57</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>48.36</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>74.97</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.61</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">68.75</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>75.93</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>52.00/76.35</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>58.91</b></span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>55.11</b></span> </td> </tr> <tr> <td style="text-align:center"> <span style="font-size:18px">TinyBERT<sub>4</sub>, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">60.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">39.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">73.94</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.59</span> </td> <td style="text-align:center"> <span style="font-size:18px"><b>70.07</b></span> </td> <td style="text-align:center"> <span style="font-size:18px">75.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">46.04/69.34</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">52.18</span> </td> </tr> <tr> <td rowspan=1 align=center> 4L256H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Mini</span> </td> <td style="text-align:center"> <span style="font-size:18px">53.40</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.32</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.22</span> </td> <td style="text-align:center"> <span style="font-size:18px">41.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.40</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.36</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.07</span> </td> <td style="text-align:center"> <span style="font-size:18px">5.96/17.13</span> </td> <td style="text-align:center"> <span style="font-size:18px">51.19</span> </td> <td style="text-align:center"> <span style="font-size:18px">39.68</span> </td> </tr> <tr> <td rowspan=1 align=center> 3L1024H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBTL3, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">66.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">56.14</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.56</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.41</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.29</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.74</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.93</span> </td> <td style="text-align:center"> <span style="font-size:18px">58.50/80.90</span> </td> <td style="text-align:center"> <span style="font-size:18px">71.03</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.56</span> </td> </tr> <tr> <td rowspan=1 align=center> 3L768H </td> <td style="text-align:center"> <span style="font-size:18px">HFL/RBT3, Chinese</span> </td> <td style="text-align:center"> <span style="font-size:18px">65.72</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.53</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.18</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.20</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.71</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.11</span> </td> <td style="text-align:center"> <span style="font-size:18px">76.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">55.73/78.63</span> </td> <td style="text-align:center"> <span style="font-size:18px">70.26</span> </td> <td style="text-align:center"> <span style="font-size:18px">54.93</span> </td> </tr> <tr> <td rowspan=1 align=center> 2L128H </td> <td style="text-align:center"> <span style="font-size:18px">UER/Chinese-RoBERTa-Tiny</span> </td> <td style="text-align:center"> <span style="font-size:18px">44.45</span> </td> <td style="text-align:center"> <span style="font-size:18px">69.02</span> </td> <td style="text-align:center"> <span style="font-size:18px">51.47</span> </td> <td style="text-align:center"> <span style="font-size:18px">20.28</span> </td> <td style="text-align:center"> <span style="font-size:18px">59.95</span> </td> <td style="text-align:center"> <span style="font-size:18px">57.73</span> </td> <td style="text-align:center"> <span style="font-size:18px">63.82</span> </td> <td style="text-align:center"> <span style="font-size:18px">67.43</span> </td> <td style="text-align:center"> <span style="font-size:18px">3.08/14.33</span> </td> <td style="text-align:center"> <span style="font-size:18px">23.57</span> </td> <td style="text-align:center"> <span style="font-size:18px">28.12</span> </td> </tr> <tbody> </table> <br /> ## Citation Info ```text @article{sun2021ernie, title={Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation}, author={Sun, Yu and Wang, Shuohuan and Feng, Shikun and Ding, Siyu and Pang, Chao and Shang, Junyuan and Liu, Jiaxiang and Chen, Xuyi and Zhao, Yanbin and Lu, Yuxiang and others}, journal={arXiv preprint arXiv:2107.02137}, year={2021} } @article{su2021ernie, title={Ernie-tiny: A progressive distillation framework for pretrained transformer compression}, author={Su, Weiyue and Chen, Xuyi and Feng, Shikun and Liu, Jiaxiang and Liu, Weixin and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:2106.02241}, year={2021} } @article{wang2021ernie, title={Ernie 3.0 titan: Exploring larger-scale knowledge enhanced pre-training for language understanding and generation}, author={Wang, Shuohuan and Sun, Yu and Xiang, Yang and Wu, Zhihua and Ding, Siyu and Gong, Weibao and Feng, Shikun and Shang, Junyuan and Zhao, Yanbin and Pang, Chao and others}, journal={arXiv preprint arXiv:2112.12731}, year={2021} } ```
N75242/FloralMarbles_Model
N75242
2023-01-06T05:29:00Z
0
7
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-06T00:13:12Z
--- license: creativeml-openrail-m --- ### Model info --- This is a dreambooth model trained with the data set of [FloralMarble](https://huggingface.co/datasets/spaablauw/FloralMarble_dataset) on top of stable diffusion 1.5, all creadits to [spaablauw](https://huggingface.co/spaablauw) for original images. I left several models uploaded, all the intermediate steps + two anime models that I merged into. I would recomend try [the 4000 steps model](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/FloralMarble_step_4000.ckpt) or the [7000 steps one](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/FloralMarble_step_7000.ckpt), it depends a bit in what you want, I had relly good result in booth. For img2img 7000 step version is better. [Download Eimis Merge](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/EimisAnimeDiffusion_1-0v_0-FloralMarble_step_3000.safetensors) [Download Anything Merge](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/Anything-V3.0_0-FloralMarble_step_3000_1.safetensors) Use whatever VAE you want. --- ### Examples, download images to get prompts from exif data ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0002-3659297088.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0004-3659297088.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0012-2092274985.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0013-2092274985.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0023-774684095.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0046-4269222975.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0055-2404365075.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/xy_grid-0003-3279396972.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/xy_grid-0004-1720742584.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/xy_grid-0006-1034387134.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0072-2870034878.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0071-2870034878.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0069-2870034878.png) ![comparison_image](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/grid-0004-1540360593.png) --- ### Tag list [Get the tag list images had here](https://huggingface.co/N75242/FloralMarbles_Model/resolve/main/tags.txt) I used "flrmrbl" as an unique token, so it should activate the model traing data, also "floral marble" is present in all images, but its more generic si probably less powerfull. But as an alternative use "in the style of flrmrbl" or "flrmrbl style". Have fun!
