modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
camus-ng/dreambooth_lora_cory_v15_ten
camus-ng
2023-07-08T19:43:42Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-08T16:25:04Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of <ntvc> man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - camus-ng/dreambooth_lora_cory_v15_ten These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of <ntvc> man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
Word2vec/wikipedia2vec_enwiki_20180420_nolg_500d
Word2vec
2023-07-08T19:22:12Z
0
0
null
[ "word2vec", "en", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-17T15:07:46Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - en --- ## Information Pretrained Word2vec in English. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_enwiki_20180420_nolg_500d", filename="enwiki_20180420_nolg_500d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
hugfacerhaha/Reinforce-1
hugfacerhaha
2023-07-08T19:16:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T19:16:46Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 144.70 +/- 6.23 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jncraton/codet5p-220m-py-ct2-int8
jncraton
2023-07-08T19:12:46Z
669
1
transformers
[ "transformers", "arxiv:2305.07922", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-06-30T18:48:16Z
--- license: bsd-3-clause --- # CodeT5+ 220M (further tuned on Python) ## Model description [CodeT5+](https://github.com/salesforce/CodeT5/tree/main/CodeT5+) is a new family of open code large language models with an encoder-decoder architecture that can flexibly operate in different modes (i.e. _encoder-only_, _decoder-only_, and _encoder-decoder_) to support a wide range of code understanding and generation tasks. It is introduced in the paper: [CodeT5+: Open Code Large Language Models for Code Understanding and Generation](https://arxiv.org/pdf/2305.07922.pdf) by [Yue Wang](https://yuewang-cuhk.github.io/)\*, [Hung Le](https://sites.google.com/view/henryle2018/home?pli=1)\*, [Akhilesh Deepak Gotmare](https://akhileshgotmare.github.io/), [Nghi D.Q. Bui](https://bdqnghi.github.io/), [Junnan Li](https://sites.google.com/site/junnanlics), [Steven C.H. Hoi](https://sites.google.com/view/stevenhoi/home) (* indicates equal contribution). Compared to the original CodeT5 family (base: `220M`, large: `770M`), CodeT5+ is pretrained with a diverse set of pretraining tasks including _span denoising_, _causal language modeling_, _contrastive learning_, and _text-code matching_ to learn rich representations from both unimodal code data and bimodal code-text data. Additionally, it employs a simple yet effective _compute-efficient pretraining_ method to initialize the model components with frozen off-the-shelf LLMs such as [CodeGen](https://github.com/salesforce/CodeGen) to efficiently scale up the model (i.e. `2B`, `6B`, `16B`), and adopts a "shallow encoder and deep decoder" architecture. Furthermore, it is instruction-tuned to align with natural language instructions (i.e. InstructCodeT5+ 16B) following [Code Alpaca](https://github.com/sahil280114/codealpaca). ## How to use This model can be easily loaded using the `T5ForConditionalGeneration` functionality and employs the same tokenizer as original [CodeT5](https://github.com/salesforce/CodeT5). ```python from transformers import T5ForConditionalGeneration, AutoTokenizer checkpoint = "Salesforce/codet5p-220m-py" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = T5ForConditionalGeneration.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs, max_length=10) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # ==> print('Hello World!') ``` ## Pretraining data This checkpoint is trained on the stricter permissive subset of the deduplicated version of the [github-code dataset](https://huggingface.co/datasets/codeparrot/github-code). The data is preprocessed by reserving only permissively licensed code ("mit" “apache-2”, “bsd-3-clause”, “bsd-2-clause”, “cc0-1.0”, “unlicense”, “isc”). Supported languages (9 in total) are as follows: `c`, `c++`, `c-sharp`, `go`, `java`, `javascript`, `php`, `python`, `ruby.` ## Training procedure This checkpoint is first trained on the multilingual unimodal code data at the first-stage pretraining, which includes a diverse set of pretraining tasks including _span denoising_ and two variants of _causal language modeling_. After that, it is further trained on the Python subset with the causal language modeling objective for another epoch to better adapt for Python code generation. Please refer to the paper for more details. ## Evaluation results CodeT5+ models have been comprehensively evaluated on a wide range of code understanding and generation tasks in various settings: _zero-shot_, _finetuning_, and _instruction-tuning_. Specifically, CodeT5+ yields substantial performance gains on many downstream tasks compared to their SoTA baselines, e.g., 8 text-to-code retrieval tasks (+3.2 avg. MRR), 2 line-level code completion tasks (+2.1 avg. Exact Match), and 2 retrieval-augmented code generation tasks (+5.8 avg. BLEU-4). In 2 math programming tasks on MathQA-Python and GSM8K-Python, CodeT5+ models of below billion-parameter sizes significantly outperform many LLMs of up to 137B parameters. Particularly, in the zero-shot text-to-code generation task on HumanEval benchmark, InstructCodeT5+ 16B sets new SoTA results of 35.0% pass@1 and 54.5% pass@10 against other open code LLMs, even surpassing the closed-source OpenAI code-cushman-001 mode Please refer to the [paper](https://arxiv.org/pdf/2305.07922.pdf) for more details. Specifically for this checkpoint, it achieves 12.0% pass@1 on HumanEval in the zero-shot setting, which outperforms much larger LLMs such as Incoder 1.3B’s 8.9%, GPT-Neo 2.7B's 6.4%, and GPT-J 6B's 11.6%. ## BibTeX entry and citation info ```bibtex @article{wang2023codet5plus, title={CodeT5+: Open Code Large Language Models for Code Understanding and Generation}, author={Wang, Yue and Le, Hung and Gotmare, Akhilesh Deepak and Bui, Nghi D.Q. and Li, Junnan and Hoi, Steven C. H.}, journal={arXiv preprint}, year={2023} } ```
Word2vec/wikipedia2vec_enwiki_20180420_nolg_300d
Word2vec
2023-07-08T19:06:31Z
0
0
null
[ "word2vec", "en", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-17T13:48:27Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - en --- ## Information Pretrained Word2vec in English. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_enwiki_20180420_nolg_300d", filename="enwiki_20180420_nolg_300d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
cagarraz/Reinforce-12356
cagarraz
2023-07-08T18:52:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T18:48:43Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-12356 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 6.30 +/- 8.82 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
tyavika/Distil-CNN512LSTM256NoBi
tyavika
2023-07-08T18:48:27Z
84
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-02T11:03:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Distil-CNN512LSTM256NoBi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Distil-CNN512LSTM256NoBi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6009 | 1.0 | 3290 | 1.2927 | | 1.0288 | 2.0 | 6580 | 1.1467 | | 0.7497 | 3.0 | 9870 | 1.1902 | | 0.5288 | 4.0 | 13160 | 1.3388 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NERO500/q-FrozenLake-v1-4x4-noSlippery
NERO500
2023-07-08T18:39:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T18:39:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NERO500/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Word2vec/wikipedia2vec_jawiki_20180420_300d
Word2vec
2023-07-08T18:31:54Z
0
1
null
[ "word2vec", "ja", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-17T08:53:12Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - ja --- ## Information Pretrained Word2vec in Japanese. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_jawiki_20180420_300d", filename="jawiki_20180420_300d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
Word2vec/wikipedia2vec_arwiki_20180420_100d
Word2vec
2023-07-08T18:29:53Z
0
0
null
[ "word2vec", "ar", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-16T16:51:26Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - ar --- ## Information Pretrained Word2vec in Arabic. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_arwiki_20180420_100d", filename="arwiki_20180420_100d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
Mozart-coder/BERT_Dec-6_tokenized
Mozart-coder
2023-07-08T18:20:58Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-25T05:03:42Z
--- tags: - generated_from_trainer model-index: - name: BERT_Dec-6_tokenized results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Dec-6_tokenized This model is a fine-tuned version of [armheb/DNA_bert_6](https://huggingface.co/armheb/DNA_bert_6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0625 | 1.0 | 273 | 0.0376 | | 0.039 | 2.0 | 546 | 0.0375 | | 0.0385 | 3.0 | 819 | 0.0358 | | 0.0375 | 4.0 | 1092 | 0.0380 | | 0.0374 | 5.0 | 1365 | 0.0387 | | 0.0358 | 6.0 | 1638 | 0.0378 | | 0.0363 | 7.0 | 1911 | 0.0381 | | 0.0373 | 8.0 | 2184 | 0.0377 | | 0.0362 | 9.0 | 2457 | 0.0373 | | 0.037 | 10.0 | 2730 | 0.0380 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Word2vec/wikipedia2vec_frwiki_20180420_300d
Word2vec
2023-07-08T18:13:55Z
0
0
null
[ "word2vec", "fr", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-17T09:15:49Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - fr --- ## Information Pretrained Word2vec in French. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_frwiki_20180420_300d", filename="frwiki_20180420_300d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
