modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 00:42:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 00:40:00
card
stringlengths
11
1.01M
perrycision/ppo-LunarLander-v2
perrycision
2023-06-06T15:46:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T15:45:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.20 +/- 16.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ataunal/pc1
ataunal
2023-06-06T15:42:31Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T11:08:15Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pc1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 59.80 +/- 42.33 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
thiendio/reinforce-copter-env-v1
thiendio
2023-06-06T15:23:02Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T15:22:58Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-copter-env-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.50 +/- 17.92 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
OctoberTechnology/sdtest
OctoberTechnology
2023-06-06T15:01:53Z
48
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2023-06-06T14:59:44Z
# Chill Watcher consider deploy on: - huggingface inference point - replicate api - lightning.ai # Deploy Guide(Chinese) https://www.bilibili.com/video/BV14V4y167m7 # platform comparison > all support autoscaling |platform|prediction speed|charges|deploy handiness| |-|-|-|-| |huggingface|fast:20s|high:$0.6/hr (without autoscaling)|easy:git push| |replicate|fast if used frequently: 30s, slow if needs initialization: 5min|low: $0.02 per generation|difficult: build image and upload| |lightning.ai|fast with app running: 20s, slow if idle: XXs|low: free $30 per month, $0.18 per init, $0.02 per run|easy: one command| # platform deploy options ## huggingface > [docs](https://huggingface.co/docs/inference-endpoints/guides/custom_handler) - requirements: use pip packages in `requirements.txt` - `init()` and `predict()` function: use `handler.py`, implement the `EndpointHandler` class - more: modify `handler.py` for requests and inference and explore more highly-customized features - deploy: git (lfs) push to huggingface repository(the whole directory including models and weights, etc.), and use inference endpoints to deploy. Click and deploy automaticly, very simple. - call api: use the url provide by inference endpoints after endpoint is ready(build, initialize and in a "running" state), make a post request to the url using request schema definied in the `handler.py` ## replicate > [docs](https://replicate.com/docs/guides/push-a-model) - requirements: specify all requirements(pip packages, system packages, python version, cuda, etc.) in `cog.yaml` - `init()` and `predict()` function: use `predict.py`, implement the `Predictor` class - more: modify `predict.py` - deploy: 1. get a linux GPU machine with 60GB disk space; 2. install [cog](https://replicate.com/docs/guides/push-a-model) and [docker](https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository) 3. `git pull` the current repository from huggingface, including large model files 4. after `predict.py` and `cog.yaml` is correctly coded, run `cog login`, `cog push`, then cog will build a docker image locally and push the image to replicate. As the image could take 30GB or so disk space, it would cost a lot network bandwidth. - call api: if everything runs successfully and the docker image is pushed to replicate, you will see a web-ui and an API example directly in your replicate repository ## lightning.ai > docs: [code](https://lightning.ai/docs/app/stable/levels/basic/real_lightning_component_implementations.html), [deploy](https://lightning.ai/docs/app/stable/workflows/run_app_on_cloud/) - requirements: - pip packages are listed in `requirements_lightning.txt`, because some requirements are different from those in huggingface. Rename it to `requirements.txt` - other pip packages, system packages and some big model weight files download commands, can be listed using a custom build config. Checkout `class CustomBuildConfig(BuildConfig)` in `app.py`. In a custom build config you can use many linux commands such as `wget` and `sudo apt-get update`. The custom build config will be executed on the `__init__()` of the `PythonServer` class - `init()` and `predict()` function: use `app.py`, implement the `PythonServer` class. Note: - some packages haven't been installed when the file is called(these packages may be installed when `__init__()` is called), so some import code should be in the function, not at the top of the file, or you may get import errors. - you can't save your own value to `PythonServer.self` unless it's predifined in the variables, so don't assign any self-defined variables to `self` - if you use the custom build config, you should implement `PythonServer`'s `__init()__` yourself, so don't forget to use the correct function signature - more: ... - deploy: - `pip install lightning` - prepare the directory on your local computer(no need to have a GPU) - list big files in the `.lightningignore` file to avoid big file upload and save deploy time cost - run `lightning run app app.py --cloud` in the local terminal, and it will upload the files in the directory to lightning cloud, and start deploying on the cloud - check error logs on the web-ui, use `all logs` - call api: only if the app starts successfully, you can see a valid url in the `settings` page of the web-ui. Open that url, and you can see the api ### some stackoverflow: install docker: - https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository install git-lfs: - https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md linux: ``` curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash sudo apt-get install git-lfs ``` --- license: apache-2.0 ---
ying-zh/ppo-LunarLander-v2-torch
ying-zh
2023-06-06T15:01:04Z
0
0
deep-rl-course
[ "deep-rl-course", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "ppo", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T14:30:33Z
--- library_name: deep-rl-course tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - ppo model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 117.88 +/- 53.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [ppo library](https://github.com/yingzha/ppo).
CeroShrijver/chinese-roberta-wwm-ext-text-classification
CeroShrijver
2023-06-06T14:49:34Z
110
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T14:33:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: chinese-roberta-wwm-ext-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-roberta-wwm-ext-text-classification This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7045 - Accuracy: 0.7744 ## Model description Test Accuracy: 0.8254 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4342 | 1.0 | 1009 | 0.5256 | 0.7835 | | 0.3493 | 2.0 | 2018 | 0.5649 | 0.7805 | | 0.1857 | 3.0 | 3027 | 0.7045 | 0.7744 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
elgamous/xx_pipeline
elgamous
2023-06-06T14:37:02Z
1
0
spacy
[ "spacy", "token-classification", "multilingual", "model-index", "region:us" ]
token-classification
2023-06-06T14:36:39Z
--- tags: - spacy - token-classification language: - multilingual model-index: - name: xx_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9947643979 - name: NER Recall type: recall value: 1.0 - name: NER F Score type: f_score value: 0.9973753281 --- | Feature | Description | | --- | --- | | **Name** | `xx_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.3,<3.6.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `BRAND`, `CITY`, `COUNTRY`, `COUNTY`, `LOC`, `ORG`, `PERSON` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 99.74 | | `ENTS_P` | 99.48 | | `ENTS_R` | 100.00 | | `TOK2VEC_LOSS` | 176.40 | | `NER_LOSS` | 352.08 |
gokuls/hBERTv2_new_pretrain_w_init__stsb
gokuls
2023-06-06T14:24:14Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T14:15:59Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv2_new_pretrain_w_init__stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.3669953973916525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_w_init__stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.0270 - Pearson: 0.3743 - Spearmanr: 0.3670 - Combined Score: 0.3707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.2654 | 1.0 | 45 | 2.4836 | 0.2041 | 0.1912 | 0.1976 | | 1.9657 | 2.0 | 90 | 2.1138 | 0.2744 | 0.2547 | 0.2646 | | 1.6665 | 3.0 | 135 | 2.2375 | 0.3087 | 0.3002 | 0.3044 | | 1.3265 | 4.0 | 180 | 2.0270 | 0.3743 | 0.3670 | 0.3707 | | 1.0731 | 5.0 | 225 | 2.3748 | 0.3294 | 0.3212 | 0.3253 | | 0.7974 | 6.0 | 270 | 2.6753 | 0.3338 | 0.3353 | 0.3345 | | 0.6738 | 7.0 | 315 | 2.5125 | 0.3590 | 0.3464 | 0.3527 | | 0.5384 | 8.0 | 360 | 2.3740 | 0.3310 | 0.3211 | 0.3261 | | 0.4589 | 9.0 | 405 | 2.3911 | 0.3709 | 0.3690 | 0.3699 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
CeroShrijver/xlm-roberta-base-text-classification
CeroShrijver
2023-06-06T14:24:01Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T14:10:13Z
--- tags: - generated_from_trainer model-index: - name: xlm-roberta-base-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-text-classification This model was trained from scratch on the None dataset. ## Model description Test Accuracy: 0.8067 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1 - Datasets 2.12.0 - Tokenizers 0.13.3
crowbarmassage/q-Taxi-v3
crowbarmassage
2023-06-06T14:13:29Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-19T19:24:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="crowbarmassage/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gokuls/hBERTv2_new_pretrain_w_init__qqp
gokuls
2023-06-06T14:10:56Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T07:49:05Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_w_init__qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8042542666336878 - name: F1 type: f1 value: 0.7431353456669914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_w_init__qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4228 - Accuracy: 0.8043 - F1: 0.7431 - Combined Score: 0.7737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.6243 | 1.0 | 2843 | 0.5630 | 0.7026 | 0.6300 | 0.6663 | | 0.5301 | 2.0 | 5686 | 0.5110 | 0.7516 | 0.6346 | 0.6931 | | 0.4804 | 3.0 | 8529 | 0.4928 | 0.7635 | 0.6780 | 0.7208 | | 0.4419 | 4.0 | 11372 | 0.4610 | 0.7756 | 0.7173 | 0.7465 | | 0.4105 | 5.0 | 14215 | 0.4441 | 0.7889 | 0.7347 | 0.7618 | | 0.3819 | 6.0 | 17058 | 0.4336 | 0.8018 | 0.7207 | 0.7613 | | 0.3534 | 7.0 | 19901 | 0.4228 | 0.8043 | 0.7431 | 0.7737 | | 0.33 | 8.0 | 22744 | 0.4429 | 0.8062 | 0.7445 | 0.7754 | | 0.3098 | 9.0 | 25587 | 0.4296 | 0.8104 | 0.7511 | 0.7807 | | 0.2912 | 10.0 | 28430 | 0.4386 | 0.8086 | 0.7554 | 0.7820 | | 0.275 | 11.0 | 31273 | 0.4551 | 0.8143 | 0.7575 | 0.7859 | | 0.2575 | 12.0 | 34116 | 0.4742 | 0.8160 | 0.7491 | 0.7825 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_w_init_48_qqp
gokuls
2023-06-06T13:43:59Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T08:20:55Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_w_init_48_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8218896858768241 - name: F1 type: f1 value: 0.7658287535364704 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_w_init_48_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4082 - Accuracy: 0.8219 - F1: 0.7658 - Combined Score: 0.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5585 | 1.0 | 2843 | 0.5073 | 0.7522 | 0.6429 | 0.6976 | | 0.4735 | 2.0 | 5686 | 0.4584 | 0.7848 | 0.6963 | 0.7405 | | 0.4044 | 3.0 | 8529 | 0.4140 | 0.8074 | 0.7234 | 0.7654 | | 0.3583 | 4.0 | 11372 | 0.4206 | 0.8058 | 0.7602 | 0.7830 | | 0.3271 | 5.0 | 14215 | 0.4082 | 0.8219 | 0.7658 | 0.7939 | | 0.2987 | 6.0 | 17058 | 0.4203 | 0.8177 | 0.7666 | 0.7921 | | 0.3287 | 7.0 | 19901 | 0.4641 | 0.8124 | 0.7209 | 0.7667 | | 0.3594 | 8.0 | 22744 | 0.4493 | 0.8010 | 0.7246 | 0.7628 | | 0.3729 | 9.0 | 25587 | 0.4443 | 0.8047 | 0.7388 | 0.7718 | | 0.3314 | 10.0 | 28430 | 0.4196 | 0.8132 | 0.7411 | 0.7771 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_w_init_48_wnli