muhtasham/small-mlm-glue-mrpc-custom-tokenizer
muhtasham
2023-01-06T05:16:41Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-06T05:02:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-mrpc-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-mrpc-custom-tokenizer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.4085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.9986 | 1.09 | 500 | 6.7224 | | 6.2058 | 2.18 | 1000 | 6.3947 | | 5.981 | 3.27 | 1500 | 6.4669 | | 5.8487 | 4.36 | 2000 | 6.6145 | | 5.7411 | 5.45 | 2500 | 6.4085 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
muhtasham/small-mlm-glue-mnli-custom-tokenizer
muhtasham
2023-01-06T05:00:35Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-06T02:07:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-mnli-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-mnli-custom-tokenizer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.0308 | 0.4 | 500 | 6.6001 | | 6.346 | 0.8 | 1000 | 6.3998 | | 6.1061 | 1.2 | 1500 | 6.3170 | | 5.9586 | 1.6 | 2000 | 6.2799 | | 5.8773 | 2.0 | 2500 | 6.2034 | | 5.7403 | 2.4 | 3000 | 6.1609 | | 5.6602 | 2.8 | 3500 | 6.1113 | | 5.5809 | 3.2 | 4000 | 6.1267 | | 5.5663 | 3.6 | 4500 | 6.0647 | | 5.6266 | 4.0 | 5000 | 6.1090 | | 5.4756 | 4.4 | 5500 | 6.0302 | | 5.4905 | 4.8 | 6000 | 6.0292 | | 5.3179 | 5.2 | 6500 | 5.9758 | | 5.3375 | 5.6 | 7000 | 6.0125 | | 5.3035 | 6.0 | 7500 | 5.9495 | | 5.1918 | 6.4 | 8000 | 5.9537 | | 5.2499 | 6.8 | 8500 | 5.9100 | | 5.1905 | 7.2 | 9000 | 5.8620 | | 5.1787 | 7.6 | 9500 | 5.9296 | | 5.1534 | 8.0 | 10000 | 5.9442 | | 5.1396 | 8.4 | 10500 | 5.8609 | | 5.1272 | 8.8 | 11000 | 5.8358 | | 4.9615 | 9.2 | 11500 | 5.8617 | | 5.0062 | 9.6 | 12000 | 5.8043 | | 5.0131 | 10.0 | 12500 | 5.8119 | | 4.9326 | 10.4 | 13000 | 5.7851 | | 4.9655 | 10.8 | 13500 | 5.7792 | | 4.9256 | 11.2 | 14000 | 5.7843 | | 4.9195 | 11.6 | 14500 | 5.7652 | | 4.8299 | 12.0 | 15000 | 5.7606 | | 4.8748 | 12.4 | 15500 | 5.7577 | | 4.7588 | 12.8 | 16000 | 5.7048 | | 4.8185 | 13.2 | 16500 | 5.7245 | | 4.7679 | 13.6 | 17000 | 5.7402 | | 4.7377 | 14.0 | 17500 | 5.7034 | | 4.7403 | 14.4 | 18000 | 5.7054 | | 4.6628 | 14.8 | 18500 | 5.7203 | | 4.6801 | 15.2 | 19000 | 5.6798 | | 4.6014 | 15.6 | 19500 | 5.6931 | | 4.618 | 16.0 | 20000 | 5.6620 | | 4.6037 | 16.4 | 20500 | 5.6441 | | 4.6004 | 16.8 | 21000 | 5.6262 | | 4.5432 | 17.2 | 21500 | 5.6726 | | 4.576 | 17.6 | 22000 | 5.6322 | | 4.5568 | 18.0 | 22500 | 5.6551 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
lantianai/Stable_Diffusion_Inpainting_Mask_EulerA
lantianai
2023-01-06T03:50:46Z
29
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "arxiv:2207.12598", "arxiv:2112.10752", "arxiv:2103.00020", "arxiv:2205.11487", "arxiv:1910.09700", "license:creativeml-openrail-m", "diffusers:StableDiffusionInpaintPipeline", "region:us" ]
text-to-image
2023-01-06T03:37:24Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: false library_name: diffusers extra_gated_prompt: |- One more step before getting this model. This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here: https://huggingface.co/spaces/CompVis/stable-diffusion-license By clicking on "Access repository" below, you accept that your *contact information* (email address and username) can be shared with the model authors as well. extra_gated_fields: I have read the License and agree with its terms: checkbox --- Stable Diffusion Inpainting is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input, with the extra capability of inpainting the pictures by using a mask. The **Stable-Diffusion-Inpainting** was initialized with the weights of the [Stable-Diffusion-v-1-2](https://steps/huggingface.co/CompVis/stable-diffusion-v-1-2-original). First 595k steps regular training, then 440k steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning to improve classifier-free [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything. [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/runwayml/stable-diffusion-inpainting) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb) :-------------------------:|:-------------------------:| ## Examples: You can use this both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [RunwayML GitHub repository](https://github.com/runwayml/stable-diffusion). ### Diffusers ```python from diffusers import StableDiffusionInpaintPipeline pipe = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="fp16", torch_dtype=torch.float16, ) prompt = "Face of a yellow cat, high resolution, sitting on a park bench" #image and mask_image should be PIL images. #The mask structure is white for inpainting and black for keeping as is image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0] image.save("./yellow_cat_on_park_bench.png") ``` **How it works:** `image` | `mask_image` :-------------------------:|:-------------------------:| <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="300"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="300"/> `prompt` | `Output` :-------------------------:|:-------------------------:| <span style="position: relative;bottom: 150px;">Face of a yellow cat, high resolution, sitting on a park bench</span> | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="300"/> ### Original GitHub Repository 1. Download the weights [sd-v1-5-inpainting.ckpt](https://huggingface.co/runwayml/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt) 2. Follow instructions [here](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion). ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/runwayml/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) **Training Procedure** Stable Diffusion v1 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We currently provide six checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and `sd-v1-3.ckpt`, `sd-v1-4.ckpt`, `sd-v1-5.ckpt` and `sd-v1-5-inpainting.ckpt` which were trained as follows, - `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`. 515k steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-improved-aesthetics" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - `sd-v1-4.ckpt`: Resumed from stable-diffusion-v1-2.225,000 steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - `sd-v1-5.ckpt`: Resumed from sd-v1-2.ckpt. 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve classifier-free guidance sampling. - `sd-v1-5-inpaint.ckpt`: Resumed from sd-v1-2.ckpt. 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve classifier-free guidance sampling. Then 440k steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning. For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything. - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-1-to-v1-5.png) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Inpainting Evaluation To assess the performance of the inpainting model, we used the same evaluation protocol as in our [LDM paper](https://arxiv.org/abs/2112.10752). Since the Stable Diffusion Inpainting Model acccepts a text input, we simply used a fixed prompt of `photograph of a beautiful empty scene, highest quality settings`. | Model | FID | LPIPS | |-----------------------------|------|------------------| | Stable Diffusion Inpainting | 1.00 | 0.141 (+- 0.082) | | Latent Diffusion Inpainting | 1.50 | 0.137 (+- 0.080) | | CoModGAN | 1.82 | 0.15 | | LaMa | 2.21 | 0.134 (+- 0.080) | ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
adakoda/sd-class-butterflies-64
adakoda
2023-01-06T03:48:45Z
10
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-06T03:48:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('adakoda/sd-class-butterflies-64') image = pipeline().images[0] image ```
Yiff/dayum-cuh
Yiff
2023-01-06T03:43:44Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-06T03:43:30Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: dayum-cuh results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.028037382289767265 --- # dayum-cuh Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### fortnite ![fortnite](images/fortnite.jpg) #### fortnite characters ![fortnite characters](images/fortnite_characters.jpg) #### fortnite landscapes ![fortnite landscapes](images/fortnite_landscapes.jpg) #### fortnite pictures ![fortnite pictures](images/fortnite_pictures.jpg) #### fortnite porn ![fortnite porn](images/fortnite_porn.jpg)
