modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 12:29:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 12:27:55
card
stringlengths
11
1.01M
Deepakyadav1212/ner_model
Deepakyadav1212
2024-01-16T15:12:51Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T06:42:39Z
--- tags: - generated_from_trainer model-index: - name: ner_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_model This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.1938 | 1.0 | 34220 | 0.1931 | | 0.1842 | 2.0 | 68440 | 0.1856 | | 0.1784 | 3.0 | 102660 | 0.1831 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0.dev20231228 - Datasets 2.16.1 - Tokenizers 0.15.0
Seokeon/V14_R512_lora_none_robot_toy
Seokeon
2024-01-16T15:12:09Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T15:08:15Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks toy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R512_lora_none_robot_toy These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Estasss/mmml-mult-lora
Estasss
2024-01-16T15:06:51Z
2
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T11:04:53Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Estasss/mmml-mult-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the Norod78/cartoon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
merthacioglu/xlnet-base-cased-finetuned-squad-b16
merthacioglu
2024-01-16T15:04:43Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlnet", "question-answering", "generated_from_trainer", "base_model:merthacioglu/xlnet-base-cased-finetuned-squad-b16", "base_model:finetune:merthacioglu/xlnet-base-cased-finetuned-squad-b16", "endpoints_compatible", "region:us" ]
question-answering
2024-01-16T02:29:00Z
--- base_model: merthacioglu/xlnet-base-cased-finetuned-squad-b16 tags: - generated_from_trainer model-index: - name: xlnet-base-cased-finetuned-squad-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-squad-b16 This model is a fine-tuned version of [merthacioglu/xlnet-base-cased-finetuned-squad-b16](https://huggingface.co/merthacioglu/xlnet-base-cased-finetuned-squad-b16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
CraftDocs/Mixtral-8x7B-Instruct-v0.1-writer-assistant-block-v0.12
CraftDocs
2024-01-16T14:58:25Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "region:us" ]
null
2024-01-16T14:58:24Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
seatond/oldprompt_pageidentifier_rank32
seatond
2024-01-16T14:58:15Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "region:us" ]
null
2024-01-16T14:47:37Z
--- library_name: peft base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
Chenxi-Chelsea-Liu/whisper-small-clean-hi
Chenxi-Chelsea-Liu
2024-01-16T14:57:43Z
10
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-14T15:53:56Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-clean-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-clean-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5136 - Wer: 28.2379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.5251 | 0.46 | 50 | 1.2276 | 88.8034 | | 0.7311 | 0.92 | 100 | 0.6706 | 50.3372 | | 0.5582 | 1.38 | 150 | 0.5367 | 43.6798 | | 0.4555 | 1.83 | 200 | 0.4448 | 43.1783 | | 0.3326 | 2.29 | 250 | 0.3594 | 36.2182 | | 0.2394 | 2.75 | 300 | 0.2507 | 33.5380 | | 0.1449 | 3.21 | 350 | 0.2294 | 32.7252 | | 0.1407 | 3.67 | 400 | 0.2144 | 30.6070 | | 0.1048 | 4.13 | 450 | 0.2125 | 29.6299 | | 0.0854 | 4.59 | 500 | 0.2085 | 29.1371 | | 0.0762 | 5.05 | 550 | 0.2125 | 28.4109 | | 0.0445 | 5.5 | 600 | 0.2168 | 28.4973 | | 0.0474 | 5.96 | 650 | 0.2197 | 28.2725 | | 0.0249 | 6.42 | 700 | 0.2324 | 28.2898 | | 0.0267 | 6.88 | 750 | 0.2287 | 27.2696 | | 0.0144 | 7.34 | 800 | 0.2440 | 27.2869 | | 0.0154 | 7.8 | 850 | 0.2524 | 27.3733 | | 0.008 | 8.26 | 900 | 0.2648 | 27.1312 | | 0.0103 | 8.72 | 950 | 0.2602 | 27.9353 | | 0.0066 | 9.17 | 1000 | 0.2718 | 28.3330 | | 0.0073 | 9.63 | 1050 | 0.2705 | 27.4771 | | 0.0053 | 10.09 | 1100 | 0.2828 | 27.5030 | | 0.0044 | 10.55 | 1150 | 0.2882 | 27.2004 | | 0.0045 | 11.01 | 1200 | 0.2892 | 27.5117 | | 0.0037 | 11.47 | 1250 | 0.2961 | 27.3215 | | 0.0031 | 11.93 | 1300 | 0.2934 | 27.0534 | | 0.0022 | 12.39 | 1350 | 0.3014 | 27.1053 | | 0.003 | 12.84 | 1400 | 0.3077 | 26.5779 | | 0.0022 | 13.3 | 1450 | 0.3096 | 26.8373 | | 0.002 | 13.76 | 1500 | 0.3123 | 26.5347 | | 0.0017 | 14.22 | 1550 | 0.3186 | 26.8632 | | 0.0016 | 14.68 | 1600 | 0.3255 | 26.6903 | | 0.0012 | 15.14 | 1650 | 0.3329 | 26.4396 | | 0.0015 | 15.6 | 1700 | 0.3336 | 27.0188 | | 0.0009 | 16.06 | 1750 | 0.3361 | 26.4569 | | 0.001 | 16.51 | 1800 | 0.3483 | 26.4655 | | 0.0014 | 16.97 | 1850 | 0.3533 | 26.2666 | | 0.0004 | 17.43 | 1900 | 0.3581 | 26.0678 | | 0.0004 | 17.89 | 1950 | 0.3688 | 26.5087 | | 0.0003 | 18.35 | 2000 | 0.3738 | 26.2148 | | 0.0004 | 18.81 | 2050 | 0.3729 | 26.1197 | | 0.0005 | 19.27 | 2100 | 0.3850 | 25.8776 | | 0.0002 | 19.72 | 2150 | 0.3874 | 25.9900 | | 0.0004 | 20.18 | 2200 | 0.3927 | 25.9727 | | 0.0 | 20.64 | 2250 | 0.4037 | 25.9381 | | 0.0 | 21.1 | 2300 | 0.4133 | 25.9208 | | 0.0001 | 21.56 | 2350 | 0.4188 | 25.5836 | | 0.0 | 22.02 | 2400 | 0.4266 | 25.8776 | | 0.0 | 22.48 | 2450 | 0.4380 | 26.1715 | | 0.0 | 22.94 | 2500 | 0.4473 | 25.6268 | | 0.0 | 23.39 | 2550 | 0.4604 | 26.0418 | | 0.0 | 23.85 | 2600 | 0.4681 | 26.1802 | | 0.0 | 24.31 | 2650 | 0.4833 | 26.1197 | | 0.0 | 24.77 | 2700 | 0.4883 | 26.2234 | | 0.0 | 25.23 | 2750 | 0.4993 | 26.4914 | | 0.0 | 25.69 | 2800 | 0.5031 | 26.7768 | | 0.0 | 26.15 | 2850 | 0.5077 | 26.6211 | | 0.0 | 26.61 | 2900 | 0.5102 | 27.1658 | | 0.0 | 27.06 | 2950 | 0.5123 | 28.1688 | | 0.0 | 27.52 | 3000 | 0.5136 | 28.2379 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 1.12.1 - Datasets 2.16.1 - Tokenizers 0.15.0
1-13-am/distilbert-base-uncased-finetuned-emotion
1-13-am
2024-01-16T14:56:35Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T14:15:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251117484166811 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2067 - Accuracy: 0.925 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8143 | 1.0 | 250 | 0.2977 | 0.91 | 0.9088 | | 0.2398 | 2.0 | 500 | 0.2067 | 0.925 | 0.9251 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Seokeon/V14_R256_full_pp_berry_bowl
Seokeon
2024-01-16T14:53:49Z
2
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T13:50:59Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks bowl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Seokeon/V14_R256_full_pp_berry_bowl This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks bowl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
microsoft/SatCLIP-ViT16-L40
microsoft
2024-01-16T14:52:57Z
0
4
null
[ "geospatial", "arxiv:2311.17179", "arxiv:2309.16020", "license:mit", "region:us" ]
null
2023-12-15T10:41:36Z
--- tags: - geospatial license: mit --- # Model Card for SatCLIP Here, we provide accompanying information about our model SatCLIP. This repository is for the ViT16-L40 version of the model. ## Model Details ### Model Description SatCLIP is a model for contrastive pretraining of satellite image-location pairs. Training is analogous to the popular [CLIP](https://github.com/openai/CLIP) model. - **Developed by:** Konstantin Klemmer, Marc Russwurm, Esther Rolf, Caleb Robinson, Lester Mackey - **Model type:** Location and image encoder model pretrained using contrastive image-location matching. - **License:** MIT ### Model Sources - **Repository:** [github.com/microsoft/satclip](https://github.com/microsoft/satclip) - **Paper:** https://arxiv.org/abs/2311.17179 ## Uses SatCLIP includes an *image* and a *location* encoder. The image encoder processes multi-spectral satellite images of size `[height, width, 13]` into `[d]`-dimensional latent vectors. The location encoder processes location coordinates `[longitude, latitude]` into the same `[d]`-dimensional space. SatCLIP is a model trained and tested for use in research projects. It is not intended for use in production environments. ### Downstream Use The SatCLIP location encoder learns location characteristics, as captured by the satellite images, and can be deployed for downstream geospatial prediction tasks. Practically, this involves *querying* the location encoder for the `[d]`-dimensional vector embedding of all downstream locations and then using that embedding as predictor during downstream learning. In our paper, we show the useability of the learned location embeddings for predicting e.g. population density or biomes. #### Use the encoder ```python from huggingface_hub import hf_hub_download from load import get_satclip import torch device = "cuda" if torch.cuda.is_available() else "cpu" c = torch.randn(32, 2) # Represents a batch of 32 locations (lon/lat) model = get_satclip( hf_hub_download("microsoft/SatCLIP-ViT16-L40", "satclip-vit16-l40.ckpt"), device=device, ) # Only loads location encoder by default model.eval() with torch.no_grad(): emb = model(c.double().to(device)).detach().cpu() ``` ### Out-of-Scope Use Potential use cases of SatCLIP which we did build the model for and did not test for include: * The SatCLIP image encoder can in theory be used for helping with satellite image localization. If this application interests you, we encourage you to check work focusing on this, e.g. [Cepeda et al. (2023)](https://arxiv.org/abs/2309.16020). * Fine-grained geographic problems (i.e. problems constrained to small geographic areas or including many close locations) are out of scope for SatCLIP. SatCLIP location encoders are pretrained for global-scale use. * Any use outside of research projects is currently out of scope as we don't evaluate SatCLIP in production environments. ## Bias, Risks, and Limitations The following aspects should be considered before using SatCLIP: * SatCLIP is trained with freely available Sentinel-2 satellite imagery with a resolution of 10m per pixel. This