gokuls
2023-06-06T13:41:18Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T13:37:05Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init_48_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init_48_wnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6860 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.852 | 1.0 | 5 | 0.6860 | 0.5634 | | 0.7576 | 2.0 | 10 | 0.6909 | 0.5634 | | 0.7506 | 3.0 | 15 | 0.7317 | 0.5634 | | 0.7746 | 4.0 | 20 | 0.7648 | 0.4366 | | 0.7363 | 5.0 | 25 | 0.6876 | 0.5634 | | 0.7133 | 6.0 | 30 | 0.7003 | 0.4366 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
hangeol/1000
hangeol
2023-06-06T13:37:03Z
29
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-06T12:41:56Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - hangeol/1000 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
gokuls/hBERTv1_new_pretrain_w_init_48_stsb
gokuls
2023-06-06T13:36:44Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T13:23:41Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_new_pretrain_w_init_48_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.7471924680940966 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init_48_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.9800 - Pearson: 0.7515 - Spearmanr: 0.7472 - Combined Score: 0.7493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.5456 | 1.0 | 45 | 2.2706 | 0.1246 | 0.1141 | 0.1194 | | 2.0514 | 2.0 | 90 | 2.0613 | 0.5266 | 0.5198 | 0.5232 | | 1.3837 | 3.0 | 135 | 1.1984 | 0.6853 | 0.6942 | 0.6897 | | 1.0297 | 4.0 | 180 | 1.6176 | 0.6869 | 0.6961 | 0.6915 | | 0.8064 | 5.0 | 225 | 1.1444 | 0.7476 | 0.7445 | 0.7460 | | 0.604 | 6.0 | 270 | 1.2754 | 0.7422 | 0.7450 | 0.7436 | | 0.4818 | 7.0 | 315 | 1.1407 | 0.7687 | 0.7673 | 0.7680 | | 0.3905 | 8.0 | 360 | 1.1860 | 0.7560 | 0.7604 | 0.7582 | | 0.3476 | 9.0 | 405 | 0.9800 | 0.7515 | 0.7472 | 0.7493 | | 0.2819 | 10.0 | 450 | 1.0156 | 0.7521 | 0.7507 | 0.7514 | | 0.2418 | 11.0 | 495 | 1.0174 | 0.7516 | 0.7480 | 0.7498 | | 0.2068 | 12.0 | 540 | 1.2367 | 0.7530 | 0.7523 | 0.7527 | | 0.1863 | 13.0 | 585 | 1.0073 | 0.7491 | 0.7468 | 0.7480 | | 0.1929 | 14.0 | 630 | 1.0470 | 0.7517 | 0.7505 | 0.7511 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
CeroShrijver/glm-large-chinese-text-classification
CeroShrijver
2023-06-06T13:35:00Z
104
0
transformers
[ "transformers", "pytorch", "glm", "text-classification", "generated_from_trainer", "custom_code", "autotrain_compatible", "region:us" ]
text-classification
2023-06-06T05:12:28Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: glm-large-chinese-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glm-large-chinese-text-classification This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6618 - Accuracy: 0.7705 Stil have test bugs! ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5565 | 1.0 | 1009 | 0.4575 | 0.8052 | | 0.4498 | 2.0 | 2018 | 0.5336 | 0.7800 | | 0.1593 | 3.0 | 3027 | 0.6618 | 0.7705 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
nolanaatama/prfctwrld
nolanaatama
2023-06-06T13:34:54Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-06T11:37:37Z
--- license: creativeml-openrail-m ---
CalmScout/sd-class-butterflies-64
CalmScout
2023-06-06T13:31:07Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-06-06T13:30:36Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('CalmScout/sd-class-butterflies-64') image = pipeline().images[0] image ```
wootwoot/anything-v4.0-vae
wootwoot
2023-06-06T13:23:27Z
10
1
diffusers
[ "diffusers", "safetensors", "en", "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T13:18:05Z
--- license: creativeml-openrail-m language: - en library_name: diffusers --- ### From [andite/anything-v4.0](https://huggingface.co/andite/anything-v4.0) All credits go to the original author and all the author of AnythingV4's ancestor models ### Diffusers AnythingV4's vae compatible with the [🧨Diffusers library](https://github.com/huggingface/diffusers)
gokuls/hBERTv1_new_pretrain_w_init_48_rte
gokuls
2023-06-06T13:23:24Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T13:15:08Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init_48_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init_48_rte This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6910 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.712 | 1.0 | 20 | 0.7158 | 0.4729 | | 0.7094 | 2.0 | 40 | 0.6958 | 0.4729 | | 0.7025 | 3.0 | 60 | 0.7008 | 0.4729 | | 0.705 | 4.0 | 80 | 0.6919 | 0.5271 | | 0.7023 | 5.0 | 100 | 0.6960 | 0.5271 | | 0.7002 | 6.0 | 120 | 0.7095 | 0.4729 | | 0.7071 | 7.0 | 140 | 0.7040 | 0.4729 | | 0.6982 | 8.0 | 160 | 0.6918 | 0.5271 | | 0.7025 | 9.0 | 180 | 0.6910 | 0.5271 | | 0.6965 | 10.0 | 200 | 0.6984 | 0.4621 | | 0.6814 | 11.0 | 220 | 0.7635 | 0.4946 | | 0.6616 | 12.0 | 240 | 0.6918 | 0.5271 | | 0.6658 | 13.0 | 260 | 0.7622 | 0.5307 | | 0.6316 | 14.0 | 280 | 0.8002 | 0.5090 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
Venkatesh4342/xlm-roberta-base-NER
Venkatesh4342
2023-06-06T13:21:26Z
133
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-06T11:28:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-NER This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1431 - F1: 0.8130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 2263 | 0.1465 | 0.7947 | | No log | 2.0 | 4527 | 0.1393 | 0.8064 | | 0.1402 | 3.0 | 6791 | 0.1408 | 0.8083 | | 0.1402 | 4.0 | 9052 | 0.1431 | 0.8130 | ### Framework versions - Transformers 4.27.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_w_init__stsb
gokuls
2023-06-06T13:18:15Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T16:46:28Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_new_pretrain_w_init__stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.08916919703003628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init__stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2584 - Pearson: 0.0949 - Spearmanr: 0.0892 - Combined Score: 0.0920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.5056 | 1.0 | 45 | 2.2584 | 0.0949 | 0.0892 | 0.0920 | | 2.1254 | 2.0 | 90 | 2.6871 | 0.1250 | 0.1231 | 0.1241 | | 1.9839 | 3.0 | 135 | 2.2709 | 0.1790 | 0.1840 | 0.1815 | | 1.6299 | 4.0 | 180 | 2.5115 | 0.2691 | 0.2797 | 0.2744 | | 1.3155 | 5.0 | 225 | 2.4555 | 0.3453 | 0.3437 | 0.3445 | | 0.9686 | 6.0 | 270 | 2.8004 | 0.4571 | 0.4406 | 0.4489 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_w_init_48_qqp
gokuls
2023-06-06T13:14:47Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T08:45:53Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_w_init_48_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8430373485035865 - name: F1 type: f1 value: 0.7845307619176966 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init_48_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3476 - Accuracy: 0.8430 - F1: 0.7845 - Combined Score: 0.8138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4637 | 1.0 | 2843 | 0.3907 | 0.8136 | 0.7636 | 0.7886 | | 0.363 | 2.0 | 5686 | 0.3536 | 0.8338 | 0.7900 | 0.8119 | | 0.3211 | 3.0 | 8529 | 0.3476 | 0.8430 | 0.7845 | 0.8138 | | 0.2906 | 4.0 | 11372 | 0.3539 | 0.8531 | 0.8059 | 0.8295 | | 0.2603 | 5.0 | 14215 | 0.3531 | 0.8531 | 0.8017 | 0.8274 | | 0.2373 | 6.0 | 17058 | 0.3716 | 0.8561 | 0.8089 | 0.8325 | | 0.2175 | 7.0 | 19901 | 0.3553 | 0.8565 | 0.8123 | 0.8344 | | 0.1957 | 8.0 | 22744 | 0.3726 | 0.8551 | 0.8099 | 0.8325 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
tmpusr/Reinforce-CartPole-v1
tmpusr
2023-06-06T13:13:07Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T13:12:59Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
casque/DakiV4-10
casque
2023-06-06T13:11:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T13:10:00Z
--- license: creativeml-openrail-m ---
birdfoot/ppo-LunarLander-v2
birdfoot
2023-06-06T13:10:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T13:10:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.97 +/- 21.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
opxhere/AlixaKoreanV3
opxhere
2023-06-06T13:09:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T13:04:02Z
--- license: creativeml-openrail-m ---
gokuls/hBERTv1_new_pretrain_w_init__rte
gokuls
2023-06-06T13:09:49Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T16:41:06Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init__rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init__rte This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6916 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7478 | 1.0 | 20 | 0.6921 | 0.5271 | | 0.7195 | 2.0 | 40 | 0.6916 | 0.5271 | | 0.7087 | 3.0 | 60 | 0.6945 | 0.5271 | | 0.7025 | 4.0 | 80 | 0.6917 | 0.5379 | | 0.721 | 5.0 | 100 | 0.6924 | 0.5379 | | 0.6992 | 6.0 | 120 | 0.7302 | 0.4621 | | 0.685 | 7.0 | 140 | 0.7124 | 0.5379 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
CalmScout/sd-class-butterflies-32
CalmScout
2023-06-06T13:07:29Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-06-06T13:06:58Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('CalmScout/sd-class-butterflies-32') image = pipeline().images[0] image ```
Flynews/ppo-LunarLander
Flynews
2023-06-06T13:03:47Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T11:41:30Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -49.15 +/- 119.77 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 2000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Flynews/ppo-LunarLander' 'batch_size': 512 'minibatch_size': 128} ```
optimum/roberta-base-squad2-neuronx
optimum
2023-06-06T13:03:22Z
3
0
transformers
[ "transformers", "roberta", "question-answering", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-06T12:57:18Z
--- license: cc-by-4.0 --- This repo contains artifacts from [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2/tree/main) but in neuronx format compatible with INF2 and TRN1 devices.
gokuls/hBERTv1_new_pretrain_w_init__qqp
gokuls
2023-06-06T13:03:13Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T11:48:10Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_w_init__qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8135295572594607 - name: F1 type: f1 value: 0.7339332980412917 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init__qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3996 - Accuracy: 0.8135 - F1: 0.7339 - Combined Score: 0.7737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5075 | 1.0 | 2843 | 0.4451 | 0.7864 | 0.7172 | 0.7518 | | 0.4118 | 2.0 | 5686 | 0.4144 | 0.8052 | 0.7377 | 0.7715 | | 0.3583 | 3.0 | 8529 | 0.3996 | 0.8135 | 0.7339 | 0.7737 | | 0.3174 | 4.0 | 11372 | 0.4160 | 0.8195 | 0.7566 | 0.7880 | | 0.2918 | 5.0 | 14215 | 0.4424 | 0.8142 | 0.7633 | 0.7888 | | 0.2769 | 6.0 | 17058 | 0.4765 | 0.8195 | 0.7583 | 0.7889 | | 0.2576 | 7.0 | 19901 | 0.4033 | 0.8237 | 0.7675 | 0.7956 | | 0.2327 | 8.0 | 22744 | 0.4414 | 0.8279 | 0.7682 | 0.7981 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
optimum/legal-bert-base-uncased-neuron
optimum
2023-06-06T12:48:52Z
1
0
transformers
[ "transformers", "bert", "pretraining", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2023-06-06T12:41:47Z
--- license: cc-by-sa-4.0 --- This repo contains artifacts from `nlpaueb/legal-bert-base-uncased` in Neuron format compatible with Inferentia 1.