adakoda/sd-class-butterflies-32
adakoda
2023-01-06T03:09:23Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-06T03:08:44Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('adakoda/sd-class-butterflies-32') image = pipeline().images[0] image ```
hucuioo/sd-class-butterflies-64
hucuioo
2023-01-06T02:57:38Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-06T02:57:28Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('hucuioo/sd-class-butterflies-64') image = pipeline().images[0] image ```
cleanrl/DemonAttack-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-06T02:48:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "DemonAttack-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T02:48:44Z
--- tags: - DemonAttack-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DemonAttack-v5 type: DemonAttack-v5 metrics: - type: mean_reward value: 88490.00 +/- 45858.13 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DemonAttack-v5** This is a trained model of a PPO agent playing DemonAttack-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id DemonAttack-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'DemonAttack-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
gaarsmu/PPO-LunarLenderv2_default
gaarsmu
2023-01-06T02:42:20Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T02:41:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_default results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.35 +/- 20.49 name: mean_reward verified: false --- # **PPO_default** Agent playing **LunarLander-v2** This is a trained model of a **PPO_default** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
obokkkk/kobigbird-bert-base-finetuned-klue
obokkkk
2023-01-06T02:41:32Z
95
0
transformers
[ "transformers", "pytorch", "big_bird", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-04-12T07:41:56Z
--- tags: - generated_from_trainer model-index: - name: kobigbird-bert-base-finetuned-klue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-bert-base-finetuned-klue This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.888 | 13.89 | 500 | 3.5589 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
pdmct/q-Taxi-v3-base
pdmct
2023-01-06T02:33:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T02:21:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-base results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pdmct/q-Taxi-v3-base", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pdmct/q-FrozenLake-v1-4x4-noSlippery
pdmct
2023-01-06T02:16:23Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T02:16:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pdmct/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mnavas/hf-rl-chopperv1
mnavas
2023-01-06T02:01:59Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T02:00:59Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: hf-rl-chopperv1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 22.20 +/- 14.39 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
rakeshjohny/dqn-SpaceInvadersNoFrameskip
rakeshjohny
2023-01-06T01:52:13Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T01:51:37Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 586.00 +/- 207.65 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rakeshjohny -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rakeshjohny -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rakeshjohny ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
gababas/rraacchhiissbb
gababas
2023-01-06T01:42:22Z
36
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-06T01:37:31Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### rraacchhiissbb Dreambooth model trained by gababas with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
bitcloud2/Reinforce-1
bitcloud2
2023-01-06T01:31:48Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T01:31:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Librezo/bog-001
Librezo
2023-01-06T01:23:10Z
0
0
null
[ "region:us" ]
null
2023-01-05T06:19:53Z
# Libérez Adam TD;DR ``` pip install -r requirements.txt python3 main.py ``` ## Objectifs Créer un assistant pour aider l'équipe de Duniter et de Librezo à atteindre leurs objectifs. Il est également question de rendre open source (donc auditable et personnalisable) un service équivalent au playground de GPT, mais en libre et utilisant des Model locaux (BoGs). Les sources de données pour générer nos models doivent pouvoir être facilement adaptables, pour générer toutes sortes de models customs **par dessus des models pré-entrainé comme GPT2 (open-source)**. Plus d'infos au sujet de la nature open ou non du model GPT3: https://github.com/openai/gpt-3/blob/master/model-card.md Nous comptons pyTorch pour entrainer nos models. Il nous est également possible de générer notre models avec pyTorch de manière optimisé, puis de laisser la boucle de machine learning à tensorFlow, qui pourrait être un peu plus performant avec certains hyperparamètres. Celà semble donc permettre dès maintenant d'ajouter les données que nous voulons à un model pré-existant, sans frais ni limitations. Ce sujet reste à creuser. ## Pourquoi adapter GPT en licence libre ? Considérant le danger de laisser un outil aussi performant et inquiétant que l'IA sémantique GPT entre les mains de géant du web, Poka a demandé à GPT de transmettre son code en licence libre, ce que GPT a fait. Il nous est donc théoriquement possible d'intégrer GPT et de l'utiliser dans sa version libre. Cela implique un travail d'intégration, de maturation et de bidouillage, ainsi qu'un serveur relativement puissant avec une forte capacité de stockage. ## Comment faire *Demandez à GPT3.5: https://beta.openai.com/playground* Nous avons déjà le choix parmis plusieurs libs open source sensées effectuer la même chose que GPT3 (en partie): Du machine learning par Transformation. pyTorch nous semble l'approche la plus simple et reconnue par les chercheurs du domaine. tensorFlow est une alternative également intérressante (python aussi), et peut être utilisé de manière complémentaire à pyTorch. GPT nous conseille déjà sur la manière d'implémenter notre pyTorch de manière optimal pour notre besoin (se forker lui même). Nous avons commencé à alimenter GPT en contexte pour notre projet, de manière à ce qu'il finisse par se recoder lui même totalement avec des outils open source. ## Sources de données Pour rendre notre model réellement performant sans nécessité de faire appel à du fine tunning (réglage métier de post traitement), nous devons ajouter plus de donnée à notre model, je pense par exemple à : - Wikipedia (international, mais avant tout FR (6Go)) - stackoverflow (todo darty scrappy) - Toutes les documentations techniques des principaux langages de programmation, ainsi que le plus de docs de libs possible (github, gitlab) - Ce qu'on veut, qui colorera la façon de penser et de parler de notre IA: - Coluche - Desproges - Dieudo - Bakounine - Kropotkin - Etienne klein - Isaac Azimov (les robots) - Jacques Prévert - Diogène (les cyniques) - Nietzsche - Rousseau Les sources de données sont nombreuses, nous devons penser aux retranscriptions text des vidéos qui nous intéressent (sous titre youtube). Il faut également garder en tête que nous allons être amenés à générer plusieurs models, où nous pouvons faire varier et évoluer les sources de données d'entrée de ces différents models. Il est probable que tout cela nécessite des montées en compétence significatives de notre part, concernant la mise bout à bout de tout le nécessaire pour arriver à un résultat intéressant. ## Matériel C'est le point bloquant. Pour entrainer ces models, il faut beaucoup, beaucoup de GPU et de RAM, des disque ultra performants, ou bien beaucoup, beaucoup, beaucou de temps. Nous allons benchmarker tout celà au fur et à mesure de nos tests. Nous aimerions tisser des partenariats institutionnels de manière à accéder à du temps de supercalculateur nationnal pour notre projet de libérer et distribuer les TIA.