allows the model to learn larger structures like cities or mountain ranges, but not small scale structures like individual vehicles or people. SatCLIP models are not applicable for fine-grained geospatial problems. * Location embeddings from SatCLIP only capture location characteristics that represent visually in satellite imagery (at our given resolution). Applications in problems that can not be captured through satellite images are out-of-score for SatCLIP. * Use cases in the defense or surveillance domain are always out-of-scope regardless of performance of SatCLIP. The use of artificial intelligence for such tasks is premature currently given the lack of testing norms and checks to ensure its fair use. ## How to Get Started with the Model Information about how to get started with SatCLIP training and deployment in downstream modelling can be found in our GitHub repository at [github.com/microsoft/satclip](https://github.com/microsoft/satclip). ## Training Details ### Training Data SatCLIP is trained using the *S2-100K* dataset which samples 100,000 multi-spectral satellite image scenes from Sentinel-2 via the [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/). Scenes are sampled approximately uniformly over landmass and are only chosen for the dataset if they don't exhibit cloud coverage. More details can be found in our paper. ### Training Procedure SatCLIP is trained via contrastive learning, by matching the correct image-location pairs in a batch of images and locations. Each image and each location is processed within an encoder and trasformed into a `[d]`-dimensional embedding. The training objective is to minimize the cosine similarity of image and location embeddings. #### Training Hyperparameters The key hyperparameters of SatCLIP are: batch size, learning rate and weight decay. On top of this, the specific location and vision encoder come with their separate hyperparameters. Key hyperparameters for the location encoder include resolution-specific hyperparameters in the positional encoding (e.g. number of Legendre polynomials used for spherical harmonics calculation) and the type, number of layers and capacity of the neural network deployed. For the vision encoder, key hyperparameters depend on the type of vision backbone deployed (e.g. ResNet, Vision Transformer). More details can be found in our paper. #### Training Speed Training SatCLIP for 500 epochs using pretrained vision encoders takes aoughly 2 days on a single A100 GPU. ## Evaluation SatCLIP can be evaluated throughout training and during downstream deployment. During training, we log model loss on a held-out, unseen validation set to monitor the training process for potential overfitting. When SatCLIP embeddings are used in downstream applications, any predictive score can be used for evaluation, e.g. mean squared error (MSE) for regression or accuracy for classification problems. ## Citation **BibTeX:** ```bibtex @article{klemmer2023satclip, title={SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery}, author={Klemmer, Konstantin and Rolf, Esther and Robinson, Caleb and Mackey, Lester and Russwurm, Marc}, journal={TBA}, year={2023} } ``` ## Model Card Contact For feedback and comments, contact [[email protected]](mailto:[email protected]).
microsoft/SatCLIP-ViT16-L10
microsoft
2024-01-16T14:51:39Z
0
3
null
[ "geospatial", "arxiv:2311.17179", "arxiv:2309.16020", "license:mit", "region:us" ]
null
2023-12-15T10:41:06Z
--- tags: - geospatial license: mit --- # Model Card for SatCLIP Here, we provide accompanying information about our model SatCLIP. This repository is for the ViT16-L10 version of the model. ## Model Details ### Model Description SatCLIP is a model for contrastive pretraining of satellite image-location pairs. Training is analogous to the popular [CLIP](https://github.com/openai/CLIP) model. - **Developed by:** Konstantin Klemmer, Marc Russwurm, Esther Rolf, Caleb Robinson, Lester Mackey - **Model type:** Location and image encoder model pretrained using contrastive image-location matching. - **License:** MIT ### Model Sources - **Repository:** [github.com/microsoft/satclip](https://github.com/microsoft/satclip) - **Paper:** https://arxiv.org/abs/2311.17179 ## Uses SatCLIP includes an *image* and a *location* encoder. The image encoder processes multi-spectral satellite images of size `[height, width, 13]` into `[d]`-dimensional latent vectors. The location encoder processes location coordinates `[longitude, latitude]` into the same `[d]`-dimensional space. SatCLIP is a model trained and tested for use in research projects. It is not intended for use in production environments. ### Downstream Use The SatCLIP location encoder learns location characteristics, as captured by the satellite images, and can be deployed for downstream geospatial prediction tasks. Practically, this involves *querying* the location encoder for the `[d]`-dimensional vector embedding of all downstream locations and then using that embedding as predictor during downstream learning. In our paper, we show the useability of the learned location embeddings for predicting e.g. population density or biomes. #### Use the encoder ```python from huggingface_hub import hf_hub_download from load import get_satclip import torch device = "cuda" if torch.cuda.is_available() else "cpu" c = torch.randn(32, 2) # Represents a batch of 32 locations (lon/lat) model = get_satclip( hf_hub_download("microsoft/SatCLIP-ViT16-L10", "satclip-vit16-l10.ckpt"), device=device, ) # Only loads location encoder by default model.eval() with torch.no_grad(): emb = model(c.double().to(device)).detach().cpu() ``` ### Out-of-Scope Use Potential use cases of SatCLIP which we did build the model for and did not test for include: * The SatCLIP image encoder can in theory be used for helping with satellite image localization. If this application interests you, we encourage you to check work focusing on this, e.g. [Cepeda et al. (2023)](https://arxiv.org/abs/2309.16020). * Fine-grained geographic problems (i.e. problems constrained to small geographic areas or including many close locations) are out of scope for SatCLIP. SatCLIP location encoders are pretrained for global-scale use. * Any use outside of research projects is currently out of scope as we don't evaluate SatCLIP in production environments. ## Bias, Risks, and Limitations The following aspects should be considered before using SatCLIP: * SatCLIP is trained with freely available Sentinel-2 satellite imagery with a resolution of 10m per pixel. This allows the model to learn larger structures like cities or mountain ranges, but not small scale structures like individual vehicles or people. SatCLIP models are not applicable for fine-grained geospatial problems. * Location embeddings from SatCLIP only capture location characteristics that represent visually in satellite imagery (at our given resolution). Applications in problems that can not be captured through satellite images are out-of-score for SatCLIP. * Use cases in the defense or surveillance domain are always out-of-scope regardless of performance of SatCLIP. The use of artificial intelligence for such tasks is premature currently given the lack of testing norms and checks to ensure its fair use. ## How to Get Started with the Model Information about how to get started with SatCLIP training and deployment in downstream modelling can be found in our GitHub repository at [github.com/microsoft/satclip](https://github.com/microsoft/satclip). ## Training Details ### Training Data SatCLIP is trained using the *S2-100K* dataset which samples 100,000 multi-spectral satellite image scenes from Sentinel-2 via the [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/). Scenes are sampled approximately uniformly over landmass and are only chosen for the dataset if they don't exhibit cloud coverage. More details can be found in our paper. ### Training Procedure SatCLIP is trained via contrastive learning, by matching the correct image-location pairs in a batch of images and locations. Each image and each location is processed within an encoder and trasformed into a `[d]`-dimensional embedding. The training objective is to minimize the cosine similarity of image and location embeddings. #### Training Hyperparameters The key hyperparameters of SatCLIP are: batch size, learning rate and weight decay. On top of this, the specific location and vision encoder come with their separate hyperparameters. Key hyperparameters for the location encoder include resolution-specific hyperparameters in the positional encoding (e.g. number of Legendre polynomials used for spherical harmonics calculation) and the type, number of layers and capacity of the neural network deployed. For the vision encoder, key hyperparameters depend on the type of vision backbone deployed (e.g. ResNet, Vision Transformer). More details can be found in our paper. #### Training Speed Training SatCLIP for 500 epochs using pretrained vision encoders takes aoughly 2 days on a single A100 GPU. ## Evaluation SatCLIP can be evaluated throughout training and during downstream deployment. During training, we log model loss on a held-out, unseen validation set to monitor the training process for potential overfitting. When SatCLIP embeddings are used in downstream applications, any predictive score can be used for evaluation, e.g. mean squared error (MSE) for regression or accuracy for classification problems. ## Citation **BibTeX:** ```bibtex @article{klemmer2023satclip, title={SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery}, author={Klemmer, Konstantin and Rolf, Esther and Robinson, Caleb and Mackey, Lester and Russwurm, Marc}, journal={TBA}, year={2023} } ``` ## Model Card Contact For feedback and comments, contact [[email protected]](mailto:[email protected]).