TheBloke/Selfee-13B-fp16
TheBloke
2023-06-06T12:41:42Z
14
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-06T09:59:51Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Kaist AI's Selfee 13B GGML This repo contains fp16 pytorch format model files for [Kaist AI's Selfee 13B](https://huggingface.co/kaist-ai/selfee-13b-delta). It is the result of merging the diff at the above repo with base Llama 13B, then converting fp32 to fp16. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Selfee-13B-GPTQ) * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Selfee-13B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Selfee-13B-fp16) <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaist AI's Selfee 13B <p align="center" width="100%"> <a href="https://kaistai.github.io/SelFee/demo" target="_blank"><img src="https://raw.githubusercontent.com/kaistAI/SelFee/main/assets/llama_selfie.png" alt="KAIST-Selfee" style="width: 30%; min-width: 200px; display: block; margin: auto;"></a> </p> # SelFee: Iterative Self-Revising LLM Empowered by <br/> Self-Feedback Generation [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE) [![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE) [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ## News [May 31, 2023] Initial release: We released the first version of SelFee! Check out the <a href="https://kaistai.github.io/SelFee/">blog post</a> for more details. ## Overview This is the repository for the KAIST SelFee project, which aims to build and share an instruction-following LLaMA model. This repo mainly has five contents: - The selection process of the 178K training data for SelFee ([detail](#data-release), [code](data_collection)). - The generation process for the training data and its result. ([detail](#data-generation-process), [code](data_augmentation)). - The training process for the model ([detail](#training), [code](train)). - The inference process for the model ([detail](#inference), [code](inference)). - The evaluation method and dataset ([detail](#evaluation), [code](evaluation)). This repository is based on the [Stanford-Alpaca](https://github.com/tatsu-lab/stanford_alpaca/) and [Vicuna](https://github.com/lm-sys/FastChat/) repository. Thanks to all the contributors for these awesome repositories!! 🙌 **We highly recommend you read our [blog post](https://kaistai.github.io/SelFee/) for more details about the model.** ## Data Release For data collection, we collected datasets from five different fields. These are the Stanford Alpaca dataset, math collection, code collection, Flan collection, and ShareGPT. We provide code that we used to make a dataset for training. We also provide code how we preprocessed ShareGPT. For ShareGPT, we only use the first (question, answer) pair from human and GPT, respectively. We only use instances which are classified as english,and filter instance which is not a form of question. For other datsets, we do not need special data collection method. ## Data Generation Process To train our model with high-quality instructions and answer pairs, we utilized data augmentation using OpenAI API calls. The process involved three steps. <br> Firstly, we collected various instructions from multiple fields and fed them to ChatGPT to generate answers. <br> Secondly, we gathered feedback on the generated answer by querying ChatGPT again and asked it to determine if the initial answer required any revision. <br> Thirdly, if a revision was necessary, we passed the instruction, initial answer, and feedback pair to ChatGPT to generate a revised answer and its feedback pair. We repeated the process until we received feedback that required no further revision or hit the maximum iteration. However, due to the token limitation of the ChatGPT API, we had to truncate some instances that needed more than 4096 tokens while augmenting.<br> You can see the details with command [here](data_augmentation/README.md).<br> *We provide the whole dataset after collection and augmentation using huggingface([code](data_collection/download_train.py)), so you can either use the code or follow our [data merging step](outputs/README.md) to replicate the training dataset. Feel free to use any of them! ## Training We utilize <a href="https://github.com/lm-sys/FastChat">FastChat</a> to train the model. Given the instruction, we fine-tune the model to generate the answer and feedback chain (including the revisions).<br> To reproduce the training procedure, here are the steps. <br> ``` pip install -r requirements.txt ``` ``` torchrun --nproc_per_node=4 train/train_mem.py \ --model_name_or_path llama-7b \ --data_path outputs/feedback_gpt_3.5_turbo_merged_whole.json \ --bf16 True \ --output_dir ckpt/selfee-7b \ --num_train_epochs 3 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --gradient_accumulation_steps 2 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 5000 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --fsdp "shard_grad_op auto_wrap" \ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --lazy_preprocess True \ --training_objective full \ ``` The hyperparameters are as follows, following Vicuna and Alpaca. | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | | --- | ---: | ---: | ---: | ---: | ---: | | SelFee (7B, 13B) | 128 | 2e-5 | 3 | 2048 | 0 | ## Inference <b>Restoring checkpoint using diff</b><br> We provide diff weight and code which can restore the same model with SelFee. To restore the original SelFee weight, you first need to convert the Meta's original LLAMA checkpoint into huggingface format into your local machine. Once you are done, you can restore the same checkpoint of our model by using the following command ``` python inference/apply_delta.py --path_raw {path_to_llama_7b} --path_tuned /ckpt/selfee-7b --path_diff kaist-ai/selfee-7b-delta ``` <b>Autonomous Inference Mode</b><br> Because SelFee is trained to generate iterative feedback and revisions until the response is satisfying, it automatically generates iterative feedback and revisions on a single forward pass. The model autonomously decides when to stop generating revisions based on the feedback. If the feedback chain ends with sequences like `Revision is not needed.`, the model autonomously terminates generation. <br> For autonomous inference mode, ``` python inference/inference.py --model-path "ckpt/selfee-7b" --model-id "selfee" --question-file "evaluation/template/question.jsonl" --answer-file "evaluation/answer/selfee_7b_autonomous.jsonl" ``` <b>Revision Enforce Inference Mode</b><br> We observed that increasing the minimum number of required revisions corresponds to a corresponding increase in performance. To enforce revisions, we automatically replace sequences such as `Revision is not needed.` into `Revision is needed.` during self-feedback generation. Because SelFee is trained to generate `Revision {index}:` after the sequence of `Revision is needed.`, the model would continually revise the answer. For revision enforce inference mode, use the `max-num-revision` argument. ``` python inference/inference.py --model-path "ckpt/selfee-7b" --model-id "selfee" --question-file "evaluation/template/question.jsonl" --answer-file "evaluation/answer/selfee_7b_enforce_3_revision.jsonl" --max-num-revision 3 ``` ## Evaluation Following evaluation setting of Vicuna, we evaluate on 80 diverse queries and utilize GPT-4 language model as the evaluator, scoring a model's response relative to ChatGPT's response. One of the difference with Vicuna evaluation is that due to positional bias of GPT-4, we employ a bidirectional evaluation setting. This means that each evaluation instance is inferred twice, depending on its position.<br> We release the inference result of SelFee in the folder of `evaluation/answer` and also the scores generated by GPT-4 in the folder of `evaluation/review`. <br> ### GPT-4 Automatic Evaluation First, you need to get your API key to get access to the GPT-4 API. ``` export OPENAI_API_KEYS={personal_key} ``` To compare the performance of a generation result (for example, located on `evaluation/answer/file_A.jsonl`) with another generation result (located on `evaluation/anwer/file_B.jsonl`), ``` python evaluation/gpt4_automatic_evaluation.py -q evaluation/template/question.jsonl -a evaluation/answer/file_A.jsonl evaluation/answer/file_B.jsonl -p evaluation/template/prompt.jsonl -r evaluation/template/reviewer.jsonl -o evaluation/review/A_vs_B.jsonl ``` To mitigate the positional bias of GPT-4 model, we apply a bidirectional evaluation setting. Therefore, automatic evaluation with opposite position is also needed. ``` python evaluation/gpt4_automatic_evaluation.py -q evaluation/template/question.jsonl -a evaluation/answer/file_B.jsonl evaluation/answer/file_A.jsonl -p evaluation/template/prompt.jsonl -r evaluation/template/reviewer.jsonl -o evaluation/review/B_vs_A.jsonl ``` ## Limitations Similar to other LLaMA-finetuned models, SelFee also make some mistakes especially for math, reasoning, factuality, and coding tasks. Although our performance outperforms ChatGPT on Vicuna setting, the evaluation setting contains some limitations in terms of comprehension (limited to 80 queries), inconsistency, and unreliability. Therefore, further research for a better evaluation setting is needed. Please take these claims with a grain of salt. ## Online demo Check out the <a href="https://kaistai.github.io/SelFee/demo">demo</a>! #### How to launch the demo yourself To serve the web demo yourself, run the following commands: 1. Run the controller ``` python3 -m serve.controller ``` 2. Run the model worker ``` python3 -m serve.model_worker --model-path $MODEL_PATH --port 21002 --worker-address=http://localhost:21002 --model-name=SelFee-13b ``` 3. Run the web server ``` python3 -m serve.gradio_web_server --share ``` You can find the serving code [here](serve). ### Team members <a href="https://seonghyeonye.github.io/)">Seonghyeon Ye*</a>, <a href="https://github.com/dreamgonfly">Yongrae Jo*</a>, <a href="https://github.com/doeyoungkim">Doyoung Kim*</a>, <a href="https://scholar.google.com/citations?user=xKrSnDoAAAAJ&hl">Sungdong Kim</a>, <a href="https://github.com/hbin0701">Hyeonbin Hwang</a>, and <a href="https://seominjoon.github.io/">Minjoon Seo</a>. <br/> (* denotes equal contribution) ### Release We have released the SelFee-7B and SelFee-13B model diff weights, which can be found with instructions here. Moreover, the training instances used to train SelFee is released on huggingface. ### License The research preview online demo is only for non-commercial use and is subject to various licenses and terms of use, including the LLaMA model <a href="https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md">License</a>, OpenAI's <a href="https://openai.com/policies/terms-of-use">Terms of Use</a> for the generated data, and ShareGPT's <a href="https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb">Privacy Practices</a>. If you suspect any violations, please reach out to us. ### Citation Please cite if you use the data or code in this repo. ``` @misc{selfee2023, author = {Ye, Seonghyeon and Jo, Yongrae and Kim, Doyoung and Kim, Sungdong and Hwang, Hyeonbin and Seo, Minjoon}, title = {SelFee: Iterative Self-Revising LLM Empowered by Self-Feedback Generation}, url = {https://kaistai.github.io/SelFee/}, month = {May}, year = {2023}, howpublished = {Blog post} } ```
gokuls/hBERTv2_new_pretrain_48_wnli
gokuls
2023-06-06T12:40:27Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T12:36:21Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_48_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_48_wnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6839 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9503 | 1.0 | 5 | 0.6839 | 0.5634 | | 0.7089 | 2.0 | 10 | 0.6877 | 0.5634 | | 0.7066 | 3.0 | 15 | 0.6858 | 0.5634 | | 0.7051 | 4.0 | 20 | 0.6943 | 0.4789 | | 0.6996 | 5.0 | 25 | 0.7125 | 0.4366 | | 0.7088 | 6.0 | 30 | 0.6890 | 0.5634 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
onedapperterm/LF6_Token_Classifier
onedapperterm