Scrwed/ppo-LunarLander-v2-trained
Scrwed
2023-01-06T01:21:34Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-06T01:21:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.75 +/- 17.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ChouBERT/ChouBERT-32-plant-health-ner
ChouBERT
2023-01-06T01:05:19Z
10
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-24T00:15:36Z
--- language: - fr pipeline_tag: token-classification widget: - text: "La # pyrale du # buis à l'air très friande du # tournesol # semences." example_title: "1 ravageur" - text: "Quelles tactiques le producteur de la # SaskAg utilise-t-il pour protéger ses 13 800 acres de la cécidomyie du blé , de la fausse-teigne des crucifères , des vers-gris et des pucerons." example_title: "4 ravageurs" - text: "puceron cendré sur # colza à surveiller à l ’ automne - symptômes classiques de déformation et décoloration de feuilles ( ici en Normandie ) virus transmis : mosaïque du chou-fleur et / ou du navet ( rare )." example_title: "Ravageur & maladie" - text: "Traitement juste après le triage , un traitement contre la fusariose et contre la mouche grise sur cette variété car elle sera semé après betteraves." example_title: "Maladie & ravageur" - text: "Nous voulons des coquelicots ! Le coquelicot héberge notamment les virus de la jaunisse grave , jaunisse modérée et occidentale de la betterave , virus latent italien de l'artichaut , virus de la mosaïque du navet , virus X de la pomme de terre et le virus du flétrissement de la fève." example_title: "5 maladies" - text: "Plus j’ai du recul sur ma situation d’ancien taupin plus je me dis qu’il faut vraiment cramer les prepas et les écoles d’ingé/de commerce." example_title: "Taupin - prépa" - text: "Vous savez Taupin et ses problèmes de gonades mal hydratées ?Bah c'est aussi sec, la Loire." example_title: "Taupin - sec" - text: "#MercrediCestPermis je vous présente taupin et scuti. Un fléau qui va grandir avec l'arrêt des neonicotinoide. Deux ravageurs de racines qui sont friands de blé maïs pomme de terre et autres cultures Peut provoquer la perte totale. #agriculture #FrAgTW" example_title: "Taupin - ravageur" - text: "Thon juste saisi , crème de betterave , une petite rouille dont j'ignore la constitution , légumes de saison Ça va comme ça ? " example_title: "Rouille - sauce" - text: "Rouille de la # betterave sucrière causée par # Uromyces betae # urédospores # phytopathologie" example_title: "Rouille - maladie" - text: "Colzas qui rougissaient précocement , avec de l ’ oidium , dégâts de campagnols , mouche du chou . . ." example_title: "Mouche - ravageur" - text: "Vacances de Noël : les touristes français visitent Paris à bord d’un bateau mouche." example_title: "Mouche - bateau" --- ### How to use You can use this model directly with a pipeline for token classification: ```python >>>from transformers import pipeline >>>pipe = pipeline(model="ChouBERT/ChouBERT-32-plant-health-ner", aggregation_strategy="simple") >>>pipe(" Attaque de rouille brune en Dordogne sur du blé tendre variété Oregrain !") [] >>>pipe("Soupe de poisson toute prête de carrefour avec fromage râpé, croûtons à l'ail et rouille #TeamFeignasse.") [{'entity_group': 'Maladie', 'score': 0.80249035, 'word': '', 'start': 11, 'end': 12}, {'entity_group': 'Maladie', 'score': 0.80133665, 'word': 'rouille brune', 'start': 12, 'end': 25}] ```
Agog/LunarLander-v2
Agog
2023-01-06T01:01:10Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-04T14:58:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 298.53 +/- 18.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
muhtasham/small-mlm-glue-stsb
muhtasham
2023-01-06T00:46:26Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-06T00:26:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-stsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-stsb This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2666 | 0.7 | 500 | 2.7896 | | 3.0117 | 1.39 | 1000 | 2.8245 | | 2.9461 | 2.09 | 1500 | 2.7108 | | 2.7341 | 2.78 | 2000 | 2.6721 | | 2.7235 | 3.48 | 2500 | 2.6946 | | 2.6687 | 4.17 | 3000 | 2.7103 | | 2.5373 | 4.87 | 3500 | 2.7187 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Addwater/rl-course-unit4-cartpole
Addwater
2023-01-06T00:42:36Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T16:54:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: rl-course-unit4-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Buseak/model_6012023
Buseak
2023-01-06T00:36:05Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-05T19:40:18Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model_6012023 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_6012023 This model is a fine-tuned version of [Buseak/my_pos_model](https://huggingface.co/Buseak/my_pos_model) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2391 - Precision: 0.9109 - Recall: 0.9042 - F1: 0.9076 - Accuracy: 0.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 244 | 0.3030 | 0.8906 | 0.8845 | 0.8875 | 0.9202 | | No log | 2.0 | 488 | 0.2526 | 0.9051 | 0.8977 | 0.9014 | 0.9306 | | 0.4278 | 3.0 | 732 | 0.2391 | 0.9109 | 0.9042 | 0.9076 | 0.9348 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
muhtasham/small-mlm-glue-sst2
muhtasham
2023-01-06T00:26:18Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-06T00:12:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-sst2 This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5439 | 0.4 | 500 | 2.9993 | | 3.4175 | 0.8 | 1000 | 2.8910 | | 3.2455 | 1.2 | 1500 | 2.9637 | | 3.247 | 1.6 | 2000 | 2.9003 | | 3.2491 | 2.0 | 2500 | 2.9876 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
muhtasham/small-mlm-glue-rte
muhtasham
2023-01-06T00:11:20Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-05T23:59:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-rte This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5903 | 1.6 | 500 | 2.1820 | | 2.4763 | 3.21 | 1000 | 2.4737 | | 2.3778 | 4.81 | 1500 | 2.2902 | | 2.2735 | 6.41 | 2000 | 2.3557 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Gadersd/dqn-SpaceInvadersNoFrameskip-v4
Gadersd