MaziyarPanahi/Synatra-7B-v0.3-RP-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T14:41:11Z
18
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "maywell/Synatra-7B-v0.3-RP", "pytorch", "ko", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-16T14:36:14Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - maywell/Synatra-7B-v0.3-RP - transformers - pytorch - mistral - text-generation - ko - license:cc-by-nc-4.0 - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # Synatra-7B-v0.3-RP-Mistral-7B-Instruct-v0.1 Synatra-7B-v0.3-RP-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [maywell/Synatra-7B-v0.3-RP](https://huggingface.co/maywell/Synatra-7B-v0.3-RP) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: maywell/Synatra-7B-v0.3-RP layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Synatra-7B-v0.3-RP-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Nerdofdot/roberta-base_TM
Nerdofdot
2024-01-16T14:40:50Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-16T14:40:32Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7975 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3987, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ryusangwon/887_Llama-2-7b-hf
ryusangwon
2024-01-16T14:39:56Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:xsum", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-16T14:39:50Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - xsum model-index: - name: 887_Llama-2-7b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 887_Llama-2-7b-hf This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
jiaowobaba02/stable-diffusion-v2-1-GGUF
jiaowobaba02
2024-01-16T14:37:10Z
1,054
14
null
[ "gguf", "art", "stable-diffusion", "text-to-image", "region:us" ]
text-to-image
2024-01-16T12:53:54Z
--- pipeline_tag: text-to-image tags: - art - stable-diffusion --- # Stable-diffusion-GGUF There are some files quantitated to q8_0 , q5_0 , q5_1 , q4_1 . To run these models, you can go to [this page](https://github.com/leejet/stable-diffusion.cpp) to download the code or run this command ``` git clone --recursive https://github.com/leejet/stable-diffusion.cpp.git ``` \ And then compile it just as the instructions on the github page. \ Finally,run ``` ./sd -m '/model/stable_diffusion-ema-pruned-v2-1_768.q8_0.gguf' -p "a lovely cat" -s -1 ``` . Then you can see the 'output.png'.
MaziyarPanahi/SciPhi-Mistral-7B-32k-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T14:29:22Z
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "SciPhi/SciPhi-Mistral-7B-32k", "pytorch", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-16T14:24:37Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - SciPhi/SciPhi-Mistral-7B-32k - transformers - pytorch - mistral - text-generation - license:mit - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # SciPhi-Mistral-7B-32k-Mistral-7B-Instruct-v0.1 SciPhi-Mistral-7B-32k-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [SciPhi/SciPhi-Mistral-7B-32k](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/SciPhi-Mistral-7B-32k-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
fdelia/TinyLlama-job-postings
fdelia
2024-01-16T14:27:22Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-01-16T13:59:26Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
microsoft/SatCLIP-ResNet50-L40
microsoft
2024-01-16T14:20:25Z
0
0
null
[ "geospatial", "arxiv:2311.17179", "arxiv:2309.16020", "license:mit", "region:us" ]
null
2023-12-15T10:40:32Z
--- tags: - geospatial license: mit --- # Model Card for SatCLIP Here, we provide accompanying information about our model SatCLIP. This repository is for the ResNet50-L40 version of the model. ## Model Details ### Model Description SatCLIP is a model for contrastive pretraining of satellite image-location pairs. Training is analogous to the popular [CLIP](https://github.com/openai/CLIP) model. - **Developed by:** Konstantin Klemmer, Marc Russwurm, Esther Rolf, Caleb Robinson, Lester Mackey - **Model type:** Location and image encoder model pretrained using contrastive image-location matching. - **License:** MIT ### Model Sources - **Repository:** [github.com/microsoft/satclip](https://github.com/microsoft/satclip) - **Paper:** https://arxiv.org/abs/2311.17179 ## Uses SatCLIP includes an *image* and a *location* encoder. The image encoder processes multi-spectral satellite images of size `[height, width, 13]` into `[d]`-dimensional latent vectors. The location encoder processes location coordinates `[longitude, latitude]` into the same `[d]`-dimensional space. SatCLIP is a model trained and tested for use in research projects. It is not intended for use in production environments. ### Downstream Use The SatCLIP location encoder learns location characteristics, as captured by the satellite images, and can be deployed for downstream geospatial prediction tasks. Practically, this involves *querying* the location encoder for the `[d]`-dimensional vector embedding of all downstream locations and then using that embedding as predictor during downstream learning. In our paper, we show the useability of the learned location embeddings for predicting e.g. population density or biomes. #### Use the encoder ```python from huggingface_hub import hf_hub_download from load import get_satclip import torch device = "cuda" if torch.cuda.is_available() else "cpu" c = torch.randn(32, 2) # Represents a batch of 32 locations (lon/lat) model = get_satclip( hf_hub_download("microsoft/SatCLIP-ResNet50-L40", "satclip-resnet50-l40.ckpt"), device=device, ) # Only loads location encoder by default model.eval() with torch.no_grad(): emb = model(c.double().to(device)).detach().cpu() ``` ### Out-of-Scope Use Potential use cases of SatCLIP which we did build the model for and did not test for include: * The SatCLIP image encoder can in theory be used for helping with satellite image localization. If this application interests you, we encourage you to check work focusing on this, e.g. [Cepeda et al. (2023)](https://arxiv.org/abs/2309.16020). * Fine-grained geographic problems (i.e. problems constrained to small geographic areas or including many close locations) are out of scope for SatCLIP. SatCLIP location encoders are pretrained for global-scale use. * Any use outside of research projects is currently out of scope as we don't evaluate SatCLIP in production environments. ## Bias, Risks, and Limitations The following aspects should be considered before using SatCLIP: * SatCLIP is trained with freely available Sentinel-2 satellite imagery with a resolution of 10m per pixel. This allows the model to learn larger structures like cities or mountain ranges, but not small scale structures like individual vehicles or people. SatCLIP models are not applicable for fine-grained geospatial problems. * Location embeddings from SatCLIP only capture location characteristics that represent visually in satellite imagery (at our given resolution). Applications in problems that can not be captured through satellite images are out-of-score for SatCLIP. * Use cases in the defense or surveillance domain are always out-of-scope regardless of performance of SatCLIP. The use of artificial intelligence for such tasks is premature currently given the lack of testing norms and checks to ensure its fair use. ## How to Get Started with the Model Information about how to get started with SatCLIP training and deployment in downstream modelling can be found in our GitHub repository at [github.com/microsoft/satclip](https://github.com/microsoft/satclip). ## Training Details ### Training Data SatCLIP is trained using the *S2-100K* dataset which samples 100,000 multi-spectral satellite image scenes from Sentinel-2 via the [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/). Scenes are sampled approximately uniformly over landmass and are only chosen for the dataset if they don't exhibit cloud coverage. More details can be found in our paper. ### Training Procedure SatCLIP is trained via contrastive learning, by matching the correct image-location pairs in a batch of images and locations. Each image and each location is processed within an encoder and trasformed into a `[d]`-dimensional embedding. The training objective is to minimize the cosine similarity of image and location embeddings. #### Training Hyperparameters The key hyperparameters of SatCLIP are: batch size, learning rate and weight decay. On top of this, the specific location and vision encoder come with their separate hyperparameters. Key hyperparameters for the location encoder include resolution-specific hyperparameters in the positional encoding (e.g. number of Legendre polynomials used for spherical harmonics calculation) and the type, number of layers and capacity of the neural network deployed. For the vision encoder, key hyperparameters depend on the type of vision backbone deployed (e.g. ResNet, Vision Transformer). More details can be found in our paper. #### Training Speed Training SatCLIP for 500 epochs using pretrained vision encoders takes aoughly 2 days on a single A100 GPU. ## Evaluation SatCLIP can be evaluated throughout training and during downstream deployment. During training, we log model loss on a held-out, unseen validation set to monitor the training process for potential overfitting. When SatCLIP embeddings are used in downstream applications, any predictive score can be used for evaluation, e.g. mean squared error (MSE) for regression or accuracy for classification problems. ## Citation **BibTeX:** ```bibtex @article{klemmer2023satclip, title={SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery}, author={Klemmer, Konstantin and Rolf, Esther and Robinson, Caleb and Mackey, Lester and Russwurm, Marc}, journal={TBA}, year={2023} } ``` ## Model Card Contact For feedback and comments, contact [[email protected]](mailto:[email protected]).