2023-06-06T12:37:28Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-06T11:33:37Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: LF6_Token_Classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LF6_Token_Classifier This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.0468 | 1.0 | 601 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0004 | 2.0 | 1202 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 3.0 | 1803 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
rohitp1/pratyush_whisper_small_distil_libri360_enc_6_dec_4_batch_4_epoch_2_try2
rohitp1
2023-06-06T12:29:09Z
78
1
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-04T07:01:34Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: pratyush_whisper_small_distil_libri360_enc_6_dec_4_batch_4_epoch_2_try2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pratyush_whisper_small_distil_libri360_enc_6_dec_4_batch_4_epoch_2_try2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7423 - Wer: 9.7882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.8038 | 0.25 | 50 | 2.7934 | 11.8801 | | 2.8683 | 0.49 | 100 | 2.8112 | 13.4039 | | 2.8987 | 0.74 | 150 | 2.8008 | 11.8782 | | 2.884 | 0.98 | 200 | 2.7877 | 11.1632 | | 2.8539 | 1.23 | 250 | 2.7721 | 10.6549 | | 2.8348 | 1.48 | 300 | 2.7557 | 10.3250 | | 2.8261 | 1.72 | 350 | 2.7522 | 10.1403 | | 2.8161 | 1.97 | 400 | 2.7423 | 9.7882 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/hBERTv2_new_pretrain_wnli
gokuls
2023-06-06T12:22:39Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T17:25:36Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_wnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6857 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8646 | 1.0 | 5 | 0.7422 | 0.4366 | | 0.7094 | 2.0 | 10 | 0.7290 | 0.4366 | | 0.7047 | 3.0 | 15 | 0.7053 | 0.5634 | | 0.7203 | 4.0 | 20 | 0.7022 | 0.4366 | | 0.7 | 5.0 | 25 | 0.6977 | 0.4366 | | 0.7098 | 6.0 | 30 | 0.6885 | 0.5634 | | 0.695 | 7.0 | 35 | 0.7045 | 0.4366 | | 0.7053 | 8.0 | 40 | 0.6858 | 0.5634 | | 0.7095 | 9.0 | 45 | 0.7070 | 0.4366 | | 0.7012 | 10.0 | 50 | 0.6857 | 0.5634 | | 0.6995 | 11.0 | 55 | 0.6969 | 0.4507 | | 0.6913 | 12.0 | 60 | 0.6875 | 0.5634 | | 0.6963 | 13.0 | 65 | 0.6959 | 0.4789 | | 0.6996 | 14.0 | 70 | 0.7190 | 0.4366 | | 0.6957 | 15.0 | 75 | 0.6963 | 0.5634 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
alicenkbaytop/distilbert-base-uncased-date
alicenkbaytop
2023-06-06T12:18:50Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-06T12:14:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-date results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-date This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2773 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 0.5215 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 2.0 | 2 | 0.4264 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 3.0 | 3 | 0.3649 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 4.0 | 4 | 0.3289 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 5.0 | 5 | 0.3099 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 6.0 | 6 | 0.2992 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 7.0 | 7 | 0.2920 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 8.0 | 8 | 0.2865 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 9.0 | 9 | 0.2821 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 10.0 | 10 | 0.2790 | 0.0 | 0.0 | 0.0 | 0.9259 | | No log | 11.0 | 11 | 0.2773 | 0.0 | 0.0 | 0.0 | 0.9259 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_48_qqp
gokuls
2023-06-06T12:13:40Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T07:46:10Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_48_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8216176106851348 - name: F1 type: f1 value: 0.7561536380849337 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_48_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4029 - Accuracy: 0.8216 - F1: 0.7562 - Combined Score: 0.7889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5044 | 1.0 | 2843 | 0.4468 | 0.7865 | 0.6961 | 0.7413 | | 0.4102 | 2.0 | 5686 | 0.4359 | 0.7992 | 0.6935 | 0.7464 | | 0.3553 | 3.0 | 8529 | 0.4127 | 0.8080 | 0.7105 | 0.7592 | | 0.3122 | 4.0 | 11372 | 0.4029 | 0.8216 | 0.7562 | 0.7889 | | 0.2756 | 5.0 | 14215 | 0.4481 | 0.8228 | 0.7518 | 0.7873 | | 0.2479 | 6.0 | 17058 | 0.4778 | 0.8268 | 0.7633 | 0.7951 | | 0.223 | 7.0 | 19901 | 0.4425 | 0.8158 | 0.7721 | 0.7939 | | 0.2028 | 8.0 | 22744 | 0.4705 | 0.8267 | 0.7686 | 0.7977 | | 0.183 | 9.0 | 25587 | 0.4908 | 0.8301 | 0.7659 | 0.7980 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
thackerhelik/a2c-AntBulletEnv-v0
thackerhelik
2023-06-06T12:12:53Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T12:11:46Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1073.77 +/- 101.15 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/hBERTv1_new_pretrain_rte
gokuls
2023-06-06T12:05:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T15:33:47Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5306859205776173 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_rte This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6896 - Accuracy: 0.5307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7407 | 1.0 | 20 | 0.7002 | 0.4729 | | 0.7061 | 2.0 | 40 | 0.7245 | 0.4729 | | 0.7102 | 3.0 | 60 | 0.6949 | 0.5271 | | 0.703 | 4.0 | 80 | 0.6951 | 0.4729 | | 0.7097 | 5.0 | 100 | 0.6974 | 0.4729 | | 0.7006 | 6.0 | 120 | 0.7053 | 0.4729 | | 0.6986 | 7.0 | 140 | 0.6896 | 0.5307 | | 0.6935 | 8.0 | 160 | 0.7711 | 0.4729 | | 0.6109 | 9.0 | 180 | 0.8443 | 0.4982 | | 0.469 | 10.0 | 200 | 1.0369 | 0.5126 | | 0.3028 | 11.0 | 220 | 1.1621 | 0.5235 | | 0.2155 | 12.0 | 240 | 1.2096 | 0.5379 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
mmaguero/gn-bert-large-cased
mmaguero
2023-06-06T11:59:19Z
5
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gn", "dataset:wikipedia", "dataset:wiktionary", "doi:10.57967/hf/0359", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-04T12:16:40Z
--- language: gn license: mit datasets: - wikipedia - wiktionary widget: - text: 'Paraguay ha''e peteĩ táva oĩva [MASK] retãme ' - text: Augusto Roa Bastos ha'e peteĩ [MASK] arandu metrics: - accuracy - f1 --- # BERT-i-large-cased (gnBERT-large-cased) A pre-trained BERT model for **Guarani** (24 layers, cased). Trained on Wikipedia + Wiktionary (~800K tokens). # How cite? ``` @article{aguero-et-al2023multi-affect-low-langs-grn, title={Multidimensional Affective Analysis for Low-resource Languages: A Use Case with Guarani-Spanish Code-switching Language}, author={Agüero-Torales, Marvin Matías, López-Herrera, Antonio Gabriel, and Vilares, David}, journal={Cognitive Computation}, year={2023}, publisher={Springer}, notes={Forthcoming} } ```
mmaguero/gn-bert-tiny-cased
mmaguero
2023-06-06T11:52:31Z
8
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gn", "dataset:wikipedia", "dataset:wiktionary", "doi:10.57967/hf/0358", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-04T12:24:57Z
--- language: gn license: mit datasets: - wikipedia - wiktionary widget: - text: 'Paraguay ha''e peteĩ táva oĩva [MASK] retãme ' - text: Augusto Roa Bastos ha'e peteĩ [MASK] arandu metrics: - f1 - accuracy --- # BERT-i-tiny-cased (gnBERT-tiny-cased) A pre-trained BERT model for **Guarani** (2 layers, cased). Trained on Wikipedia + Wiktionary (~800K tokens). # How cite? ``` @article{aguero-et-al2023multi-affect-low-langs-grn, title={Multidimensional Affective Analysis for Low-resource Languages: A Use Case with Guarani-Spanish Code-switching Language}, author={Agüero-Torales, Marvin Matías, López-Herrera, Antonio Gabriel, and Vilares, David}, journal={Cognitive Computation}, year={2023}, publisher={Springer}, notes={Forthcoming} } ```
KHEW/LC2lora
KHEW
2023-06-06T11:51:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T11:49:36Z
--- license: creativeml-openrail-m ---
Gilung666/Ploypreya
Gilung666
2023-06-06T11:50:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T11:44:13Z
--- license: creativeml-openrail-m ---
mmaguero/multilingual-bert-gn-base-cased
mmaguero
2023-06-06T11:50:11Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gn", "multilingual", "dataset:wikipedia", "dataset:wiktionary", "doi:10.57967/hf/0355", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-04T12:47:14Z
--- language: - gn - multilingual license: mit datasets: - wikipedia - wiktionary widget: - text: 'Paraguay ha''e peteĩ táva oĩva [MASK] retãme ' - text: Augusto Roa Bastos ha'e peteĩ [MASK] arandu metrics: - f1 - accuracy --- # mBERT+gn-base-cased (multilingual-BERT+gn-base-cased) [BERT multilingual base model (cased, pre-trained BERT model)](https://huggingface.co/bert-base-multilingual-cased) fine-tuned for **Guarani** language modeling (104 languages + gn). Trained on Wikipedia + Wiktionary (~800K tokens). # How cite? ``` @article{aguero-et-al2023multi-affect-low-langs-grn, title={Multidimensional Affective Analysis for Low-resource Languages: A Use Case with Guarani-Spanish Code-switching Language}, author={Agüero-Torales, Marvin Matías, López-Herrera, Antonio Gabriel, and Vilares, David}, journal={Cognitive Computation}, year={2023}, publisher={Springer}, notes={Forthcoming} } ```
stabilityai/sd-vae-ft-mse
stabilityai
2023-06-06T11:39:15Z
136,154
367
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "license:mit", "region:us" ]
null
2022-10-13T12:50:55Z
--- license: mit tags: - stable-diffusion - stable-diffusion-diffusers inference: false --- # Improved Autoencoders ## Utilizing These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/stabilityai/sd-vae-ft-mse-original). #### How to use with 🧨 diffusers You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline` ```py from diffusers.models import AutoencoderKL from diffusers import StableDiffusionPipeline model = "CompVis/stable-diffusion-v1-4" vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae) ``` ## Decoder Finetuning We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models) on a 1:1 ratio of [LAION-Aesthetics](https://laion.ai/blog/laion-aesthetics/) and LAION-Humans, an unreleased subset containing only SFW images of humans. The intent was to fine-tune on the Stable Diffusion training set (the autoencoder was originally trained on OpenImages) but also enrich the dataset with images of humans to improve the reconstruction of faces. The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. It uses the same loss configuration as the original checkpoint (L1 + LPIPS). The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a different loss, with more emphasis on MSE reconstruction (MSE + 0.1 * LPIPS). It produces somewhat ``smoother'' outputs. The batch size for both versions was 192 (16 A100s, batch size 12 per GPU). To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder. _Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_ ## Evaluation ### COCO 2017 (256x256, val, 5000 images) | Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments |----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | | | | | | | | | | original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD | | ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA | | ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs | ### LAION-Aesthetics 5+ (256x256, subset, 10000 images) | Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments |----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | | | | | | | | | | original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD | | ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA | | ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs | ### Visual _Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._ <p align="center"> <br> <b> 256x256: ft-EMA (left), ft-MSE (middle), original (right)</b> </p> <p align="center"> <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png /> </p> <p align="center"> <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png /> </p> <p align="center"> <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png /> </p> <p align="center"> <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png /> </p> <p align="center"> <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png /> </p> <p align="center"> <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png /> </p>
Arjunj/my_awesome_eli5_clm-model
Arjunj
2023-06-06T11:38:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-06T11:15:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8763 | 1.0 | 1149 | 3.7520 | | 3.7809 | 2.0 | 2298 | 3.7339 | | 3.7307 | 3.0 | 3447 | 3.7301 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
alicenkbaytop/model_output
alicenkbaytop
2023-06-06T11:28:03Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-28T10:01:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model_output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8540 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 0.9383 | 0.0 | 0.0 | 0.0 | 0.8438 | | No log | 2.0 | 2 | 0.8540 | 0.0 | 0.0 | 0.0 | 0.9062 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
wckdgod/Mridul
wckdgod
2023-06-06T11:26:35Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2023-06-06T09:39:55Z
--- library_name: transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shubham09/bart_lfqa_sqaud
Shubham09
2023-06-06T11:23:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-06-06T09:39:51Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: bart_lfqa_sqaud results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_lfqa_sqaud This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 80 | 3.0473 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
zulfi/my_awesome_model
zulfi
2023-06-06T11:11:23Z
3
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T10:21:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: zulfi/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # zulfi/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2516 - Validation Loss: 0.1906 - Train Accuracy: 0.9248 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2516 | 0.1906 | 0.9248 | 0 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
jpandeinge/whisper-base-oshiwambo-speech
jpandeinge
2023-06-06T11:11:13Z
7
1
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-06T05:57:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer - precision - recall model-index: - name: whisper-base-oshiwambo-speech results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-oshiwambo-speech This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on [meyabase/crowd-oshiwambo-speech-greetings](https://huggingface.co/datasets/meyabase/crowd-oshiwambo-speech-greetings) dataset. It achieves the following results on the evaluation set: - Loss: 0.0834 - Wer: 80.9524 - Cer: 58.9623 - Word Acc: 82.2917 - Sent Acc: 54.2857 - Precision: 0.5097 - Recall: 0.7524 - F1 Score: 0.6077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Word Acc | Sent Acc | Precision | Recall | F1 Score | |:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:|:--------:|:--------:|:---------:|:------:|:--------:| | 0.0099 | 117.65 | 1000 | 0.0777 | 46.6667 | 31.6038 | 69.1358 | 11.4286 | 0.6914 | 0.5333 | 0.6022 | | 0.0105 | 235.29 | 2000 | 0.0806 | 47.6190 | 33.2547 | 71.4286 | 11.4286 | 0.7143 | 0.5238 | 0.6044 | | 0.0106 | 352.94 | 3000 | 0.0795 | 44.7619 | 34.6698 | 76.3158 | 25.7143 | 0.7632 | 0.5524 | 0.6409 | | 0.0092 | 470.59 | 4000 | 0.0793 | 42.8571 | 35.8491 | 81.0811 | 31.4286 | 0.8108 | 0.5714 | 0.6704 | | 0.0099 | 588.24 | 5000 | 0.0806 | 92.3810 | 69.8113 | 81.7073 | 42.8571 | 0.4752 | 0.6381 | 0.5447 | | 0.0094 | 705.88 | 6000 | 0.0800 | 28.5714 | 22.1698 | 83.3333 | 48.5714 | 0.8333 | 0.7143 | 0.7692 | | 0.0093 | 823.53 | 7000 | 0.0796 | 24.7619 | 16.2736 | 82.2917 | 54.2857 | 0.8229 | 0.7524 | 0.7861 | | 0.0095 | 941.18 | 8000 | 0.0815 | 82.8571 | 59.1981 | 80.2083 | 51.4286 | 0.4968 | 0.7333 | 0.5923 | | 0.01 | 1058.82 | 9000 | 0.0815 | 24.7619 | 16.5094 | 82.2917 | 54.2857 | 0.8229 | 0.7524 | 0.7861 | | 0.0088 | 1176.47 | 10000 | 0.0834 | 80.9524 | 58.9623 | 82.2917 | 54.2857 | 0.5097 | 0.7524 | 0.6077 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
PhysHunter/dqn-SpaceInvadersNoFrameskip-v4
PhysHunter
2023-06-06T10:52:38Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T10:52:05Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 387.00 +/- 119.54 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga PhysHunter -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga PhysHunter -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga PhysHunter ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 30000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0005), ('learning_starts', 30000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Soyoung97/gec_kr
Soyoung97
2023-06-06T10:38:07Z
62
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-25T14:07:39Z
## Korean Grammatical Error Correction Model maintainer: [Soyoung Yoon](https://soyoung97.github.io/profile/) Official repository: [link](https://github.com/soyoung97/GEC-Korean) Dataset request form: [link](https://forms.gle/kF9pvJbLGvnh8ZnQ6) Demo: [link](https://huggingface.co/spaces/Soyoung97/gec-korean-demo) Colab demo: [link](https://colab.research.google.com/drive/1CL__3CpkhBzxWUbvsQmPTQWWu1cWmJHa?usp=sharing) ### Sample code ``` import torch from transformers import PreTrainedTokenizerFast from transformers import BartForConditionalGeneration tokenizer = PreTrainedTokenizerFast.from_pretrained('Soyoung97/gec_kr') model = BartForConditionalGeneration.from_pretrained('Soyoung97/gec_kr') text = '한국어는어렵다.' raw_input_ids = tokenizer.encode(text) input_ids = [tokenizer.bos_token_id] + raw_input_ids + [tokenizer.eos_token_id] corrected_ids = model.generate(torch.tensor([input_ids]), max_length=128, eos_token_id=1, num_beams=4, early_stopping=True, repetition_penalty=2.0) output_text = tokenizer.decode(corrected_ids.squeeze().tolist(), skip_special_tokens=True) output_text >>> '한국어는 어렵다.' ``` Special thanks to the [KoBART-summarization repository](https://huggingface.co/gogamza/kobart-summarization) (referenced from it)
FALCONBoy/whuh
FALCONBoy
2023-06-06T10:32:52Z
0
0
fairseq
[ "fairseq", "en", "dataset:fka/awesome-chatgpt-prompts", "arxiv:1910.09700", "license:openrail", "region:us" ]
null
2023-06-06T10:30:34Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - en metrics: - bertscore library_name: fairseq --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ctojang/distilbert-base-uncased-distilled-clinc
ctojang
2023-06-06T10:31:23Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T10:23:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.2
rawsh/multi-qa-MiniLM-distill-onnx-L6-cos-v1
rawsh
2023-06-06T10:13:26Z
16
0
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "bert", "feature-extraction", "sentence-similarity", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:ms_marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:search_qa", "dataset:eli5", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/QQP", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/Amazon-QA", "dataset:embedding-data/WikiAnswers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-06T05:52:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - search_qa - eli5 - natural_questions - trivia_qa - embedding-data/QQP - embedding-data/PAQ_pairs - embedding-data/Amazon-QA - embedding-data/WikiAnswers --- # multi-qa-MiniLM-distill-onnx-L6-cos-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) ## Usage (ONNX runtime) Using optimum ```python from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer from transformers import Pipeline import torch.nn.functional as F import torch # copied from the model card def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) class SentenceEmbeddingPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): # we don't have any hyperameters to sanitize preprocess_kwargs = {} return preprocess_kwargs, {}, {} def preprocess(self, inputs): encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt') return encoded_inputs def _forward(self, model_inputs): outputs = self.model(**model_inputs) return {"outputs": outputs, "attention_mask": model_inputs["attention_mask"]} def postprocess(self, model_outputs): # Perform pooling sentence_embeddings = mean_pooling(model_outputs["outputs"], model_outputs['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings # load optimized model model_name = "rawsh/multi-qa-MiniLM-distill-onnx-L6-cos-v1" model = ORTModelForFeatureExtraction.from_pretrained(model_name, file_name="model_quantized.onnx") # create optimized pipeline tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) optimized_emb = SentenceEmbeddingPipeline(model=model, tokenizer=tokenizer) pred1 = optimized_emb("Hello world!") pred2 = optimized_emb("I hate everything.") print(pred1[0].dot(pred2[0])) ``` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## PyTorch Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take average of all tokens def mean_pooling(model_output, attention_mask): token_embeddings = model_output.last_hidden_state input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## TensorFlow Usage (HuggingFace Transformers) Similarly to the PyTorch example above, to use the model with TensorFlow you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, TFAutoModel import tensorflow as tf #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output.last_hidden_state input_mask_expanded = tf.cast(tf.tile(tf.expand_dims(attention_mask, -1), [1, 1, token_embeddings.shape[-1]]), tf.float32) return tf.math.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.math.maximum(tf.math.reduce_sum(input_mask_expanded, 1), 1e-9) #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='tf') # Compute token embeddings model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings embeddings = tf.math.l2_normalize(embeddings, axis=1) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") model = TFAutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = (query_emb @ tf.transpose(doc_emb))[0].numpy().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 384 | | Produces normalized embeddings | Yes | | Pooling-Method | Mean pooling | | Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance | Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in this current repository: `train_script.py`. ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** |
OpenAssistant/falcon-40b-sft-top1-560
OpenAssistant
2023-06-06T10:12:42Z
84
50
transformers
[ "transformers", "pytorch", "RefinedWeb", "text-generation", "sft", "custom_code", "en", "de", "es", "fr", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-02T17:53:28Z
--- license: apache-2.0 language: - en - de - es - fr tags: - sft inference: false datasets: - OpenAssistant/oasst1 --- # Open-Assistant Falcon 40B SFT OASST-TOP1 Model This model is a fine-tuning of TII's [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b) LLM. It was trained with top-1 (high-quality) demonstrations of the OASST data set (exported on May 6, 2023) with an effective batch size of 144 for ~7.5 epochs with LIMA style dropout (p=0.3) and a context-length of 2048 tokens. ## Model Details - **Finetuned from:** [tiiuae/falcon-40b]((https://huggingface.co/tiiuae/falcon-40b) - **Model type:** Causal decoder-only transformer language model - **Language:** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish); - **Demo:** [Continuations for 250 random prompts](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-06-03_OpenAssistant_falcon-40b-sft-top1-560_sampling_noprefix2.json) - **Eval results:** [ilm-eval](https://tju01.github.io/ilm-eval/) - **Weights & Biases**: [Training log](https://wandb.ai/open-assistant/public-sft/runs/3lr77x4h) (Checkpoint: 560 steps) - **License:** Apache 2.0 - **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord) ## Prompting Two special tokens are used to mark the beginning of user and assistant turns: `<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token. Input prompt example: ``` <|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|> ``` The input ends with the `<|assistant|>` token to signal that the model should start generating the assistant reply. ## Configuration Details Model: ``` falcon-40b: dtype: bf16 log_dir: "falcon_log_40b" learning_rate: 5e-6 model_name: "tiiuae/falcon-40b" deepspeed_config: configs/zero3_config_falcon.json output_dir: falcon weight_decay: 0.0 max_length: 2048 warmup_steps: 20 gradient_checkpointing: true gradient_accumulation_steps: 1 per_device_train_batch_size: 18 per_device_eval_batch_size: 10 eval_steps: 80 save_steps: 80 num_train_epochs: 8 save_total_limit: 4 use_flash_attention: false residual_dropout: 0.3 residual_dropout_lima: true sort_by_length: false save_strategy: steps ``` Dataset: ``` oasst-top1: datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0 input_file_path: 2023-05-06_OASST_labels.jsonl.gz val_split: 0.05 top_k: 1 ```
Chen311/AngieLora
Chen311
2023-06-06T10:06:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T10:00:07Z
--- license: creativeml-openrail-m ---
ketong3906/autotrain-iris_truncated-64451135750
ketong3906
2023-06-06T09:44:56Z
3
0
transformers
[ "transformers", "joblib", "xgboost", "autotrain", "tabular", "classification", "tabular-classification", "dataset:ketong3906/autotrain-data-iris_truncated", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2023-06-06T09:41:46Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - ketong3906/autotrain-data-iris_truncated co2_eq_emissions: emissions: 0.9776538031455683 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 64451135750 - CO2 Emissions (in grams): 0.9777 ## Validation Metrics - Loss: 0.091 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
wtcherr/sd-unsplash_5k_blur_61KS-model-control-lora
wtcherr
2023-06-06T09:33:18Z
6
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "controlnet", "control-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-06T04:34:19Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora - controlnet - control-lora inference: true --- # ControlLoRA text2image fine-tuning - https://huggingface.co/wtcherr/sd-unsplash_5k_blur_61KS-model-control-lora These are ControlLoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the wtcherr/unsplash_5k_blur_61KS dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png)
ikinglopez1/ppo-LunarLander-v2
ikinglopez1
2023-06-06T09:26:41Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T09:26:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 226.35 +/- 77.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gorilla-llm/gorilla-7b-hf-delta-v0
gorilla-llm
2023-06-06T09:14:40Z
43
54
transformers
[ "transformers", "pytorch", "llama", "text-generation", "api", "en", "dataset:gorilla-llm/APIBench", "arxiv:2305.15334", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-27T22:30:08Z
--- license: apache-2.0 language: - en tags: - api datasets: - gorilla-llm/APIBench --- # Gorilla: Large Language Model Connected with Massive APIs By Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez ([Project Website](https://shishirpatil.github.io/gorilla/)) [![arXiv](https://img.shields.io/badge/arXiv-2305.15334-<COLOR>.svg?style=flat-square)](https://arxiv.org/abs/2305.15334) [![Discord](https://img.shields.io/discord/1111172801899012102?label=Discord&logo=discord&logoColor=green&style=flat-square)](https://discord.gg/3apqwwME) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1DEBPsccVLF_aUnmD0FwPeHFrtdC0QIUP?usp=sharing) `Gorilla` enables LLMs to use tools by invoking APIs. Given a natural language query, Gorilla can write a semantically- and syntactically- correct API to invoke. With Gorilla, we are the first to demonstrate how to use LLMs to invoke 1,600+ (and growing) API calls accurately while reducing hallucination. We also release APIBench, the largest collection of APIs, curated and easy to be trained on! Join us, as we try to expand the largest API store and teach LLMs how to write them! Hop on our Discord, or open a PR, or email us if you would like to have your API incorporated as well. ## Model Details Gorilla can be either trained via standard finetuning or using our novel retriever-aware training pipeline. We release `gorilla-7b-hf-delta-v0`, a 0-shot finetuned LLM that can reliably use Hugging Face APIs. It can be prompted through simply natural language (e.g., "I want to generate an image from text."). Checkour our website, github and paper for more information. ### Model Type Gorilla is an open-source API caller trained by fine-tuning LLaMA weights. It is an auto-regressive language model, based on the transformer architecture. ### Model Date 05/27/2023 ### Organization Gorilla LLM (UC Berkeley) --- license: apache-2.0 ---
gorilla-llm/gorilla-7b-th-delta-v0
gorilla-llm
2023-06-06T09:13:07Z
10
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "api", "en", "dataset:gorilla-llm/APIBench", "arxiv:2305.15334", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-28T12:44:06Z
--- license: apache-2.0 language: - en tags: - api datasets: - gorilla-llm/APIBench --- # Gorilla: Large Language Model Connected with Massive APIs By Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez ([Project Website](https://shishirpatil.github.io/gorilla/)) [![arXiv](https://img.shields.io/badge/arXiv-2305.15334-<COLOR>.svg?style=flat-square)](https://arxiv.org/abs/2305.15334) [![Discord](https://img.shields.io/discord/1111172801899012102?label=Discord&logo=discord&logoColor=green&style=flat-square)](https://discord.gg/3apqwwME) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1DEBPsccVLF_aUnmD0FwPeHFrtdC0QIUP?usp=sharing) `Gorilla` enables LLMs to use tools by invoking APIs. Given a natural language query, Gorilla can write a semantically- and syntactically- correct API to invoke. With Gorilla, we are the first to demonstrate how to use LLMs to invoke 1,600+ (and growing) API calls accurately while reducing hallucination. We also release APIBench, the largest collection of APIs, curated and easy to be trained on! Join us, as we try to expand the largest API store and teach LLMs how to write them! Hop on our Discord, or open a PR, or email us if you would like to have your API incorporated as well. ## Model Details Gorilla can be either trained via standard finetuning or using our novel retriever-aware training pipeline. We release `gorilla-7b-hf-delta-v0`, a 0-shot finetuned LLM that can reliably use Torch Hub APIs. It can be prompted through simply natural language (e.g., "I want to generate an image from text."). Checkour our website, github and paper for more information. ### Model Type Gorilla is an open-source API caller trained by fine-tuning LLaMA weights. It is an auto-regressive language model, based on the transformer architecture. ### Model Date 05/27/2023 ### Organization Gorilla LLM (UC Berkeley) --- license: apache-2.0 ---
Lukas-S/Huggy
Lukas-S
2023-06-06T09:04:37Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-06T09:04:30Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: Lukas-S/Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Yhyu13/Nous-Hermes-13b-gptq-4bit
Yhyu13
2023-06-06T09:03:42Z
8
4
transformers
[ "transformers", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-06T09:00:59Z
--- license: apache-2.0 --- GPTQ 4-bit no actor version for compatibility that works in textgen-webui Generated by using scripts from https://gitee.com/yhyu13/llama_-tools Original weight : https://huggingface.co/NousResearch/Nous-Hermes-13b
yuvalkirstain/textual_inversion_cat
yuvalkirstain
2023-06-06T08:57:58Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-06T08:25:37Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - yuvalkirstain/textual_inversion_cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
vnykr/a2c-AntBulletEnv-v0
vnykr
2023-06-06T08:49:43Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T08:48:34Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2164.45 +/- 71.97 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TheBloke/OpenAssistant-SFT-7-Llama-30B-HF
TheBloke
2023-06-06T08:39:09Z
1,570
14
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2304.07327", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T09:38:46Z
--- license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # OpenAssistant LLaMA 30B SFT 7 HF This in HF format repo of [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor). It is the result of merging the XORs from the above repo with the original Llama 30B weights. This is epoch 7 of OpenAssistant's training of a Llama 30B model. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card ``` llama-30b-sft-7: dtype: fp16 log_dir: "llama_log_30b" learning_rate: 1e-5 model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500 #model_name: OpenAssistant/llama-30b-super-pretrain output_dir: llama_model_30b deepspeed_config: configs/zero3_config_sft.json weight_decay: 0.0 residual_dropout: 0.0 max_length: 2048 use_flash_attention: true warmup_steps: 20 gradient_checkpointing: true gradient_accumulation_steps: 12 per_device_train_batch_size: 2 per_device_eval_batch_size: 3 eval_steps: 101 save_steps: 485 num_train_epochs: 4 save_total_limit: 3 use_custom_sampler: true sort_by_length: false #save_strategy: steps save_strategy: epoch datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz val_split: 0.05 - vicuna: val_split: 0.05 max_val_set: 800 fraction: 1.0 - dolly15k: val_split: 0.05 max_val_set: 300 - grade_school_math_instructions: val_split: 0.05 - code_alpaca: val_split: 0.05 max_val_set: 250 ``` - **OASST dataset paper:** https://arxiv.org/abs/2304.07327
gokuls/hBERTv1_new_pretrain_w_init__qnli
gokuls
2023-06-06T08:30:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T10:28:11Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init__qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.598572213069742 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init__qnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6672 - Accuracy: 0.5986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6909 | 1.0 | 819 | 0.6783 | 0.5653 | | 0.684 | 2.0 | 1638 | 0.6904 | 0.5100 | | 0.6765 | 3.0 | 2457 | 0.6709 | 0.5881 | | 0.6696 | 4.0 | 3276 | 0.6774 | 0.5695 | | 0.6676 | 5.0 | 4095 | 0.6704 | 0.5903 | | 0.6626 | 6.0 | 4914 | 0.6672 | 0.5986 | | 0.6661 | 7.0 | 5733 | 0.6703 | 0.5907 | | 0.6642 | 8.0 | 6552 | 0.6693 | 0.5960 | | 0.6698 | 9.0 | 7371 | 0.6733 | 0.5799 | | 0.6724 | 10.0 | 8190 | 0.6815 | 0.5636 | | 0.68 | 11.0 | 9009 | 0.6908 | 0.5427 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
HungDuy/Taxi-v3
HungDuy
2023-06-06T08:27:34Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T08:27:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HungDuy/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Uxinnn/a2c-AntBulletEnv-v0
Uxinnn
2023-06-06T08:22:51Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T08:21:42Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1415.03 +/- 151.44 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kowshikBlue/dummy_1
kowshikBlue
2023-06-06T08:03:16Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-06T08:02:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/hBERTv1_new_pretrain_qnli
gokuls
2023-06-06T07:59:43Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T11:10:23Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6031484532308256 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_qnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6591 - Accuracy: 0.6031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6783 | 1.0 | 819 | 0.6740 | 0.5861 | | 0.6609 | 2.0 | 1638 | 0.6591 | 0.6031 | | 0.6594 | 3.0 | 2457 | 0.6743 | 0.5923 | | 0.6438 | 4.0 | 3276 | 0.6644 | 0.5876 | | 0.6421 | 5.0 | 4095 | 0.6731 | 0.5883 | | 0.6488 | 6.0 | 4914 | 0.6720 | 0.5936 | | 0.6432 | 7.0 | 5733 | 0.6781 | 0.5923 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_48_qnli
gokuls
2023-06-06T07:58:00Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:49:54Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_48_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.5837451949478308 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_48_qnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6678 - Accuracy: 0.5837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6818 | 1.0 | 819 | 0.6782 | 0.5815 | | 0.6686 | 2.0 | 1638 | 0.6678 | 0.5837 | | 0.6472 | 3.0 | 2457 | 0.6738 | 0.5847 | | 0.6311 | 4.0 | 3276 | 0.6779 | 0.5803 | | 0.6142 | 5.0 | 4095 | 0.6802 | 0.5850 | | 0.5969 | 6.0 | 4914 | 0.7076 | 0.5861 | | 0.5814 | 7.0 | 5733 | 0.7672 | 0.5794 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
asenella/mmnist_MMVAEPlusconfig2_seed_0_ratio_05_i
asenella