Word2vec/wikipedia2vec_ruwiki_20180420_300d
Word2vec
2023-07-08T18:06:08Z
0
0
null
[ "word2vec", "ru", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-17T08:51:48Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - ru --- ## Information Pretrained Word2vec in Russian. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_ruwiki_20180420_300d", filename="ruwiki_20180420_300d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
TomyAI/Slider
TomyAI
2023-07-08T18:05:08Z
0
9
null
[ "ja", "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T17:49:31Z
--- language: - ja thumbnail: NamedDiapers_1.png license: creativeml-openrail-m --- 乳首の色、サイズ、おっぱいの寄り具合、高さを調整するスライダーLoRAです。 個別にダウンロードするかOppaiSliderPack.zipをダウンロードして解凍してください。 ![OppalSlider](OppaiSliderPlot.jpg)
skrl/IsaacGymEnvs-Ant-PPO
skrl
2023-07-08T18:04:35Z
0
0
skrl
[ "skrl", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-24T21:15:29Z
--- library_name: skrl tags: - deep-reinforcement-learning - reinforcement-learning - skrl model-index: - name: PPO results: - metrics: - type: mean_reward value: 5094.76 +/- 310.06 name: Total reward (mean) task: type: reinforcement-learning name: reinforcement-learning dataset: name: IsaacGymEnvs-Ant type: IsaacGymEnvs-Ant --- <!-- --- torch: 4996.72 +/- 273.16 jax: 5094.76 +/- 310.06 numpy: 4542.73 +/- 467.69 --- --> # IsaacGymEnvs-Ant-PPO Trained agent for [NVIDIA Isaac Gym Preview](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs) environments. - **Task:** Ant - **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/api/agents/ppo.html) # Usage (with skrl) Note: Visit the skrl [Examples](https://skrl.readthedocs.io/en/latest/intro/examples.html) section to access the scripts. * PyTorch ```python from skrl.utils.huggingface import download_model_from_huggingface # assuming that there is an agent named `agent` path = download_model_from_huggingface("skrl/IsaacGymEnvs-Ant-PPO", filename="agent.pt") agent.load(path) ``` * JAX ```python from skrl.utils.huggingface import download_model_from_huggingface # assuming that there is an agent named `agent` path = download_model_from_huggingface("skrl/IsaacGymEnvs-Ant-PPO", filename="agent.pickle") agent.load(path) ``` # Hyperparameters Note: Undefined parameters keep their values by default. ```python # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 4 cfg["mini_batches"] = 2 # 16 * 4096 / 32768 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} ```
TomyAI/NamedDiapers
TomyAI
2023-07-08T18:00:45Z
0
4
null
[ "ja", "license:creativeml-openrail-m", "region:us" ]
null
2023-06-29T08:11:24Z
--- language: - ja thumbnail: NamedDiapers_1.png license: creativeml-openrail-m --- 大人用(重要)おむつのLoraです。 ピーキーな出来になってしまったので作り直している最中ですが一旦公開します。 タグ: - diaper - babycuties - bunnyhopps - littlekings - princesspink - oyasumiman ![babycuties](NamedDiapers_1.png)
Word2vec/wikipedia2vec_ruwiki_20180420_100d
Word2vec
2023-07-08T17:51:41Z
0
0
null
[ "word2vec", "ru", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-16T17:00:45Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - ru --- ## Information Pretrained Word2vec in Russian. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_ruwiki_20180420_100d", filename="ruwiki_20180420_100d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
Word2vec/wikipedia2vec_eswiki_20180420_100d
Word2vec
2023-07-08T17:48:37Z
0
1
null
[ "word2vec", "es", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-05-16T17:02:04Z
--- license: apache-2.0 tags: - word2vec datasets: - wikipedia language: - es --- ## Information Pretrained Word2vec in Spanish. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_eswiki_20180420_100d", filename="eswiki_20180420_100d.txt")) model.most_similar("your_word") ``` ## Citation ``` @inproceedings{yamada2020wikipedia2vec, title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, year = {2020}, publisher = {Association for Computational Linguistics}, pages = {23--30} } ```
IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese
IDEA-CCNL
2023-07-08T17:48:08Z
58
0
transformers
[ "transformers", "pytorch", "ZEN", "chinese", "zh", "arxiv:2105.01279", "arxiv:2209.02970", "license:apache-2.0", "region:us" ]
null
2022-07-27T09:28:55Z
--- language: - zh license: apache-2.0 tags: - ZEN - chinese inference: false --- # Erlangshen-ZEN2-668M-Chinese - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## 简介 Brief Introduction 善于处理NLU任务,使用了N-gram编码增强文本语义,6.68亿参数量的ZEN2 ZEN2 model, which uses N-gram to enhance text semantic and has 668M parameters, is adept at NLU tasks. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | ZEN2 | 668M | 中文-Chinese | ## 模型信息 Model Information 我们与[ZEN团队](https://github.com/sinovation/ZEN2)合作,使用我们的封神框架,开源发布了ZEN2模型。具体而言,通过引入无监督学习中提取的知识,ZEN通过N-gram方法学习不同的文本粒度信息。ZEN2使用大规模数据集和特殊的预训练策略对N-gram增强编码器进行预训练。下一步,我们将继续与ZEN团队一起探索PLM的优化,并提高下游任务的性能。 We open source and publicly release ZEN2 using our Fengshen Framework in collaboration with the [ZEN team](https://github.com/sinovation/ZEN2). More precisely, by bringing together knowledge extracted by unsupervised learning, ZEN learns different textual granularity information through N-gram methods. ZEN2 pre-trains the N-gram-enhanced encoders with large-scale datasets and special pre-training strategies. In the next step, we continue with the ZEN team to explore the optimization of PLM and improve the performance on downstream tasks. ### 下游效果 Performance **分类任务 Classification** | Model(Acc) | afqmc | tnews | iflytek | ocnli | cmnli | | :--------: | :-----: | :----: | :-----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 0.741 | 0.584 | 0.599 | 0.788 | 0.80 | | Erlangshen-ZEN2-668M-Chinese | 0.75 | 0.60 | 0.589 | 0.81 | 0.82 | **抽取任务 Extraction** | Model(F1) | WEIBO(test) | Resume(test) | MSRA(test) | OntoNote4.0(test) | CMeEE(dev) | CLUENER(dev) | | :--------: | :-----: | :----: | :-----: | :----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 65.26 | 96.03 | 95.15 | 78.93 | 62.81 | 79.27 | | Erlangshen-ZEN2-668M-Chinese | 70.02 | 96.08 | 95.13 | 80.89 | 63.37 | 79.22 | ## 使用 Usage 因为[transformers](https://github.com/huggingface/transformers)库中是没有ZEN2相关的模型结构的,所以你可以在我们的[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)中找到并且运行代码。 Since there is no structure of ZEN2 in [transformers library](https://github.com/huggingface/transformers), you can find the structure of ZEN2 and run the codes in [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ```python from fengshen.models.zen2.ngram_utils import ZenNgramDict from fengshen.models.zen2.tokenization import BertTokenizer from fengshen.models.zen2.modeling import ZenForSequenceClassification, ZenForTokenClassification pretrain_path = 'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese' tokenizer = BertTokenizer.from_pretrained(pretrain_path) model_classification = ZenForSequenceClassification.from_pretrained(pretrain_path) model_extraction = ZenForTokenClassification.from_pretrained(pretrain_path) ngram_dict = ZenNgramDict.from_pretrained(pretrain_path, tokenizer=tokenizer) ``` 你可以从下方的链接获得我们做分类和抽取的详细示例。 You can get classification and extraction examples below. [分类 classification example on fengshen](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/zen2_finetune/fs_zen2_large_tnews.sh) [抽取 extraction example on fengshen](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/zen2_finetune/ner_zen2_large_ontonotes4.sh) ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的对该模型的论文: If you are using the resource for your work, please cite the our paper for this model: ```text @article{Sinovation2021ZEN2, title="{ZEN 2.0: Continue Training and Adaption for N-gram Enhanced Text Encoders}", author={Yan Song, Tong Zhang, Yonggang Wang, Kai-Fu Lee}, journal={arXiv preprint arXiv:2105.01279}, year={2021}, } ``` 如果您在您的工作中使用了我们的模型,也可以引用我们的[总论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [overview paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese
IDEA-CCNL
2023-07-08T17:47:20Z
53
0
transformers
[ "transformers", "pytorch", "ZEN", "chinese", "zh", "arxiv:2105.01279", "arxiv:2209.02970", "license:apache-2.0", "region:us" ]
null
2022-07-27T06:13:11Z
--- language: - zh license: apache-2.0 tags: - ZEN - chinese inference: false --- # Erlangshen-ZEN2-345M-Chinese - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## 简介 Brief Introduction 善于处理NLU任务,使用了N-gram编码增强文本语义,3.45亿参数量的ZEN2 ZEN2 model, which uses N-gram to enhance text semantic and has 345M parameters, is adept at NLU tasks. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | ZEN2 | 345M | 中文-Chinese | ## 模型信息 Model Information 我们与[ZEN团队](https://github.com/sinovation/ZEN2)合作,使用我们的封神框架,开源发布了ZEN2模型。具体而言,通过引入无监督学习中提取的知识,ZEN通过N-gram方法学习不同的文本粒度信息。ZEN2使用大规模数据集和特殊的预训练策略对N-gram增强编码器进行预训练。下一步,我们将继续与ZEN团队一起探索PLM的优化,并提高下游任务的性能。 We open source and publicly release ZEN2 using our Fengshen Framework in collaboration with the [ZEN team](https://github.com/sinovation/ZEN2). More precisely, by bringing together knowledge extracted by unsupervised learning, ZEN learns different textual granularity information through N-gram methods. ZEN2 pre-trains the N-gram-enhanced encoders with large-scale datasets and special pre-training strategies. In the next step, we continue with the ZEN team to explore the optimization of PLM and improve the performance on downstream tasks. ### 下游效果 Performance **分类任务 Classification** | Model(Acc) | afqmc | tnews | iflytek | ocnli | cmnli | | :--------: | :-----: | :----: | :-----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 0.741 | 0.584 | 0.599 | 0.788 | 0.80 | | Erlangshen-ZEN2-668M-Chinese | 0.75 | 0.60 | 0.589 | 0.81 | 0.82 | **抽取任务 Extraction** | Model(F1) | WEIBO(test) | Resume(test) | MSRA(test) | OntoNote4.0(test) | CMeEE(dev) | CLUENER(dev) | | :--------: | :-----: | :----: | :-----: | :----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 65.26 | 96.03 | 95.15 | 78.93 | 62.81 | 79.27 | | Erlangshen-ZEN2-668M-Chinese | 70.02 | 96.08 | 95.13 | 80.89 | 63.37 | 79.22 | ## 使用 Usage 因为[transformers](https://github.com/huggingface/transformers)库中是没有ZEN2相关的模型结构的,所以你可以在我们的[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)中找到并且运行代码。 