almugabo/review_classifier
almugabo
2024-01-16T14:16:25Z
6
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "region:us" ]
text-classification
2024-01-16T14:09:11Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: [] pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 --- # Review classifier This model is a text classification model which, when given abstract of a paper, will indicate it if it is a review (1) or not (0). It is based om [SetFit](https://github.com/huggingface/setfit) model and uses the [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens <!-- - **Number of Classes:** Unknown --> <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("almugabo/review_classifier") # Run inference preds = model("I loved the spiderman movie!") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.9 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.0.1+cu118 - Datasets: 2.15.0 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
microsoft/SatCLIP-ResNet18-L10
microsoft
2024-01-16T14:10:51Z
0
0
null
[ "geospatial", "arxiv:2311.17179", "arxiv:2309.16020", "license:mit", "region:us" ]
null
2023-12-15T10:39:03Z
--- tags: - geospatial license: mit --- # Model Card for SatCLIP Here, we provide accompanying information about our model SatCLIP. This repository is for the ResNet18-L10 version of the model. ## Model Details ### Model Description SatCLIP is a model for contrastive pretraining of satellite image-location pairs. Training is analogous to the popular [CLIP](https://github.com/openai/CLIP) model. - **Developed by:** Konstantin Klemmer, Marc Russwurm, Esther Rolf, Caleb Robinson, Lester Mackey - **Model type:** Location and image encoder model pretrained using contrastive image-location matching. - **License:** MIT ### Model Sources - **Repository:** [github.com/microsoft/satclip](https://github.com/microsoft/satclip) - **Paper:** https://arxiv.org/abs/2311.17179 ## Uses SatCLIP includes an *image* and a *location* encoder. The image encoder processes multi-spectral satellite images of size `[height, width, 13]` into `[d]`-dimensional latent vectors. The location encoder processes location coordinates `[longitude, latitude]` into the same `[d]`-dimensional space. SatCLIP is a model trained and tested for use in research projects. It is not intended for use in production environments. ### Downstream Use The SatCLIP location encoder learns location characteristics, as captured by the satellite images, and can be deployed for downstream geospatial prediction tasks. Practically, this involves *querying* the location encoder for the `[d]`-dimensional vector embedding of all downstream locations and then using that embedding as predictor during downstream learning. In our paper, we show the useability of the learned location embeddings for predicting e.g. population density or biomes. #### Use the encoder ```python from huggingface_hub import hf_hub_download from load import get_satclip import torch device = "cuda" if torch.cuda.is_available() else "cpu" c = torch.randn(32, 2) # Represents a batch of 32 locations (lon/lat) model = get_satclip( hf_hub_download("microsoft/SatCLIP-ResNet18-L10", "satclip-resnet18-l10.ckpt"), device=device, ) # Only loads location encoder by default model.eval() with torch.no_grad(): emb = model(c.double().to(device)).detach().cpu() ``` ### Out-of-Scope Use Potential use cases of SatCLIP which we did build the model for and did not test for include: * The SatCLIP image encoder can in theory be used for helping with satellite image localization. If this application interests you, we encourage you to check work focusing on this, e.g. [Cepeda et al. (2023)](https://arxiv.org/abs/2309.16020). * Fine-grained geographic problems (i.e. problems constrained to small geographic areas or including many close locations) are out of scope for SatCLIP. SatCLIP location encoders are pretrained for global-scale use. * Any use outside of research projects is currently out of scope as we don't evaluate SatCLIP in production environments. ## Bias, Risks, and Limitations The following aspects should be considered before using SatCLIP: * SatCLIP is trained with freely available Sentinel-2 satellite imagery with a resolution of 10m per pixel. This allows the model to learn larger structures like cities or mountain ranges, but not small scale structures like individual vehicles or people. SatCLIP models are not applicable for fine-grained geospatial problems. * Location embeddings from SatCLIP only capture location characteristics that represent visually in satellite imagery (at our given resolution). Applications in problems that can not be captured through satellite images are out-of-score for SatCLIP. * Use cases in the defense or surveillance domain are always out-of-scope regardless of performance of SatCLIP. The use of artificial intelligence for such tasks is premature currently given the lack of testing norms and checks to ensure its fair use. ## How to Get Started with the Model Information about how to get started with SatCLIP training and deployment in downstream modelling can be found in our GitHub repository at [github.com/microsoft/satclip](https://github.com/microsoft/satclip). ## Training Details ### Training Data SatCLIP is trained using the *S2-100K* dataset which samples 100,000 multi-spectral satellite image scenes from Sentinel-2 via the [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/). Scenes are sampled approximately uniformly over landmass and are only chosen for the dataset if they don't exhibit cloud coverage. More details can be found in our paper. ### Training Procedure SatCLIP is trained via contrastive learning, by matching the correct image-location pairs in a batch of images and locations. Each image and each location is processed within an encoder and trasformed into a `[d]`-dimensional embedding. The training objective is to minimize the cosine similarity of image and location embeddings. #### Training Hyperparameters The key hyperparameters of SatCLIP are: batch size, learning rate and weight decay. On top of this, the specific location and vision encoder come with their separate hyperparameters. Key hyperparameters for the location encoder include resolution-specific hyperparameters in the positional encoding (e.g. number of Legendre polynomials used for spherical harmonics calculation) and the type, number of layers and capacity of the neural network deployed. For the vision encoder, key hyperparameters depend on the type of vision backbone deployed (e.g. ResNet, Vision Transformer). More details can be found in our paper. #### Training Speed Training SatCLIP for 500 epochs using pretrained vision encoders takes aoughly 2 days on a single A100 GPU. ## Evaluation SatCLIP can be evaluated throughout training and during downstream deployment. During training, we log model loss on a held-out, unseen validation set to monitor the training process for potential overfitting. When SatCLIP embeddings are used in downstream applications, any predictive score can be used for evaluation, e.g. mean squared error (MSE) for regression or accuracy for classification problems. ## Citation **BibTeX:** ```bibtex @article{klemmer2023satclip, title={SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery}, author={Klemmer, Konstantin and Rolf, Esther and Robinson, Caleb and Mackey, Lester and Russwurm, Marc}, journal={TBA}, year={2023} } ``` ## Model Card Contact For feedback and comments, contact [[email protected]](mailto:[email protected]).
SJ-Donald/kor-hate-sentence
SJ-Donald
2024-01-16T14:09:02Z
13
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "kcbert", "kor-hate-sentence", "sentimental-analysis", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T07:41:17Z
--- license: apache-2.0 tags: - bert - kcbert - kor-hate-sentence - sentimental-analysis --- # SJ-Donald/kor-hate-sentence SJ-Donald/kor-hate-sentence is pretrained model using follow: ## Models * [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) ## Datasets * [SJ-Donald/kor-hate-sentence](https://huggingface.co/datasets/SJ-Donald/kor-hate-sentence) ## How to use ```Python from transformers import TextClassificationPipeline, BertForSequenceClassification, AutoTokenizer+ model_name = 'SJ-Donald/kor-hate-sentence' model = BertForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) pipe = TextClassificationPipeline( model = model, tokenizer = tokenizer, device = 0, # cpu: -1, gpu: gpu number return_all_scores = True, function_to_apply = 'sigmoid' ) for result in pipe("그렇게 게임하면 어떡하냐 방송 접어라 허접아")[0]: print(result) {'label': 'hate', 'score': 0.9767946600914001} {'label': 'clean', 'score': 0.023970650508999825} ```
LoneStriker/Nous-Hermes-2-Mixtral-8x7B-SFT-4.0bpw-h6-exl2
LoneStriker
2024-01-16T14:08:14Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T13:58:25Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-SFT results: [] license: apache-2.0 language: - en --- # Nous Hermes 2 - Mixtral 8x7B - SFT ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B SFT is the supervised finetune only version of our new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT only version of Mixtral Hermes 2, we have also released an SFT+DPO version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B SFT is the bedrock for major improvements on many of the benchmarks below compared to the base Mixtral model, and is the SFT only version of our first model to beat the flagship Mixtral Finetune by MistralAI (the DPO version). ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5904|± |0.0144| | | |acc_norm|0.6323|± |0.0141| |arc_easy | 0|acc |0.8594|± |0.0071| | | |acc_norm|0.8607|± |0.0071| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6592|± |0.0047| | | |acc_norm|0.8434|± |0.0036| |openbookqa | 0|acc |0.3400|± |0.0212| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7569|± |0.0121| ``` Average: 75.36 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2441|± |0.0270| | | |acc_norm|0.2598|± |0.0276| |agieval_logiqa_en | 0|acc |0.4025|± |0.0192| | | |acc_norm|0.3978|± |0.0192| |agieval_lsat_ar | 0|acc |0.2391|± |0.0282| | | |acc_norm|0.2043|± |0.0266| |agieval_lsat_lr | 0|acc |0.5353|± |0.0221| | | |acc_norm|0.5098|± |0.0222| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.5948|± |0.0300| |agieval_sat_en | 0|acc |0.7961|± |0.0281| | | |acc_norm|0.7816|± |0.0289| |agieval_sat_en_without_passage| 0|acc |0.4757|± |0.0349| | | |acc_norm|0.4515|± |0.0348| |agieval_sat_math | 0|acc |0.4818|± |0.0338| | | |acc_norm|0.3909|± |0.0330| ``` Average: 44.89 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.5789|± |0.0359| |bigbench_date_understanding | 0|multiple_choice_grade|0.7154|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5388|± |0.0311| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4680|± |0.0264| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3260|± |0.0210| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2443|± |0.0163| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5233|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3700|± |0.0216| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6665|± |0.0105| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2505|± |0.0137| |bigbench_snarks | 0|multiple_choice_grade|0.7127|± |0.0337| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6592|± |0.0151| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.6860|± |0.0147| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2200|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1503|± |0.0085| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5233|± |0.0289| ``` Average: 48.69 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/S3_tdH822r9UvkGFDiYam.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/paet9FsASWPWa6KJs3mm-.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/rHmkUnYLTWwq0cuVzMegL.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
Dhanraj1503/q-FrozenLake-v1-4x4-noSlippery
Dhanraj1503
2024-01-16T14:01:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T14:01:29Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Dhanraj1503/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SungjunEom/dqn-SpaceInvadersNoFrameskip-v4
SungjunEom
2024-01-16T13:56:59Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T13:56:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 545.50 +/- 165.96 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SungjunEom -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SungjunEom -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SungjunEom ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
MaziyarPanahi/notus-7b-v1-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T13:55:28Z
20