2023-06-06T07:55:08Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-25T12:04:33Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Gayathri142214002/t5-end2end-questions-generation_2
Gayathri142214002
2023-06-06T07:49:32Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-05T09:40:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-end2end-questions-generation_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation_2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7103 | 0.13 | 10 | 1.7584 | | 1.8298 | 0.26 | 20 | 1.3377 | | 1.4424 | 0.39 | 30 | 1.1610 | | 1.4063 | 0.52 | 40 | 1.0564 | | 1.2738 | 0.65 | 50 | 1.0332 | | 1.2477 | 0.78 | 60 | 0.9531 | | 1.146 | 0.91 | 70 | 0.9050 | | 1.0134 | 1.04 | 80 | 0.9388 | | 0.8782 | 1.17 | 90 | 0.9215 | | 0.8869 | 1.3 | 100 | 0.8930 | | 0.8963 | 1.43 | 110 | 0.8996 | | 0.9138 | 1.56 | 120 | 0.8616 | | 0.7963 | 1.69 | 130 | 0.8060 | | 0.8611 | 1.82 | 140 | 0.7611 | | 1.0504 | 1.95 | 150 | 0.7606 | | 0.6802 | 2.08 | 160 | 0.7791 | | 0.7488 | 2.21 | 170 | 0.7470 | | 0.6659 | 2.34 | 180 | 0.7367 | | 0.7061 | 2.47 | 190 | 0.7194 | | 0.6771 | 2.6 | 200 | 0.7006 | | 0.7267 | 2.73 | 210 | 0.6858 | | 0.7251 | 2.86 | 220 | 0.6797 | | 0.7426 | 2.99 | 230 | 0.6877 | | 0.5425 | 3.12 | 240 | 0.6994 | | 0.5298 | 3.25 | 250 | 0.7096 | | 0.697 | 3.38 | 260 | 0.6941 | | 0.5643 | 3.51 | 270 | 0.6534 | | 0.6983 | 3.64 | 280 | 0.6407 | | 0.587 | 3.77 | 290 | 0.6404 | | 0.6487 | 3.9 | 300 | 0.6489 | | 0.5862 | 4.03 | 310 | 0.6567 | | 0.5524 | 4.16 | 320 | 0.6610 | | 0.5432 | 4.29 | 330 | 0.6609 | | 0.5165 | 4.42 | 340 | 0.6558 | | 0.5248 | 4.55 | 350 | 0.6387 | | 0.5322 | 4.68 | 360 | 0.6319 | | 0.5272 | 4.81 | 370 | 0.6214 | | 0.5555 | 4.94 | 380 | 0.6252 | | 0.597 | 5.06 | 390 | 0.6281 | | 0.5745 | 5.19 | 400 | 0.6283 | | 0.5156 | 5.32 | 410 | 0.6265 | | 0.4898 | 5.45 | 420 | 0.6307 | | 0.543 | 5.58 | 430 | 0.6280 | | 0.5094 | 5.71 | 440 | 0.6295 | | 0.5023 | 5.84 | 450 | 0.6279 | | 0.4483 | 5.97 | 460 | 0.6228 | | 0.5134 | 6.1 | 470 | 0.6239 | | 0.5054 | 6.23 | 480 | 0.6230 | | 0.4632 | 6.36 | 490 | 0.6205 | | 0.5016 | 6.49 | 500 | 0.6212 | | 0.4838 | 6.62 | 510 | 0.6219 | | 0.4613 | 6.75 | 520 | 0.6225 | | 0.5062 | 6.88 | 530 | 0.6223 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ocisd4/openllama_tokenizer_ext_zh
ocisd4
2023-06-06T07:38:11Z
0
0
null
[ "region:us" ]
null
2023-06-02T03:35:29Z
```python from transformers import LlamaTokenizer tokenizer = LlamaTokenizer.from_pretrained( 'ocisd4/openllama_tokenizer_ext_zh', add_bos_token=True, add_eos_token=False, use_auth_token='True', ) print('vocab size:',tokenizer.vocab_size) #vocab size: 52928 text = '今天天氣真好!' print(tokenizer.tokenize(text)) #['▁', '今天', '天氣', '真', '好', '<0xEF>', '<0xBC>', '<0x81>'] print(tokenizer.encode(text)) #[1, 31822, 32101, 32927, 45489, 45301, 242, 191, 132] print(tokenizer.decode(tokenizer.encode(text))) # 今天天氣真好!</s> ``` ** note: ** - The first token might be a whitespace in LLamaTokenizer. - Open LlaMa的tokenizer is incompatible with original LlaMa - This tokenizer will encode continuous spaces to ONE space ### updated #### 2023-06-02 - add special tokens: <|pad|>, <|output|>, <|input|>, <|sep|>, <|emb|>, <|rwd|>, <|ctx|>
ChrissieVR/Hi
ChrissieVR
2023-06-06T07:29:52Z
0
0
nemo
[ "nemo", "dataset:OpenAssistant/oasst1", "license:openrail", "region:us" ]
null
2023-06-06T07:28:41Z
--- license: openrail datasets: - OpenAssistant/oasst1 library_name: nemo ---
vind/rl_course_vizdoom_health_gathering_supreme
vind
2023-06-06T07:25:58Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T07:25:40Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.05 +/- 5.94 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r vind/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
cessqq/1111
cessqq
2023-06-06T07:21:30Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-05-23T08:58:14Z
--- metrics: - bertscore --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BlueAvenir/dummy_1
BlueAvenir
2023-06-06T07:13:25Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-06T07:13:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/hBERTv1_new_pretrain_w_init_48_mrpc
gokuls
2023-06-06T07:02:57Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:49:57Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_w_init_48_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init_48_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6229 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6607 | 1.0 | 29 | 0.6262 | 0.6838 | 0.8122 | 0.7480 | | 0.6421 | 2.0 | 58 | 0.6368 | 0.6838 | 0.8122 | 0.7480 | | 0.6411 | 3.0 | 87 | 0.6258 | 0.6838 | 0.8122 | 0.7480 | | 0.6406 | 4.0 | 116 | 0.6422 | 0.6838 | 0.8122 | 0.7480 | | 0.6364 | 5.0 | 145 | 0.6263 | 0.6838 | 0.8122 | 0.7480 | | 0.6322 | 6.0 | 174 | 0.6253 | 0.6838 | 0.8122 | 0.7480 | | 0.6398 | 7.0 | 203 | 0.6289 | 0.6838 | 0.8122 | 0.7480 | | 0.6363 | 8.0 | 232 | 0.6267 | 0.6838 | 0.8122 | 0.7480 | | 0.6374 | 9.0 | 261 | 0.6375 | 0.6838 | 0.8122 | 0.7480 | | 0.6374 | 10.0 | 290 | 0.6248 | 0.6838 | 0.8122 | 0.7480 | | 0.638 | 11.0 | 319 | 0.6262 | 0.6838 | 0.8122 | 0.7480 | | 0.6353 | 12.0 | 348 | 0.6236 | 0.6838 | 0.8122 | 0.7480 | | 0.6338 | 13.0 | 377 | 0.6263 | 0.6838 | 0.8122 | 0.7480 | | 0.637 | 14.0 | 406 | 0.6250 | 0.6838 | 0.8122 | 0.7480 | | 0.6375 | 15.0 | 435 | 0.6229 | 0.6838 | 0.8122 | 0.7480 | | 0.7037 | 16.0 | 464 | 0.6438 | 0.6838 | 0.8122 | 0.7480 | | 0.6198 | 17.0 | 493 | 0.6242 | 0.6961 | 0.8038 | 0.7499 | | 0.5847 | 18.0 | 522 | 0.6260 | 0.6740 | 0.7742 | 0.7241 | | 0.4983 | 19.0 | 551 | 0.7174 | 0.7034 | 0.8158 | 0.7596 | | 0.4245 | 20.0 | 580 | 0.7737 | 0.6789 | 0.7828 | 0.7308 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
CreatorPhan/ViSummary
CreatorPhan
2023-06-06T07:01:46Z
134
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "vi", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-06-05T21:02:45Z
--- language: - vi library_name: transformers pipeline_tag: summarization --- ``` from transformers import AutoTokenizer, T5ForConditionalGeneration device = 'cpu' model_path = "CreatorPhan/ViSummary" model = T5ForConditionalGeneration.from_pretrained(model_path).to(device) tokenizer = AutoTokenizer.from_pretrained(model_path) context = """ Một yếu tố quan trọng khiến thương vụ Messi trở lại Barca có cơ hội lớn thành công là việc La Liga đã phê chuẩn kế hoạch cân bằng tài chính do Barca trình bày trong buổi họp gần đây. Điều này giúp đội bóng xứ Catalonia giải quyết vấn đề khúc mắc lớn nhất. Vào mùa hè năm 2021, Messi phải rời Barca sau 21 năm gắn bó do CLB không thể đáp ứng quy định tài chính của La Liga. Messi trở thành cầu thủ tự do sau khi hết hai năm hợp đồng với PSG. Anh được nhiều CLB mời chào. Theo Athletic, có ba đội đang nhắm tới anh là Barca, Inter Miami (Mỹ) và một CLB Arab Saudi. Trong đó, chỉ có phía Saudi đưa ra đề nghị chính thức cho Messi, với hợp đồng trị giá 400 triệu USD mỗi năm. Tuy nhiên, ở tuổi 35, Messi vẫn muốn trở lại Barca để cống hiến cho CLB đã làm nên tên tuổi của anh. Lúc này, đội chủ sân Nou Camp được dẫn dắt bởi HLV Xavi - đồng đội và là đàn anh chỉ dạy Messi trong những năm đầu sự nghiệp. """ tokens = tokenizer(f"Tóm tắt văn bản sau: {context}", return_tensors='pt').input_ids output = model.generate(tokens.to(device), max_new_tokens=170)[0] predict = tokenizer.decode(output, skip_special_tokens=True) print(len(predict.split())) print(predict) ```
Duskfallcrew/the-crystal-exarch-15
Duskfallcrew
2023-06-06T06:56:22Z
52
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-04T11:33:42Z
--- license: creativeml-openrail-m base_model: andite/anything-v4.0 instance_prompt: FantasyMiq tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - the-crystal-exarch-15 These are LoRA adaption weights for [andite/anything-v4.0](https://huggingface.co/andite/anything-v4.0). The weights were trained on the instance prompt "FantasyMiq" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. The safe tensors file was trained via LASTBEN's fast dreambooth adn does not require FantasyMIQ but does require the word Graha. Ouputs are in afolder, will put some examples in here soon. Model updates here: https://civitai.com/models/15890/graha-tia-ffxiv Safetensors version was trained on Anything 3.0
gokuls/hBERTv2_new_pretrain_w_init_48_cola
gokuls
2023-06-06T06:51:53Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:39:56Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: hBERTv2_new_pretrain_w_init_48_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.08208497144404353 - name: Accuracy type: accuracy value: 0.6836050152778625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_w_init_48_cola This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6191 - Matthews Correlation: 0.0821 - Accuracy: 0.6836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6301 | 1.0 | 67 | 0.6293 | 0.0 | 0.6913 | | 0.6238 | 2.0 | 134 | 0.6254 | 0.0 | 0.6913 | | 0.6072 | 3.0 | 201 | 0.6271 | 0.0339 | 0.6759 | | 0.5821 | 4.0 | 268 | 0.6191 | 0.0821 | 0.6836 | | 0.5262 | 5.0 | 335 | 0.7057 | 0.1151 | 0.6510 | | 0.4735 | 6.0 | 402 | 0.6756 | 0.1181 | 0.6577 | | 0.4127 | 7.0 | 469 | 0.8493 | 0.1229 | 0.6711 | | 0.349 | 8.0 | 536 | 0.8919 | 0.1434 | 0.6232 | | 0.311 | 9.0 | 603 | 0.9018 | 0.1398 | 0.6769 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_w_init_48_cola
gokuls
2023-06-06T06:49:38Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:36:57Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: hBERTv1_new_pretrain_w_init_48_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 - name: Accuracy type: accuracy value: 0.6912751793861389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init_48_cola This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6185 - Matthews Correlation: 0.0 - Accuracy: 0.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6224 | 1.0 | 67 | 0.6200 | 0.0 | 0.6913 | | 0.6183 | 2.0 | 134 | 0.6233 | 0.0 | 0.6913 | | 0.6148 | 3.0 | 201 | 0.6241 | 0.0 | 0.6913 | | 0.6146 | 4.0 | 268 | 0.6185 | 0.0 | 0.6913 | | 0.6097 | 5.0 | 335 | 0.6187 | 0.0 | 0.6913 | | 0.6094 | 6.0 | 402 | 0.6209 | 0.0 | 0.6913 | | 0.6102 | 7.0 | 469 | 0.6328 | 0.0 | 0.6913 | | 0.5814 | 8.0 | 536 | 0.6735 | 0.0 | 0.6913 | | 0.5799 | 9.0 | 603 | 0.6648 | -0.0022 | 0.6788 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_48_mrpc
gokuls
2023-06-06T06:49:21Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:41:47Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_48_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7058823529411765 - name: F1 type: f1 value: 0.8058252427184466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_48_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5714 - Accuracy: 0.7059 - F1: 0.8058 - Combined Score: 0.7559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6764 | 1.0 | 29 | 0.5974 | 0.6887 | 0.8096 | 0.7492 | | 0.6341 | 2.0 | 58 | 0.6032 | 0.6838 | 0.7962 | 0.7400 | | 0.5778 | 3.0 | 87 | 0.5714 | 0.7059 | 0.8058 | 0.7559 | | 0.4891 | 4.0 | 116 | 0.6448 | 0.7132 | 0.8104 | 0.7618 | | 0.3469 | 5.0 | 145 | 0.8814 | 0.6593 | 0.7504 | 0.7049 | | 0.2429 | 6.0 | 174 | 0.8431 | 0.6740 | 0.7654 | 0.7197 | | 0.1749 | 7.0 | 203 | 1.0049 | 0.7010 | 0.7918 | 0.7464 | | 0.1434 | 8.0 | 232 | 1.1036 | 0.6765 | 0.7634 | 0.7200 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_48_mrpc
gokuls
2023-06-06T06:47:35Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:40:33Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_48_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6936274509803921 - name: F1 type: f1 value: 0.8091603053435115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_48_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5996 - Accuracy: 0.6936 - F1: 0.8092 - Combined Score: 0.7514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6634 | 1.0 | 29 | 0.6017 | 0.6863 | 0.7881 | 0.7372 | | 0.6054 | 2.0 | 58 | 0.6601 | 0.6691 | 0.7316 | 0.7004 | | 0.5623 | 3.0 | 87 | 0.5996 | 0.6936 | 0.8092 | 0.7514 | | 0.4773 | 4.0 | 116 | 0.6380 | 0.7010 | 0.8057 | 0.7534 | | 0.3781 | 5.0 | 145 | 0.8476 | 0.6471 | 0.7391 | 0.6931 | | 0.258 | 6.0 | 174 | 0.8257 | 0.6642 | 0.7514 | 0.7078 | | 0.2236 | 7.0 | 203 | 1.1873 | 0.6495 | 0.7451 | 0.6973 | | 0.1818 | 8.0 | 232 | 1.2389 | 0.6029 | 0.6908 | 0.6469 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
johnyyhk/bert-finetuned-ner
johnyyhk
2023-06-06T06:43:06Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-27T08:33:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.7087087087087087 - name: Recall type: recall value: 0.7866666666666666 - name: F1 type: f1 value: 0.74565560821485 - name: Accuracy type: accuracy value: 0.9507519905632557 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1783 - Precision: 0.7087 - Recall: 0.7867 - F1: 0.7457 - Accuracy: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 88 | 0.3405 | 0.5117 | 0.5833 | 0.5452 | 0.8924 | | No log | 2.0 | 176 | 0.1943 | 0.6469 | 0.7633 | 0.7003 | 0.9446 | | No log | 3.0 | 264 | 0.1783 | 0.7087 | 0.7867 | 0.7457 | 0.9508 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
OpenDILabCommunity/BipedalWalker-v3-A2C
OpenDILabCommunity
2023-06-06T06:42:00Z
0
0
pytorch
[ "pytorch", "deep-reinforcement-learning", "reinforcement-learning", "DI-engine", "BipedalWalker-v3", "en", "license:apache-2.0", "region:us" ]
reinforcement-learning
2023-06-06T06:41:51Z
--- language: en license: apache-2.0 library_name: pytorch tags: - deep-reinforcement-learning - reinforcement-learning - DI-engine - BipedalWalker-v3 benchmark_name: OpenAI/Gym/Box2d task_name: BipedalWalker-v3 pipeline_tag: reinforcement-learning model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: OpenAI/Gym/Box2d-BipedalWalker-v3 type: OpenAI/Gym/Box2d-BipedalWalker-v3 metrics: - type: mean_reward value: 277.68 +/- 0.19 name: mean_reward --- # Play **BipedalWalker-v3** with **A2C** Policy ## Model Description <!-- Provide a longer summary of what this model is. --> This is a simple **A2C** implementation to OpenAI/Gym/Box2d **BipedalWalker-v3** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo). **DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework. ## Model Usage ### Install the Dependencies <details close> <summary>(Click for Details)</summary> ```shell # install huggingface_ding git clone https://github.com/opendilab/huggingface_ding.git pip3 install -e ./huggingface_ding/ # install environment dependencies if needed pip3 install DI-engine[common_env] ``` </details> ### Git Clone from Huggingface and Run the Model <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import A2CAgent from ding.config import Config from easydict import EasyDict import torch # Pull model from files which are git cloned from huggingface policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) cfg = EasyDict(Config.file_to_dict("policy_config.py")) # Instantiate the agent agent = A2CAgent( env="bipedalwalker", exp_name="BipedalWalker-v3-A2C", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ### Run Model by Using Huggingface_ding <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import A2CAgent from huggingface_ding import pull_model_from_hub # Pull model from Hugggingface hub policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/BipedalWalker-v3-A2C") # Instantiate the agent agent = A2CAgent( env="bipedalwalker", exp_name="BipedalWalker-v3-A2C", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ## Model Training ### Train the Model and Push to Huggingface_hub <details close> <summary>(Click for Details)</summary> ```shell #Training Your Own Agent python3 -u train.py ``` **train.py** ```python from ding.bonus import A2CAgent from huggingface_ding import push_model_to_hub # Instantiate the agent agent = A2CAgent("bipedalwalker", exp_name="BipedalWalker-v3-A2C") # Train the agent return_ = agent.train(step=int(5000000)) # Push model to huggingface hub push_model_to_hub( agent=agent.best, env_name="OpenAI/Gym/Box2d", task_name="BipedalWalker-v3", algo_name="A2C", wandb_url=return_.wandb_url, github_repo_url="https://github.com/opendilab/DI-engine", github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/a2c.html", github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/bipedalwalker.html", installation_guide="pip3 install DI-engine[common_env]", usage_file_by_git_clone="./a2c/bipedalwalker_a2c_deploy.py", usage_file_by_huggingface_ding="./a2c/bipedalwalker_a2c_download.py", train_file="./a2c/bipedalwalker_a2c.py", repo_id="OpenDILabCommunity/BipedalWalker-v3-A2C" ) ``` </details> **Configuration** <details close> <summary>(Click for Details)</summary> ```python exp_config = { 'env': { 'manager': { 'episode_num': float("inf"), 'max_retry': 1, 'retry_type': 'reset', 'auto_reset': True, 'step_timeout': None, 'reset_timeout': None, 'retry_waiting_time': 0.1, 'cfg_type': 'BaseEnvManagerDict' }, 'stop_value': 10000000000, 'n_evaluator_episode': 8, 'env_id': 'BipedalWalker-v3', 'collector_env_num': 8, 'evaluator_env_num': 8, 'act_scale': True, 'rew_clip': True }, 'policy': { 'model': { 'action_space': 'continuous', 'obs_shape': 24, 'action_shape': 4 }, 'learn': { 'learner': { 'train_iterations': 1000000000, 'dataloader': { 'num_workers': 0 }, 'log_policy': True, 'hook': { 'load_ckpt_before_run': '', 'log_show_after_iter': 100, 'save_ckpt_after_iter': 10000, 'save_ckpt_after_run': True }, 'cfg_type': 'BaseLearnerDict' }, 'update_per_collect': 1, 'batch_size': 64, 'learning_rate': 0.0003, 'betas': [0.9, 0.999], 'eps': 1e-08, 'grad_norm': 0.5, 'value_weight': 0.7, 'entropy_weight': 0.0005, 'adv_norm': True, 'ignore_done': False, 'discount_factor': 0.99 }, 'collect': { 'collector': {}, 'unroll_len': 1, 'discount_factor': 0.99, 'gae_lambda': 0.95, 'n_sample': 64 }, 'eval': { 'evaluator': { 'eval_freq': 1000, 'render': { 'render_freq': -1, 'mode': 'train_iter' }, 'cfg_type': 'InteractionSerialEvaluatorDict', 'stop_value': 10000000000, 'n_episode': 8 } }, 'other': { 'replay_buffer': {} }, 'on_policy': True, 'cuda': True, 'multi_gpu': False, 'bp_update_sync': True, 'traj_len_inf': False, 'type': 'a2c', 'priority': False, 'priority_IS_weight': False, 'action_space': 'continuous', 'cfg_type': 'A2CPolicyDict' }, 'exp_name': 'BipedalWalker-v3-A2C', 'seed': 0, 'wandb_logger': { 'gradient_logger': True, 'video_logger': True, 'plot_logger': True, 'action_logger': True, 'return_logger': False } } ``` </details> **Training Procedure** <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/BipedalWalker-v3-A2C) ## Model Information <!-- Provide the basic links for the model. --> - **Github Repository:** [repo link](https://github.com/opendilab/DI-engine) - **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/a2c.html) - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/BipedalWalker-v3-A2C/blob/main/policy_config.py) - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/BipedalWalker-v3-A2C/blob/main/replay.mp4) <!-- Provide the size information for the model. --> - **Parameters total size:** 395.32 KB - **Last Update Date:** 2023-06-06 ## Environments <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> - **Benchmark:** OpenAI/Gym/Box2d - **Task:** BipedalWalker-v3 - **Gym version:** 0.25.1 - **DI-engine version:** v0.4.8 - **PyTorch version:** 1.7.1 - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/bipedalwalker.html)
gokuls/hBERTv2_new_pretrain_w_init_48_sst2
gokuls
2023-06-06T06:39:38Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T05:58:25Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_w_init_48_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8268348623853211 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_w_init_48_sst2 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3998 - Accuracy: 0.8268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3448 | 1.0 | 527 | 0.3998 | 0.8268 | | 0.2102 | 2.0 | 1054 | 0.4903 | 0.8337 | | 0.1588 | 3.0 | 1581 | 0.4602 | 0.8337 | | 0.126 | 4.0 | 2108 | 0.5509 | 0.8429 | | 0.1044 | 5.0 | 2635 | 0.4929 | 0.8108 | | 0.0875 | 6.0 | 3162 | 0.5351 | 0.8257 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_w_init__mrpc
gokuls
2023-06-06T06:39:04Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-06T06:32:20Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_w_init__mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7058823529411765 - name: F1 type: f1 value: 0.8192771084337349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_w_init__mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5908 - Accuracy: 0.7059 - F1: 0.8193 - Combined Score: 0.7626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6576 | 1.0 | 29 | 0.5908 | 0.7059 | 0.8193 | 0.7626 | | 0.6172 | 2.0 | 58 | 0.6228 | 0.6495 | 0.7433 | 0.6964 | | 0.5641 | 3.0 | 87 | 0.6026 | 0.6936 | 0.7780 | 0.7358 | | 0.4682 | 4.0 | 116 | 0.6339 | 0.7034 | 0.7973 | 0.7504 | | 0.3677 | 5.0 | 145 | 0.9408 | 0.6495 | 0.7307 | 0.6901 | | 0.2183 | 6.0 | 174 | 0.8311 | 0.6544 | 0.7478 | 0.7011 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_mrpc
gokuls
2023-06-06T06:35:51Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T09:42:51Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7034313725490197 - name: F1 type: f1 value: 0.8118195956454122 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5990 - Accuracy: 0.7034 - F1: 0.8118 - Combined Score: 0.7576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6721 | 1.0 | 29 | 0.6200 | 0.6838 | 0.8122 | 0.7480 | | 0.6229 | 2.0 | 58 | 0.6098 | 0.6569 | 0.7255 | 0.6912 | | 0.5689 | 3.0 | 87 | 0.5990 | 0.7034 | 0.8118 | 0.7576 | | 0.4615 | 4.0 | 116 | 0.6689 | 0.6765 | 0.78 | 0.7282 | | 0.3475 | 5.0 | 145 | 0.8472 | 0.6054 | 0.6774 | 0.6414 | | 0.2307 | 6.0 | 174 | 0.9917 | 0.6103 | 0.6913 | 0.6508 | | 0.166 | 7.0 | 203 | 1.1149 | 0.6544 | 0.7522 | 0.7033 | | 0.1258 | 8.0 | 232 | 1.3516 | 0.625 | 0.7119 | 0.6684 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_w_init__cola
gokuls
2023-06-06T06:30:52Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T10:08:33Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: hBERTv1_new_pretrain_w_init__cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 - name: Accuracy type: accuracy value: 0.6912751793861389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_w_init__cola This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6171 - Matthews Correlation: 0.0 - Accuracy: 0.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6355 | 1.0 | 67 | 0.6239 | 0.0 | 0.6913 | | 0.6177 | 2.0 | 134 | 0.6211 | 0.0 | 0.6913 | | 0.6142 | 3.0 | 201 | 0.6231 | 0.0 | 0.6913 | | 0.6145 | 4.0 | 268 | 0.6171 | 0.0 | 0.6913 | | 0.6102 | 5.0 | 335 | 0.6199 | 0.0 | 0.6913 | | 0.6126 | 6.0 | 402 | 0.6184 | 0.0 | 0.6913 | | 0.6127 | 7.0 | 469 | 0.6206 | 0.0 | 0.6913 | | 0.6107 | 8.0 | 536 | 0.6185 | 0.0 | 0.6913 | | 0.6086 | 9.0 | 603 | 0.6260 | 0.0 | 0.6913 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv2_new_pretrain_cola
gokuls
2023-06-06T06:27:33Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T09:32:57Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: hBERTv2_new_pretrain_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv2_new_pretrain_cola This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6173 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6294 | 1.0 | 67 | 0.6236 | 0.0 | | 0.6169 | 2.0 | 134 | 0.6312 | 0.0 | | 0.6115 | 3.0 | 201 | 0.6173 | 0.0 | | 0.6372 | 4.0 | 268 | 0.6201 | 0.0 | | 0.6087 | 5.0 | 335 | 0.6217 | 0.0 | | 0.6086 | 6.0 | 402 | 0.6248 | 0.0 | | 0.6113 | 7.0 | 469 | 0.6283 | 0.0 | | 0.6109 | 8.0 | 536 | 0.6200 | 0.0 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/hBERTv1_new_pretrain_sst2
gokuls
2023-06-06T06:27:01Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T08:52:07Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7878440366972477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_sst2 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4752 - Accuracy: 0.7878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4258 | 1.0 | 527 | 0.4994 | 0.8062 | | 0.2652 | 2.0 | 1054 | 0.5633 | 0.8005 | | 0.2214 | 3.0 | 1581 | 0.4752 | 0.7878 | | 0.2014 | 4.0 | 2108 | 0.5329 | 0.7890 | | 0.1813 | 5.0 | 2635 | 0.5410 | 0.7924 | | 0.1679 | 6.0 | 3162 | 0.5857 | 0.8085 | | 0.1526 | 7.0 | 3689 | 0.7654 | 0.8039 | | 0.1405 | 8.0 | 4216 | 0.6715 | 0.7878 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
AXX1995/adindaaprillia
AXX1995
2023-06-06T06:21:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T06:19:09Z
--- license: creativeml-openrail-m ---