2023-01-05T23:55:56Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T23:55:22Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 404.50 +/- 175.35 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Gadersd -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Gadersd -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Gadersd ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
elRivx/100Memories2.1E
elRivx
2023-01-05T23:54:53Z
0
2
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-05T23:29:56Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- **100Memories2.1E** Hi guys! Do you remember my SD 1.5 model about photos with a little bit of vintage style? I resurrect the project as a SD 2.1 embedding Some recomendations: the magic word for your prompts is 100Memories. If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/3EjRdsJ.png width=30% height=30%> <img src=https://imgur.com/YPcD8wd.png width=30% height=30%> <img src=https://imgur.com/XzoTc2l.png width=30% height=30%> <img src=https://imgur.com/7DfSVIT.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Dongyeop/distilbert-base-uncased-finetuned-clinc
Dongyeop
2023-01-05T23:52:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-05T07:50:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2890 | 0.7432 | | 3.7868 | 2.0 | 636 | 1.8756 | 0.8377 | | 3.7868 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.6929 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.9058 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Isaacp/bert-base-uncased-issues-128
Isaacp
2023-01-05T23:46:25Z
94
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-05T22:19:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0986 | 1.0 | 291 | 1.6929 | | 1.6401 | 2.0 | 582 | 1.4304 | | 1.4881 | 3.0 | 873 | 1.3916 | | 1.4 | 4.0 | 1164 | 1.3796 | | 1.3416 | 5.0 | 1455 | 1.2012 | | 1.2807 | 6.0 | 1746 | 1.2733 | | 1.2396 | 7.0 | 2037 | 1.2646 | | 1.1993 | 8.0 | 2328 | 1.2098 | | 1.1661 | 9.0 | 2619 | 1.1862 | | 1.1406 | 10.0 | 2910 | 1.2223 | | 1.1294 | 11.0 | 3201 | 1.2056 | | 1.1042 | 12.0 | 3492 | 1.1655 | | 1.0827 | 13.0 | 3783 | 1.2525 | | 1.0738 | 14.0 | 4074 | 1.1685 | | 1.0626 | 15.0 | 4365 | 1.1182 | | 1.0629 | 16.0 | 4656 | 1.2456 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
mtlulka/Reinforce-Pixelcopter-PLE-v0_m2
mtlulka
2023-01-05T23:42:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T23:41:55Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0_m2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.40 +/- 16.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
muhtasham/small-mlm-glue-qnli
muhtasham
2023-01-05T23:26:52Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-05T23:08:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-qnli This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5207 | 0.4 | 500 | 2.3765 | | 2.5094 | 0.8 | 1000 | 2.3648 | | 2.508 | 1.2 | 1500 | 2.4080 | | 2.4448 | 1.6 | 2000 | 2.4203 | | 2.4978 | 2.0 | 2500 | 2.4436 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
bao0584/LunarLander-v2
bao0584
2023-01-05T22:57:50Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T22:57:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.19 +/- 20.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
EduardoCGarridoMerchan/ppo-LunarLander-v2
EduardoCGarridoMerchan
2023-01-05T22:53:07Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T22:52:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.15 +/- 20.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JYC333/q-Taxi-v3
JYC333
2023-01-05T22:45:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-02T09:50:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JYC333/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
muhtasham/small-mlm-glue-mnli
muhtasham
2023-01-05T22:44:09Z
108
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-05T22:10:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-mnli This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0194 | 0.4 | 500 | 2.7922 | | 3.0037 | 0.8 | 1000 | 2.8022 | | 2.9388 | 1.2 | 1500 | 2.7826 | | 2.915 | 1.6 | 2000 | 2.7838 | | 2.8626 | 2.0 | 2500 | 2.7769 | | 2.7908 | 2.4 | 3000 | 2.7829 | | 2.789 | 2.8 | 3500 | 2.7933 | | 2.7784 | 3.2 | 4000 | 2.8314 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
ChouBERT/ChouBERT-2
ChouBERT
2023-01-05T22:25:39Z
108
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-23T22:57:47Z
--- language: - fr pipeline_tag: fill-mask widget: - text: "Voila les <mask> de retour. Ça faisait longtemps que j’en avais pas vu sur blé." example_title: "limace" - text: "C’est bon le maïs , pour la <mask> . Dans le 64, les larves les plus âgées prennent des force avant de se chrysalider et faire une 2 è génération début août. ⁦@Arvalisofficiel⁩ ⁦@Fragritwittos⁩ https://t.co/JLypU2zFFe" example_title: "Pyrale de maïs" - text: "<mask> sur céréales à paille : de nombreux retours témoignent de dégâts importants aux quatre coins de l’Hexagone !" example_title: "JNO" - text: "Ravageurs sur les maïs, 90% de la parcelle perdue. Impressionnant à voir, difficile à vivre pour l'éleveur <mask> #morbihan https://t.co/DMw3c4EtyQ" example_title: "choucas" - text: "Visite des plateformes d’essais dans les #Vosges on observe un flétrissement des feuilles de #maïs et surprise on trouve un <mask>. #lorraine #babycorn" example_title: "Taupin" - text: "Lol <mask> ? Toi qui critiquait le programme de classe prépa LoL ! " example_title: "Taupin - prépa" ---
BobMcDear/resnext101_32x16d_wsl
BobMcDear
2023-01-05T21:59:44Z
0
0
null
[ "region:us" ]
null
2023-01-05T19:19:09Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/resnext101_32x4d_ssl
BobMcDear
2023-01-05T21:59:23Z
0
0
null
[ "region:us" ]
null
2023-01-05T19:19:05Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/resnext101_32x8d_ssl
BobMcDear
2023-01-05T21:58:43Z
0
0
null
[ "region:us" ]
null
2023-01-05T19:18:58Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/resnext101_32x16d_ssl
BobMcDear
2023-01-05T21:58:16Z
0
0
null
[ "region:us" ]
null
2023-01-05T19:18:59Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
muhtasham/tiny-mlm-glue-wnli
muhtasham