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "argilla/notus-7b-v1", "tensorboard", "dpo", "rlaif", "preference", "ultrafeedback", "en", "dataset:argilla/ultrafeedback-binarized-preferences", "base_model:alignment-handbook/zephyr-7b-sft-full", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-16T13:50:41Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - argilla/notus-7b-v1 - transformers - tensorboard - safetensors - mistral - text-generation - dpo - rlaif - preference - ultrafeedback - en - dataset:argilla/ultrafeedback-binarized-preferences - base_model:alignment-handbook/zephyr-7b-sft-full - license:mit - model-index - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # notus-7b-v1-Mistral-7B-Instruct-v0.1 notus-7b-v1-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: argilla/notus-7b-v1 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/notus-7b-v1-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
LoneStriker/Nous-Hermes-2-Mixtral-8x7B-SFT-3.5bpw-h6-exl2
LoneStriker
2024-01-16T13:49:07Z
7
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T13:40:32Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-SFT results: [] license: apache-2.0 language: - en --- # Nous Hermes 2 - Mixtral 8x7B - SFT ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B SFT is the supervised finetune only version of our new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT only version of Mixtral Hermes 2, we have also released an SFT+DPO version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B SFT is the bedrock for major improvements on many of the benchmarks below compared to the base Mixtral model, and is the SFT only version of our first model to beat the flagship Mixtral Finetune by MistralAI (the DPO version). ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5904|± |0.0144| | | |acc_norm|0.6323|± |0.0141| |arc_easy | 0|acc |0.8594|± |0.0071| | | |acc_norm|0.8607|± |0.0071| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6592|± |0.0047| | | |acc_norm|0.8434|± |0.0036| |openbookqa | 0|acc |0.3400|± |0.0212| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7569|± |0.0121| ``` Average: 75.36 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2441|± |0.0270| | | |acc_norm|0.2598|± |0.0276| |agieval_logiqa_en | 0|acc |0.4025|± |0.0192| | | |acc_norm|0.3978|± |0.0192| |agieval_lsat_ar | 0|acc |0.2391|± |0.0282| | | |acc_norm|0.2043|± |0.0266| |agieval_lsat_lr | 0|acc |0.5353|± |0.0221| | | |acc_norm|0.5098|± |0.0222| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.5948|± |0.0300| |agieval_sat_en | 0|acc |0.7961|± |0.0281| | | |acc_norm|0.7816|± |0.0289| |agieval_sat_en_without_passage| 0|acc |0.4757|± |0.0349| | | |acc_norm|0.4515|± |0.0348| |agieval_sat_math | 0|acc |0.4818|± |0.0338| | | |acc_norm|0.3909|± |0.0330| ``` Average: 44.89 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.5789|± |0.0359| |bigbench_date_understanding | 0|multiple_choice_grade|0.7154|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5388|± |0.0311| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4680|± |0.0264| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3260|± |0.0210| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2443|± |0.0163| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5233|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3700|± |0.0216| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6665|± |0.0105| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2505|± |0.0137| |bigbench_snarks | 0|multiple_choice_grade|0.7127|± |0.0337| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6592|± |0.0151| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.6860|± |0.0147| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2200|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1503|± |0.0085| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5233|± |0.0289| ``` Average: 48.69 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/S3_tdH822r9UvkGFDiYam.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/paet9FsASWPWa6KJs3mm-.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/rHmkUnYLTWwq0cuVzMegL.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
jvh/Mistral-NeuralBeagle14-OpenOrca-v3
jvh
2024-01-16T13:48:34Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:merge:Open-Orca/Mistral-7B-OpenOrca", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T13:39:23Z
--- base_model: - Open-Orca/Mistral-7B-OpenOrca - mlabonne/NeuralBeagle14-7B tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mlabonne/NeuralBeagle14-7B parameters: weight: 0.7 - model: Open-Orca/Mistral-7B-OpenOrca parameters: weight: 0.3 merge_method: linear dtype: float16 # slices: # - sources: # - model: Open-Orca/Mistral-7B-OpenOrca # layer_range: [0, 32] # - model: mlabonne/NeuralBeagle14-7B # layer_range: [0, 32] # merge_method: slerp # base_model: Open-Orca/Mistral-7B-OpenOrca # parameters: # t: # - filter: self_attn # value: [0, 0.5, 0.3, 0.7, 1] # - filter: mlp # value: [1, 0.5, 0.7, 0.3, 0] # - value: 0.5 # dtype: bfloat16 ```
intervitens/Nous-Hermes-2-Mixtral-8x7B-DPO-3.7bpw-h6-exl2-rpcal
intervitens
2024-01-16T13:42:28Z
7
4
transformers
[ "transformers", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T11:59:52Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] license: apache-2.0 language: - en --- Quantized using 200 samples of 8192 tokens from an RP-oriented [PIPPA](https://huggingface.co/datasets/royallab/PIPPA-cleaned) dataset. For purposes other than RP, use quantizations done on a more general dataset. Requires ExllamaV2 version 0.0.11 and up. Original model link: [NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) Original model README below. *** # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/jtJ54JGMyknU_4Tmw87_i.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
vahid625/test
vahid625
2024-01-16T13:40:26Z
0
0
diffusers
[ "diffusers", "token-classification", "fa", "dataset:GAIR/MathPile", "region:us" ]
token-classification
2024-01-16T13:39:23Z
--- datasets: - GAIR/MathPile language: - fa metrics: - brier_score library_name: diffusers pipeline_tag: token-classification ---
sadickam/chs-bert
sadickam
2024-01-16T13:38:50Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T13:26:00Z
--- license: mit widget: - text: >- On november 27 2012 employee 1 was operating an asphalt-pulverizing machine. The employees work clothing zipper was caught in the asphalt-pulverizing machine pulling his body into the squeeze point action of the machine. Employee 1 was amputated from the abdominal point of his body. The employee was pronounced dead at the scene. - text: >- On april 10 2013 two employees (employee 1 employee 2) with masonry llc were in a boom truck doing repair work on a chimney when the basket came in contact with a 7200 volt power line. Employee 1 was killed. No additional information was provided about employee 2. ---
KingJulian687/a2c-PandaReachDense-v3
KingJulian687
2024-01-16T13:37:36Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T13:33:03Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.07 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aldigobbler/test_2_pretrain
aldigobbler
2024-01-16T13:32:32Z
16
0
transformers
[ "transformers", "tensorboard", "safetensors", "opt", "text-generation", "generated_from_trainer", "dataset:wikitext", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T13:13:13Z
--- tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy model-index: - name: test_2_pretrain results: - task: name: Causal Language Modeling type: text-generation dataset: name: wikitext wikitext-2-v1 type: wikitext args: wikitext-2-v1 metrics: - name: Accuracy type: accuracy value: 0.2759307022812658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_2_pretrain This model is a fine-tuned version of [](https://huggingface.co/) on the wikitext wikitext-2-v1 dataset. It achieves the following results on the evaluation set: - Loss: 5.1341 - Accuracy: 0.2759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Christ0pher/Projecte-Aina-FLOR-6.3B-GGUF
Christ0pher
2024-01-16T13:29:54Z
26
0
transformers
[ "transformers", "gguf", "bloom", "text-generation", "FLOR", "spanish", "catalan", "english", "base_model:projecte-aina/FLOR-6.3B", "base_model:quantized:projecte-aina/FLOR-6.3B", "autotrain_compatible", "region:us" ]
text-generation
2024-01-12T13:12:09Z
--- anguage: - en - es - ca licence: - apache-2.0 tags: - FLOR - bloom - spanish - catalan - english - gguf pipeline_tag: text-generation model_name: FLOR-6.3B base_model: projecte-aina/FLOR-6.3B inference: false model_creator: Projecte AINA model_type: BLOOM --- # Projecte AINA - FLOR-6.3B - GGUF - Model creator: [Projecte AINA](https://huggingface.co/projecte-aina) - Original model: [FLOR-6.3B](https://huggingface.co/projecte-aina/FLOR-6.3B) <!-- description start --> ## Description This repo contains GGUF format model files for [Projecte AINA's FLOR-6.3B](https://huggingface.co/projecte-aina/FLOR-6.3B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end -->
Mik99/phi-2_test_06
Mik99
2024-01-16T13:24:51Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "region:us" ]
null
2024-01-16T13:24:32Z
--- library_name: peft base_model: microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
MaziyarPanahi/mistral-ft-optimized-1218-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T13:20:09Z
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "OpenPipe/mistral-ft-optimized-1218", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-16T13:15:21Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - OpenPipe/mistral-ft-optimized-1218 - transformers - safetensors - mistral - text-generation - en - license:cc-by-nc-4.0 - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # mistral-ft-optimized-1218-Mistral-7B-Instruct-v0.1 mistral-ft-optimized-1218-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/mistral-ft-optimized-1218-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ntc-ai/SDXL-LoRA-slider.grasping
ntc-ai
2024-01-16T13:17:42Z
16
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-16T13:17:38Z
--- language: - en thumbnail: "images/evaluate/grasping.../grasping_17_3.0.png" widget: - text: grasping output: url: images/grasping_17_3.0.png - text: grasping output: url: images/grasping_19_3.0.png - text: grasping output: url: images/grasping_20_3.0.png - text: grasping output: url: images/grasping_21_3.0.png - text: grasping output: url: images/grasping_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "grasping" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - grasping (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/grasping_17_-3.0.png" width=256 height=256 /> | <img src="images/grasping_17_0.0.png" width=256 height=256 /> | <img src="images/grasping_17_3.0.png" width=256 height=256 /> | | <img src="images/grasping_19_-3.0.png" width=256 height=256 /> | <img src="images/grasping_19_0.0.png" width=256 height=256 /> | <img src="images/grasping_19_3.0.png" width=256 height=256 /> | | <img src="images/grasping_20_-3.0.png" width=256 height=256 /> | <img src="images/grasping_20_0.0.png" width=256 height=256 /> | <img src="images/grasping_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` grasping ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.grasping', weight_name='grasping.safetensors', adapter_name="grasping") # Activate the LoRA pipe.set_adapters(["grasping"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, grasping" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
arsenal997/pokemon-sdxl-lora
arsenal997
2024-01-16T13:11:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-16T13:11:55Z
--- license: creativeml-openrail-m ---
textminr/ner-multilingual-bert
textminr
2024-01-16T13:11:25Z
27
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-11T20:49:45Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner-multilingual-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-multilingual-bert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Precision: 0.9998 - Recall: 0.9991 - F1: 0.9994 - Accuracy: 1.0000 ## Model description Trained to detect author and publish dates out of text beginnings ## Intended uses & limitations More information needed ## Training and evaluation data See [Dataset](https://huggingface.co/datasets/textminr/ner_tokenized) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0108 | 0.2 | 250 | 0.0039 | 0.9942 | 0.9818 | 0.9880 | 0.9992 | | 0.0022 | 0.4 | 500 | 0.0021 | 0.9863 | 0.9861 | 0.9862 | 0.9993 | | 0.0006 | 0.61 | 750 | 0.0007 | 0.9998 | 0.9975 | 0.9986 | 0.9999 | | 0.0004 | 0.81 | 1000 | 0.0002 | 0.9998 | 0.9991 | 0.9994 | 1.0000 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
KangXen/enmr-full
KangXen
2024-01-16T13:08:28Z
4
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-01-16T13:07:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CLMBR/old-pp-mod-subj-lstm-0
CLMBR
2024-01-16T13:07:58Z
3
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-12T16:01:27Z