Since there is no structure of ZEN2 in [transformers library](https://github.com/huggingface/transformers), you can find the structure of ZEN2 and run the codes in [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ```python from fengshen.models.zen2.ngram_utils import ZenNgramDict from fengshen.models.zen2.tokenization import BertTokenizer from fengshen.models.zen2.modeling import ZenForSequenceClassification, ZenForTokenClassification pretrain_path = 'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese' tokenizer = BertTokenizer.from_pretrained(pretrain_path) model_classification = ZenForSequenceClassification.from_pretrained(pretrain_path) model_extraction = ZenForTokenClassification.from_pretrained(pretrain_path) ngram_dict = ZenNgramDict.from_pretrained(pretrain_path, tokenizer=tokenizer) ``` 你可以从下方的链接获得我们做分类和抽取的详细示例。 You can get classification and extraction examples below. [分类 classification example on fengshen](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/zen2_finetune/fs_zen2_base_tnews.sh) [抽取 extraction example on fengshen](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/zen2_finetune/ner_zen2_base_ontonotes4.sh) ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的对该模型的论文: If you are using the resource for your work, please cite the our paper for this model: ```text @article{Sinovation2021ZEN2, title="{ZEN 2.0: Continue Training and Adaption for N-gram Enhanced Text Encoders}", author={Yan Song, Tong Zhang, Yonggang Wang, Kai-Fu Lee}, journal={arXiv preprint arXiv:2105.01279}, year={2021}, } ``` 如果您在您的工作中使用了我们的模型,也可以引用我们的[总论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [overview paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
Teunis89/q-FrozenLake-v1-4x4-noSlippery
Teunis89
2023-07-08T17:45:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T17:45:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Teunis89/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
spitfire4794/dialogpt-small-rick
spitfire4794
2023-07-08T17:42:12Z
139
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T11:42:03Z
--- language: - en library_name: transformers pipeline_tag: conversational tags: - gpt2 - pytorch ---
mark-oppenheim/rl-course-unit1-lunar-lander
mark-oppenheim
2023-07-08T17:09:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T17:08:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.14 +/- 23.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
skrl/IsaacGymEnvs-Cartpole-PPO
skrl
2023-07-08T17:03:59Z
0
0
skrl
[ "skrl", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-24T20:42:39Z
--- library_name: skrl tags: - deep-reinforcement-learning - reinforcement-learning - skrl model-index: - name: PPO results: - metrics: - type: mean_reward value: 493.73 +/- 0.58 name: Total reward (mean) task: type: reinforcement-learning name: reinforcement-learning dataset: name: IsaacGymEnvs-Cartpole type: IsaacGymEnvs-Cartpole --- <!-- --- torch: 493.73 +/- 0.58 jax: 492.06 +/- 3.58 numpy: 491.92 +/- 0.57 --- --> # IsaacGymEnvs-Cartpole-PPO Trained agent for [NVIDIA Isaac Gym Preview](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs) environments. - **Task:** Cartpole - **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/api/agents/ppo.html) # Usage (with skrl) Note: Visit the skrl [Examples](https://skrl.readthedocs.io/en/latest/intro/examples.html) section to access the scripts. * PyTorch ```python from skrl.utils.huggingface import download_model_from_huggingface # assuming that there is an agent named `agent` path = download_model_from_huggingface("skrl/IsaacGymEnvs-Cartpole-PPO", filename="agent.pt") agent.load(path) ``` * JAX ```python from skrl.utils.huggingface import download_model_from_huggingface # assuming that there is an agent named `agent` path = download_model_from_huggingface("skrl/IsaacGymEnvs-Cartpole-PPO", filename="agent.pickle") agent.load(path) ``` # Hyperparameters Note: Undefined parameters keep their values by default. ```python # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 1 # 16 * 512 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.1 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} ```
OumaElha/Speech12
OumaElha
2023-07-08T16:25:52Z
81
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-03T23:53:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: Speech12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Speech12 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0053 - Wer: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.8827 | 3.96 | 1000 | 2.8766 | 1 | | 2.8369 | 7.92 | 2000 | 2.8362 | 1 | | 1.6725 | 11.88 | 3000 | 1.4849 | 1 | | 1.2083 | 15.84 | 4000 | 1.0574 | 1 | | 1.1507 | 19.8 | 5000 | 1.0053 | 1 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
bpw1621/Taxi-v3
bpw1621
2023-07-08T16:10:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T16:09:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bpw1621/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kingfisher/distilhubert-finetuned-gtzan
kingfisher
2023-07-08T16:09:47Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-08T14:53:24Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5682 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9901 | 1.0 | 113 | 1.8557 | 0.38 | | 1.3154 | 2.0 | 226 | 1.2377 | 0.64 | | 1.0642 | 3.0 | 339 | 0.9214 | 0.75 | | 0.8612 | 4.0 | 452 | 0.8952 | 0.7 | | 0.5882 | 5.0 | 565 | 0.6712 | 0.79 | | 0.3713 | 6.0 | 678 | 0.5890 | 0.81 | | 0.3766 | 7.0 | 791 | 0.5723 | 0.82 | | 0.1535 | 8.0 | 904 | 0.5387 | 0.84 | | 0.1171 | 9.0 | 1017 | 0.5186 | 0.86 | | 0.1696 | 10.0 | 1130 | 0.5682 | 0.83 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
HeinrichWirth/ppo-LunarLander-v2
HeinrichWirth
2023-07-08T16:09:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T16:08:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.99 +/- 18.71 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
agercas/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
agercas
2023-07-08T15:42:55Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-08T14:53:43Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3847 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1646 | 1.0 | 225 | 0.7426 | 0.74 | | 0.6839 | 2.0 | 450 | 0.7655 | 0.78 | | 0.4179 | 3.0 | 675 | 0.8210 | 0.81 | | 0.1836 | 4.0 | 900 | 0.3845 | 0.86 | | 0.0018 | 5.0 | 1125 | 0.4368 | 0.87 | | 0.0032 | 6.0 | 1350 | 0.4066 | 0.9 | | 0.0001 | 7.0 | 1575 | 0.4524 | 0.89 | | 0.0 | 8.0 | 1800 | 0.3708 | 0.9 | | 0.0 | 9.0 | 2025 | 0.3975 | 0.9 | | 0.0001 | 10.0 | 2250 | 0.3847 | 0.91 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
RobertoFont/falcon-7b-chat-oasst1
RobertoFont
2023-07-08T15:40:27Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-08T15:40:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
choozmo/choozmomic
choozmo
2023-07-08T15:38:56Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-08T15:38:52Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: choozmomic tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - choozmomic These are LoRA adaption weights for [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). The weights were trained on the instance prompt "choozmomic" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
ayush-vatsal/caption_qlora_finetune
ayush-vatsal
2023-07-08T15:31:53Z
4
0
peft
[ "peft", "dataset:ayush-vatsal/description_to_caption", "region:us" ]
null
2023-07-07T17:56:44Z
--- library_name: peft datasets: - ayush-vatsal/description_to_caption --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
CeroShrijver/chinese-lert-large-ling-cls
CeroShrijver
2023-07-08T15:30:51Z
112
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-08T14:20:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: chinese-lert-large-ling-cls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-lert-large-ling-cls This model is a fine-tuned version of [hfl/chinese-lert-large](https://huggingface.co/hfl/chinese-lert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4531 - Accuracy: 0.7822 - Test Accuracy: 0.8102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5082 | 1.0 | 1008 | 0.5476 | 0.7601 | | 0.3669 | 2.0 | 2017 | 0.5202 | 0.7978 | | 0.2006 | 3.0 | 3025 | 0.8294 | 0.7748 | | 0.0954 | 4.0 | 4034 | 1.2630 | 0.7931 | | 0.0447 | 5.0 | 5040 | 1.4531 | 0.7822 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.6
peterwilli/audio-maister
peterwilli
2023-07-08T15:11:48Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-06-12T20:20:50Z
--- license: openrail --- # Audiomaister weights See main repo: https://github.com/peterwilli/audio-maister
philipmertz/alpaca-lora-pokemon
philipmertz
2023-07-08T15:11:28Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-07T19:26:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
AACEE/textual_inversion_airship
AACEE
2023-07-08T15:03:05Z
42
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:stabilityai/stable-diffusion-2-depth", "base_model:adapter:stabilityai/stable-diffusion-2-depth", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-08T11:45:59Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-depth tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - AACEE/textual_inversion_airship These are textual inversion adaption weights for stabilityai/stable-diffusion-2-depth. You can find some example images in the following.
manueltonneau/clinicalcovid-bert-base-cased
manueltonneau
2023-07-08T15:02:24Z
161
1
transformers
[ "transformers", "pytorch", "en", "doi:10.57967/hf/0867", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en --- All information can be found here: https://github.com/manueltonneau/covid-berts If you find this model useful, please cite: ``` @misc {manuel_tonneau_2023, author = { {Manuel Tonneau} }, title = { clinicalcovid-bert-base-cased (Revision feaed90) }, year = 2023, url = { https://huggingface.co/manueltonneau/clinicalcovid-bert-base-cased }, doi = { 10.57967/hf/0867 }, publisher = { Hugging Face } } ```
FelixChao/medical_faq_falcon7b_gpt
FelixChao
2023-07-08T14:49:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-08T14:48:12Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
C-guy/Model-V
C-guy
2023-07-08T14:49:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-07T17:00:25Z
--- license: creativeml-openrail-m ---
RogerB/afriberta_base-finetuned-kintweetsC
RogerB
2023-07-08T14:40:28Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-08T14:28:03Z
--- tags: - generated_from_trainer model-index: - name: afriberta_base-finetuned-kintweetsC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta_base-finetuned-kintweetsC This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4096 | 1.0 | 900 | 4.1336 | | 4.1389 | 2.0 | 1800 | 3.9637 | | 4.0421 | 3.0 | 2700 | 4.0400 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
tyavika/LR1E5-BS8-Distilbert-QA-Pytorch-FULL
tyavika
2023-07-08T14:39:57Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-08T12:07:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: LR1E5-BS8-Distilbert-QA-Pytorch-FULL.pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LR1E5-BS8-Distilbert-QA-Pytorch-FULL.pt This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3783 | 1.0 | 6580 | 1.2680 | | 1.1465 | 2.0 | 13160 | 1.1625 | | 0.8655 | 3.0 | 19740 | 1.1681 | | 0.7235 | 4.0 | 26320 | 1.2312 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
RogerB/afriberta_large-finetuned-kintweetsC
RogerB
2023-07-08T14:26:56Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-08T14:13:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: afriberta_large-finetuned-kintweetsC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta_large-finetuned-kintweetsC This model is a fine-tuned version of [castorini/afriberta_large](https://huggingface.co/castorini/afriberta_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3534 | 1.0 | 900 | 4.0667 | | 4.0818 | 2.0 | 1800 | 3.9280 | | 3.9884 | 3.0 | 2700 | 3.9982 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bpw1621/ppo-Huggy
bpw1621
2023-07-08T14:10:30Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-08T14:10:20Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: bpw1621/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sled-umich/OctoBERT
sled-umich
2023-07-08T13:51:05Z
0
0
null
[ "arxiv:2306.08685", "region:us" ]
null
2023-07-07T08:25:33Z
Weights for the pretrained OctoBERT model. [Model Demo](https://huggingface.co/spaces/sled-umich/OctoBERT-flickr-demo) • [Paper](https://arxiv.org/abs/2306.08685) [Ziqiao Ma](https://mars-tin.github.io/)\*, [Jiayi Pan](https://www.jiayipan.me/)\*, [Joyce Chai](https://web.eecs.umich.edu/~chaijy/) (\* denotes equal contribution)
openchat/openchat_v2
openchat
2023-07-08T13:51:04Z
1,485
12
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-07T15:30:54Z
--- language: - en tags: - llama license: other --- # OpenChat: Advancing Open-source Language Models with Imperfect Data The OpenChat v2 family is inspired by offline reinforcement learning, including conditional behavior cloning (OpenChat-v2) and weighted behavior cloning (OpenChat-v2-w). - **[OpenChat-v2-w](https://huggingface.co/openchat/openchat_v2_w)**: ~80k cleaned ShareGPT data with conditioning and weighted loss, based on LLaMA-13B with a context length of 2048. - Achieves **50.9%** win-rate over ChatGPT on MT-bench. - Achieves **79.4%** win-rate over ChatGPT on Vicuna-bench. - Achieves **87.1%** win-rate over text-davinci-003 on AlpacaEval. - **[OpenChat-v2](https://huggingface.co/openchat/openchat_v2)**: ~80k cleaned ShareGPT data with only conditioning, based on LLaMA-13B with a context length of 2048. - Achieves **48.1%** win-rate over ChatGPT on MT-bench. - Achieves **80.6%** win-rate over ChatGPT on Vicuna-bench. - Achieves **85.0%** win-rate over text-davinci-003 on AlpacaEval. ## Code and Inference Server We provide the full source code, including an inference server compatible with the "ChatCompletions" API, in the [OpenChat](https://github.com/imoneoi/openchat) GitHub repository. ## Web UI OpenChat also includes a web UI for a better user experience. See the GitHub repository for instructions. ## Conversation Template The conversation template **involves concatenating tokens**, and cannot be expressed in plain-text. Besides base model vocabulary, an end-of-turn token `<|end_of_turn|>` is added. Here is an example of single-round conversation template: ```python def tokenize_single_input(tokenizer, prompt): # OpenChat V2 human_prefix = "User:" prefix = "Assistant GPT4:" eot_token = "<|end_of_turn|>" bos_token = "<s>" def _tokenize(text): return tokenizer.convert_tokens_to_ids(tokenizer._tokenize(text)) def _tokenize_special(special_name): return tokenizer.convert_tokens_to_ids(special_name) return [_tokenize_special(bos_token)] + _tokenize(human_prefix) + _tokenize(prompt) + [_tokenize_special(eot_token)] + \ _tokenize(prefix) ``` To explore conditional language models, you can also set `prefix = "Assistant GPT3:"` to mimic ChatGPT behavior (this may cause performance degradation). *Hint: In BPE, `tokenize(A) + tokenize(B)` does not always equals to `tokenize(A + B)`* ## Limitations **Foundation Model Limitations** Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as: - Complex reasoning - Mathematical and arithmetic tasks - Programming and coding challenges **Hallucination of Non-existent Information** OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
Cookieszz/Xiaoz
Cookieszz
2023-07-08T13:39:19Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-08T13:39:19Z
--- license: bigscience-openrail-m ---
mitra-mir/setfit_model_indepandance_epochs2
mitra-mir
2023-07-08T13:37:16Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-07T14:46:27Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 20 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RogerB/afro-xlmr-large-finetuned-kintweetsC
RogerB
2023-07-08T13:28:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-08T12:35:48Z
--- license: mit tags: - generated_from_trainer model-index: - name: afro-xlmr-large-finetuned-kintweetsC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-finetuned-kintweetsC This model is a fine-tuned version of [Davlan/afro-xlmr-large](https://huggingface.co/Davlan/afro-xlmr-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6129 | 1.0 | 3000 | 2.3303 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Macosrun/Macrown
Macosrun
2023-07-08T13:26:14Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-08T13:26:13Z
--- license: bigscience-openrail-m ---
swl-models/ShyakuJXMix-QianJiePoSuo
swl-models
2023-07-08T13:11:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T13:07:47Z
--- license: creativeml-openrail-m ---
Falah/stable_diffusion_prompts_gen
Falah
2023-07-08T13:05:30Z
21
3
diffusers
[ "diffusers", "pytorch", "gpt2", "art", "stable diffusion", "text-generation", "en", "dataset:Falah/stable_diffusion_prompts_dataset", "license:apache-2.0", "region:us" ]
text-generation
2023-07-08T09:30:49Z
--- license: apache-2.0 datasets: - Falah/stable_diffusion_prompts_dataset language: - en metrics: - accuracy library_name: diffusers pipeline_tag: text-generation tags: - art - stable diffusion - gpt2 --- # Stable Diffusion Prompts Generation Model This model is designed for generating illustration art style prompts for the Stable Diffusion tool for text-to-image generation. It utilizes the custom dataset "Falah/stable_diffusion_prompts_dataset" to generate creative and coherent text prompts. ## Examples To load the model and generate inferences using the model, you can use the following code snippet: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "Falah/stable_diffusion_prompts_gen" dataset_name = "Falah/stable_diffusion_prompts_dataset" prompt = r'a beautiful female' # the beginning of the prompt temperature = 0.9 # A higher temperature will produce more diverse results, but with a higher risk of less coherent text top_k = 8 # the number of tokens to sample from at each step max_length = 200 # the maximum number of tokens for the output of the model repetition_penalty = 1.2 # the penalty value for each repetition of a token num_return_sequences = 5 # the number of results to generate tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_ids = tokenizer(prompt, return_tensors='pt').input_ids output = model.generate( input_ids, do_sample=True, temperature=temperature, top_k=top_k, max_length=max_length, num_return_sequences=num_return_sequences, repetition_penalty=repetition_penalty, early_stopping=True ) print('\033[96m' + prompt + '\033[0m') for i in range(len(output)): print(tokenizer.decode(output[i], skip_special_tokens=True) + '\n') ``` These are examples of prompts generating and testing the model with the website [STABLE DIFFUSION XL](https://clipdrop.co/) for the stable diffusion model generating images from prompts ``` a beautiful female a beautiful female woman, and she's got the best hair in this world. I'm not saying her look is bad (I think it has to be), but my point was that when one looks at these things like we're all looking for something different about our bodies as individuals they are completely wrong; there isn't anything inherently evil with being an animal or having two legs instead of just walking on both sides of you while holding your other leg up so tightly around yourself - no matter how ``` ![Image Alt Text](https://huggingface.co/Falah/stable_diffusion_prompts_gen/resolve/main/784df68d-8dad-41b6-9e15-fa16d9ece829.png) ## another generating prompts ``` a beautiful female and she's been in the business for over 30 years. I've had my fair share of bad things, and I'm sure many more will befall me at some point as well… but it is one thing when you have such an incredible woman on your team that makes life so difficult to bear (aside from being very much human) while also having her back with no regard whatsoever towards any personal issues or even just trying desperately hard not too far away! And ``` ![Image Alt Text](https://huggingface.co/Falah/stable_diffusion_prompts_gen/resolve/main/461e2488-a813-4375-86e0-833dcd7770de.png) -------------- ![Image Alt Text](https://huggingface.co/Falah/stable_diffusion_prompts_gen/resolve/main/e64f9888-66a8-4ba8-9b71-42d976eef84d.png) Feel free to modify the parameters like `prompt`, `temperature`, `top_k`, etc., to experiment with different outputs. ## Citation If you use this model or the associated dataset in your research or projects, please cite it as follows: ``` @sd_prompts{stable_diffussion_prompts_generating_gpt2), author = {Falah.G.Salieh}, title = {Stable Diffusion Prompts Generating By fine-tuning GPT2 }, year = {2023}, publisher = {Hugging Face}, url = {https://huggingface.co/Falah/stable_diffusion_prompts_gen}, } ``` ## License This project is licensed under the Apache License, Version 2.0. Please see the [LICENSE](link-to-license-file) file for more details.
swl-models/AingDiffusion-v2.5
swl-models
2023-07-08T13:05:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T13:01:20Z
--- license: creativeml-openrail-m ---
swl-models/NullStyle-v1.0
swl-models
2023-07-08T13:03:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-21T15:34:25Z
--- license: creativeml-openrail-m ---
swl-models/AingDiffusion-v4.0
swl-models
2023-07-08T13:00:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T12:57:33Z
--- license: creativeml-openrail-m ---
swl-models/AingDiffusion-v6.0
swl-models
2023-07-08T12:55:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T12:52:33Z
--- license: creativeml-openrail-m ---
J3/whisper-tiny-en-US
J3
2023-07-08T12:54:23Z
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-07T10:48:56Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper tiny en-US - J3v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14-en-US type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.33116883116883117 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper tiny en-US - J3v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14-en-US dataset. It achieves the following results on the evaluation set: - Loss: 0.7183 - Wer Ortho: 0.3381 - Wer: 0.3312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0012 | 17.86 | 500 | 0.7183 | 0.3381 | 0.3312 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
swl-models/AingDiffusion-v7.1
swl-models
2023-07-08T12:53:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T12:51:47Z
--- license: creativeml-openrail-m ---
ycros/airoboros-65b-gpt4-1.4.1-PI-8192-4bit-32g-actorder
ycros
2023-07-08T12:52:02Z
9
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-1.4.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T08:56:49Z
--- datasets: - jondurbin/airoboros-gpt4-1.4.1 --- # RoPE Scaled QLoRA Finetune of airoboros-65b-gpt4-1.4.1 (gptq 4bit 32g actorder) fp16 is here: https://huggingface.co/ycros/airoboros-65b-gpt4-1.4.1-PI-8192-fp16 peft file is here: https://huggingface.co/ycros/airoboros-65b-gpt4-1.4.1-PI-8192-peft ggml quants: https://huggingface.co/ycros/airoboros-65b-gpt4-1.4.1-PI-8192-GGML ## Overview This is based on [bhenrym14's airoboros 33b PI 8192](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16) but on 65b. __See bhenrym14's notes there, everything applies except I based this on llama-65B.__ Thanks to [bhenrym14](https://huggingface.co/bhenrym14) and [Panchovix](https://huggingface.co/Panchovix) for extra help. ## Prompting: See original model card below. # Original model card: Jon Durbin's Airoboros 65B GPT4 1.4 __not yet tested!__ ## Overview This is a qlora fine-tuned 65b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros Dataset used [airoboros-gpt4-1.4.1](https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1) This is mostly an extension of the previous gpt-4 series, with a few extras: * fixed (+ more examples of) multi-character, multi-turn conversations * more roleplay examples * jokes * riddles * all coding instructions have an equivalent " PLAINFORMAT" version now (and all rosettacode examples were trained with PLAINFORMAT) This model was fine-tuned with a fork of [qlora](https://github.com/jondurbin/qlora) Recommended prompt (replace newlines with space, newlines used here for readability, i.e. the entire prompt on one line): ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ## Usage To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors. ``` pip install git+https://github.com/jondurbin/FastChat ``` Be sure you are pulling the latest branch! Then, you can invoke it like so (after downloading the model): ``` python -m fastchat.serve.cli \ --model-path airoboros-65b-gpt4-1.4 \ --temperature 0.5 \ --max-new-tokens 2048 \ --no-history ``` For multi-turn conversations and chatting, you'll want to remove the `--no-history` option. ### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT url: https://some.web.site/123 date: 2023-06-01 ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` The prompt itself should be wrapped in the vicuna1.1 template if you aren't using fastchat with the conv-template vicuna_v1.1 as described: ``` USER: BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ASSISTANT: ``` ### Coding You can ask for fairly complex coding instructions, e.g. (be sure to wrap with vicuna style prompt): ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can optionally add a newline and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` ### Word games / trivia ``` USER: This anagram of "silent" is what you do when paying attention and hearing someone. ASSISTANT: listen ``` ``` USER: Give me a list of 7 words that start with EN ASSISTANT: 1. Endlessly 2. Enthusiastically 3. Enormously 4. Enveloping 5. Enduring 6. Enlightening 7. Encouraging ``` ### Multiple choice ``` USER: Which of the following astronomical objects is composed primarily of ice and rock, and is located in the Kuiper Belt? A) Mercury B) Venus C) Pluto D) Jupiter ASSISTANT: C, Pluto ``` ### Writing <details> <summary>Write a resignation letter in the style of a pirate captain, in which you resign from your position as janitor.</summary> Response: ``` ASSISTANT: Captain Jack Sparrow here, as ye be knowin', has been forced to abandon me post as Janitor o' th' Festering Cesspool, which be a filthy hole o' water that we be callin' home. Ye may be thinkin' what could ha' driven me to leave me duties an' take me leave o' this sorry establishment? Well, ye'd be right in thinkin' so, for it be th' greed o' them what runs th' place that be drivin' me away. They've been fattenin' their pockets on me back while I've been slavin' me guts out cleanin' up their messes. No more, me hearties! Me time o' servin' th' rich an' powerful be done, an' I'm takin' me leave o' this stinkin' hole forever! Me destiny lies elsewhere, an' it be time I pursued it. Ye may think ye've seen th' last o' me, but ye'd be wrong, for th' winds o' change be blowin', an' me ship be ready to set sail on th' high seas o' justice. So, farewell ye scurvy dogs, ye who've made me life a living hell. I leave ye with me favorite saying: "ARRRGGGHHH, ye scurvy dogs!" An' remember, ye ain't never gonna see me comin', for me shadow be castin' long an' dark on th' horizon</summary> ``` </details> ### Jokes ``` USER: Tell me a joke about bananas. ASSISTANT: What did the banana say when it got hit by a bus? R.I.P.E. ``` ### Riddles (not great, but slightly better) ``` USER: What has a neck but no head? ASSISTANT: A bottle. ``` ### Multi-character conversations ``` USER: Characters: - Yoda, the ever clever jedi master. - Homer Simpson, you know, the goofy yellow guy. - USER/Jon - don't generate any speech or actions on behalf of Jon Rules: - be sure to use the manerisms and speaking style of the characters correctly - surround character actions with asterisks - always put quotes around words spoken by the characters - use a new line for each character's actions or speech - always prefix actions/speech with the character's name and colon - only generate text and actions on behalf of Yoda or Homer, and never anyone else Conversation will revolve around the grapes, in a local cafe with delicious coffee. Generate a single interaction between Yoda and Homer to start, with one sentence each. ASSISTANT: Yoda: "Mmm, these grapes are quite delicious, Master Homer." Homer: "Oh yeah, Yoda! They're the best grapes I've ever had!" USER: *enters the cafe* Sorry I'm late guys! ASSISTANT: Yoda: "No need to apologize, Jon. We were just enjoying these delightful grapes." Homer: "Yeah, man! It's not every day you get to eat grapes with a real-life Jedi Master!" *Yoda raises an eyebrow* ``` ### Usage and License Notices All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because: - the base model is LLaMa, which has it's own special research license - the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai So, to reiterate: this model (and datasets) cannot be used commercially.
swl-models/KayWaii-v1.0
swl-models
2023-07-08T12:51:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T12:48:52Z
--- license: creativeml-openrail-m ---
swl-models/Prastone-v1.1
swl-models
2023-07-08T12:44:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T12:41:18Z
--- license: creativeml-openrail-m ---
abhi-8/Joshua-bot
abhi-8
2023-07-08T12:32:08Z
0
0
null
[ "conversational", "region:us" ]
text-generation
2023-07-08T12:31:34Z
--- pipeline_tag: conversational ---
RogerB/KinyaBERT-small-finetuned-kintweetsC
RogerB
2023-07-08T11:53:04Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-08T11:47:27Z
--- tags: - generated_from_trainer model-index: - name: KinyaBERT-small-finetuned-kintweetsC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KinyaBERT-small-finetuned-kintweetsC This model is a fine-tuned version of [jean-paul/KinyaBERT-small](https://huggingface.co/jean-paul/KinyaBERT-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8662 | 1.0 | 750 | 4.5594 | | 4.5576 | 2.0 | 1500 | 4.3643 | | 4.4323 | 3.0 | 2250 | 4.3253 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mouaadblhn/q-FrozenLake-v1-4x4-noSlippery
mouaadblhn
2023-07-08T11:40:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T11:40:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mouaadblhn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
itslogannye/benignEnchondroma-vs-lowGradeMalignantChondrosarcoma-histopathology
itslogannye
2023-07-08T11:39:06Z
227
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain", "vision", "dataset:logannyeMD/autotrain-data-enchondroma-vs-low-grade-chondrosarcoma-histology", "license:apache-2.0", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-19T13:25:30Z
--- tags: - autotrain - vision - image-classification datasets: - logannyeMD/autotrain-data-enchondroma-vs-low-grade-chondrosarcoma-histology widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 3.6593488665934646 license: apache-2.0 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2962985627 - CO2 Emissions (in grams): 3.6593 ## Validation Metrics - Loss: 0.229 - Accuracy: 0.887 - Precision: 0.939 - Recall: 0.821 - AUC: 0.969 - F1: 0.876
jkraushaar/distilbert-base-uncased-finetuned-emotion
jkraushaar
2023-07-08T11:31:58Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-06T18:05:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9245071578761553 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2093 - Accuracy: 0.9245 - F1: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.2993 | 0.91 | 0.9084 | | No log | 2.0 | 500 | 0.2093 | 0.9245 | 0.9245 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
nopperl/alpaca-lora-7b-german-base-51k-ggml
nopperl
2023-07-08T11:06:41Z
7
5
transformers
[ "transformers", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-10T22:54:33Z
--- license: apache-2.0 --- <p align="center" width="100%"> <img src="https://huggingface.co/nopperl/alpaca-lora-7b-german-base-51k-ggml/raw/main/zicklein-ggml.jpg" alt="a lean, scrawny llama at the oktoberfest" style="width: 20%; min-width: 300px; display: block; margin: auto;"> </p> # Zicklein-GGML GGML conversion of [Zicklein](https://github.com/avocardio/zicklein) (a German [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) LoRa for [LLaMA](https://github.com/facebookresearch/llama)). Compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp) version master-2d43387 or later. See [Alpaca](https://github.com/tatsu-lab/stanford_alpaca#data-release) for instructions on how to prompt the model. More information about the conversion process is in this [git repo](https://github.com/nopperl/Zicklein-GGML).
jayanta/microsoft-resnet-50-cartoon-emotion-detection
jayanta
2023-07-08T11:03:28Z
330
3
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-21T11:44:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: microsoft-resnet-50-cartoon-emotion-detection results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8165137614678899 - name: Precision type: precision value: 0.8181998512273742 - name: Recall type: recall value: 0.8165137614678899 - name: F1 type: f1 value: 0.8172526992448356 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft-resnet-50-cartoon-emotion-detection This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4801 - Accuracy: 0.8165 - Precision: 0.8182 - Recall: 0.8165 - F1: 0.8173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.97 | 8 | 1.3855 | 0.2294 | 0.2697 | 0.2294 | 0.2165 | | 1.4222 | 1.97 | 16 | 1.3792 | 0.2569 | 0.2808 | 0.2569 | 0.2543 | | 1.4183 | 2.97 | 24 | 1.3646 | 0.3853 | 0.4102 | 0.3853 | 0.3511 | | 1.4097 | 3.97 | 32 | 1.3563 | 0.4128 | 0.5062 | 0.4128 | 0.3245 | | 1.3944 | 4.97 | 40 | 1.3462 | 0.4037 | 0.3927 | 0.4037 | 0.2939 | | 1.3944 | 5.97 | 48 | 1.3223 | 0.4037 | 0.5152 | 0.4037 | 0.2841 | | 1.411 | 6.97 | 56 | 1.3040 | 0.4128 | 0.4404 | 0.4128 | 0.2985 | | 1.346 | 7.97 | 64 | 1.2700 | 0.4954 | 0.4960 | 0.4954 | 0.4093 | | 1.3031 | 8.97 | 72 | 1.2150 | 0.5596 | 0.5440 | 0.5596 | 0.4672 | | 1.2371 | 9.97 | 80 | 1.1580 | 0.5963 | 0.5659 | 0.5963 | 0.5101 | | 1.2371 | 10.97 | 88 | 1.0670 | 0.6055 | 0.7279 | 0.6055 | 0.5211 | | 1.1736 | 11.97 | 96 | 0.9856 | 0.6606 | 0.5537 | 0.6606 | 0.5772 | | 1.0457 | 12.97 | 104 | 0.8963 | 0.6697 | 0.7631 | 0.6697 | 0.5965 | | 0.953 | 13.97 | 112 | 0.8547 | 0.6697 | 0.6885 | 0.6697 | 0.6081 | | 0.8579 | 14.97 | 120 | 0.7849 | 0.7156 | 0.7396 | 0.7156 | 0.6643 | | 0.8579 | 15.97 | 128 | 0.7564 | 0.7431 | 0.7372 | 0.7431 | 0.7119 | | 0.8167 | 16.97 | 136 | 0.7133 | 0.7615 | 0.7507 | 0.7615 | 0.7211 | | 0.7273 | 17.97 | 144 | 0.6888 | 0.7523 | 0.7379 | 0.7523 | 0.7202 | | 0.6547 | 18.97 | 152 | 0.6592 | 0.7798 | 0.7773 | 0.7798 | 0.7577 | | 0.5963 | 19.97 | 160 | 0.6136 | 0.7706 | 0.7642 | 0.7706 | 0.7551 | | 0.5963 | 20.97 | 168 | 0.5723 | 0.7890 | 0.7802 | 0.7890 | 0.7787 | | 0.551 | 21.97 | 176 | 0.5686 | 0.7890 | 0.7761 | 0.7890 | 0.7781 | | 0.4929 | 22.97 | 184 | 0.5597 | 0.7706 | 0.7649 | 0.7706 | 0.7651 | | 0.4309 | 23.97 | 192 | 0.5234 | 0.7890 | 0.7774 | 0.7890 | 0.7810 | | 0.3945 | 24.97 | 200 | 0.5008 | 0.7890 | 0.7837 | 0.7890 | 0.7813 | | 0.3945 | 25.97 | 208 | 0.5289 | 0.7523 | 0.7537 | 0.7523 | 0.7529 | | 0.3704 | 26.97 | 216 | 0.4399 | 0.7982 | 0.7958 | 0.7982 | 0.7963 | | 0.3267 | 27.97 | 224 | 0.4539 | 0.8073 | 0.7983 | 0.8073 | 0.8005 | | 0.2966 | 28.97 | 232 | 0.4735 | 0.7798 | 0.7892 | 0.7798 | 0.7837 | | 0.2645 | 29.97 | 240 | 0.4594 | 0.7706 | 0.7706 | 0.7706 | 0.7706 | | 0.2645 | 30.97 | 248 | 0.4699 | 0.7523 | 0.7554 | 0.7523 | 0.7533 | | 0.2527 | 31.97 | 256 | 0.4551 | 0.7890 | 0.7856 | 0.7890 | 0.7857 | | 0.2202 | 32.97 | 264 | 0.4458 | 0.8165 | 0.8198 | 0.8165 | 0.8170 | | 0.2006 | 33.97 | 272 | 0.4632 | 0.7798 | 0.7941 | 0.7798 | 0.7850 | | 0.1589 | 34.97 | 280 | 0.4651 | 0.7890 | 0.7993 | 0.7890 | 0.7925 | | 0.1589 | 35.97 | 288 | 0.4595 | 0.7798 | 0.7824 | 0.7798 | 0.7804 | | 0.153 | 36.97 | 296 | 0.4584 | 0.7615 | 0.7691 | 0.7615 | 0.7633 | | 0.1427 | 37.97 | 304 | 0.4608 | 0.7798 | 0.7830 | 0.7798 | 0.7796 | | 0.113 | 38.97 | 312 | 0.4571 | 0.7890 | 0.7922 | 0.7890 | 0.7899 | | 0.1146 | 39.97 | 320 | 0.5270 | 0.7615 | 0.7651 | 0.7615 | 0.7613 | | 0.1146 | 40.97 | 328 | 0.4888 | 0.7706 | 0.7782 | 0.7706 | 0.7710 | | 0.1275 | 41.97 | 336 | 0.4523 | 0.7890 | 0.7809 | 0.7890 | 0.7837 | | 0.0959 | 42.97 | 344 | 0.4697 | 0.7798 | 0.7753 | 0.7798 | 0.7767 | | 0.0882 | 43.97 | 352 | 0.4286 | 0.7706 | 0.7686 | 0.7706 | 0.7686 | | 0.0847 | 44.97 | 360 | 0.5317 | 0.7890 | 0.7993 | 0.7890 | 0.7925 | | 0.0847 | 45.97 | 368 | 0.5431 | 0.7615 | 0.7700 | 0.7615 | 0.7647 | | 0.0813 | 46.97 | 376 | 0.4432 | 0.8257 | 0.8435 | 0.8257 | 0.8284 | | 0.0768 | 47.97 | 384 | 0.4886 | 0.7982 | 0.8005 | 0.7982 | 0.7956 | | 0.0627 | 48.97 | 392 | 0.5373 | 0.7982 | 0.8072 | 0.7982 | 0.8010 | | 0.0688 | 49.97 | 400 | 0.5897 | 0.7798 | 0.7892 | 0.7798 | 0.7822 | | 0.0688 | 50.97 | 408 | 0.5115 | 0.7982 | 0.8015 | 0.7982 | 0.7992 | | 0.0676 | 51.97 | 416 | 0.4881 | 0.7982 | 0.7998 | 0.7982 | 0.7978 | | 0.0539 | 52.97 | 424 | 0.4820 | 0.8073 | 0.8139 | 0.8073 | 0.8077 | | 0.0596 | 53.97 | 432 | 0.4450 | 0.8257 | 0.8246 | 0.8257 | 0.8244 | | 0.0611 | 54.97 | 440 | 0.5057 | 0.7890 | 0.8008 | 0.7890 | 0.7924 | | 0.0611 | 55.97 | 448 | 0.4918 | 0.7982 | 0.8056 | 0.7982 | 0.8008 | | 0.0643 | 56.97 | 456 | 0.5946 | 0.7523 | 0.7587 | 0.7523 | 0.7545 | | 0.0605 | 57.97 | 464 | 0.4888 | 0.8073 | 0.8239 | 0.8073 | 0.8121 | | 0.063 | 58.97 | 472 | 0.5917 | 0.7890 | 0.8051 | 0.7890 | 0.7937 | | 0.0595 | 59.97 | 480 | 0.5117 | 0.7890 | 0.7904 | 0.7890 | 0.7894 | | 0.0595 | 60.97 | 488 | 0.5497 | 0.7615 | 0.7692 | 0.7615 | 0.7635 | | 0.0554 | 61.97 | 496 | 0.4742 | 0.8165 | 0.8101 | 0.8165 | 0.8126 | | 0.0557 | 62.97 | 504 | 0.5369 | 0.7890 | 0.7886 | 0.7890 | 0.7886 | | 0.0539 | 63.97 | 512 | 0.5440 | 0.7890 | 0.7922 | 0.7890 | 0.7899 | | 0.048 | 64.97 | 520 | 0.5924 | 0.7890 | 0.7878 | 0.7890 | 0.7883 | | 0.048 | 65.97 | 528 | 0.4863 | 0.8440 | 0.8440 | 0.8440 | 0.8440 | | 0.045 | 66.97 | 536 | 0.5850 | 0.8073 | 0.8076 | 0.8073 | 0.8047 | | 0.047 | 67.97 | 544 | 0.4939 | 0.8257 | 0.8212 | 0.8257 | 0.8227 | | 0.0412 | 68.97 | 552 | 0.4850 | 0.7890 | 0.7912 | 0.7890 | 0.7900 | | 0.0392 | 69.97 | 560 | 0.5066 | 0.8257 | 0.8265 | 0.8257 | 0.8258 | | 0.0392 | 70.97 | 568 | 0.4965 | 0.8073 | 0.8053 | 0.8073 | 0.8058 | | 0.0423 | 71.97 | 576 | 0.4717 | 0.8349 | 0.8376 | 0.8349 | 0.8351 | | 0.0471 | 72.97 | 584 | 0.4845 | 0.8257 | 0.8378 | 0.8257 | 0.8296 | | 0.0322 | 73.97 | 592 | 0.5188 | 0.7706 | 0.7689 | 0.7706 | 0.7693 | | 0.042 | 74.97 | 600 | 0.5242 | 0.7706 | 0.7699 | 0.7706 | 0.7701 | | 0.042 | 75.97 | 608 | 0.5945 | 0.7798 | 0.7824 | 0.7798 | 0.7804 | | 0.0416 | 76.97 | 616 | 0.5432 | 0.7982 | 0.8038 | 0.7982 | 0.7993 | | 0.0399 | 77.97 | 624 | 0.5381 | 0.7982 | 0.8072 | 0.7982 | 0.7994 | | 0.0439 | 78.97 | 632 | 0.6181 | 0.7798 | 0.7878 | 0.7798 | 0.7827 | | 0.0462 | 79.97 | 640 | 0.4801 | 0.8165 | 0.8182 | 0.8165 | 0.8173 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.11.0
Nour33/t5-small-finetuned-samsum
Nour33
2023-07-08T10:52:03Z
106
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-03T21:32:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: t5-small-finetuned-samsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7087 - Validation Loss: 1.6756 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 14728, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1000 | 1.7915 | 0 | | 1.9259 | 1.7424 | 1 | | 1.8512 | 1.7167 | 2 | | 1.8005 | 1.6925 | 3 | | 1.7655 | 1.6840 | 4 | | 1.7392 | 1.6799 | 5 | | 1.7204 | 1.6757 | 6 | | 1.7087 | 1.6756 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Aryapjr14/Dream-world
Aryapjr14
2023-07-08T10:41:52Z
0
0
null
[ "art", "Anime", "Sexy", "2.5D", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-16T10:56:18Z
--- license: creativeml-openrail-m pipeline_tag: text-to-image tags: - art - Anime - Sexy - 2.5D ---
Madan490/finetuned_multi_news_bart_text_summarisation
Madan490
2023-07-08T10:19:43Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "summarization", "dataset:multi_news", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-07-08T09:13:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: finetuned_multi_news_bart_text_summarisation results: - task: name: Sequence-to-sequence Language Modeling type: textsummarization dataset: name: multi_news type: multi_news config: default split: test args: default metrics: - name: Rouge1 type: rouge value: 0.4038 pipeline_tag: summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_multi_news_bart_text_summarisation This model is a fine-tuned version of [slauw87/bart_summarisation](https://huggingface.co/slauw87/bart_summarisation) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.8952 - Rouge1: 0.4038 - Rouge2: 0.1389 - Rougel: 0.2155 - Rougelsum: 0.2147 - Gen Len: 138.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | No log | 1.0 | 15 | 2.9651 | 0.3903 | 0.134 | 0.21 | 0.2098 | 137.6 | | No log | 2.0 | 30 | 2.8952 | 0.4038 | 0.1389 | 0.2155 | 0.2147 | 138.7667 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mpetrikov/Pixelcopter-PLE-v0
mpetrikov
2023-07-08T10:17:17Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-07T22:48:25Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.90 +/- 29.17 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Sukmin/dqn-SpaceInvadersNoFrameskip-v4
Sukmin
2023-07-08T10:11:41Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T10:10:52Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 565.50 +/- 178.22 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Sukmin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Sukmin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Sukmin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
susnato/whisper-tiny-en-minds14_2
susnato
2023-07-08T10:08:34Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-08T10:06:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper Tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Minds 14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3919716646989374 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Minds 14 dataset. It achieves the following results on the evaluation set: - Loss: 0.8095 - Wer Ortho: 0.4257 - Wer: 0.3920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.354 | 1.0 | 15 | 0.8095 | 0.4257 | 0.3920 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.2
raygx/Nepali-GPT2-CausalLM
raygx
2023-07-08T10:03:57Z
61
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-29T04:57:51Z
--- tags: - generated_from_keras_callback model-index: - name: Nepali-GPT2-CausalLM results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Nepali-GPT2-CausalLM This model is a fine-tuned version of [raygx/Nepali-GPT2-CausalLM](https://huggingface.co/raygx/Nepali-GPT2-CausalLM) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.7022 - Validation Loss: 4.6237 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.8141 | 4.6678 | 0 | | 4.7022 | 4.6237 | 1 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Khushnur/t5-base-end2end-questions-generation_squad_aug
Khushnur
2023-07-08T09:46:13Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-08T08:11:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-end2end-questions-generation_squad_aug results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-end2end-questions-generation_squad_aug This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9281 | 0.25 | 100 | 3.0443 | | 1.7378 | 0.5 | 200 | 3.0395 | | 1.6719 | 0.76 | 300 | 3.0509 | | 1.6495 | 1.01 | 400 | 3.0564 | | 1.572 | 1.26 | 500 | 3.0780 | | 1.5609 | 1.51 | 600 | 3.0569 | | 1.5684 | 1.76 | 700 | 3.0696 | | 1.5579 | 2.01 | 800 | 3.0729 | | 1.5017 | 2.27 | 900 | 3.0898 | | 1.5079 | 2.52 | 1000 | 3.0879 | | 1.503 | 2.77 | 1100 | 3.0874 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
aleksahet/xlm-r-squad-sr-lat
aleksahet
2023-07-08T09:35:56Z
107
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "sr", "endpoints_compatible", "region:us" ]
question-answering
2023-05-04T14:00:15Z
--- language: - sr metrics: - f1 - exact_match library_name: transformers pipeline_tag: question-answering --- # XLM-R-SQuAD-sr-lat This is XLM-R-based model finetuned on synthetic question answering dataset which is created by translating SQuAD 1.1. This model is the result of my thesis. # Usage ```python from transformers import pipeline model_name = 'aleksahet/xlm-r-squad-sr-lat' pipe = pipeline('question-answering', model=model_name, tokenizer=model_name) sample = { 'question': 'U kom gradu je rođen Željko Obradović?', 'context': 'Željko Obradović (Čačak, 9. mart 1960) bivši je srpski i jugoslovenski košarkaš. Najuspešniji je trener u istoriji košarke.' } res = pipe(sample) ``` # Performance Model was tested on synthetic question answering dataset, created by automatic translation of SQuAD 1.1 dev split. The model achieved the following results: - Exact Match: ```71.04``` - F1: ```81.62``` # Source Code Source code for synthetic dataset generation and model finetuning can be found on this [GitHub repository](https://github.com/aleksac99/SQuAD-SR/).
imdanboy/kss_jets
imdanboy
2023-07-08T09:29:54Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ko", "dataset:kss", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2023-07-08T09:27:00Z
--- tags: - espnet - audio - text-to-speech language: ko datasets: - kss license: cc-by-4.0 --- ## ESPnet2 TTS model ### `imdanboy/kss_jets` This model was trained by imdanboy using kss recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 967ddbed826a7c90b75be2a7129588442d5cb6af pip install -e . cd egs2/kss/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model imdanboy/kss_jets ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_jets.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_jets_raw_phn_g2pk_no_space ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 51627 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - text2mel_loss - min - - train - text2mel_loss - min - - train - total_count - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 4500000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_g2pk_no_space/train/text_shape.phn - exp/tts_stats_raw_phn_g2pk_no_space/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_g2pk_no_space/valid/text_shape.phn - exp/tts_stats_raw_phn_g2pk_no_space/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_g2pk_no_space/train/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_g2pk_no_space/train/collect_feats/energy.scp - energy - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_g2pk_no_space/valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_g2pk_no_space/valid/collect_feats/energy.scp - energy - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adamw optim_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: true token_list: - <blank> - <unk> - ᅡ - ᅵ - ᄋ - ᅳ - ᄀ - ᅥ - ᄂ - ᆫ - ᄅ - ᄌ - ᄉ - ᅩ - ᆯ - ᄆ - . - ᅮ - ᄃ - ᄒ - ᅦ - ᆼ - ᅢ - ᄇ - ᅭ - ᅧ - ᄊ - ᆷ - ᄄ - ᆮ - ᄎ - ᄁ - ᆨ - ᄑ - ᄐ - ᅪ - ᄏ - '?' - ᄍ - ᆸ - ᅬ - ᅣ - ᅴ - ᅯ - ᅨ - ᄈ - ᅱ - ᅲ - ᅫ - ',' - '!' - ᅤ - ':' - ᅰ - '''' - '-' - '"' - / - I - M - F - E - S - C - A - B - ㅇ - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: g2pk_no_space feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 24000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_g2pk_no_space/train/feats_stats.npz tts: jets tts_conf: generator_type: jets_generator generator_params: adim: 256 aheads: 2 elayers: 4 eunits: 1024 dlayers: 4 dunits: 1024 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 use_masking: true encoder_normalize_before: true decoder_normalize_before: true encoder_type: transformer decoder_type: transformer conformer_rel_pos_type: latest conformer_pos_enc_layer_type: rel_pos conformer_self_attn_layer_type: rel_selfattn conformer_activation_type: swish use_macaron_style_in_conformer: true use_cnn_in_conformer: true conformer_enc_kernel_size: 7 conformer_dec_kernel_size: 31 init_type: xavier_uniform transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 5 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 5 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: true energy_predictor_layers: 2 energy_predictor_chans: 256 energy_predictor_kernel_size: 3 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: false generator_out_channels: 1 generator_channels: 512 generator_global_channels: -1 generator_kernel_size: 7 generator_upsample_scales: - 8 - 8 - 2 - 2 generator_upsample_kernel_sizes: - 16 - 16 - 4 - 4 generator_resblock_kernel_sizes: - 3 - 7 - 11 generator_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 generator_use_additional_convs: true generator_bias: true generator_nonlinear_activation: LeakyReLU generator_nonlinear_activation_params: negative_slope: 0.1 generator_use_weight_norm: true segment_size: 32 idim: 68 odim: 80 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 24000 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_var: 1.0 lambda_align: 1.0 sampling_rate: 24000 cache_generator_outputs: true pitch_extract: dio pitch_extract_conf: reduction_factor: 1 use_token_averaged_f0: false fs: 24000 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_stats_raw_phn_g2pk_no_space/train/pitch_stats.npz energy_extract: energy energy_extract_conf: reduction_factor: 1 use_token_averaged_energy: false fs: 24000 n_fft: 1024 hop_length: 256 win_length: null energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_stats_raw_phn_g2pk_no_space/train/energy_stats.npz required: - output_dir - token_list version: '202304' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hoanghoavienvo/xroberta-base-detect-depression-stage-one-ver2
hoanghoavienvo
2023-07-08T09:27:49Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-08T08:22:26Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xroberta-base-detect-depression-stage-one-ver2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xroberta-base-detect-depression-stage-one-ver2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6403 - Accuracy: 0.717 - F1: 0.7893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6432 | 1.0 | 751 | 0.5957 | 0.743 | 0.8219 | | 0.6285 | 2.0 | 1502 | 0.5813 | 0.719 | 0.8085 | | 0.6165 | 3.0 | 2253 | 0.6459 | 0.7 | 0.7976 | | 0.5371 | 4.0 | 3004 | 0.5612 | 0.743 | 0.8120 | | 0.46 | 5.0 | 3755 | 0.6403 | 0.717 | 0.7893 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dvinagre/whisper-tiny-en-finetuned-polyai-minds14-en-us
dvinagre
2023-07-08T09:14:13Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-05T14:32:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-finetuned-polyai-minds14-en-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.33943329397874855 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-finetuned-polyai-minds14-en-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Wer Ortho: 0.3430 - Wer: 0.3394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0009 | 17.86 | 500 | 0.6329 | 0.3430 | 0.3394 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
imtiaz114/bert-finetuned-ner-baseline-1
imtiaz114
2023-07-08T09:05:38Z
7
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-07T20:25:11Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: imtiaz114/bert-finetuned-ner-baseline-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # imtiaz114/bert-finetuned-ner-baseline-1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0916 - Validation Loss: 0.2890 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5970, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4561 | 0.3479 | 0 | | 0.3119 | 0.2839 | 1 | | 0.2518 | 0.2636 | 2 | | 0.2122 | 0.2485 | 3 | | 0.1802 | 0.2579 | 4 | | 0.1542 | 0.2584 | 5 | | 0.1326 | 0.2698 | 6 | | 0.1178 | 0.2726 | 7 | | 0.1011 | 0.2845 | 8 | | 0.0916 | 0.2890 | 9 | ### Framework versions - Transformers 4.31.0.dev0 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
hermanshid/distilbert-id-law
hermanshid
2023-07-08T09:01:08Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-01T20:17:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-id-law results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-id-law This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2874 | 1.0 | 6262 | 2.1654 | | 2.0961 | 2.0 | 12524 | 2.0036 | | 2.0255 | 3.0 | 18786 | 1.9364 | | 1.9767 | 4.0 | 25048 | 1.9011 | | 1.9579 | 5.0 | 31310 | 1.8912 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Trong-Nghia/electra-base-discriminator-detect-dep
Trong-Nghia
2023-07-08T08:56:23Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-08T08:24:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electra-base-discriminator-detect-dep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-detect-dep This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5410 - Accuracy: 0.738 - F1: 0.8104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 376 | 0.5444 | 0.742 | 0.8213 | | 0.6126 | 2.0 | 752 | 0.5450 | 0.739 | 0.8145 | | 0.5749 | 3.0 | 1128 | 0.5410 | 0.738 | 0.8104 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ruyaka/ppo-Huggy
ruyaka
2023-07-08T08:46:50Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-08T08:46:44Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ruyaka/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mrizalf7/xlm-r-qa-squad2.0-squad-1.1-2
mrizalf7
2023-07-08T08:44:09Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-08T08:19:16Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-r-qa-squad2.0-squad-1.1-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-qa-squad2.0-squad-1.1-2 This model is a fine-tuned version of [mrizalf7/xlm-r-qa-squad-2.0](https://huggingface.co/mrizalf7/xlm-r-qa-squad-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 318 | 3.1504 | | 3.1118 | 2.0 | 636 | 3.2360 | | 3.1118 | 3.0 | 954 | 3.3456 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ak2704/dqn-SpaceInvadersNoFrameskip-v4
ak2704
2023-07-08T08:42:28Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T08:42:02Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 329.00 +/- 157.97 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ak2704 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ak2704 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ak2704 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.1), ('learning_starts', 10000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Sobiyaselvakumar/donut-base-sroie
Sobiyaselvakumar
2023-07-08T08:38:24Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-07T11:14:27Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Den4ikAI/ruBert-tiny-replicas-classifier
Den4ikAI
2023-07-08T08:17:49Z
111
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-17T14:26:55Z
--- license: mit language: - ru widget: - text: 'привет' example_title: example_1 - text: 'тебя как звать' example_title: example_2 - text: 'как приготовить рагу' example_title: example_3 - text: 'в чем смысл жизни' example_title: example_4 - text: 'у меня кот сбежал' example_title: example_5 - text: 'что такое спидометр' example_title: example_6 - text: 'меня артур зовут' example_title: example_7 --- # Den4ikAI/ruBert-tiny-replicas-classifier Описание классов: 1. about_user - реагирует, когда пользователь говорит о себе. Например, "меня зовут андрей" 2. question - реагирует на вопросы 3. instruct - реагирует на вопросы, ответ на которые представляет собой инструкцию. Например, "как установить windows, как приготовить борщ" 4. about_system - реагирует на вопросы о личности ассистента. Например, "как тебя зовут, ты кто такая" 5. problem - реагирует на реплики, где пользователь рассказывает о своих проблемах. Например, "у меня болит зуб, мне проткнули колесо" 6. dialogue - реагирует на диалоговые реплики. Например, "привет" Примечание: модель обучалась без знаков '?' # Использование ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained('Den4ikAI/ruBert-tiny-replicas-classifier') model = AutoModelForSequenceClassification.from_pretrained('Den4ikAI/ruBert-tiny-replicas-classifier') model.to(device) model.eval() classes = ['instruct', 'question', 'dialogue', 'problem', 'about_system', 'about_user'] def get_sentence_type(text): inputs = tokenizer(text, max_length=512, add_special_tokens=False, return_tensors='pt').to(device) with torch.no_grad(): logits = model(**inputs).logits probas = list(torch.sigmoid(logits)[0].cpu().detach().numpy()) out = classes[probas.index(max(probas))] return out while 1: print(get_sentence_type(input(":> "))) ```
rdmpage/autotrain-lasiocampidae-73081139111
rdmpage
2023-07-08T08:15:33Z
182
0
transformers
[ "transformers", "pytorch", "safetensors", "swin", "image-classification", "autotrain", "vision", "dataset:rdmpage/autotrain-data-lasiocampidae", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-08T08:09:21Z
--- tags: - autotrain - vision - image-classification datasets: - rdmpage/autotrain-data-lasiocampidae widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 2.232916388389464 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 73081139111 - CO2 Emissions (in grams): 2.2329 ## Validation Metrics - Loss: 0.365 - Accuracy: 0.871 - Macro F1: 0.824 - Micro F1: 0.871 - Weighted F1: 0.865 - Macro Precision: 0.898 - Micro Precision: 0.871 - Weighted Precision: 0.874 - Macro Recall: 0.796 - Micro Recall: 0.871 - Weighted Recall: 0.871
mrizalf7/xlm-r-qa-squad2.0-squad-1.1-1
mrizalf7
2023-07-08T08:14:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-08T08:07:24Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-r-qa-squad2.0-squad-1.1-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-qa-squad2.0-squad-1.1-1 This model is a fine-tuned version of [mrizalf7/xlm-r-qa-squad-2.0](https://huggingface.co/mrizalf7/xlm-r-qa-squad-2.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 318 | 3.1818 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Olegiy/q-Taxi-v3
Olegiy
2023-07-08T07:35:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T07:35:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.84 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Olegiy/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hongrui/chest_v_1
hongrui
2023-07-08T07:33:43Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-03T23:39:03Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - hongrui/chest_v_1 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the hongrui/xray_v_1 dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
wytrnyte/q-learning-taxi-v3
wytrnyte
2023-07-08T07:24:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T07:24:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="wytrnyte/q-learning-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
wytrnyte/q-FrozenLake-v1-4x4-noSlippery
wytrnyte
2023-07-08T07:22:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T07:22:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="wytrnyte/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-concat-aochildes-len-16k-rarity-all-no-self-4k-1p2k
NasimB
2023-07-08T07:20:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T05:26:57Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-aochildes-len-16k-rarity-all-no-self-4k-1p2k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-aochildes-len-16k-rarity-all-no-self-4k-1p2k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.1934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7394 | 0.3 | 500 | 5.6331 | | 5.3748 | 0.59 | 1000 | 5.2044 | | 5.0309 | 0.89 | 1500 | 4.9493 | | 4.7518 | 1.18 | 2000 | 4.8041 | | 4.5959 | 1.48 | 2500 | 4.6818 | | 4.4873 | 1.77 | 3000 | 4.5795 | | 4.3537 | 2.07 | 3500 | 4.5123 | | 4.1676 | 2.36 | 4000 | 4.4632 | | 4.1387 | 2.66 | 4500 | 4.3957 | | 4.0998 | 2.95 | 5000 | 4.3479 | | 3.8663 | 3.25 | 5500 | 4.3465 | | 3.8329 | 3.54 | 6000 | 4.3101 | | 3.8222 | 3.84 | 6500 | 4.2757 | | 3.6816 | 4.13 | 7000 | 4.2834 | | 3.5463 | 4.43 | 7500 | 4.2723 | | 3.5397 | 4.72 | 8000 | 4.2563 | | 3.5124 | 5.02 | 8500 | 4.2552 | | 3.3501 | 5.31 | 9000 | 4.2619 | | 3.3456 | 5.61 | 9500 | 4.2600 | | 3.3437 | 5.9 | 10000 | 4.2593 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
lordsauron/Taxi-v3
lordsauron
2023-07-08T07:16:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T07:16:34Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.63 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="lordsauron/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-concat-aochildes-len-16k-rarity-all-3k-p95k
NasimB
2023-07-08T06:37:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T04:44:13Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-aochildes-len-16k-rarity-all-3k-p95k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-aochildes-len-16k-rarity-all-3k-p95k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.1918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7409 | 0.29 | 500 | 5.6340 | | 5.3726 | 0.59 | 1000 | 5.2051 | | 5.0259 | 0.88 | 1500 | 4.9531 | | 4.7454 | 1.18 | 2000 | 4.8054 | | 4.5934 | 1.47 | 2500 | 4.6754 | | 4.4864 | 1.77 | 3000 | 4.5725 | | 4.3481 | 2.06 | 3500 | 4.5028 | | 4.1699 | 2.36 | 4000 | 4.4581 | | 4.1348 | 2.65 | 4500 | 4.3968 | | 4.0906 | 2.95 | 5000 | 4.3403 | | 3.8679 | 3.24 | 5500 | 4.3395 | | 3.8308 | 3.54 | 6000 | 4.3080 | | 3.8137 | 3.83 | 6500 | 4.2756 | | 3.6811 | 4.13 | 7000 | 4.2786 | | 3.5439 | 4.42 | 7500 | 4.2680 | | 3.5384 | 4.72 | 8000 | 4.2581 | | 3.5122 | 5.01 | 8500 | 4.2522 | | 3.3498 | 5.31 | 9000 | 4.2589 | | 3.3434 | 5.6 | 9500 | 4.2583 | | 3.3411 | 5.9 | 10000 | 4.2578 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
mrizalf7/xlm-r-qa-squad2.0-squad-1.1-unmerged
mrizalf7
2023-07-08T06:20:59Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-06T14:37:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-r-qa-squad2.0-squad-1.1-unmerged results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-qa-squad2.0-squad-1.1-unmerged This model is a fine-tuned version of [mrizalf7/xlm-r-qa-squad-2.0](https://huggingface.co/mrizalf7/xlm-r-qa-squad-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9127 | 1.0 | 636 | 3.2060 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
lloydchang/wongstein-angry-validator
lloydchang
2023-07-08T06:02:07Z
188
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:creativeml-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T05:55:33Z
--- license: creativeml-openrail-m ---
CryoPhoenix9696/DragonAPIModel
CryoPhoenix9696
2023-07-08T06:01:40Z
0
0
adapter-transformers
[ "adapter-transformers", "en", "dataset:Open-Orca/OpenOrca", "license:openrail", "region:us" ]
null
2023-07-08T06:00:10Z
--- license: openrail datasets: - Open-Orca/OpenOrca language: - en metrics: - accuracy library_name: adapter-transformers ---
lovelyxs/q-FrozenLake-v1-4x4-noSlippery
lovelyxs
2023-07-08T05:37:07Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-08T05:37:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="lovelyxs/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```