2023-01-05T21:50:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-05T21:34:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: tiny-mlm-glue-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-wnli This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.5021 | 6.25 | 500 | 2.8676 | | 2.9602 | 12.5 | 1000 | 2.5328 | | 2.6906 | 18.75 | 1500 | 2.3640 | | 2.4167 | 25.0 | 2000 | 2.0918 | | 2.2699 | 31.25 | 2500 | 2.1182 | | 2.0933 | 37.5 | 3000 | 1.8802 | | 1.9399 | 43.75 | 3500 | 1.8979 | | 1.7961 | 50.0 | 4000 | 1.5276 | | 1.6738 | 56.25 | 4500 | 1.5327 | | 1.5784 | 62.5 | 5000 | 1.2767 | | 1.4405 | 68.75 | 5500 | 1.3593 | | 1.3428 | 75.0 | 6000 | 0.9772 | | 1.3257 | 81.25 | 6500 | 1.2789 | | 1.1988 | 87.5 | 7000 | 0.9494 | | 1.1275 | 93.75 | 7500 | 0.8278 | | 1.0854 | 100.0 | 8000 | 0.6301 | | 1.0275 | 106.25 | 8500 | 0.8044 | | 0.9714 | 112.5 | 9000 | 0.7544 | | 0.9019 | 118.75 | 9500 | 0.7902 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
usu96/ddpm-butterflies-128
usu96
2023-01-05T21:47:27Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:sample_data", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-31T06:09:26Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: sample_data metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `sample_data` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/usu96/ddpm-butterflies-128/tensorboard?#scalars)
mtlulka/Reinforce-Pixelcopter-PLE-v0
mtlulka
2023-01-05T20:59:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T20:58:54Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 36.40 +/- 32.48 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
095ey11/bert-emotion
095ey11
2023-01-05T20:47:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-05T19:42:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: train args: emotion metrics: - name: Precision type: precision value: 0.7071669427034283 - name: Recall type: recall value: 0.723286061789479 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2053 - Precision: 0.7072 - Recall: 0.7233 - Fscore: 0.7124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8623 | 1.0 | 815 | 0.7198 | 0.7536 | 0.6312 | 0.6559 | | 0.5637 | 2.0 | 1630 | 0.8756 | 0.7213 | 0.7166 | 0.7160 | | 0.2845 | 3.0 | 2445 | 1.2053 | 0.7072 | 0.7233 | 0.7124 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
jerryxyj/ppo-Huggy
jerryxyj
2023-01-05T20:41:58Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-05T20:41:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: jerryxyj/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jinghua2tang/Reinforce-CartPole8
jinghua2tang
2023-01-05T20:24:48Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T20:24:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Eloimoliner/audio-inpainting-diffusion
Eloimoliner
2023-01-05T20:06:11Z
0
2
null
[ "license:mit", "region:us" ]
null
2023-01-05T14:45:20Z
--- license: mit --- Unconditional diffusion models used for audio inpainting. Models: filename: maestro_22k_8s-750000.pt dataset: MAESTRO fs: 22.05 kHz segment_length: 8s filename: musicnet_44k_4s-560000.pt dataset: MusicNet fs: 44.1 kHz segment_length: 4s
Poulette/wav2vec2-base-spanish-demo-google-colab2
Poulette
2023-01-05T20:01:15Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-05T19:49:18Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-spanish-demo-google-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-spanish-demo-google-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base-es-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-es-voxpopuli-v2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
lss8ak/bert-emotion
lss8ak
2023-01-05T19:58:46Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-05T19:42:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: train args: emotion metrics: - name: Precision type: precision value: 0.7052789678093683 - name: Recall type: recall value: 0.7133003963197697 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2194 - Precision: 0.7053 - Recall: 0.7133 - Fscore: 0.7084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8589 | 1.0 | 815 | 0.7744 | 0.7321 | 0.6122 | 0.6349 | | 0.5321 | 2.0 | 1630 | 1.0469 | 0.7381 | 0.6703 | 0.6930 | | 0.2615 | 3.0 | 2445 | 1.2194 | 0.7053 | 0.7133 | 0.7084 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
bvandy/bert-emotion
bvandy
2023-01-05T19:58:24Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-05T19:40:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: train args: emotion metrics: - name: Precision type: precision value: 0.6872092440165337 - name: Recall type: recall value: 0.6954893287385614 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2767 - Precision: 0.6872 - Recall: 0.6955 - Fscore: 0.6906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8803 | 1.0 | 815 | 0.7232 | 0.7435 | 0.6516 | 0.6775 | | 0.549 | 2.0 | 1630 | 0.9588 | 0.7380 | 0.6640 | 0.6860 | | 0.2732 | 3.0 | 2445 | 1.2767 | 0.6872 | 0.6955 | 0.6906 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
ashutosh1919/Taxi-v3
ashutosh1919
2023-01-05T19:56:14Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T19:56:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ashutosh1919/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
charlemagne/distilbert-base-uncased-new-cola
charlemagne
2023-01-05T19:55:12Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-05T17:44:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-new-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-new-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2124 - Accuracy: 0.9496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 164 | 0.4181 | 0.8694 | | No log | 2.0 | 328 | 0.2656 | 0.9282 | | No log | 3.0 | 492 | 0.2518 | 0.9366 | | 0.441 | 4.0 | 656 | 0.2124 | 0.9496 | | 0.441 | 5.0 | 820 | 0.2177 | 0.9481 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0+cu111 - Datasets 2.1.0 - Tokenizers 0.11.6
RazzzHF/creepy-diffusion
RazzzHF
2023-01-05T19:54:13Z
0
4
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-05T18:47:37Z