--- tags: - generated_from_trainer model-index: - name: pp-mod-subj-lstm-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pp-mod-subj-lstm-0 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7923 | 0.03 | 76319 | 4.8102 | | 4.5063 | 1.03 | 152638 | 4.5307 | | 4.365 | 0.03 | 228957 | 4.3961 | | 4.2747 | 1.03 | 305276 | 4.3126 | | 4.212 | 0.03 | 381595 | 4.2551 | | 4.1642 | 1.03 | 457914 | 4.2132 | | 4.1266 | 0.03 | 534233 | 4.1807 | | 4.0965 | 1.03 | 610552 | 4.1574 | | 4.0676 | 0.03 | 686871 | 4.1386 | | 4.0454 | 1.03 | 763190 | 4.1230 | | 4.0256 | 0.03 | 839509 | 4.1096 | | 4.0096 | 0.03 | 915828 | 4.0983 | | 3.9875 | 1.03 | 992147 | 4.0892 | | 3.9708 | 0.03 | 1068466 | 4.0805 | | 3.9619 | 1.03 | 1144785 | 4.0743 | | 3.9492 | 0.03 | 1221104 | 4.0677 | | 3.9395 | 1.03 | 1297423 | 4.0635 | | 3.9333 | 0.03 | 1373743 | 4.0583 | | 3.9224 | 1.03 | 1450063 | 4.0539 | | 3.9179 | 0.03 | 1526383 | 4.0510 | | 3.9137 | 1.03 | 1602703 | 4.0476 | | 3.9059 | 2.03 | 1679023 | 4.0453 | | 3.8991 | 0.03 | 1755343 | 4.0420 | | 3.8915 | 1.03 | 1831663 | 4.0406 | | 3.8835 | 2.03 | 1907983 | 4.0377 | | 3.88 | 0.03 | 1984303 | 4.0361 | | 3.8762 | 1.03 | 2060623 | 4.0347 | | 3.8699 | 0.03 | 2136943 | 4.0329 | | 3.8691 | 0.03 | 2213263 | 4.0315 | | 3.8616 | 1.03 | 2289583 | 4.0305 | | 3.8593 | 0.03 | 2365903 | 4.0288 | | 3.8529 | 1.03 | 2442223 | 4.0275 | | 3.8463 | 0.03 | 2518543 | 4.0265 | | 3.845 | 1.03 | 2594863 | 4.0255 | | 3.8398 | 0.03 | 2671183 | 4.0249 | | 3.8416 | 1.03 | 2747503 | 4.0241 | | 3.8438 | 2.03 | 2823823 | 4.0235 | | 3.8409 | 0.03 | 2900143 | 4.0229 | | 3.8403 | 1.03 | 2976463 | 4.0227 | | 3.8357 | 2.02 | 3052726 | 4.0221 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
jvh/Mistral-NeuralBeagle14-OpenOrca-v2
jvh
2024-01-16T13:03:03Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:merge:Open-Orca/Mistral-7B-OpenOrca", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T13:00:02Z
--- base_model: - mlabonne/NeuralBeagle14-7B - Open-Orca/Mistral-7B-OpenOrca tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Open-Orca/Mistral-7B-OpenOrca layer_range: [0, 32] - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] merge_method: slerp base_model: Open-Orca/Mistral-7B-OpenOrca parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
LoneStriker/Nous-Hermes-2-Mixtral-8x7B-DPO-5.0bpw-h6-exl2
LoneStriker
2024-01-16T13:02:07Z
7
7
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T12:50:21Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] license: apache-2.0 language: - en --- # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7-JtX01p8c4tcgOU28BRJ.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
0xFE00/q-FrozenLake-v1-4x4-noSlippery
0xFE00
2024-01-16T13:00:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T13:00:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="0xFE00/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DMLuck/phi_finetuned2.0
DMLuck
2024-01-16T12:55:59Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "phi", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "region:us" ]
null
2024-01-15T10:46:52Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-1_5 model-index: - name: phi_finetuned2.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi_finetuned2.0 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
jvh/Mistral-NeuralBeagle14-OpenOrca
jvh
2024-01-16T12:54:28Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:merge:Open-Orca/Mistral-7B-OpenOrca", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T12:51:32Z
--- base_model: - Open-Orca/Mistral-7B-OpenOrca - mlabonne/NeuralBeagle14-7B tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Open-Orca/Mistral-7B-OpenOrca layer_range: [0, 32] - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralBeagle14-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
MaziyarPanahi/Ferret_7B-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T12:49:46Z
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "euclaise/Ferret_7B", "pytorch", "dataset:euclaise/MiniCoT", "dataset:euclaise/SciCoT", "dataset:euclaise/symtune_mini", "dataset:euclaise/mathoverflow-accepted", "dataset:euirim/goodwiki", "license:other", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-16T12:44:56Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - euclaise/Ferret_7B - transformers - pytorch - mistral - text-generation - dataset:euclaise/MiniCoT - dataset:euclaise/SciCoT - dataset:euclaise/symtune_mini - dataset:euclaise/mathoverflow-accepted - dataset:euirim/goodwiki - license:other - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # Ferret_7B-Mistral-7B-Instruct-v0.1 Ferret_7B-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [euclaise/Ferret_7B](https://huggingface.co/euclaise/Ferret_7B) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: euclaise/Ferret_7B layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Ferret_7B-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Aedelon/a2c-PandaReachDense-v3
Aedelon
2024-01-16T12:48:18Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T12:43:59Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.20 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tarun26/exp_model_1
tarun26
2024-01-16T12:47:20Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T12:46:53Z
--- tags: - generated_from_trainer model-index: - name: exp_model_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exp_model_1 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 0.2340 | | No log | 2.0 | 2 | 0.2143 | | No log | 3.0 | 3 | 0.2062 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
wangrongsheng/Aurora-dpo
wangrongsheng
2024-01-16T12:43:08Z
0
1
null
[ "safetensors", "text-generation", "zh", "en", "dataset:shareAI/ShareGPT-Chinese-English-90k", "arxiv:2312.14557", "doi:10.57967/hf/1635", "license:apache-2.0", "region:us" ]
text-generation
2024-01-16T12:31:34Z
--- license: apache-2.0 datasets: - shareAI/ShareGPT-Chinese-English-90k language: - zh - en pipeline_tag: text-generation --- ![](./assets/aurora.png) <div align="center"> <h2> Aurora: Activating chinese chat capability for Mistral-8x7B sparse Mixture-of-Experts through Instruction-Tuning </h2> </div> 1. <h1>Please follow our Github: <a href="https://github.com/WangRongsheng/Aurora">https://github.com/WangRongsheng/Aurora</a></h1> 2. <h1>Please follow our Paper: <a href="https://arxiv.org/abs/2312.14557">https://arxiv.org/abs/2312.14557</a></h1> ## Overview Existing research has demonstrated that refining large language models (LLMs) through the utilization of machine-generated instruction-following data empowers these models to exhibit impressive zero-shot capabilities for novel tasks, without requiring human-authored instructions. In this paper, we systematically investigate, preprocess, and integrate three Chinese instruction-following datasets with the aim of enhancing the Chinese conversational capabilities of Mixtral-8x7B sparse Mixture-of-Experts model. Through instruction fine-tuning on this carefully processed dataset, we successfully construct the Mixtral-8x7B sparse Mixture-of-Experts model named "Aurora." To assess the performance of Aurora, we utilize three widely recognized benchmark tests: C-Eval, MMLU, and CMMLU. Empirical studies validate the effectiveness of instruction fine-tuning applied to Mixtral-8x7B sparse Mixture-of-Experts model. This work is pioneering in the execution of instruction fine-tuning on a sparse expert-mixed model, marking a significant breakthrough in enhancing the capabilities of this model architecture. ![](./training_loss.png) ## Usage ```python import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread from peft import PeftModel import time model_name_or_path = "mistralai/Mixtral-8x7B-Instruct-v0.1" # download weights from https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 lora_weights = "wangrongsheng/Aurora" # download weights from https://huggingface.co/wangrongsheng/Aurora tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model0 = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=True, device_map="auto", torch_dtype=torch.bfloat16) model = PeftModel.from_pretrained( model0, lora_weights, ) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [0,] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def convert_history_to_text(history): text = "" if len(history) > 1: text = "<s> " + "".join( [ "".join( [ f"[INST]{item[0]}[/INST] {item[1]} ", ] ) for item in history[:-1] ] ) + "</s> " text += "".join( [ "".join( [ f"[INST]{history[-1][0]}[/INST]", ] ) ] ) return text def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() messages = convert_history_to_text(history_transformer_format) model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=4096, do_sample=True, top_p=0.95, top_k=1000, temperature=1.0, num_beams=1, pad_token_id=tokenizer.eos_token_id, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" t1 = time.time() count = 0 for new_token in streamer: if new_token != '<': partial_message += new_token count += 1 yield partial_message t2 = time.time() speed = count/(t2-t1) print("inference speed: %f tok/s" % speed) gr.ChatInterface(predict,chatbot=gr.Chatbot(height=600,),title="MoE").queue().launch() ``` ## Citation If you find our work helpful, feel free to give us a cite. ```latex @misc{wang2023auroraactivating, title={Aurora:Activating Chinese chat capability for Mixtral-8x7B sparse Mixture-of-Experts through Instruction-Tuning}, author={Rongsheng Wang and Haoming Chen and Ruizhe Zhou and Yaofei Duan and Kunyan Cai and Han Ma and Jiaxi Cui and Jian Li and Patrick Cheong-Iao Pang and Yapeng Wang and Tao Tan}, year={2023}, eprint={2312.14557}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
MaziyarPanahi/Synatra-7B-v0.3-dpo-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T12:40:23Z
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "maywell/Synatra-7B-v0.3-dpo", "pytorch", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-16T12:35:32Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - maywell/Synatra-7B-v0.3-dpo - transformers - pytorch - mistral - text-generation - license:cc-by-sa-4.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us --- # Synatra-7B-v0.3-dpo-Mistral-7B-Instruct-v0.1 Synatra-7B-v0.3-dpo-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [maywell/Synatra-7B-v0.3-dpo](https://huggingface.co/maywell/Synatra-7B-v0.3-dpo) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: maywell/Synatra-7B-v0.3-dpo layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Synatra-7B-v0.3-dpo-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Marchanjo/mRAT-SQL
Marchanjo
2024-01-16T12:35:05Z
0
0
null
[ "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "license:apache-2.0", "region:us" ]
null
2024-01-10T12:12:22Z
--- license: apache-2.0 --- Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
mu0gum/AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.2
mu0gum
2024-01-16T12:34:49Z
57
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T11:49:49Z
--- license: cc-by-nc-4.0 --- # AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.2 베이스 모델 : 42dot/42dot_LLM-PLM-1.3B 학습 데이터 : 자체 제작한 Open Orca 스타일 데이터셋 약 26,000건 학습 방법 : Lora Lora Config - lora_alpha: 16 - lora_dropout: 0.05, - r: 8 ## ko-lm-evaluation-harness(0-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|kobest_sentineg|kohatespeech|kohatespeech_apeach|kohatespeech_gen_bias|korunsmile|nsmc|pawsx_ko| |--|--|--|--|--|--|--|--|--|--| |0.5014245014245015|0.702|0.434|0.6876574307304786|0.2951167728237792|0.5106100795755968|0.14225053078556263|0.3627087567466955|0.60714|0.5265|
rAIfle/Nous-Hermes-2-Mixtral-8x7B-DPO-exl2-rpcal
rAIfle
2024-01-16T12:32:56Z
0
0
null
[ "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-16T08:11:15Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] license: apache-2.0 language: - en --- Quantized using 200 samples of 8192 tokens from an RP-oriented [PIPPA](https://huggingface.co/datasets/royallab/PIPPA-cleaned) dataset. Branches: - `main` -- `measurement.json` - `5b6h` -- 5bpw, 6bit lm_head Requires ExllamaV2 version 0.0.11 and up. Original model link: [NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) Original model README below. *** # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7-JtX01p8c4tcgOU28BRJ.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
nxnag/absa-transport
nxnag
2024-01-16T12:32:52Z
4
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T12:20:16Z
--- license: mit --- This model is used to measure aspect-based sentiment. It has fine-tuned py-absa model checkpoint on real public transport reviews. f1_score = 0.91
s3pi/peft-lora-with-MLP-model
s3pi
2024-01-16T12:32:23Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2024-01-16T12:32:19Z
--- library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
NND-project/Clinical_History_Mekkes_GruD
NND-project
2024-01-16T12:28:20Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-01-16T09:58:26Z
--- license: mit --- # Clinical_History_Mekkes_GruD This model extens upon the earlier built model from [this publication](https://www.nature.com/articles/s41598-018-24271-9). It was retrained on the temporal clinical disease trajectories combined with the neuropathological diagnoses of the Netherlands Brain Bank donors. More information regarding the implementation of this model can be found in our [associated publication](https://www.medrxiv.org/content/10.1101/2022.09.22.22280158v1) and the associated Github and code can be found [here](https://github.com/NetherlandsNeurogeneticsDatabase/Clinical_History) --- Please site our publication when using this model.
MaziyarPanahi/japanese-stablelm-instruct-gamma-7b-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-16T12:27:54Z
21
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "stabilityai/japanese-stablelm-instruct-gamma-7b", "japanese-stablelm", "causal-lm", "ja", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational" ]
text-generation
2024-01-16T12:23:00Z
--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - stabilityai/japanese-stablelm-instruct-gamma-7b - transformers - safetensors - mistral - text-generation - japanese-stablelm - causal-lm - ja - arxiv:2310.06825 - license:apache-2.0 - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # japanese-stablelm-instruct-gamma-7b-Mistral-7B-Instruct-v0.1 japanese-stablelm-instruct-gamma-7b-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [stabilityai/japanese-stablelm-instruct-gamma-7b](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: stabilityai/japanese-stablelm-instruct-gamma-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/japanese-stablelm-instruct-gamma-7b-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
kavanatn/my-pet-dog
kavanatn
2024-01-16T12:23:18Z
4
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T12:19:15Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by kavanatn following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 4BD22CS066 Sample pictures of this concept: ![0](https://huggingface.co/kavanatn/my-pet-dog/resolve/main/sample_images/xzg_(8).jpg)
seatond/revamped_rank32
seatond
2024-01-16T12:07:58Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "region:us" ]
null
2024-01-12T16:04:43Z
--- library_name: peft base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
dhairyakhant/tinyllama-test
dhairyakhant
2024-01-16T12:07:01Z
59
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T07:44:59Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - trl - sft - generated_from_trainer model-index: - name: tinyllama-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama-test This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
InfinitiZEr0/demo
InfinitiZEr0
2024-01-16T12:05:13Z
0
0
null
[ "region:us" ]
null
2024-01-16T11:04:37Z
--- title: demo app_file: app.py sdk: gradio sdk_version: 4.14.0 ---
Verlocksss/ppo_lunarlander_v2
Verlocksss
2024-01-16T12:02:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T12:00:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.51 +/- 19.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AswanthCManoj/azma-OpenHermes-2.5-Mistral-7B-agent-v1
AswanthCManoj
2024-01-16T11:56:25Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "region:us" ]
null
2024-01-15T12:16:30Z
--- library_name: peft base_model: teknium/OpenHermes-2.5-Mistral-7B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2
Mik99/phi-2_test_05
Mik99
2024-01-16T11:55:10Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "region:us" ]
null
2024-01-16T11:54:51Z
--- library_name: peft base_model: microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Pablo94/racism-finetuned-detests-wandb
Pablo94
2024-01-16T11:52:58Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:davidmasip/racism", "base_model:finetune:davidmasip/racism", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:50:01Z
--- license: cc base_model: davidmasip/racism tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: racism-finetuned-detests-wandb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # racism-finetuned-detests-wandb This model is a fine-tuned version of [davidmasip/racism](https://huggingface.co/davidmasip/racism) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4148 - Accuracy: 0.8265 - F1-score: 0.7569 - Precision: 0.7532 - Recall: 0.7608 - Auc: 0.7608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| | 0.3742 | 1.0 | 44 | 0.3319 | 0.8412 | 0.7461 | 0.7899 | 0.7221 | 0.7221 | | 0.092 | 2.0 | 88 | 0.4148 | 0.8265 | 0.7569 | 0.7532 | 0.7608 | 0.7608 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Shijia/xlmroberta_clir_back_val_kin_mixup
Shijia
2024-01-16T11:51:15Z
5
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:50:00Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlmroberta_clir_back_val_kin_mixup results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta_clir_back_val_kin_mixup This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1157 - Spearman Corr: 0.2950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.0 | 258 | 0.0961 | 0.2334 | | 0.076 | 2.0 | 516 | 0.1302 | 0.2910 | | 0.076 | 3.0 | 774 | 0.1486 | 0.3241 | | 0.0345 | 4.0 | 1032 | 0.1838 | 0.2868 | | 0.0345 | 5.0 | 1290 | 0.1280 | 0.3002 | | 0.0206 | 6.0 | 1548 | 0.1525 | 0.3155 | | 0.0206 | 7.0 | 1806 | 0.1285 | 0.3167 | | 0.0149 | 8.0 | 2064 | 0.1127 | 0.3023 | | 0.0149 | 9.0 | 2322 | 0.1136 | 0.2949 | | 0.0117 | 10.0 | 2580 | 0.1157 | 0.2950 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Federic/lora-fine-tuning-llama2-SQL-lora-1000-3-dataset-size-mistral
Federic
2024-01-16T11:50:46Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-01-16T09:39:35Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - generated_from_trainer model-index: - name: lora-fine-tuning-llama2-SQL-lora-1000-3-dataset-size-mistral results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora-fine-tuning-llama2-SQL-lora-1000-3-dataset-size-mistral This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
MochaPixel/RealisticBeauty
MochaPixel
2024-01-16T11:49:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-16T11:39:28Z
--- license: creativeml-openrail-m ---
LoneStriker/Nous-Hermes-2-Mixtral-8x7B-DPO-3.0bpw-h6-exl2
LoneStriker
2024-01-16T11:46:12Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T11:39:00Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] license: apache-2.0 language: - en --- # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7-JtX01p8c4tcgOU28BRJ.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
tmnam20/xlm-roberta-base-wnli-100
tmnam20
2024-01-16T11:42:23Z
3
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:40:34Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-wnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/WNLI type: tmnam20/VieGLUE config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-wnli-100 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6868 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/xlm-roberta-base-wnli-10
tmnam20
2024-01-16T11:40:34Z
7
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:38:32Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-wnli-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/WNLI type: tmnam20/VieGLUE config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.4647887323943662 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-wnli-10 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Accuracy: 0.4648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
manojnac/my-pet-dog
manojnac
2024-01-16T11:37:40Z
2
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T11:33:39Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by manojnac following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 4BD22CS080 Sample pictures of this concept: ![0](https://huggingface.co/manojnac/my-pet-dog/resolve/main/sample_images/xzg_(4).jpg)
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow19
FounderOfHuggingface
2024-01-16T11:37:15Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:37:14Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow18
FounderOfHuggingface
2024-01-16T11:36:32Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:36:32Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow16
FounderOfHuggingface
2024-01-16T11:35:08Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:35:05Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
tmnam20/xlm-roberta-base-vtoc-10
tmnam20
2024-01-16T11:35:02Z
4
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:33:12Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-vtoc-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VTOC type: tmnam20/VieGLUE config: vtoc split: validation args: vtoc metrics: - name: Accuracy type: accuracy value: 0.829601310759148 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-vtoc-10 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/VTOC dataset. It achieves the following results on the evaluation set: - Loss: 0.6232 - Accuracy: 0.8296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5738 | 2.19 | 500 | 0.6383 | 0.8241 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow15
FounderOfHuggingface
2024-01-16T11:34:22Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:34:20Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow14
FounderOfHuggingface
2024-01-16T11:33:36Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:33:35Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow12
FounderOfHuggingface
2024-01-16T11:32:08Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:32:07Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
tmnam20/xlm-roberta-base-vsmec-100
tmnam20
2024-01-16T11:31:17Z
22
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:29:05Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-vsmec-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSMEC type: tmnam20/VieGLUE config: vsmec split: validation args: vsmec metrics: - name: Accuracy type: accuracy value: 0.5524781341107872 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-vsmec-100 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/VSMEC dataset. It achieves the following results on the evaluation set: - Loss: 1.2599 - Accuracy: 0.5525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1499 | 2.87 | 500 | 1.2699 | 0.5496 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
IanTseng/vis_items_with_hand_classfier
IanTseng
2024-01-16T11:30:28Z
3
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-16T07:52:10Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: vis_items_with_hand_classfier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vis_items_with_hand_classfier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0886 - Validation Loss: 0.0126 - Train Accuracy: 0.9981 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 32405, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3574 | 0.0613 | 0.9932 | 0 | | 0.1445 | 0.0334 | 0.9932 | 1 | | 0.1196 | 0.0282 | 0.9963 | 2 | | 0.0986 | 0.0208 | 0.9963 | 3 | | 0.0886 | 0.0126 | 0.9981 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow3
FounderOfHuggingface
2024-01-16T11:25:48Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:25:42Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Mik99/phi-2_test_04
Mik99
2024-01-16T11:25:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "region:us" ]
null
2024-01-16T11:24:45Z
--- library_name: peft base_model: microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow2
FounderOfHuggingface
2024-01-16T11:25:01Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:25:00Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow1
FounderOfHuggingface
2024-01-16T11:24:11Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:24:08Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_non_member_shadow0
FounderOfHuggingface
2024-01-16T11:23:27Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:23:26Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
tmnam20/xlm-roberta-base-vsfc-10
tmnam20
2024-01-16T11:23:16Z
3
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:21:08Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-vsfc-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSFC type: tmnam20/VieGLUE config: vsfc split: validation args: vsfc metrics: - name: Accuracy type: accuracy value: 0.9450410612760581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-vsfc-10 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/VSFC dataset. It achieves the following results on the evaluation set: - Loss: 0.2231 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2206 | 1.4 | 500 | 0.2281 | 0.9413 | | 0.1397 | 2.79 | 1000 | 0.2179 | 0.9457 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow41
FounderOfHuggingface
2024-01-16T11:22:47Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:22:46Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow40
FounderOfHuggingface
2024-01-16T11:22:07Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:22:05Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow39
FounderOfHuggingface
2024-01-16T11:21:23Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:21:20Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
tmnam20/xlm-roberta-base-vsfc-1
tmnam20
2024-01-16T11:21:07Z
6
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:19:12Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-vsfc-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSFC type: tmnam20/VieGLUE config: vsfc split: validation args: vsfc metrics: - name: Accuracy type: accuracy value: 0.9450410612760581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-vsfc-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/VSFC dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.207 | 1.4 | 500 | 0.2353 | 0.9400 | | 0.1438 | 2.79 | 1000 | 0.2245 | 0.9450 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tranthaihoa/aplpaca-mistral
tranthaihoa
2024-01-16T11:20:21Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "unsloth", "generated_from_trainer", "base_model:unsloth/mistral-7b", "base_model:adapter:unsloth/mistral-7b", "license:apache-2.0", "region:us" ]
null
2024-01-16T11:20:15Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - unsloth - unsloth - generated_from_trainer base_model: unsloth/mistral-7b model-index: - name: aplpaca-mistral results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aplpaca-mistral This model is a fine-tuned version of [unsloth/mistral-7b](https://huggingface.co/unsloth/mistral-7b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow37
FounderOfHuggingface
2024-01-16T11:20:01Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:20:01Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow35
FounderOfHuggingface
2024-01-16T11:18:43Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:18:42Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow33
FounderOfHuggingface
2024-01-16T11:17:24Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:17:23Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
baptistecolle/voyager-axolotl
baptistecolle
2024-01-16T11:15:48Z
2
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:adapter:Open-Orca/Mistral-7B-OpenOrca", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-01-16T10:16:31Z
--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: Open-Orca/Mistral-7B-OpenOrca model-index: - name: voyager-axolotl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: Open-Orca/Mistral-7B-OpenOrca model_type: MistralForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: baptistecolle/mc_training_data type: completion - path: baptistecolle/mc_training_data_conversations type: sharegpt hub_model_id: baptistecolle/voyager-axolotl dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora # gpu_memory_limit: 10 # max_memory: {0: "20GIB"} sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: axolotl-voyager gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details><br> # voyager-axolotl This model is a fine-tuned version of [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9292 | 0.0 | 1 | 2.9051 | | 2.0261 | 0.25 | 94 | 1.9768 | | 1.8991 | 0.5 | 188 | 1.8530 | | 1.6994 | 0.75 | 282 | 1.7640 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
tmnam20/xlm-roberta-base-vnrte-1
tmnam20
2024-01-16T11:15:43Z
4
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T11:13:47Z
--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-vnrte-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VNRTE type: tmnam20/VieGLUE config: vnrte split: validation args: vnrte metrics: - name: Accuracy type: accuracy value: 0.999681224099458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-vnrte-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/VNRTE dataset. It achieves the following results on the evaluation set: - Loss: 0.0034 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0284 | 1.28 | 500 | 0.0024 | 0.9997 | | 0.0009 | 2.55 | 1000 | 0.0028 | 0.9997 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Seokeon/V14_R384_lora_pp_berry_bowl
Seokeon
2024-01-16T11:15:42Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T11:09:46Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks bowl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_pp_berry_bowl These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks bowl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
FounderOfHuggingface/gpt2_gen_lora_r16_wikitext2_t300_e20_member_shadow30
FounderOfHuggingface
2024-01-16T11:15:22Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-16T11:15:22Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
facebook/audio-magnet-medium
facebook
2024-01-16T11:14:21Z
655
32
audiocraft
[ "audiocraft", "magnet", "text-to-audio", "arxiv:2401.04577", "license:cc-by-nc-4.0", "region:us" ]
text-to-audio
2024-01-10T20:16:34Z
--- inference: false tags: - magnet - audiocraft license: cc-by-nc-4.0 pipeline_tag: text-to-audio --- # Audio-MAGNeT - Medium - 1.5B MAGNeT is a text-to-music and text-to-sound model capable of generating high-quality audio samples conditioned on text descriptions. It is a masked generative non-autoregressive Transformer trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike prior work, MAGNeT doesn't require neither semantic token conditioning nor model cascading, and it generates all 4 codebooks using a single non-autoregressive Transformer. MAGNeT was published in [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577) by *Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi*. Six checkpoints are released: - [small-10secs](https://huggingface.co/facebook/magnet-small-10secs) - [medium-10secs](https://huggingface.co/facebook/magnet-medium-10secs) - [small-30secs](https://huggingface.co/facebook/magnet-small-30secs) - [medium-30secs](https://huggingface.co/facebook/magnet-medium-30secs) - [audio-small](https://huggingface.co/facebook/audio-magnet-small) - [**audio-medium** (this checkpoint)](https://huggingface.co/facebook/audio-magnet-medium) ## 🤗 Transformers Usage Coming soon... ## Audiocraft Usage You can run MAGNeT locally through the original [Audiocraft library](https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt-get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MAGNeT from audiocraft.data.audio import audio_write model = MAGNeT.get_pretrained("facebook/audio-magnet-medium") descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MAGNeT was trained between November 2023 and January 2024. **Model version:** This is the version 1 of the model. **Model type:** MAGNeT consists of an EnCodec model for audio tokenization, an non-autoregressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B; and two variants: a model trained for text-to-music generation task and a model trained for text-to-audio generation. **Paper or resources for more information:** More information can be found in the paper [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577). **Citation details:** ``` @misc{ziv2024masked, title={Masked Audio Generation using a Single Non-Autoregressive Transformer}, author={Alon Ziv and Itai Gat and Gael Le Lan and Tal Remez and Felix Kreuk and Alexandre Défossez and Jade Copet and Gabriel Synnaeve and Yossi Adi}, year={2024}, eprint={2401.04577}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License:** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MAGNeT can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MAGNeT is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases:** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained on licensed data using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Evaluation results Below are the objective metrics obtained on MusicCaps with the released model. Note that for the publicly released models, we used the state-of-the-art music source separation method, namely the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs), in order to keep only instrumental tracks. This explains the difference in objective metrics with the models used in the paper. | Model | Frechet Audio Distance | KLD | Text Consistency | |---|---|---|---| | facebook/magnet-small-10secs | 4.22 | 1.11 | 0.28 | | facebook/magnet-medium-10secs | 4.61 | 1.14 | 0.28 | | facebook/magnet-small-30secs | 4.35 | 1.17 | 0.28 | | facebook/magnet-medium-30secs | 4.63 | 1.20 | 0.28 | More information can be found in the paper [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577), in the Results section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 16K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** Tracks that include vocals have been removed from the data source using corresponding tags, and using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MAGNeT is a model developed for artificial intelligence research on music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks. ## Audio-MAGNeT - Sound-effect generation models ### Training datasets The audio-magnet models were trained on the following data sources: a subset of AudioSet (Gemmeke et al., 2017), [BBC sound effects](https://sound-effects.bbcrewind.co.uk/), AudioCaps (Kim et al., 2019), Clotho v2 (Drossos et al., 2020), VGG-Sound (Chen et al., 2020), FSD50K (Fonseca et al., 2021), [Free To Use Sounds](https://www.freetousesounds.com/all-in-one-bundle/), [Sonniss Game Effects](https://sonniss.com/gameaudiogdc), [WeSoundEffects](https://wesoundeffects.com/we-sound-effects-bundle-2020/), [Paramount Motion - Odeon Cinematic Sound Effects](https://www.paramountmotion.com/odeon-sound-effects). ### Evaluation datasets The audio-magnet models (sound effect generation) were evaluated on the [AudioCaps benchmark](https://audiocaps.github.io/). ### Evaluation results Below are the objective metrics obtained with the released audio-magnet models on AudioCaps (consisting of 10-second long samples). | Model | Frechet Audio Distance | KLD | |---|---|---| | facebook/audio-magnet-small | 3.21 | 1.42 | | **facebook/audio-magnet-medium** | **2.32** | **1.64** | [//]: # "https://arxiv.org/abs/2401.04577"