--- license: creativeml-openrail-m --- This model has a creepy bias producing great horror picture with great fidelity. You don't need any specific trigger words. Any horror related prompt will result in a strong level of creep. It's working great in 512x512 and 768x768. Creepy images examples: ![example 3](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(3).png) ![example 4](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(4).png) ![example 12](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(12).png) ![example 13](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(13).png) ![example 14](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(14).png) ![example 15](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(15).png) ![example 16](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(16).png) ![example 1](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(1).png) ![example 17](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(17).png) ![example 18](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(18).png) ![example 19](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(19).png) ![example 20](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(20).png) ![example 5](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(5).png) ![example 2](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(2).png) ![example 7](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(7).png) ![example 8](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(8).png) ![example 9](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(9).png) ![example 10](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(10).png) ![example 11](https://huggingface.co/RayHell/creepy-diffusion/resolve/main/creepy-diff%20(11).png)
rohitp1/timit-distil-kl-alpha-0.25-T-1-take-3
rohitp1
2023-01-05T19:37:03Z
107
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-05T16:53:06Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: timit-distil-kl-alpha-0.25-T-1-take-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timit-distil-kl-alpha-0.25-T-1-take-3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 362.6431 - Wer: 0.8022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 56 - eval_batch_size: 56 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 112 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 836.3694 | 2.43 | 100 | 652.1216 | 1.0487 | | 438.9098 | 4.87 | 200 | 438.7045 | 0.8833 | | 320.2348 | 7.31 | 300 | 396.8615 | 0.8490 | | 267.4869 | 9.75 | 400 | 381.3956 | 0.8325 | | 243.05 | 12.19 | 500 | 374.6377 | 0.8292 | | 226.4688 | 14.63 | 600 | 372.4966 | 0.8197 | | 220.0781 | 17.07 | 700 | 368.0202 | 0.8213 | | 206.6639 | 19.51 | 800 | 366.3605 | 0.8112 | | 199.0381 | 21.94 | 900 | 366.9292 | 0.8271 | | 198.3046 | 24.39 | 1000 | 365.8394 | 0.8088 | | 188.066 | 26.82 | 1100 | 364.1574 | 0.8057 | | 188.2653 | 29.27 | 1200 | 364.2211 | 0.8025 | | 181.248 | 31.7 | 1300 | 363.9985 | 0.8071 | | 182.5918 | 34.14 | 1400 | 363.5379 | 0.8042 | | 177.1421 | 36.58 | 1500 | 363.5888 | 0.8032 | | 179.904 | 39.02 | 1600 | 362.6931 | 0.8038 | | 174.7976 | 41.46 | 1700 | 362.9397 | 0.8053 | | 173.5596 | 43.89 | 1800 | 362.9175 | 0.8011 | | 176.6717 | 46.34 | 1900 | 363.0562 | 0.8013 | | 173.9602 | 48.77 | 2000 | 362.6431 | 0.8022 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
castorini/wiki-text-8-4-multi-dpr2-passage-encoder
castorini
2023-01-05T19:28:38Z
3
0
transformers
[ "transformers", "jax", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-01-04T02:36:58Z
Dense passage retriever (DPR) is a dense retrieval method described in the following paper: > Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. [Dense Passage Retrieval for Open-Domain Question Answering](https://www.aclweb.org/anthology/2020.emnlp-main.550/). _Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)_, pages 6769-6781, 2020. We have trained our own DPR models with our Wikipedia corpus variants using the [Tevatron](https://github.com/texttron/tevatron) library. Our own efforts are described in the paper entitled: > Pre-Processing Matters! Improved Wikipedia Corpora for Open-Domain Question Answering. This is the passage encoder portion of a 2nd iteration DPR model for the wiki-text-8-4 corpus variant trained on the amalgamation of the NQ, TriviaQA, WQ, and CuratedTREC datasets.
castorini/wiki-text-8-4-multi-dpr2-query-encoder
castorini
2023-01-05T19:28:18Z
3
0
transformers
[ "transformers", "jax", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-01-04T02:36:49Z
Dense passage retriever (DPR) is a dense retrieval method described in the following paper: > Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. [Dense Passage Retrieval for Open-Domain Question Answering](https://www.aclweb.org/anthology/2020.emnlp-main.550/). _Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)_, pages 6769-6781, 2020. We have trained our own DPR models with our Wikipedia corpus variants using the [Tevatron](https://github.com/texttron/tevatron) library. Our own efforts are described in the paper entitled: > Pre-Processing Matters! Improved Wikipedia Corpora for Open-Domain Question Answering. This is the query encoder portion of a 2nd iteration DPR model for the wiki-text-8-4 corpus variant trained on the amalgamation of the NQ, TriviaQA, WQ, and CuratedTREC datasets.
castorini/wiki-text-6-3-multi-dpr2-query-encoder
castorini
2023-01-05T19:27:25Z
3
0
transformers
[ "transformers", "jax", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-01-04T02:36:19Z
Dense passage retriever (DPR) is a dense retrieval method described in the following paper: > Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. [Dense Passage Retrieval for Open-Domain Question Answering](https://www.aclweb.org/anthology/2020.emnlp-main.550/). _Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)_, pages 6769-6781, 2020. We have trained our own DPR models with our Wikipedia corpus variants using the [Tevatron](https://github.com/texttron/tevatron) library. Our own efforts are described in the paper entitled: > Pre-Processing Matters! Improved Wikipedia Corpora for Open-Domain Question Answering. This is the query encoder portion of a 2nd iteration DPR model for the wiki-text-6-3 corpus variant trained on the amalgamation of the NQ, TriviaQA, WQ, and CuratedTREC datasets.
castorini/wiki-all-8-4-multi-dpr2-passage-encoder
castorini
2023-01-05T19:26:22Z
469
0
transformers
[ "transformers", "jax", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-01-04T02:34:47Z
Dense passage retriever (DPR) is a dense retrieval method described in the following paper: > Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. [Dense Passage Retrieval for Open-Domain Question Answering](https://www.aclweb.org/anthology/2020.emnlp-main.550/). _Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)_, pages 6769-6781, 2020. We have trained our own DPR models with our Wikipedia corpus variants using the [Tevatron](https://github.com/texttron/tevatron) library. Our own efforts are described in the paper entitled: > Pre-Processing Matters! Improved Wikipedia Corpora for Open-Domain Question Answering. This is the passage encoder portion of a 2nd iteration DPR model for the wiki-all-8-4 corpus variant trained on the amalgamation of the NQ, TriviaQA, WQ, and CuratedTREC datasets.
castorini/wiki-all-6-3-multi-dpr2-query-encoder
castorini
2023-01-05T19:25:23Z
5
1
transformers
[ "transformers", "jax", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-12-27T01:35:21Z
Dense passage retriever (DPR) is a dense retrieval method described in the following paper: > Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. [Dense Passage Retrieval for Open-Domain Question Answering](https://www.aclweb.org/anthology/2020.emnlp-main.550/). _Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)_, pages 6769-6781, 2020. We have trained our own DPR models with our Wikipedia corpus variants using the [Tevatron](https://github.com/texttron/tevatron) library. Our own efforts are described in the paper entitled: > Pre-Processing Matters! Improved Wikipedia Corpora for Open-Domain Question Answering. This is the query encoder portion of a 2nd iteration DPR model for the wiki-all-6-3 corpus variant trained on the amalgamation of the NQ, TriviaQA, WQ, and CuratedTREC datasets.
sphchen/EHR_ML_simulation_1
sphchen
2023-01-05T19:21:51Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-08T13:27:18Z
--- license: mit tags: - generated_from_trainer model-index: - name: EHR_ML_simulation_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EHR_ML_simulation_1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
mwrob/distilbert-base-uncased-sexist
mwrob
2023-01-05T19:18:43Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-19T13:19:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-sexist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-sexist This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.11.0
LarryAIDraw/bochitest
LarryAIDraw
2023-01-05T19:15:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-05T15:21:13Z
--- license: creativeml-openrail-m ---
violll/unit1
violll
2023-01-05T19:12:32Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T19:12:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.43 +/- 27.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
julenalvaro/Perros-VS-gatos-con-vit-base-patch16-224-in21k
julenalvaro
2023-01-05T19:07:49Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-04T12:36:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy widget: - src: >- https://huggingface.co/julenalvaro/Perros-VS-gatos-con-vit-base-patch16-224-in21k/resolve/main/dog.jpeg example_title: dog - src: >- https://huggingface.co/julenalvaro/Perros-VS-gatos-con-vit-base-patch16-224-in21k/resolve/main/cat.jpeg example_title: cat model-index: - name: vit-base-patch16-224-in21k results: [] --- # vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1026 - Accuracy: 0.982 ## Model description This model is a fine-tuned version of google/vit-base-patch16-224-in21k which discriminates cats from dogs. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.177 | 0.5 | 500 | 0.2100 | 0.9435 | | 0.1515 | 1.0 | 1000 | 0.0710 | 0.975 | | 0.0443 | 1.5 | 1500 | 0.2043 | 0.9535 | | 0.0625 | 2.0 | 2000 | 0.0898 | 0.9745 | | 0.0181 | 2.5 | 2500 | 0.0961 | 0.9805 | | 0.0091 | 3.0 | 3000 | 0.1049 | 0.982 | | 0.0016 | 3.5 | 3500 | 0.1066 | 0.981 | | 0.0015 | 4.0 | 4000 | 0.1026 | 0.982 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
alexispacek/q-Taxi-v3
alexispacek
2023-01-05T18:30:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T18:07:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="alexispacek/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
cleanrl/Defender-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-05T18:19:18Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Defender-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T18:19:14Z
--- tags: - Defender-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Defender-v5 type: Defender-v5 metrics: - type: mean_reward value: 69430.00 +/- 15591.81 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Defender-v5** This is a trained model of a PPO agent playing Defender-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id Defender-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Defender-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/Defender-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Defender-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Defender-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
nikcheerla/nooks-amd-detection-v2-full
nikcheerla
2023-01-05T17:58:27Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-05T17:58:19Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6048 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 6048, "warmup_steps": 605, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Raiden-1001/q-FrozenLake-v1-4x4-noSlippery
Raiden-1001
2023-01-05T17:49:43Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T17:49:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Raiden-1001/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Gadersd/q-FrozenLake-v1-4x4-noSlippery
Gadersd
2023-01-05T17:48:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T17:48:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Gadersd/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nikcheerla/nooks-amd-detection-full
nikcheerla
2023-01-05T17:47:55Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-05T07:11:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6048 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 6048, "warmup_steps": 605, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Gemini91/ppo-LunarLander-v2
Gemini91
2023-01-05T17:24:46Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T17:24:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.54 +/- 23.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gemini91/ppo-Huggy
Gemini91
2023-01-05T17:05:23Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-05T17:05:16Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Gemini91/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Agog/q-FrozenLake-v1-4x4-noSlippery
Agog
2023-01-05T16:55:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T16:55:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Agog/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Nnarruqt/Reinforce-PixelCpt
Nnarruqt
2023-01-05T16:46:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T16:45:57Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCpt results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 35.50 +/- 27.47 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
krecceg/ppo-LunarLander-v2
krecceg
2023-01-05T16:27:38Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T16:27:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.65 +/- 21.55 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TomLi/distilbert-base-uncased-finetuned-emotion
TomLi
2023-01-05T16:07:34Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-05T13:33:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2168 - Accuracy: 0.925 - F1: 0.9247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8435 | 1.0 | 250 | 0.3160 | 0.9065 | 0.9045 | | 0.2457 | 2.0 | 500 | 0.2168 | 0.925 | 0.9247 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
0xid/Reinforce-Pixelcopter-PLE-v0
0xid
2023-01-05T16:04:12Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T16:04:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 55.60 +/- 41.02 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction