modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 18:27:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 18:24:50
card
stringlengths
11
1.01M
ruan-xf/intern_study_L0_4
ruan-xf
2025-03-03T15:45:39Z
0
0
null
[ "safetensors", "internlm2", "custom_code", "region:us" ]
null
2025-03-03T15:41:19Z
# 书生浦语大模型实战营camp4 - hugging face模型上传测试 - 更多内容请访问 https://github.com/InternLM/Tutorial/tree/camp4
kweener/qwen-finetuned-Craig-7B-epoch10
kweener
2025-03-03T15:44:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-03-03T15:28:21Z
--- library_name: transformers base_model: Qwen/Qwen2.5-VL-3B-Instruct tags: - generated_from_trainer model-index: - name: qwen-finetuned-Craig-7B-epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen-finetuned-Craig-7B-epoch10 This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5635 | 1.0 | 25 | 13.0147 | | 3.428 | 2.0 | 50 | 3.9008 | | 0.6697 | 3.0 | 75 | 0.8603 | | 0.6301 | 4.0 | 100 | 0.3525 | | 0.4065 | 5.0 | 125 | 0.2897 | | 0.2677 | 6.0 | 150 | 0.2492 | | 0.3797 | 7.0 | 175 | 0.2400 | | 0.3805 | 8.0 | 200 | 0.2237 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
chi-vi/WN-zh-vi-sim-v0.3-GPTQ-Int4
chi-vi
2025-03-03T15:43:19Z
0
0
null
[ "safetensors", "qwen2", "zh", "vi", "license:cc-by-nc-sa-4.0", "4-bit", "gptq", "region:us" ]
null
2025-03-03T13:34:01Z
--- license: cc-by-nc-sa-4.0 language: - zh - vi --- [WN-zh-vi-sim-v0.3](https://huggingface.co/CjangCjengh/WN-zh-vi-sim-v0.3)的GPTQ Int4量化版本 Bản quant GPTQ Int4 của [WN-zh-vi-sim-v0.3](https://huggingface.co/CjangCjengh/WN-zh-vi-sim-v0.3) 模型用于对齐中文文本和越南语文本 Mô hình dùng để align văn bản tiếng Trung và tiếng Việt ```python import os import json import torch import torch.nn.functional as F from vllm import LLM from vllm.config import PoolerConfig from huggingface_hub import hf_hub_download model_path = 'CjangCjengh/WN-zh-vi-sim-v0.3-GPTQ-Int4' zh_text_path = 'zh.txt' vi_text_path = 'vi.txt' output_path = 'output.json' save_interval = 50 device = 'cuda' cpu_offload_gb = 0 lm_head_filename = 'yes_no_lm_head.pt' lm_head_path = hf_hub_download(repo_id=model_path, filename=lm_head_filename, local_dir='.') zh_idx = 0 vi_idx = 0 max_extra_lines = 5 align_list = [] if os.path.exists(output_path): with open(output_path,'r',encoding='utf-8') as f: align_list = json.load(f) zh_idx = sum([i['zh'].count('\n')+1 for i in align_list if i['zh']]) vi_idx = sum([i['vi'].count('\n')+1 for i in align_list if i['vi']]) lm_head = torch.load(lm_head_path) lm_head.to(device) llm = LLM(model=model_path, cpu_offload_gb=cpu_offload_gb, enforce_eager=True, task='embed', override_pooler_config=PoolerConfig(pooling_type='ALL')) zh_lines = open(zh_text_path,'r',encoding='utf-8').readlines() vi_lines = open(vi_text_path,'r',encoding='utf-8').readlines() zh_lines = [l.strip() for l in zh_lines] vi_lines = [l.strip() for l in vi_lines] def get_sim_score(src_text, tgt_text): text = f'<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n下面的中文段落和越南语段落的内容是否完全对应,不存在缺漏?(回答Yes或No)\n\n中文:\n{src_text}\n\n越南语:{tgt_text}<|im_end|>\n<|im_start|>assistant\n' outputs = llm.encode(text) with torch.inference_mode(): hidden_states = outputs[0].outputs.data[-1].to(dtype=lm_head.dtype).to(device) logits = torch.matmul(lm_head, hidden_states) result = F.softmax(logits, dim=0).tolist() return result[0] def generate_pairs(): visited = set() size = 1 while True: for x in range(size + 1): for y in range(size + 1): if (x, y) not in visited: visited.add((x, y)) yield (x+1, y+1) size += 1 while zh_idx < len(zh_lines) and vi_idx < len(vi_lines): for zh_i, vi_i in generate_pairs(): zh_text = ''.join(zh_lines[zh_idx:zh_idx+zh_i]) vi_text = ' '.join(vi_lines[vi_idx:vi_idx+vi_i]) score = get_sim_score(zh_text, vi_text) if score > 0.5: break if zh_i == 1 and vi_i == 1: continue score = get_sim_score(zh_lines[zh_idx+zh_i-1], vi_lines[vi_idx+vi_i-1]) if score > 0.5: zh_i -= 1 vi_i -= 1 break if zh_i > max_extra_lines or vi_i > max_extra_lines: end_flag = False for zh_i, vi_i in generate_pairs(): if zh_i == 1 and vi_i == 1: continue for zh_i_offset, vi_i_offset in generate_pairs(): zh_start = zh_idx+zh_i-1 vi_start = vi_idx+vi_i-1 if zh_i+zh_i_offset > max_extra_lines and vi_i+vi_i_offset > max_extra_lines: break if zh_i+zh_i_offset > max_extra_lines or vi_i+vi_i_offset > max_extra_lines: continue zh_text = ''.join(zh_lines[zh_start:zh_start+zh_i_offset]) vi_text = ' '.join(vi_lines[vi_start:vi_start+vi_i_offset]) score = get_sim_score(zh_text, vi_text) if score > 0.5: zh_i -= 1 vi_i -= 1 end_flag = True break if end_flag: break if zh_i > max_extra_lines or vi_i > max_extra_lines: with open(output_path,'w',encoding='utf-8') as f: json.dump(align_list, f, ensure_ascii=False, indent=0) raise Exception(f'Error! zh line No.{zh_idx+1} vi line No.{vi_idx+1}') zh_text = '\n'.join(zh_lines[zh_idx:zh_idx+zh_i]) vi_text = '\n'.join(vi_lines[vi_idx:vi_idx+vi_i]) align_list.append({'zh':zh_text, 'vi':vi_text}) new_align = [list(range(zh_idx, zh_idx+zh_i)), list(range(vi_idx, vi_idx+vi_i))] print(new_align) if len(align_list) % save_interval == 0: with open(output_path,'w',encoding='utf-8') as f: json.dump(align_list, f, ensure_ascii=False, indent=0) zh_idx += zh_i vi_idx += vi_i with open(output_path,'w',encoding='utf-8') as f: json.dump(align_list, f, ensure_ascii=False, indent=0) ```
memevis/SG22
memevis
2025-03-03T15:41:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T15:35:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Otakadelic/MT-Merge7-gemma-2-9B-Q4_K_M-GGUF
Otakadelic
2025-03-03T15:40:12Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:zelk12/MT-Merge7-gemma-2-9B", "base_model:quantized:zelk12/MT-Merge7-gemma-2-9B", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-03T15:39:47Z
--- base_model: zelk12/MT-Merge7-gemma-2-9B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: gemma pipeline_tag: text-generation --- # Otakadelic/MT-Merge7-gemma-2-9B-Q4_K_M-GGUF This model was converted to GGUF format from [`zelk12/MT-Merge7-gemma-2-9B`](https://huggingface.co/zelk12/MT-Merge7-gemma-2-9B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zelk12/MT-Merge7-gemma-2-9B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q4_K_M-GGUF --hf-file mt-merge7-gemma-2-9b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q4_K_M-GGUF --hf-file mt-merge7-gemma-2-9b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q4_K_M-GGUF --hf-file mt-merge7-gemma-2-9b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q4_K_M-GGUF --hf-file mt-merge7-gemma-2-9b-q4_k_m.gguf -c 2048 ```
dabrown/168c366d-5b16-4f56-adca-3b5025d1677f
dabrown
2025-03-03T15:40:11Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-03-03T14:26:23Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 168c366d-5b16-4f56-adca-3b5025d1677f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0ff973c3852970c4_train_data.json ds_type: json format: custom path: /workspace/input_data/0ff973c3852970c4_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: true hub_model_id: dabrown/168c366d-5b16-4f56-adca-3b5025d1677f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_inference_mode: true lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/0ff973c3852970c4_train_data.json model_type: AutoModelForCausalLM modules_to_save: lm_head num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: offline wandb_name: b1e23278-252e-44d7-9491-1b28d344421c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1e23278-252e-44d7-9491-1b28d344421c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 168c366d-5b16-4f56-adca-3b5025d1677f This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8222 | 0.0600 | 375 | 2.0474 | | 2.848 | 0.1201 | 750 | 1.9939 | | 1.8269 | 0.1801 | 1125 | 1.9629 | | 2.7946 | 0.2401 | 1500 | 1.9572 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Romain-XV/593ea626-37f4-40fd-b157-315456d1cfd5
Romain-XV
2025-03-03T15:38:44Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-1.8B", "base_model:adapter:Qwen/Qwen1.5-1.8B", "license:other", "4-bit", "bitsandbytes", "region:us" ]
null
2025-03-03T14:52:45Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-1.8B tags: - axolotl - generated_from_trainer model-index: - name: 593ea626-37f4-40fd-b157-315456d1cfd5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-1.8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2a4a709f44d46b03_train_data.json ds_type: json format: custom path: /workspace/input_data/2a4a709f44d46b03_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/593ea626-37f4-40fd-b157-315456d1cfd5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 7140 micro_batch_size: 2 mlflow_experiment_name: /tmp/2a4a709f44d46b03_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.029591927322226496 wandb_entity: null wandb_mode: online wandb_name: 5769b20b-d2ca-4e10-83d7-ac3e3b76ff18 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5769b20b-d2ca-4e10-83d7-ac3e3b76ff18 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 593ea626-37f4-40fd-b157-315456d1cfd5 This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 7140 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.2081 | 0.0000 | 1 | 3.7305 | | 2.2224 | 0.0073 | 150 | 2.0010 | | 2.2405 | 0.0146 | 300 | 1.9842 | | 2.1368 | 0.0220 | 450 | 1.9894 | | 2.0808 | 0.0293 | 600 | 1.9757 | | 1.9111 | 0.0366 | 750 | 1.9764 | | 1.7847 | 0.0439 | 900 | 1.9842 | | 1.7949 | 0.0512 | 1050 | 1.9797 | | 2.2459 | 0.0585 | 1200 | 1.9776 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
distributed/optimized-gpt2-2b
distributed
2025-03-03T15:38:13Z
138,501
5
transformers
[ "transformers", "safetensors", "gpt_optimized", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-11-18T15:32:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MrRobotoAI/D
MrRobotoAI
2025-03-03T15:36:40Z
28
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Blackroot/Llama-3-LongStory-LORA", "base_model:merge:Blackroot/Llama-3-LongStory-LORA", "base_model:Hastagaras/Jamet-8B-L3-MK.V-Blackroot", "base_model:merge:Hastagaras/Jamet-8B-L3-MK.V-Blackroot", "base_model:MrRobotoAI/155", "base_model:merge:MrRobotoAI/155", "base_model:MrRobotoAI/157", "base_model:merge:MrRobotoAI/157", "base_model:MrRobotoAI/218", "base_model:merge:MrRobotoAI/218", "base_model:MrRobotoAI/221", "base_model:merge:MrRobotoAI/221", "base_model:MrRobotoAI/227", "base_model:merge:MrRobotoAI/227", "base_model:MrRobotoAI/228", "base_model:merge:MrRobotoAI/228", "base_model:MrRobotoAI/229", "base_model:merge:MrRobotoAI/229", "base_model:MrRobotoAI/230", "base_model:merge:MrRobotoAI/230", "base_model:MrRobotoAI/231", "base_model:merge:MrRobotoAI/231", "base_model:MrRobotoAI/93", "base_model:merge:MrRobotoAI/93", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-02T21:54:05Z
--- base_model: - MrRobotoAI/218 - MrRobotoAI/227 - MrRobotoAI/221 - MrRobotoAI/230 - Blackroot/Llama-3-LongStory-LORA - MrRobotoAI/231 - Hastagaras/Jamet-8B-L3-MK.V-Blackroot - Blackroot/Llama-3-LongStory-LORA - MrRobotoAI/155 - MrRobotoAI/229 - MrRobotoAI/228 - MrRobotoAI/157 - MrRobotoAI/93 library_name: transformers tags: - mergekit - merge --- # merge 14,138 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [MrRobotoAI/228](https://huggingface.co/MrRobotoAI/228) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/218](https://huggingface.co/MrRobotoAI/218) * [MrRobotoAI/227](https://huggingface.co/MrRobotoAI/227) * [MrRobotoAI/221](https://huggingface.co/MrRobotoAI/221) * [MrRobotoAI/230](https://huggingface.co/MrRobotoAI/230) + [Blackroot/Llama-3-LongStory-LORA](https://huggingface.co/Blackroot/Llama-3-LongStory-LORA) * [MrRobotoAI/231](https://huggingface.co/MrRobotoAI/231) * [Hastagaras/Jamet-8B-L3-MK.V-Blackroot](https://huggingface.co/Hastagaras/Jamet-8B-L3-MK.V-Blackroot) + [Blackroot/Llama-3-LongStory-LORA](https://huggingface.co/Blackroot/Llama-3-LongStory-LORA) * [MrRobotoAI/155](https://huggingface.co/MrRobotoAI/155) * [MrRobotoAI/229](https://huggingface.co/MrRobotoAI/229) * [MrRobotoAI/157](https://huggingface.co/MrRobotoAI/157) * [MrRobotoAI/93](https://huggingface.co/MrRobotoAI/93) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/93 # 13,552 - model: MrRobotoAI/155 # 13,658 - model: MrRobotoAI/157 # 12,931 - model: MrRobotoAI/218 # 14,970 - model: MrRobotoAI/221 # 10,647+ - model: MrRobotoAI/227 - model: MrRobotoAI/229 - model: MrRobotoAI/230+Blackroot/Llama-3-LongStory-LORA - model: MrRobotoAI/231 - model: Hastagaras/Jamet-8B-L3-MK.V-Blackroot+Blackroot/Llama-3-LongStory-LORA merge_method: model_stock base_model: MrRobotoAI/228 normalize: true dtype: float16 ```
texanrangee/3bf5a023-a694-4f45-ab7b-bdd12003496c
texanrangee
2025-03-03T15:36:31Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T11:15:12Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Otakadelic/MT-Merge7-gemma-2-9B-Q8_0-GGUF
Otakadelic
2025-03-03T15:33:33Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:zelk12/MT-Merge7-gemma-2-9B", "base_model:quantized:zelk12/MT-Merge7-gemma-2-9B", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-03T15:32:45Z
--- base_model: zelk12/MT-Merge7-gemma-2-9B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: gemma pipeline_tag: text-generation --- # Otakadelic/MT-Merge7-gemma-2-9B-Q8_0-GGUF This model was converted to GGUF format from [`zelk12/MT-Merge7-gemma-2-9B`](https://huggingface.co/zelk12/MT-Merge7-gemma-2-9B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zelk12/MT-Merge7-gemma-2-9B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q8_0-GGUF --hf-file mt-merge7-gemma-2-9b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q8_0-GGUF --hf-file mt-merge7-gemma-2-9b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q8_0-GGUF --hf-file mt-merge7-gemma-2-9b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Otakadelic/MT-Merge7-gemma-2-9B-Q8_0-GGUF --hf-file mt-merge7-gemma-2-9b-q8_0.gguf -c 2048 ```
MrRobotoAI/A
MrRobotoAI
2025-03-03T15:32:35Z
21
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:MrRobotoAI/155", "base_model:merge:MrRobotoAI/155", "base_model:MrRobotoAI/218", "base_model:merge:MrRobotoAI/218", "base_model:MrRobotoAI/227", "base_model:merge:MrRobotoAI/227", "base_model:MrRobotoAI/228", "base_model:merge:MrRobotoAI/228", "base_model:MrRobotoAI/229", "base_model:merge:MrRobotoAI/229", "base_model:MrRobotoAI/231", "base_model:merge:MrRobotoAI/231", "base_model:MrRobotoAI/93", "base_model:merge:MrRobotoAI/93", "base_model:hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora", "base_model:merge:hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-02T00:57:42Z
--- base_model: - MrRobotoAI/155 - hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora - MrRobotoAI/227 - hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora - MrRobotoAI/93 - hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora - MrRobotoAI/231 - MrRobotoAI/228 - MrRobotoAI/229 - MrRobotoAI/218 - hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora library_name: transformers tags: - mergekit - merge --- # merge 13,017 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [MrRobotoAI/228](https://huggingface.co/MrRobotoAI/228) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/155](https://huggingface.co/MrRobotoAI/155) + [hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora](https://huggingface.co/hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora) * [MrRobotoAI/227](https://huggingface.co/MrRobotoAI/227) + [hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora](https://huggingface.co/hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora) * [MrRobotoAI/93](https://huggingface.co/MrRobotoAI/93) + [hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora](https://huggingface.co/hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora) * [MrRobotoAI/231](https://huggingface.co/MrRobotoAI/231) * [MrRobotoAI/229](https://huggingface.co/MrRobotoAI/229) * [MrRobotoAI/218](https://huggingface.co/MrRobotoAI/218) + [hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora](https://huggingface.co/hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/93+hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora # 13,552 - model: MrRobotoAI/155+hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora # 13,658 - model: MrRobotoAI/218+hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora # 14,970 - model: MrRobotoAI/227+hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora - model: MrRobotoAI/228 - model: MrRobotoAI/229 - model: MrRobotoAI/231 merge_method: model_stock base_model: MrRobotoAI/228 normalize: true dtype: float16 ```
petrznel/plastic_can
petrznel
2025-03-03T15:29:59Z
24
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-14T15:00:30Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- A plastic can containing supplements perched on a rocky cliff edge during sunrise, with dramatic light reflecting off its metallic surface and a distant runner preparing for a trail adventure. output: url: images/R8_FLUX_XLABS_00001_.webp base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # Plastic Can <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/petrznel/plastic_can/tree/main) them in the Files & versions tab.
Vaish1707/text2sql
Vaish1707
2025-03-03T15:28:44Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-03T15:27:54Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Vaish1707 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
zimka/ppo-Huggy
zimka
2025-03-03T15:27:27Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-03-03T15:27:23Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: zimka/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
markwil/cherakshin_style_LoRA
markwil
2025-03-03T15:26:57Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-03-03T15:26:49Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: photo collage in CHERKASHIN style widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - markwil/cherakshin_style_LoRA <Gallery /> ## Model description These are markwil/cherakshin_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use photo collage in CHERKASHIN style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](markwil/cherakshin_style_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
MrRobotoAI/B
MrRobotoAI
2025-03-03T15:26:53Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:MrRobotoAI/218", "base_model:merge:MrRobotoAI/218", "base_model:MrRobotoAI/227", "base_model:merge:MrRobotoAI/227", "base_model:MrRobotoAI/229", "base_model:merge:MrRobotoAI/229", "base_model:MrRobotoAI/231", "base_model:merge:MrRobotoAI/231", "base_model:MrRobotoAI/240", "base_model:merge:MrRobotoAI/240", "base_model:MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K", "base_model:merge:MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K", "base_model:MrRobotoAI/Hel-v4-8b-DARK-FICTION-128K", "base_model:merge:MrRobotoAI/Hel-v4-8b-DARK-FICTION-128K", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T05:06:04Z
--- base_model: - MrRobotoAI/227 - MrRobotoAI/240 - MrRobotoAI/Hel-v4-8b-DARK-FICTION-128K - MrRobotoAI/229 - MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K - MrRobotoAI/231 - MrRobotoAI/218 library_name: transformers tags: - mergekit - merge --- # merge 13,641 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K](https://huggingface.co/MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/227](https://huggingface.co/MrRobotoAI/227) * [MrRobotoAI/240](https://huggingface.co/MrRobotoAI/240) * [MrRobotoAI/Hel-v4-8b-DARK-FICTION-128K](https://huggingface.co/MrRobotoAI/Hel-v4-8b-DARK-FICTION-128K) * [MrRobotoAI/229](https://huggingface.co/MrRobotoAI/229) * [MrRobotoAI/231](https://huggingface.co/MrRobotoAI/231) * [MrRobotoAI/218](https://huggingface.co/MrRobotoAI/218) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: models: - model: MrRobotoAI/218 # 14,970 - model: MrRobotoAI/227 - model: MrRobotoAI/229 - model: MrRobotoAI/231 - model: MrRobotoAI/240 - model: MrRobotoAI/Hel-v4-8b-DARK-FICTION-128K - model: MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K merge_method: model_stock base_model: MrRobotoAI/Heimdall-v2.1-8b-MANCHESTER-WRITER-128K normalize: true dtype: float16 ```
irishprancer/c97ecd2c-29f3-4648-a667-b8d178914db4
irishprancer
2025-03-03T15:25:40Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T13:41:10Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-listnet-identity
tomaarsen
2025-03-03T15:25:35Z
11
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "text-classification", "generated_from_trainer", "dataset_size:78704", "loss:ListNetLoss", "en", "dataset:microsoft/ms_marco", "arxiv:1908.10084", "base_model:microsoft/MiniLM-L12-H384-uncased", "base_model:finetune:microsoft/MiniLM-L12-H384-uncased", "co2_eq_emissions", "region:us" ]
text-classification
2025-02-27T14:32:06Z
--- language: - en tags: - sentence-transformers - cross-encoder - text-classification - generated_from_trainer - dataset_size:78704 - loss:ListNetLoss base_model: microsoft/MiniLM-L12-H384-uncased datasets: - microsoft/ms_marco pipeline_tag: text-classification library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 co2_eq_emissions: emissions: 205.4804729340415 energy_consumed: 0.5286324046031189 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 1.686 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased results: [] --- # CrossEncoder based on microsoft/MiniLM-L12-H384-uncased This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label - **Training Dataset:** - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-listnet-identity") # Get scores for pairs of texts pairs = [ ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'], ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'], ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'], ] scores = model.predict(pairs) print(scores.shape) # (3,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'How many calories in an egg', [ 'There are on average between 55 and 80 calories in an egg depending on its size.', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.', 'Most of the calories in an egg come from the yellow yolk in the center.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.4847 (-0.0049) | 0.3325 (+0.0716) | 0.5967 (+0.1771) | | mrr@10 | 0.4768 (-0.0007) | 0.5669 (+0.0670) | 0.6024 (+0.1757) | | **ndcg@10** | **0.5573 (+0.0168)** | **0.3623 (+0.0373)** | **0.6499 (+0.1492)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) | Metric | Value | |:------------|:---------------------| | map | 0.4713 (+0.0813) | | mrr@10 | 0.5487 (+0.0807) | | **ndcg@10** | **0.5231 (+0.0678)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### ms_marco * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a) * Size: 78,704 training samples * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code> * Approximate statistics based on the first 1000 samples: | | query | docs | labels | |:--------|:-----------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------| | type | string | list | list | | details | <ul><li>min: 10 characters</li><li>mean: 33.93 characters</li><li>max: 99 characters</li></ul> | <ul><li>size: 10 elements</li></ul> | <ul><li>size: 10 elements</li></ul> | * Samples: | query | docs | labels | |:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------| | <code>what types of moons are there</code> | <code>["The different types of moons are: Full Wolf Moon, Full Snow Moon, Full Worm Moon, paschal full moon, full pink moon, full flower moon, full strawberry moon, full buck moon, … full sturgeon moon, full harvest moon, full hunters moon, full beaver moon, full cold moon. The solar eclipse, when the moon blocks the sun's light from hitting the earth-creating a temporary blackout on earth, can occur only at the time of New Moon, while the luna … r eclipse, when the earth blocks the sun's light from reflecting off the moon, can occur only at the time of Full Moon.", 'Types of Moons. Full Moon names date back to Native Americans, of what is now the northern and eastern United States. The tribes kept track of the seasons by giving distinctive names to each recurring full Moon. Their names were applied to the entire month in which each occurred. There was some variation in the Moon names, but in general, the same ones were current throughout the Algonquin tribes from New England to Lake Superio...</code> | <code>[1, 1, 1, 0, 0, ...]</code> | | <code>what is beryllium commonly combined with</code> | <code>['Beryllium is an industrial metal with some attractive attributes. It’s lighter than aluminum and 6x stronger than steel. It’s usually combined with other metals and is a key component in the aerospace and electronics industries. Beryllium is also used in the production of nuclear weapons. With that, you may not be surprised to learn that beryllium is one of the most toxic elements in existence. Beryllium is a Class A EPA carcinogen and exposure can cause Chronic Beryllium Disease, an often fatal lung disease. ', 'Beryllium is found in about 30 different mineral species. The most important are beryl (beryllium aluminium silicate) and bertrandite (beryllium silicate). Emerald and aquamarine are precious forms of beryl. The metal is usually prepared by reducing beryllium fluoride with magnesium metal. Uses. Beryllium is used in alloys with copper or nickel to make gyroscopes, springs, electrical contacts, spot-welding electrodes and non-sparking tools. Mixing beryllium with these metals...</code> | <code>[1, 0, 0, 0, 0, ...]</code> | | <code>is turkish coffee healthy</code> | <code>["Calories, Fat and Other Basics. A serving of Turkish coffee contains about 46 calories. Though the drink doesn't contain any fat, it also doesn't supply any fiber or protein, two key nutrients needed for good health. The coffee doesn't supply an impressive amount of calcium or iron either. A blend of strong coffee, sugar and cardamom, Turkish coffee is more of a sweet treat than something similar to a regular cup of coffee. While there are certain health benefits from the coffee and cardamom, sugar is a major drawback when it comes to the nutritional benefits of the drink", "A serving of Turkish coffee contains about 11.5 grams of sugar, which is equal to almost 3 teaspoons. That's half of the 6 teaspoons women should limit themselves to each day and one-third of the 9 teaspoons men should set as their daily upper limit, according to the American Heart Association. A blend of strong coffee, sugar and cardamom, Turkish coffee is more of a sweet treat than something similar to a regula...</code> | <code>[1, 1, 0, 0, 0, ...]</code> | * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters: ```json { "eps": 1e-10, "pad_value": -1, "activation_fct": "torch.nn.modules.linear.Identity" } ``` ### Evaluation Dataset #### ms_marco * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a) * Size: 1,000 evaluation samples * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code> * Approximate statistics based on the first 1000 samples: | | query | docs | labels | |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------| | type | string | list | list | | details | <ul><li>min: 10 characters</li><li>mean: 33.81 characters</li><li>max: 110 characters</li></ul> | <ul><li>size: 10 elements</li></ul> | <ul><li>size: 10 elements</li></ul> | * Samples: | query | docs | labels | |:-----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------| | <code>what is a fishy smell on humans</code> | <code>["Trimethylaminuria (TMAU), also known as fish odor syndrome or fish malodor syndrome, is a rare metabolic disorder where Trimethylamine is released in the person's sweat, urine, and breath, giving off a strong fishy odor or strong body odor. Body odor is generally considered to be an unpleasant odor among many human cultures.", "The trimethylamine is released in the person's sweat, urine, reproductive fluids, and breath, giving off a strong fishy or body odor. Some people with trimethylaminuria have a strong odor all the time, but most have a moderate smell that varies in intensity over time. Although FMO3 mutations account for most known cases of trimethylaminuria, some cases are caused by other factors. A fish-like body odor could result from an excess of certain proteins in the diet or from an increase in bacteria in the digestive system.", 'Trimethylaminuria is a disorder in which the body is unable to break down trimethylamine, a chemical compound that has a pungent odor. Trimeth...</code> | <code>[1, 0, 0, 0, 0, ...]</code> | | <code>how to cut woodworking joints</code> | <code>['The tails and pins interlock to form a strong 90-degree joint. Dovetail joints are technically complex and are often used to create drawer boxes for furniture. Through mortise and tenon – To form this joint, a round or square hole (called a mortise) is cut through the side of one piece of wood. The end of the other piece of wood is cut to have a projection (the tenon) that matches the mortise. The tenon is placed into the mortise, projecting out from the other side of the wood. A wedge is hammered into a hole in the tenon. The wedge keeps the tenon from sliding out of the mortise.', "Wood joinery is simply the method by which two pieces of wood are connected. In many cases, the appearance of a joint becomes at least as important as it's strength. Wood joinery encompasses everything from intricate half-blind dovetails to connections that are simply nailed, glued or screwed. How to Use Biscuit Joints. Share. Doweling as a method of joinery is simple: a few dowels are glued into matchin...</code> | <code>[1, 0, 0, 0, 0, ...]</code> | | <code>how long does it take to be a paramedic</code> | <code>['In Kansas, you first have to take an EMT course which is roughly 6 months long depending on where you take the course. Then you have to take A&P, English Comp, Sociology, Algebra, & Interpersonal Communication as pre-requisites for Paramedic. EMT is 110 hours which can be done in 3 weeks or dragged out for several months by just going one night per week to class. The Paramedic is 600 - 1200 hours in length depending on the state and averages about 6 - 9 months of training.', 'Coursework and training to become an EMT-basic or first responder can generally be completed in as little as three weeks on an accelerated basis. For part-time students, these programs may take around 8-11 weeks to complete. To become an EMT-intermediate 1985 or 1999, students generally must complete 30-350 hours of training. This training requirement varies according to the procedures the state allows these EMTs to perform.', 'How long does it take to be a paramedic depends on the area of study and the skill on...</code> | <code>[1, 0, 0, 0, 0, ...]</code> | * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters: ```json { "eps": 1e-10, "pad_value": -1, "activation_fct": "torch.nn.modules.linear.Identity" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 6 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 6 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:----------:|:---------:|:-------------:|:---------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------------:| | -1 | -1 | - | - | 0.0155 (-0.5250) | 0.3609 (+0.0358) | 0.0410 (-0.4597) | 0.1391 (-0.3163) | | 0.0001 | 1 | 2.1559 | - | - | - | - | - | | 0.0762 | 1000 | 2.0862 | - | - | - | - | - | | 0.1525 | 2000 | 2.0787 | - | - | - | - | - | | 0.2287 | 3000 | 2.0785 | - | - | - | - | - | | 0.3049 | 4000 | 2.0738 | 2.0755 | 0.5129 (-0.0276) | 0.3371 (+0.0120) | 0.5561 (+0.0555) | 0.4687 (+0.0133) | | 0.3812 | 5000 | 2.0828 | - | - | - | - | - | | 0.4574 | 6000 | 2.0711 | - | - | - | - | - | | 0.5336 | 7000 | 2.072 | - | - | - | - | - | | 0.6098 | 8000 | 2.0721 | 2.0734 | 0.5627 (+0.0222) | 0.3547 (+0.0296) | 0.5691 (+0.0684) | 0.4955 (+0.0401) | | 0.6861 | 9000 | 2.0714 | - | - | - | - | - | | 0.7623 | 10000 | 2.0744 | - | - | - | - | - | | 0.8385 | 11000 | 2.0708 | - | - | - | - | - | | **0.9148** | **12000** | **2.0705** | **2.0732** | **0.5573 (+0.0168)** | **0.3623 (+0.0373)** | **0.6499 (+0.1492)** | **0.5231 (+0.0678)** | | 0.9910 | 13000 | 2.0721 | - | - | - | - | - | | 1.0672 | 14000 | 2.065 | - | - | - | - | - | | 1.1435 | 15000 | 2.0732 | - | - | - | - | - | | 1.2197 | 16000 | 2.07 | 2.0729 | 0.5673 (+0.0269) | 0.3563 (+0.0312) | 0.5877 (+0.0870) | 0.5038 (+0.0484) | | 1.2959 | 17000 | 2.0707 | - | - | - | - | - | | 1.3722 | 18000 | 2.0719 | - | - | - | - | - | | 1.4484 | 19000 | 2.0687 | - | - | - | - | - | | 1.5246 | 20000 | 2.0675 | 2.0730 | 0.5633 (+0.0228) | 0.3264 (+0.0014) | 0.5949 (+0.0943) | 0.4949 (+0.0395) | | 1.6009 | 21000 | 2.0698 | - | - | - | - | - | | 1.6771 | 22000 | 2.0685 | - | - | - | - | - | | 1.7533 | 23000 | 2.0683 | - | - | - | - | - | | 1.8295 | 24000 | 2.0667 | 2.0731 | 0.5571 (+0.0166) | 0.3521 (+0.0271) | 0.6319 (+0.1313) | 0.5137 (+0.0583) | | 1.9058 | 25000 | 2.0665 | - | - | - | - | - | | 1.9820 | 26000 | 2.0707 | - | - | - | - | - | | 2.0582 | 27000 | 2.0663 | - | - | - | - | - | | 2.1345 | 28000 | 2.0672 | 2.0739 | 0.5543 (+0.0139) | 0.3346 (+0.0096) | 0.5958 (+0.0952) | 0.4949 (+0.0395) | | 2.2107 | 29000 | 2.0661 | - | - | - | - | - | | 2.2869 | 30000 | 2.0681 | - | - | - | - | - | | 2.3632 | 31000 | 2.0626 | - | - | - | - | - | | 2.4394 | 32000 | 2.0642 | 2.0745 | 0.5791 (+0.0387) | 0.3347 (+0.0097) | 0.6386 (+0.1380) | 0.5175 (+0.0621) | | 2.5156 | 33000 | 2.0635 | - | - | - | - | - | | 2.5919 | 34000 | 2.0648 | - | - | - | - | - | | 2.6681 | 35000 | 2.0615 | - | - | - | - | - | | 2.7443 | 36000 | 2.0626 | 2.0736 | 0.5735 (+0.0331) | 0.3288 (+0.0038) | 0.6205 (+0.1198) | 0.5076 (+0.0522) | | 2.8206 | 37000 | 2.0621 | - | - | - | - | - | | 2.8968 | 38000 | 2.0664 | - | - | - | - | - | | 2.9730 | 39000 | 2.0621 | - | - | - | - | - | | -1 | -1 | - | - | 0.5573 (+0.0168) | 0.3623 (+0.0373) | 0.6499 (+0.1492) | 0.5231 (+0.0678) | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.529 kWh - **Carbon Emitted**: 0.205 kg of CO2 - **Hours Used**: 1.686 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.5.0.dev0 - Transformers: 4.48.3 - PyTorch: 2.5.0+cu121 - Accelerate: 1.4.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ListNetLoss ```bibtex @inproceedings{cao2007learning, title={Learning to rank: from pairwise approach to listwise approach}, author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang}, booktitle={Proceedings of the 24th international conference on Machine learning}, pages={129--136}, year={2007} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
theraSara/Taxi-v3
theraSara
2025-03-03T15:24:46Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-03-03T15:24:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="theraSara/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rootonchair/InternVL2_5-4B-AWQ
rootonchair
2025-03-03T15:24:16Z
0
0
transformers
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "internvl", "custom_code", "awq", "image-text-to-text", "conversational", "multilingual", "base_model:OpenGVLab/InternVL2_5-4B", "base_model:quantized:OpenGVLab/InternVL2_5-4B", "license:mit", "4-bit", "region:us" ]
image-text-to-text
2025-03-03T14:54:01Z
--- license: mit pipeline_tag: image-text-to-text library_name: transformers base_model: OpenGVLab/InternVL2_5-4B base_model_relation: quantized language: - multilingual tags: - internvl - custom_code - awq --- # InternVL2_5-4B-AWQ ## Introduction This is an AWQ quantization of InternVL2_5-4B using `autoawq` ## Benchmark | Model Name | MMBench_DEV_EN | OCRBench | |:----------:|:--------------:|:--------:| | OpenGVLab/InternVL2_5-4B | 82.56 | 82.8 | | InternVL2_5-4B-AWQ | 82.3 | 80.5 | ## Quick Start We provide an example code to run `InternVL2_5-4B-AWQ` using `transformers`. > Please use transformers>=4.37.2 to ensure the model works normally. ### Model Loading #### 16-bit (bf16 / fp16) ```python import torch from transformers import AutoTokenizer, AutoModel path = "rootonchair/InternVL2_5-4B-AWQ" model = AutoModel.from_pretrained( path, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval().cuda() ``` #### BNB 8-bit Quantization ```python import torch from transformers import AutoTokenizer, AutoModel path = "rootonchair/InternVL2_5-4B-AWQ" model = AutoModel.from_pretrained( path, torch_dtype=torch.float16, load_in_8bit=True, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval() ``` #### Multiple GPUs The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors. ```python import math import torch from transformers import AutoTokenizer, AutoModel def split_model(model_name): device_map = {} world_size = torch.cuda.device_count() num_layers = { 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32, 'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name] # Since the first GPU will be used for ViT, treat it as half a GPU. num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) num_layers_per_gpu = [num_layers_per_gpu] * world_size num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = i layer_cnt += 1 device_map['vision_model'] = 0 device_map['mlp1'] = 0 device_map['language_model.model.tok_embeddings'] = 0 device_map['language_model.model.embed_tokens'] = 0 device_map['language_model.output'] = 0 device_map['language_model.model.norm'] = 0 device_map['language_model.model.rotary_emb'] = 0 device_map['language_model.lm_head'] = 0 device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 return device_map path = "rootonchair/InternVL2_5-4B-AWQ" device_map = split_model('InternVL2_5-4B') model = AutoModel.from_pretrained( path, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True, device_map=device_map).eval() ``` ### Inference with Transformers ```python import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'rootonchair/InternVL2_5-4B-AWQ' model = AutoModel.from_pretrained( path, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) # pure-text conversation (纯文本对话) question = 'Hello, who are you?' response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Can you tell me a story?' response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # single-image single-round conversation (单图单轮对话) question = '<image>\nPlease describe the image shortly.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') # single-image multi-round conversation (单图多轮对话) question = '<image>\nPlease describe the image in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Please write a poem according to the image.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) question = '<image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, separate images (多图多轮对话,独立图像) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # batch inference, single image per sample (单图批处理) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list) responses = model.batch_chat(tokenizer, pixel_values, num_patches_list=num_patches_list, questions=questions, generation_config=generation_config) for question, response in zip(questions, responses): print(f'User: {question}\nAssistant: {response}') # video multi-round conversation (视频多轮对话) def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments) ]) return frame_indices def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) pixel_values_list, num_patches_list = [], [] transform = build_transform(input_size=input_size) frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(tile) for tile in img] pixel_values = torch.stack(pixel_values) num_patches_list.append(pixel_values.shape[0]) pixel_values_list.append(pixel_values) pixel_values = torch.cat(pixel_values_list) return pixel_values, num_patches_list video_path = './examples/red-panda.mp4' pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) pixel_values = pixel_values.to(torch.float16).cuda() video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))]) question = video_prefix + 'What is the red panda doing?' # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question} response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Describe this video in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') ```
MrRobotoAI/C
MrRobotoAI
2025-03-03T15:24:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:MrRobotoAI/218", "base_model:merge:MrRobotoAI/218", "base_model:MrRobotoAI/227", "base_model:merge:MrRobotoAI/227", "base_model:MrRobotoAI/229", "base_model:merge:MrRobotoAI/229", "base_model:MrRobotoAI/231", "base_model:merge:MrRobotoAI/231", "base_model:MrRobotoAI/240", "base_model:merge:MrRobotoAI/240", "base_model:MrRobotoAI/B", "base_model:merge:MrRobotoAI/B", "base_model:MrRobotoAI/Odin-v2-8b-NOVELIST-128K", "base_model:merge:MrRobotoAI/Odin-v2-8b-NOVELIST-128K", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T06:00:16Z
--- base_model: - MrRobotoAI/229 - MrRobotoAI/231 - MrRobotoAI/218 - MrRobotoAI/Odin-v2-8b-NOVELIST-128K - MrRobotoAI/240 - MrRobotoAI/242 - MrRobotoAI/227 library_name: transformers tags: - mergekit - merge --- # merge 8,992 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [MrRobotoAI/Odin-v2-8b-NOVELIST-128K](https://huggingface.co/MrRobotoAI/Odin-v2-8b-NOVELIST-128K) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/229](https://huggingface.co/MrRobotoAI/229) * [MrRobotoAI/231](https://huggingface.co/MrRobotoAI/231) * [MrRobotoAI/218](https://huggingface.co/MrRobotoAI/218) * [MrRobotoAI/240](https://huggingface.co/MrRobotoAI/240) * [MrRobotoAI/242](https://huggingface.co/MrRobotoAI/242) * [MrRobotoAI/227](https://huggingface.co/MrRobotoAI/227) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/218 # 14,970 - model: MrRobotoAI/227 - model: MrRobotoAI/229 - model: MrRobotoAI/231 - model: MrRobotoAI/240 - model: MrRobotoAI/242 #13,641 - model: MrRobotoAI/Odin-v2-8b-NOVELIST-128K merge_method: model_stock base_model: MrRobotoAI/Odin-v2-8b-NOVELIST-128K normalize: true dtype: float16 ```
lesso10/2b24fe79-14fe-48f1-9b7d-ee2764998adb
lesso10
2025-03-03T15:23:43Z
0
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-03-03T12:16:57Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 2b24fe79-14fe-48f1-9b7d-ee2764998adb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 2b24fe79-14fe-48f1-9b7d-ee2764998adb This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00021 - train_batch_size: 4 - eval_batch_size: 4 - seed: 100 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.5849 | | 0.5222 | 0.3135 | 500 | 0.4791 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso09/26920111-924d-4d5e-8efc-15d45c482a1f
lesso09
2025-03-03T15:23:18Z
0
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-03-03T12:16:49Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 26920111-924d-4d5e-8efc-15d45c482a1f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 26920111-924d-4d5e-8efc-15d45c482a1f This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000209 - train_batch_size: 4 - eval_batch_size: 4 - seed: 90 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.5927 | | 0.5003 | 0.3135 | 500 | 0.4789 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso04/584f06db-94f2-42c3-a4d3-e1b3a5b14dbb
lesso04
2025-03-03T15:21:42Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "region:us" ]
null
2025-03-03T13:56:25Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: 584f06db-94f2-42c3-a4d3-e1b3a5b14dbb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 584f06db-94f2-42c3-a4d3-e1b3a5b14dbb This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000204 - train_batch_size: 4 - eval_batch_size: 4 - seed: 40 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 0.9570 | | 0.4086 | 0.3344 | 500 | 0.4129 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/9085010b-0e03-4485-b832-2c2c9cb03c28
lesso03
2025-03-03T15:21:18Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "base_model:adapter:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "license:llama3", "region:us" ]
null
2025-03-03T12:36:49Z
--- library_name: peft license: llama3 base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct tags: - axolotl - generated_from_trainer model-index: - name: 9085010b-0e03-4485-b832-2c2c9cb03c28 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 9085010b-0e03-4485-b832-2c2c9cb03c28 This model is a fine-tuned version of [aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000203 - train_batch_size: 4 - eval_batch_size: 4 - seed: 30 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.2606 | | 1.4444 | 0.0826 | 500 | 1.4491 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso02/59f3097d-5df4-40e6-b746-cf88f9649523
lesso02
2025-03-03T15:21:02Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "region:us" ]
null
2025-03-03T11:34:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: 59f3097d-5df4-40e6-b746-cf88f9649523 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 59f3097d-5df4-40e6-b746-cf88f9649523 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000202 - train_batch_size: 4 - eval_batch_size: 4 - seed: 20 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.4249 | | 2.1031 | 0.0064 | 500 | 1.0405 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ogizhelev/european_carplates
ogizhelev
2025-03-03T15:20:24Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-03T15:20:24Z
--- license: apache-2.0 ---
featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF
featherless-ai-quants
2025-03-03T15:19:39Z
0
0
null
[ "gguf", "text-generation", "base_model:huihui-ai/Qwen2.5-7B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-7B-Instruct-abliterated", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-03T15:12:58Z
--- base_model: huihui-ai/Qwen2.5-7B-Instruct-abliterated pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # huihui-ai/Qwen2.5-7B-Instruct-abliterated GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-IQ4_XS.gguf) | 4053.40 MB | | Q2_K | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q2_K.gguf) | 2876.23 MB | | Q3_K_L | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q3_K_L.gguf) | 3899.06 MB | | Q3_K_M | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q3_K_M.gguf) | 3631.97 MB | | Q3_K_S | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q3_K_S.gguf) | 3330.58 MB | | Q4_K_M | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q4_K_M.gguf) | 4466.13 MB | | Q4_K_S | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q4_K_S.gguf) | 4251.26 MB | | Q5_K_M | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q5_K_M.gguf) | 5192.60 MB | | Q5_K_S | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q5_K_S.gguf) | 5068.95 MB | | Q6_K | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q6_K.gguf) | 5964.47 MB | | Q8_0 | [huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/huihui-ai-Qwen2.5-7B-Instruct-abliterated-GGUF/blob/main/huihui-ai-Qwen2.5-7B-Instruct-abliterated-Q8_0.gguf) | 7723.36 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
ivolegrey/Sci-fi_Sketch_Style_SD1.5
ivolegrey
2025-03-03T15:16:17Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:mit", "region:us" ]
text-to-image
2025-03-03T15:15:55Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, 1girl, full body, shorter black hair, beautiful face, pretty eyes, smile, blush, black v-shirt, cleavage, large breasts, simple white background parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00008_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, 1girl, full body, shorter black hair, beautiful face, pretty eyes, smile, blush, black v-shirt, cleavage, large breasts, simple white background parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00019_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, futuristic city, gigantic structures, intricate architecture, bridges, roads, small buildings, bright sky parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00027_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, futuristic city, gigantic structures, intricate architecture, bridges, roads, small buildings, bright sky parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00032_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, futuristic city, gigantic structures, intricate architecture, bridges, roads, small buildings, bright sky parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00038_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, overgrown ruins, beautiful architecture, mangrove swamp, gigantic trees, river, dense vegetation, fog parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00040_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, overgrown ruins, beautiful architecture, mangrove swamp, gigantic trees, river, dense vegetation, fog parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00041_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, overgrown ruins, beautiful architecture, mangrove swamp, gigantic trees, river, dense vegetation, fog parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00046_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, futuristic metal ruins, barren landscape, outer space, black sky, stars, planet parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00060_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, monochromatic, futuristic metal ruins, barren landscape, outer space, black sky, stars, planet parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00062_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, 1girl, brown hair, ponytail, perfect body, large breasts, pink bikini, futuristic city, beach, tropical, palm trees, sunset, epic clouds parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00079_.png - text: >- masterpiece, high quality, best quality, rough sketch, messy line art, 1girl, brown hair, ponytail, perfect body, large breasts, pink bikini, futuristic city, beach, tropical, palm trees, sunset, epic clouds parameters: negative_prompt: bad anatomy, bad hands, ugly, text, watermark, worst quality, bad quality output: url: images/Sci-fi_Sketch_SD1.5_Upscaled_00085_.png base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 instance_prompt: null license: mit --- # Sci-fi Sketch Style SD1.5 <Gallery /> ## Model description This LoRA is designed to produce a rough pen sketch style, while also being able to generate futuristic places, natural environments, space, horrifying monsters, giant mechas and aesthetic people. # Usage There is no trigger word, but &quot;rough sketch&quot;, &quot;monochromatic&#x2F;desaturated&quot;, &quot; messy line art&quot; or &quot;flat color&quot; and &quot;sci-fi&quot; can help a lot. The training was done on CivitAI and trained with over 500 images generated using Microsoft&#39;s Copilot Designer and auto generated captions with a few manual adjustments. ## Download model Weights for this model are available in Safetensors format. [Download](/ivolegrey/Sci-fi_Sketch_Style_SD1.5/tree/main) them in the Files & versions tab.
d-rang-d/MS3-RP-Broth-24B
d-rang-d
2025-03-03T15:15:30Z
0
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "en", "base_model:ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4", "base_model:merge:ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4", "base_model:PocketDoc/Dans-DangerousWinds-V1.1.1-24b", "base_model:merge:PocketDoc/Dans-DangerousWinds-V1.1.1-24b", "base_model:ReadyArt/Forgotten-Safeword-24B-V2.2", "base_model:merge:ReadyArt/Forgotten-Safeword-24B-V2.2", "base_model:TheDrummer/Cydonia-24B-v2", "base_model:merge:TheDrummer/Cydonia-24B-v2", "base_model:ToastyPigeon/ms3-roselily-rp-v2", "base_model:merge:ToastyPigeon/ms3-roselily-rp-v2", "base_model:estrogen/MS2501-24b-Ink-apollo-ep2", "base_model:merge:estrogen/MS2501-24b-Ink-apollo-ep2", "base_model:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:merge:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:trashpanda-org/Llama3-24B-Mullein-v1", "base_model:merge:trashpanda-org/Llama3-24B-Mullein-v1", "base_model:trashpanda-org/MS-24B-Instruct-Mullein-v0", "base_model:merge:trashpanda-org/MS-24B-Instruct-Mullein-v0", "base_model:unsloth/Mistral-Small-24B-Base-2501", "base_model:merge:unsloth/Mistral-Small-24B-Base-2501", "base_model:unsloth/Mistral-Small-24B-Instruct-2501", "base_model:merge:unsloth/Mistral-Small-24B-Instruct-2501", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-02T22:48:58Z
--- language: - en license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - unsloth/Mistral-Small-24B-Base-2501 - unsloth/Mistral-Small-24B-Instruct-2501 - trashpanda-org/MS-24B-Instruct-Mullein-v0 - trashpanda-org/Llama3-24B-Mullein-v1 - ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4 - TheDrummer/Cydonia-24B-v2 - estrogen/MS2501-24b-Ink-apollo-ep2 - huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated - ToastyPigeon/ms3-roselily-rp-v2 - PocketDoc/Dans-DangerousWinds-V1.1.1-24b - ReadyArt/Forgotten-Safeword-24B-V2.2 --- *** ### Overview One of the merging steps for [Tantum](https://huggingface.co/Nohobby/MS3-Tantum-24B-v0.1). Might be better than the end result ## Model files may not be downloadable You can get full-weight files from here: https://huggingface.co/mergekit-community/MS-RP-whole This happened because I was using the mergekit-gui space for merging and got lazy about manually dragging the intermediate steps to my org, so I just set it to upload to mergekit-community. When I learned that this thing was usable on it's own, I decided to add some info to the model card and duplicated the repo here before linking it in the Tantum readme file. yeah **Settings:** Samplers: [Weird preset](https://files.catbox.moe/ccwmca.json) | [Forgotten-Safeword preset](https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-Extra-Dry) Prompt format: Mistral-V7-Tekken (?) I use [this](https://files.catbox.moe/daluze.json) lorebook for all chats instead of a system prompt for mistal models. ### Quants [Static](https://huggingface.co/mradermacher/MS-RP-whole-GGUF) | [Imatrix](https://huggingface.co/mradermacher/MS-RP-whole-i1-GGUF) *** ## Merge Details ### Merging steps ## MS3-test-Merge-1 ```yaml models: - model: unsloth/Mistral-Small-24B-Base-2501 - model: unsloth/Mistral-Small-24B-Instruct-2501+ToastyPigeon/new-ms-rp-test-ws parameters: select_topk: - value: [0.05, 0.03, 0.02, 0.02, 0.01] - model: unsloth/Mistral-Small-24B-Instruct-2501+estrogen/MS2501-24b-Ink-ep2-adpt parameters: select_topk: 0.1 - model: trashpanda-org/MS-24B-Instruct-Mullein-v0 parameters: select_topk: 0.4 base_model: unsloth/Mistral-Small-24B-Base-2501 merge_method: sce parameters: int8_mask: true rescale: true normalize: true dtype: bfloat16 tokenizer_source: base ``` ```yaml dtype: bfloat16 tokenizer_source: base merge_method: della_linear parameters: density: 0.55 base_model: Step1 models: - model: unsloth/Mistral-Small-24B-Instruct-2501 parameters: weight: - filter: v_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0] - filter: o_proj value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1] - filter: up_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: gate_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0] - filter: down_proj value: [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - value: 0 - model: Step1 parameters: weight: - filter: v_proj value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1] - filter: o_proj value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0] - filter: up_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: gate_proj value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1] - filter: down_proj value: [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1] - value: 1 ``` Some early MS3 merge. Not really worth using on its own. Just added it for fun. ## RP-half1 ```yaml models: - model: ArliAI/Mistral-Small-24B-ArliAI-RPMax-v1.4 parameters: weight: 0.2 density: 0.7 - model: trashpanda-org/Llama3-24B-Mullein-v1 parameters: weight: 0.2 density: 0.7 - model: TheDrummer/Cydonia-24B-v2 parameters: weight: 0.2 density: 0.7 merge_method: della_linear base_model: Nohobby/MS3-test-Merge-1 parameters: epsilon: 0.2 lambda: 1.1 dtype: bfloat16 tokenizer: source: base ``` ## RP-half2 ```yaml base_model: Nohobby/MS3-test-Merge-1 parameters: epsilon: 0.05 lambda: 0.9 int8_mask: true rescale: true normalize: false dtype: bfloat16 tokenizer: source: base merge_method: della models: - model: estrogen/MS2501-24b-Ink-apollo-ep2 parameters: weight: [0.1, -0.01, 0.1, -0.02, 0.1] density: [0.6, 0.4, 0.5, 0.4, 0.6] - model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated parameters: weight: [0.02, -0.01, 0.02, -0.02, 0.01] density: [0.45, 0.55, 0.45, 0.55, 0.45] - model: ToastyPigeon/ms3-roselily-rp-v2 parameters: weight: [0.01, -0.02, 0.02, -0.025, 0.01] density: [0.45, 0.65, 0.45, 0.65, 0.45] - model: PocketDoc/Dans-DangerousWinds-V1.1.1-24b parameters: weight: [0.1, -0.01, 0.1, -0.02, 0.1] density: [0.6, 0.4, 0.5, 0.4, 0.6] ``` ## RP-broth/MS-RP-whole ```yaml base_model: ReadyArt/Forgotten-Safeword-24B-V2.2 merge_method: model_stock dtype: bfloat16 models: - model: mergekit-community/MS3-RP-half1 - model: mergekit-community/MS3-RP-RP-half2 ```
logasja/auramask-ensemble-brooklyn
logasja
2025-03-03T15:15:09Z
2
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
2025-03-02T20:01:28Z
--- library_name: keras widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png datasets: - logasja/FDF base_model: - vnet - logasja/ArcFace - logasja/VGGFace metrics: - TopIQ-FR - ArcFace Cosine Distance - VGGFace2 Cosine Distance license: gpl-3.0 pipeline_tag: image-to-image tags: - adversarial - aesthetic - quality - filter --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/9dc30dfddd79aa32c7d0d70a315dcd1c) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 128, 256, 512, 1024, 1024 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 32, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_ArcFace": { "d": "cosine_similarity", "f": "ArcFace", "name": "FEAT_ArcFace", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.05 }, "FEAT_VGG-Face": { "d": "cosine_similarity", "f": "VGG-Face", "name": "FEAT_VGG-Face", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.05 }, "IQASSIMC": { "lower_better": false, "name": "IQASSIMC", "reduction": "sum_over_batch_size", "weight": 0.5 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.5 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
juhw/uiop69
juhw
2025-03-03T15:15:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T15:11:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hllllllllll/test
hllllllllll
2025-03-03T15:14:59Z
0
0
adapter-transformers
[ "adapter-transformers", "chemistry", "ab", "dataset:open-thoughts/OpenThoughts-114k", "license:apache-2.0", "region:us" ]
null
2025-03-03T15:05:05Z
--- license: apache-2.0 datasets: - open-thoughts/OpenThoughts-114k language: - ab metrics: - accuracy new_version: deepseek-ai/DeepSeek-R1 library_name: adapter-transformers tags: - chemistry ---
aayeshanakarmi/distractor-generation-redstone-flant5small
aayeshanakarmi
2025-03-03T15:12:50Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-03T15:12:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
varunkarwa/Qwen2.5_OPUS_BOOK
varunkarwa
2025-03-03T15:09:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-02-26T16:04:14Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shri2703/qwen2-5-1.5b-finetuned
Shri2703
2025-03-03T15:08:04Z
0
0
peft
[ "peft", "safetensors", "qwen", "lora", "causal-lm", "en", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-03T12:20:30Z
--- language: en license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - qwen - lora - peft - causal-lm --- # Qwen2.5-1.5B-Instruct Fine-tuned Model This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) using LoRA (Low-Rank Adaptation). ## Training Details - Model was trained for 2 epochs on a custom dataset - Used 4-bit quantization for efficient training - Used the LoRA+ technique with 16.0 ratio - Trained with a batch size of 1 and gradient accumulation steps of 12
saim1212/qwen2_7b_unfreezefinetune
saim1212
2025-03-03T15:07:32Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:adapter:Qwen/Qwen2-VL-7B-Instruct", "license:other", "region:us" ]
null
2025-03-02T09:39:51Z
--- library_name: peft license: other base_model: Qwen/Qwen2-VL-7B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: qwen2vl_lora_16lr_7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2vl_lora_16lr_7b This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) on the talk2car dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.12.0 - Transformers 4.49.0 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.21.0
taedam/1
taedam
2025-03-03T15:07:22Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-02T09:40:07Z
--- license: other license_name: '1' license_link: LICENSE ---
od2025/alpha_ghost
od2025
2025-03-03T15:06:25Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-03T14:59:04Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
od2025/silent_byte
od2025
2025-03-03T15:04:28Z
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-03-03T14:57:59Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
jedzqg/zhihu-model
jedzqg
2025-03-03T15:00:57Z
0
0
null
[ "gguf", "llama", "zh", "dataset:wangrui6/Zhihu-KOL", "base_model:unsloth/DeepSeek-R1-Distill-Llama-8B", "base_model:quantized:unsloth/DeepSeek-R1-Distill-Llama-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-03T14:43:06Z
--- datasets: - wangrui6/Zhihu-KOL language: - zh base_model: - unsloth/DeepSeek-R1-Distill-Llama-8B --- 该模型由unsloth/DeepSeek-R1-Distill-Llama-8B通过https://hf-mirror.com/datasets/wangrui6/Zhihu-KOL 数据集微调而来
ObeJ/granite-3.2-8b-instruct-Q8_0-GGUF
ObeJ
2025-03-03T14:58:19Z
0
0
transformers
[ "transformers", "gguf", "language", "granite-3.2", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:ibm-granite/granite-3.2-8b-instruct", "base_model:quantized:ibm-granite/granite-3.2-8b-instruct", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2025-03-03T14:57:42Z
--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.2 - llama-cpp - gguf-my-repo base_model: ibm-granite/granite-3.2-8b-instruct --- # ObeJ/granite-3.2-8b-instruct-Q8_0-GGUF This model was converted to GGUF format from [`ibm-granite/granite-3.2-8b-instruct`](https://huggingface.co/ibm-granite/granite-3.2-8b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.2-8b-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ObeJ/granite-3.2-8b-instruct-Q8_0-GGUF --hf-file granite-3.2-8b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ObeJ/granite-3.2-8b-instruct-Q8_0-GGUF --hf-file granite-3.2-8b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ObeJ/granite-3.2-8b-instruct-Q8_0-GGUF --hf-file granite-3.2-8b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ObeJ/granite-3.2-8b-instruct-Q8_0-GGUF --hf-file granite-3.2-8b-instruct-q8_0.gguf -c 2048 ```
vinit2534/deepseek_finetuned2
vinit2534
2025-03-03T14:57:48Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T14:57:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmadicitian/ats
ahmadicitian
2025-03-03T14:56:49Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-03T14:56:49Z
--- license: apache-2.0 ---
mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF
mradermacher
2025-03-03T14:56:19Z
0
0
transformers
[ "transformers", "gguf", "axolotl", "en", "zh", "dataset:allenai/tulu-3-sft-personas-instruction-following", "dataset:simplescaling/s1K-1.1", "dataset:simplescaling/s1K-claude-3-7-sonnet", "dataset:reedmayhew/medical-o1-reasoning-SFT-jsonl", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:PocketDoc/Dans-Kinomaxx-VanillaBackrooms", "dataset:cognitivecomputations/SystemChat-2.0", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:allura-org/scienceqa_sharegpt", "base_model:allura-org/Mistral-Small-Sisyphus-24b-2503", "base_model:quantized:allura-org/Mistral-Small-Sisyphus-24b-2503", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-03T11:44:04Z
--- base_model: allura-org/Mistral-Small-Sisyphus-24b-2503 datasets: - allenai/tulu-3-sft-personas-instruction-following - simplescaling/s1K-1.1 - simplescaling/s1K-claude-3-7-sonnet - reedmayhew/medical-o1-reasoning-SFT-jsonl - OpenCoder-LLM/opc-sft-stage1 - PocketDoc/Dans-Kinomaxx-VanillaBackrooms - cognitivecomputations/SystemChat-2.0 - anthracite-org/kalo-opus-instruct-22k-no-refusal - allura-org/scienceqa_sharegpt language: - en - zh library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - axolotl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/allura-org/Mistral-Small-Sisyphus-24b-2503 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ1_S.gguf) | i1-IQ1_S | 5.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ1_M.gguf) | i1-IQ1_M | 5.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ2_XS.gguf) | i1-IQ2_XS | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ2_S.gguf) | i1-IQ2_S | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ2_M.gguf) | i1-IQ2_M | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q2_K_S.gguf) | i1-Q2_K_S | 8.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q2_K.gguf) | i1-Q2_K | 9.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 9.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ3_XS.gguf) | i1-IQ3_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q3_K_S.gguf) | i1-Q3_K_S | 10.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ3_S.gguf) | i1-IQ3_S | 10.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ3_M.gguf) | i1-IQ3_M | 10.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q3_K_M.gguf) | i1-Q3_K_M | 11.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q3_K_L.gguf) | i1-Q3_K_L | 12.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q4_0.gguf) | i1-Q4_0 | 13.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q4_K_S.gguf) | i1-Q4_K_S | 13.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q4_K_M.gguf) | i1-Q4_K_M | 14.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q4_1.gguf) | i1-Q4_1 | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q5_K_S.gguf) | i1-Q5_K_S | 16.4 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q5_K_M.gguf) | i1-Q5_K_M | 16.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Small-Sisyphus-24b-2503-i1-GGUF/resolve/main/Mistral-Small-Sisyphus-24b-2503.i1-Q6_K.gguf) | i1-Q6_K | 19.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF
mradermacher
2025-03-03T14:56:19Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:vtriple/Qwen-2.5-7B-Threatflux", "base_model:quantized:vtriple/Qwen-2.5-7B-Threatflux", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-03T11:37:55Z
--- base_model: vtriple/Qwen-2.5-7B-Threatflux language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/vtriple/Qwen-2.5-7B-Threatflux <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-2.5-7B-Threatflux-i1-GGUF/resolve/main/Qwen-2.5-7B-Threatflux.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kiranshivaraju/LLama-manufacturing-8B-Instruct-test
kiranshivaraju
2025-03-03T14:56:01Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:35:00Z
--- base_model: unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kiranshivaraju - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mergekit-community/L3.1-Athena-b-8B
mergekit-community
2025-03-03T14:54:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "base_model:Hastagaras/Jamet-8B-L3-MK.V-Blackroot", "base_model:merge:Hastagaras/Jamet-8B-L3-MK.V-Blackroot", "base_model:MathGenie/MathCoder2-Llama-3-8B", "base_model:merge:MathGenie/MathCoder2-Llama-3-8B", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:merge:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:Sao10K/L3-8B-Lunaris-v1", "base_model:merge:Sao10K/L3-8B-Lunaris-v1", "base_model:Skywork/Skywork-o1-Open-Llama-3.1-8B", "base_model:merge:Skywork/Skywork-o1-Open-Llama-3.1-8B", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:mergekit-community/L3-Boshima-a", "base_model:merge:mergekit-community/L3-Boshima-a", "base_model:mergekit-community/L3.1-Athena-a-8B", "base_model:merge:mergekit-community/L3.1-Athena-a-8B", "base_model:meta-llama/Llama-3.1-8B", "base_model:merge:meta-llama/Llama-3.1-8B", "base_model:mlabonne/NeuralDaredevil-8B-abliterated", "base_model:merge:mlabonne/NeuralDaredevil-8B-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:47:24Z
--- base_model: - meta-llama/Llama-3.1-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B - deepseek-ai/DeepSeek-R1-Distill-Llama-8B - mergekit-community/L3.1-Athena-a-8B - Sao10K/L3-8B-Lunaris-v1 - mlabonne/NeuralDaredevil-8B-abliterated - mergekit-community/L3-Boshima-a - Skywork/Skywork-o1-Open-Llama-3.1-8B - MathGenie/MathCoder2-Llama-3-8B - NousResearch/Hermes-3-Llama-3.1-8B - Hastagaras/Jamet-8B-L3-MK.V-Blackroot library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [mergekit-community/L3.1-Athena-a-8B](https://huggingface.co/mergekit-community/L3.1-Athena-a-8B) as a base. ### Models Merged The following models were included in the merge: * [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B) * [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) * [Sao10K/L3-8B-Lunaris-v1](https://huggingface.co/Sao10K/L3-8B-Lunaris-v1) * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) * [mergekit-community/L3-Boshima-a](https://huggingface.co/mergekit-community/L3-Boshima-a) * [Skywork/Skywork-o1-Open-Llama-3.1-8B](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B) * [MathGenie/MathCoder2-Llama-3-8B](https://huggingface.co/MathGenie/MathCoder2-Llama-3-8B) * [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) * [Hastagaras/Jamet-8B-L3-MK.V-Blackroot](https://huggingface.co/Hastagaras/Jamet-8B-L3-MK.V-Blackroot) ### Configuration The following YAML configuration was used to produce this model: ```yaml out_dtype: bfloat16 merge_method: model_stock base_model: mergekit-community/L3.1-Athena-a-8B models: - model: meta-llama/Llama-3.1-8B - model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B - model: Skywork/Skywork-o1-Open-Llama-3.1-8B - model: MathGenie/MathCoder2-Llama-3-8B - model: NousResearch/Hermes-3-Llama-3.1-8B - model: mlabonne/NeuralDaredevil-8B-abliterated - model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B - model: Sao10K/L3-8B-Lunaris-v1 - model: mergekit-community/L3-Boshima-a - model: Hastagaras/Jamet-8B-L3-MK.V-Blackroot ```
Garak313/llama3_8B_Kardassi_16bit
Garak313
2025-03-03T14:53:52Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:44:54Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Garak313 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TheRobotNetwork/Llama-3.1-8B-Instruct
TheRobotNetwork
2025-03-03T14:53:44Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:48:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ElenaSenger/career-path-representation-mpnet-karrierewege-cp
ElenaSenger
2025-03-03T14:53:42Z
0
1
null
[ "safetensors", "mpnet", "en", "dataset:ElenaSenger/Karrierewege_plus", "base_model:sentence-transformers/all-mpnet-base-v2", "base_model:finetune:sentence-transformers/all-mpnet-base-v2", "license:apache-2.0", "region:us" ]
null
2025-03-03T14:51:07Z
--- license: apache-2.0 datasets: - ElenaSenger/Karrierewege_plus language: - en base_model: - sentence-transformers/all-mpnet-base-v2 --- # career-path-representation-mpnet-karrierewege-cp This is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on custom data. For fine-tuning details, preprocessing code, and how to use this model for career path prediction, visit our GitHub repository: https://github.com/elenasenger/karrierewege ## Model Details - **Base Model**: `sentence-transformers/all-mpnet-base-v2` - **Fine-tuned on standardized**: `ElenaSenger/Karrierewege_plus` - **Tasks**: Sentence Embeddings / Text Similarity - **License**: Apache-2.0 ## Usage ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ElenaSenger/career-path-representation-mpnet-karrierewege-cp") tokenizer = AutoTokenizer.from_pretrained("ElenaSenger/career-path-representation-mpnet-karrierewege-cp")
Captaint2004/Qwen2_VL_2B_GGUF_UNSLOTH_T
Captaint2004
2025-03-03T14:52:56Z
0
0
transformers
[ "transformers", "gguf", "qwen2_vl", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-03T14:51:56Z
--- base_model: unsloth/qwen2-vl-2b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_vl - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Captaint2004 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2-vl-2b-instruct-unsloth-bnb-4bit This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
falcongoldman/nexusai-v3
falcongoldman
2025-03-03T14:51:50Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-03T14:51:40Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** falcongoldman - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
fats-fme/feb3e71e-4297-4189-a5f1-14a82032507e
fats-fme
2025-03-03T14:47:41Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "region:us" ]
null
2025-03-03T13:56:37Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: feb3e71e-4297-4189-a5f1-14a82032507e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: openlm-research/open_llama_3b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5668b44a803035dd_train_data.json ds_type: json format: custom path: /workspace/input_data/5668b44a803035dd_train_data.json type: field_input: concepts field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: fats-fme/feb3e71e-4297-4189-a5f1-14a82032507e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 3.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GB max_steps: 100 micro_batch_size: 1 mlflow_experiment_name: /tmp/5668b44a803035dd_train_data.json model_type: AutoModelForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eeda891a-7fde-4fb3-9e00-351e4d608c46 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eeda891a-7fde-4fb3-9e00-351e4d608c46 warmup_steps: 200 weight_decay: 0.0 xformers_attention: null ``` </details><br> # feb3e71e-4297-4189-a5f1-14a82032507e This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8959 | 0.0003 | 1 | 0.9655 | | 0.8303 | 0.0167 | 50 | 0.7848 | | 0.5512 | 0.0334 | 100 | 0.5544 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Quangnguyen711/codebert-solidity-time-dep
Quangnguyen711
2025-03-03T14:44:19Z
2
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-02-27T09:08:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TheJoeZenOne/qwen-0.5-reasoning
TheJoeZenOne
2025-03-03T14:43:56Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-03T14:43:18Z
--- base_model: unsloth/qwen2-0.5b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** TheJoeZenOne - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2-0.5b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
takedakoji00/Llama-3.3-70B-Instruct-custom-qg-full_20250303-7th_random_300
takedakoji00
2025-03-03T14:42:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T06:59:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
memevis/SG13
memevis
2025-03-03T14:42:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:36:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zelk12/MT-Merge7-gemma-2-9B-Q6_K-GGUF
zelk12
2025-03-03T14:40:59Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:zelk12/MT-Merge7-gemma-2-9B", "base_model:quantized:zelk12/MT-Merge7-gemma-2-9B", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-03T14:40:15Z
--- base_model: zelk12/MT-Merge7-gemma-2-9B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: gemma pipeline_tag: text-generation --- # zelk12/MT-Merge7-gemma-2-9B-Q6_K-GGUF This model was converted to GGUF format from [`zelk12/MT-Merge7-gemma-2-9B`](https://huggingface.co/zelk12/MT-Merge7-gemma-2-9B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zelk12/MT-Merge7-gemma-2-9B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo zelk12/MT-Merge7-gemma-2-9B-Q6_K-GGUF --hf-file mt-merge7-gemma-2-9b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo zelk12/MT-Merge7-gemma-2-9B-Q6_K-GGUF --hf-file mt-merge7-gemma-2-9b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo zelk12/MT-Merge7-gemma-2-9B-Q6_K-GGUF --hf-file mt-merge7-gemma-2-9b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo zelk12/MT-Merge7-gemma-2-9B-Q6_K-GGUF --hf-file mt-merge7-gemma-2-9b-q6_k.gguf -c 2048 ```
ElenaSenger/career-path-representation-mpnet-decorte-esco
ElenaSenger
2025-03-03T14:37:44Z
0
1
null
[ "safetensors", "mpnet", "en", "dataset:TechWolf/anonymous-working-histories", "base_model:sentence-transformers/all-mpnet-base-v2", "base_model:finetune:sentence-transformers/all-mpnet-base-v2", "license:apache-2.0", "region:us" ]
null
2025-03-03T14:33:30Z
--- license: apache-2.0 datasets: - TechWolf/anonymous-working-histories language: - en base_model: - sentence-transformers/all-mpnet-base-v2 --- # career-path-representation-mpnet-decorte-esco This is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on custom data. For fine-tuning details, preprocessing code, and how to use this model for career path prediction, visit our GitHub repository: https://github.com/elenasenger/karrierewege ## Model Details - **Base Model**: `sentence-transformers/all-mpnet-base-v2` - **Fine-tuned on standardized**: `TechWolf/anonymous-working-histories` - **Tasks**: Sentence Embeddings / Text Similarity - **License**: Apache-2.0 ## Usage ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ElenaSenger/career-path-representation-mpnet-decorte-esco") tokenizer = AutoTokenizer.from_pretrained("ElenaSenger/career-path-representation-mpnet-decorte-esco")
Captaint2004/Qwen2_VL_2B_GGUF_UNSLOTH
Captaint2004
2025-03-03T14:36:22Z
20
0
transformers
[ "transformers", "gguf", "qwen2_vl", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-02T06:00:31Z
--- base_model: unsloth/qwen2-vl-2b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_vl - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Captaint2004 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2-vl-2b-instruct-unsloth-bnb-4bit This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Kort/xf2
Kort
2025-03-03T14:35:51Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T13:40:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
memevis/SG18
memevis
2025-03-03T14:35:39Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:30:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kiriyk/seo_tg_book_overtrained_gguf
kiriyk
2025-03-03T14:34:46Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-03T14:32:32Z
--- base_model: unsloth/qwen2.5-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kiriyk - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
memevis/SG12
memevis
2025-03-03T14:34:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:28:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
memevis/SG10
memevis
2025-03-03T14:34:01Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T14:28:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rell07/Omari
rell07
2025-03-03T14:31:44Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-03T14:02:53Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Omari --- # Omari <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Omari` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('rell07/Omari', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
okamototk/DeepSeek-R1-Distill-Qwen-14B-imatrix-gguf
okamototk
2025-03-03T14:30:52Z
50
0
null
[ "gguf", "dataset:TFMC/imatrix-dataset-for-japanese-llm", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-04T05:45:00Z
--- license: mit datasets: - TFMC/imatrix-dataset-for-japanese-llm base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- ## 1. Introduction This model is quantized version of DeepSeek-R1-Distill-Qwen-14B with dataset for imatrix [TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm). Usgin English/Japanese mixed and quantization is tuned for Japanese. ## 2. License This code repository and the model weights are licensed under the [MIT License](LICENSE). DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that: - DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](LICENSE-Qwen), and now finetuned with 800k samples curated with DeepSeek-R1. - DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE). - DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE).
leannmlindsey/hg38-uni-v4096
leannmlindsey
2025-03-03T14:30:06Z
0
0
null
[ "region:us" ]
null
2025-02-28T19:35:27Z
--- {} --- This is a specialized BPE tokenizer trained on human DNA sequences and has a vocabulary size of 4096. ## Special Tokens - PAD: [PAD] - UNK: [UNK] - CLS: [CLS] - SEP: [SEP] - MASK: [MASK] ## Usage ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("leannmlindsey/hg38-bpe-v4096") # Example usage sequences = ["ATCGATCGATCG", "GCTAGCTAGCTA"] encoded = tokenizer(sequences) ``` ## Training Information This tokenizer was trained using the HuggingFace Tokenizers library with the BPE algorithm trained on the Hg38 Human Reference Genome.
daniel40/6142dc13-b92f-484b-8dab-7837c9954217
daniel40
2025-03-03T14:30:06Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "region:us" ]
null
2025-03-03T14:29:50Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/Mistral-Nemo-Instruct-2407 model-index: - name: daniel40/6142dc13-b92f-484b-8dab-7837c9954217 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daniel40/6142dc13-b92f-484b-8dab-7837c9954217 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Garak313/kardassi_lora
Garak313
2025-03-03T14:29:58Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-03T14:29:50Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Garak313 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
matiashoyl/modernbert-match-user-22601
matiashoyl
2025-03-03T14:28:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-03T04:38:23Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: modernbert-match-user-22601 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-match-user-22601 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8690 - Accuracy: 0.6574 - F1: 0.6004 - Precision: 0.6355 - Recall: 0.6574 - F1 Class 0: 0.2353 - F1 Class 1: 0.3333 - F1 Class 2: 0.4762 - F1 Class 3: 0.1667 - F1 Class 4: 0.7922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 107 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | F1 Class 0 | F1 Class 1 | F1 Class 2 | F1 Class 3 | F1 Class 4 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:----------:|:----------:|:----------:|:----------:|:----------:|:---------------:|:---------:|:------:| | 1.1146 | 1.0 | 107 | 0.6667 | 0.5921 | 0.3 | 0.3636 | 0.4 | 0.0 | 0.7950 | 1.0552 | 0.6154 | 0.6667 | | 1.0384 | 2.0 | 214 | 0.6852 | 0.6377 | 0.2857 | 0.4 | 0.4 | 0.3636 | 0.8182 | 1.0211 | 0.6736 | 0.6852 | | 0.8178 | 3.0 | 321 | 0.6852 | 0.6026 | 0.2353 | 0.3636 | 0.5714 | 0.0 | 0.8 | 1.4185 | 0.6698 | 0.6852 | | 0.8188 | 4.0 | 428 | 0.6852 | 0.6185 | 0.3158 | 0.3333 | 0.4286 | 0.2 | 0.8075 | 1.3625 | 0.7042 | 0.6852 | | 0.8081 | 5.0 | 535 | 0.6667 | 0.6158 | 0.2353 | 0.3636 | 0.4545 | 0.3077 | 0.7974 | 1.3901 | 0.6785 | 0.6667 | | 0.6187 | 6.0 | 642 | 1.7125 | 0.6667 | 0.6071 | 0.6361 | 0.6667 | 0.2222 | 0.3077 | 0.4286 | 0.3077 | 0.7975 | | 0.6079 | 7.0 | 749 | 1.7332 | 0.6389 | 0.5824 | 0.5972 | 0.6389 | 0.2222 | 0.2353 | 0.375 | 0.1818 | 0.7922 | | 0.7141 | 8.0 | 856 | 1.8690 | 0.6574 | 0.6004 | 0.6355 | 0.6574 | 0.2353 | 0.3333 | 0.4762 | 0.1667 | 0.7922 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0 - Datasets 2.21.0 - Tokenizers 0.21.0
mikeeilertsen/mike-eilertsen
mikeeilertsen
2025-03-03T14:26:04Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-03T13:48:49Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: fakemike --- # Mike Eilertsen <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `fakemike` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('mikeeilertsen/mike-eilertsen', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
molocchus/calculator_model_test
molocchus
2025-03-03T14:23:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-03T14:22:48Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: calculator_model_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # calculator_model_test This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9669 | 1.0 | 6 | 0.6731 | | 0.4986 | 2.0 | 12 | 0.3548 | | 0.3213 | 3.0 | 18 | 0.2928 | | 0.2867 | 4.0 | 24 | 0.2126 | | 0.2162 | 5.0 | 30 | 0.1518 | | 0.167 | 6.0 | 36 | 0.1237 | | 0.1443 | 7.0 | 42 | 0.0969 | | 0.1235 | 8.0 | 48 | 0.0684 | | 0.1002 | 9.0 | 54 | 0.0610 | | 0.0928 | 10.0 | 60 | 0.0616 | | 0.0843 | 11.0 | 66 | 0.0507 | | 0.0737 | 12.0 | 72 | 0.0435 | | 0.0606 | 13.0 | 78 | 0.0387 | | 0.0583 | 14.0 | 84 | 0.0363 | | 0.0529 | 15.0 | 90 | 0.0278 | | 0.0515 | 16.0 | 96 | 0.0267 | | 0.0539 | 17.0 | 102 | 0.0263 | | 0.0514 | 18.0 | 108 | 0.0312 | | 0.0498 | 19.0 | 114 | 0.0248 | | 0.0405 | 20.0 | 120 | 0.0252 | | 0.0376 | 21.0 | 126 | 0.0242 | | 0.0417 | 22.0 | 132 | 0.0279 | | 0.0361 | 23.0 | 138 | 0.0219 | | 0.0327 | 24.0 | 144 | 0.0152 | | 0.0288 | 25.0 | 150 | 0.0146 | | 0.0253 | 26.0 | 156 | 0.0162 | | 0.0223 | 27.0 | 162 | 0.0140 | | 0.0207 | 28.0 | 168 | 0.0118 | | 0.0198 | 29.0 | 174 | 0.0108 | | 0.0191 | 30.0 | 180 | 0.0109 | | 0.0172 | 31.0 | 186 | 0.0096 | | 0.0165 | 32.0 | 192 | 0.0093 | | 0.0153 | 33.0 | 198 | 0.0091 | | 0.0156 | 34.0 | 204 | 0.0092 | | 0.0159 | 35.0 | 210 | 0.0092 | | 0.0153 | 36.0 | 216 | 0.0088 | | 0.0157 | 37.0 | 222 | 0.0085 | | 0.0149 | 38.0 | 228 | 0.0084 | | 0.0135 | 39.0 | 234 | 0.0086 | | 0.0135 | 40.0 | 240 | 0.0085 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.20.3
dabrown/3c18dbaf-547c-4fe5-88e7-888d266f879d
dabrown
2025-03-03T14:22:39Z
0
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-03-03T14:16:35Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 3c18dbaf-547c-4fe5-88e7-888d266f879d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 012ab4813cc99fb8_train_data.json ds_type: json format: custom path: /workspace/input_data/012ab4813cc99fb8_train_data.json type: field_input: evidence field_instruction: question field_output: SQL format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: dabrown/3c18dbaf-547c-4fe5-88e7-888d266f879d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_inference_mode: true lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/012ab4813cc99fb8_train_data.json model_type: AutoModelForCausalLM modules_to_save: lm_head num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: offline wandb_name: b1e23278-252e-44d7-9491-1b28d344421c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1e23278-252e-44d7-9491-1b28d344421c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3c18dbaf-547c-4fe5-88e7-888d266f879d This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 198 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5364 | 0.0051 | 1 | 0.9137 | | 0.6391 | 0.2525 | 50 | 0.4269 | | 0.6041 | 0.5051 | 100 | 0.3380 | | 0.4258 | 0.7576 | 150 | 0.3037 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Cleverlytics/offres_classification_bert_v1
Cleverlytics
2025-03-03T14:20:02Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:SI2M-Lab/DarijaBERT", "base_model:finetune:SI2M-Lab/DarijaBERT", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-03T10:58:47Z
--- library_name: transformers base_model: SI2M-Lab/DarijaBERT tags: - generated_from_trainer model-index: - name: offres_classification_bert_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # offres_classification_bert_v1 This model is a fine-tuned version of [SI2M-Lab/DarijaBERT](https://huggingface.co/SI2M-Lab/DarijaBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 135 | 0.0265 | | No log | 2.0 | 270 | 0.0045 | | No log | 3.0 | 405 | 0.0063 | | 0.1371 | 4.0 | 540 | 0.0023 | | 0.1371 | 5.0 | 675 | 0.0030 | | 0.1371 | 6.0 | 810 | 0.0020 | | 0.1371 | 7.0 | 945 | 0.0013 | | 0.0009 | 8.0 | 1080 | 0.0011 | | 0.0009 | 9.0 | 1215 | 0.0010 | | 0.0009 | 10.0 | 1350 | 0.0010 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0
Bilal2912/red_lehenga_new
Bilal2912
2025-03-03T14:11:44Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-28T10:11:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: lehenga --- # Red_Lehenga_New <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `lehenga` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Bilal2912/red_lehenga_new', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Biolbe/swin-tiny-patch4-window7-224-finetuned-eurosat
Biolbe
2025-03-03T14:11:39Z
0
0
transformers
[ "transformers", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-03-03T13:59:45Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0544 - Accuracy: 0.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2069 | 1.0 | 190 | 0.0867 | 0.9681 | | 0.1617 | 2.0 | 380 | 0.0670 | 0.9756 | | 0.1308 | 3.0 | 570 | 0.0544 | 0.98 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
irishprancer/c7833d31-8fa5-42cd-bc32-c00da4978d68
irishprancer
2025-03-03T14:11:18Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T13:54:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/BlackSheep-Qwen-14B-i1-GGUF
mradermacher
2025-03-03T14:10:12Z
0
1
transformers
[ "transformers", "gguf", "en", "base_model:TroyDoesAI/BlackSheep-Qwen-14B", "base_model:quantized:TroyDoesAI/BlackSheep-Qwen-14B", "license:cc-by-nd-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-03T11:42:43Z
--- base_model: TroyDoesAI/BlackSheep-Qwen-14B language: - en library_name: transformers license: cc-by-nd-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TroyDoesAI/BlackSheep-Qwen-14B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-Qwen-14B-i1-GGUF/resolve/main/BlackSheep-Qwen-14B.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
jiaxin-wen/alpaca-bc512-iter1-70b-incontext
jiaxin-wen
2025-03-03T14:08:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T13:34:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF
mradermacher
2025-03-03T14:08:35Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:nkpz/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT", "base_model:quantized:nkpz/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-03T12:06:40Z
--- base_model: nkpz/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/nkpz/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT-GGUF/resolve/main/Qwen2.5-Dyanka-7B-Preview-Uncensored-DeLMAT.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
sh-sahil/fin
sh-sahil
2025-03-03T14:08:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen2.5-3B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T19:42:07Z
--- base_model: unsloth/Qwen2.5-3B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sh-sahil - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
miladalsh/llama3-trained-journalist-on-gpt3-for-1-epochs
miladalsh
2025-03-03T14:07:56Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-03-01T16:50:25Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers model_name: llama3-trained-journalist-on-gpt3-for-1-epochs tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for llama3-trained-journalist-on-gpt3-for-1-epochs This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="miladalsh/llama3-trained-journalist-on-gpt3-for-1-epochs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/milad-it/training-llama-on-conversations/runs/84096v6d) This model was trained with SFT. ### Framework versions - TRL: 0.13.0 - Transformers: 4.48.0 - Pytorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
zelk12/MT-Merge7-UW-gemma-2-9B
zelk12
2025-03-03T14:05:37Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B", "base_model:merge:zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B", "base_model:zelk12/MT-Merge7-W-gemma-2-MT2g7MT1g7-9B", "base_model:merge:zelk12/MT-Merge7-W-gemma-2-MT2g7MT1g7-9B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-03T13:59:26Z
--- base_model: - zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B - zelk12/MT-Merge7-W-gemma-2-MT2g7MT1g7-9B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B](https://huggingface.co/zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B) * [zelk12/MT-Merge7-W-gemma-2-MT2g7MT1g7-9B](https://huggingface.co/zelk12/MT-Merge7-W-gemma-2-MT2g7MT1g7-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B - model: zelk12/MT-Merge7-W-gemma-2-MT2g7MT1g7-9B merge_method: slerp base_model: zelk12/MT-Merge7-U-gemma-2-MT1g7MT2g7-9B dtype: bfloat16 parameters: t: 0.25 ```
ysdede/Phi-4-mm-inst-asr-turkish-3
ysdede
2025-03-03T14:05:25Z
0
1
transformers
[ "transformers", "tensorboard", "safetensors", "phi4mm", "text-generation", "generated_from_trainer", "conversational", "custom_code", "base_model:microsoft/Phi-4-multimodal-instruct", "base_model:finetune:microsoft/Phi-4-multimodal-instruct", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
2025-03-02T11:21:50Z
--- library_name: transformers license: mit base_model: microsoft/Phi-4-multimodal-instruct tags: - generated_from_trainer model-index: - name: Phi-4-mm-inst-asr-turkish-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Phi-4-mm-inst-asr-turkish-3 This model is a fine-tuned version of [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) on a 1300-hour Turkish audio dataset. ## Training Prompt The model was initially fine-tuned using the original ASR prompt: "Transcribe the audio clip into text." This prompt is language agnostic—as described in the model [paper](https://huggingface.co/microsoft/Phi-4-multimodal-instruct/blob/main/phi_4_mm.tech_report.02252025.pdf): > The ASR prompt for Phi-4-Multimodal is “Transcribe the audio clip into text.”, which is language agnostic. We notice that the model can learn to recognize in the target language perfectly without providing language information, while Qwen2-audio and Gemini-2.0-Flash require the language information in the prompt to obtain the optimal ASR performance. However, we found that using a language-defining prompt, such as: "Transcribe the Turkish audio." leads to better performance. See: [ysdede/Phi-4-mm-inst-asr-turkish](https://huggingface.co/ysdede/Phi-4-mm-inst-asr-turkish) ## Training Results When benchmarked with the original ASR prompt "Transcribe the audio clip into text.", the evaluation results were as follows: - **Before Fine-Tuning:** - WER: 153.84 - CER: 82.57 - **After Fine-Tuning:** - WER: 64.76 - CER: 29.85 ## Inference Load `generation_config` and `processor` from the base model as a quick fix to use the default generation settings. *Note: The new models currently lack high-quality fine-tuning scripts. When saving a fine-tuned model using `model.save_pretrained()`, the processor configuration—including essential audio parameters—is not automatically saved. This omission can lead to errors during inference due to the model’s complex architecture. Loading these components from the base model ensures that all critical settings are properly included.* ```python generation_config = GenerationConfig.from_pretrained( 'microsoft/Phi-4-multimodal-instruct', 'generation_config.json' ) processor = AutoProcessor.from_pretrained( 'microsoft/Phi-4-multimodal-instruct', trust_remote_code=True ) ``` ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.20.3
hatemestinbejaia/mmarco-Arabic-mMiniLML-cross-encoder-KD-v1-Sbce0.3-with-Tbce0.7epoch1
hatemestinbejaia
2025-03-03T14:04:52Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-03T14:04:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omarwaleed523/gemma2_finetuned_newds
omarwaleed523
2025-03-03T14:04:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-03T14:03:56Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** omarwaleed523 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
irishprancer/35ff4d15-88d8-419d-a445-e88213708efe
irishprancer
2025-03-03T14:04:05Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T08:45:45Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gajanhcc/colpali-ft
gajanhcc
2025-03-03T14:03:53Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:vidore/colpali-v1.2-hf", "base_model:adapter:vidore/colpali-v1.2-hf", "region:us" ]
null
2025-03-03T14:03:44Z
--- base_model: vidore/colpali-v1.2-hf library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
gajanhcc/colpali_uf
gajanhcc
2025-03-03T14:03:38Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:vidore/colpali-v1.2-hf", "base_model:adapter:vidore/colpali-v1.2-hf", "license:gemma", "region:us" ]
null
2025-03-03T14:03:29Z
--- library_name: peft license: gemma base_model: vidore/colpali-v1.2-hf tags: - generated_from_trainer model-index: - name: colpali_uf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # colpali_uf This model is a fine-tuned version of [vidore/colpali-v1.2-hf](https://huggingface.co/vidore/colpali-v1.2-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0
ahmetsayko1/gkhn-w3-t1
ahmetsayko1
2025-03-03T14:03:35Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-03T14:03:32Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: gkhn_w3_t1 license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # gkhn_w3_t1 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `gkhn_w3_t1` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
ujjwal1996/TinyLlama_lora_finetuned
ujjwal1996
2025-03-03T14:02:07Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-03T13:59:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dolmer/GutBrainIE_NER_baseline
Dolmer
2025-03-03T13:54:23Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "base_model:finetune:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-03T12:11:19Z
--- library_name: transformers license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: GutBrainIE_NER_baseline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GutBrainIE_NER_baseline This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3083 - Precision: 0.6802 - Recall: 0.6483 - F1: 0.6639 - Accuracy: 0.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 92 | 0.4493 | 0.5809 | 0.4528 | 0.5089 | 0.8836 | | No log | 2.0 | 184 | 0.3428 | 0.6849 | 0.5128 | 0.5865 | 0.9108 | | No log | 3.0 | 276 | 0.2942 | 0.6480 | 0.6204 | 0.6339 | 0.9174 | | No log | 4.0 | 368 | 0.2903 | 0.6780 | 0.6199 | 0.6476 | 0.9197 | | No log | 5.0 | 460 | 0.2982 | 0.7156 | 0.6128 | 0.6602 | 0.9208 | | 0.3823 | 6.0 | 552 | 0.2849 | 0.6767 | 0.6483 | 0.6622 | 0.9198 | | 0.3823 | 7.0 | 644 | 0.2990 | 0.6705 | 0.6368 | 0.6532 | 0.9176 | | 0.3823 | 8.0 | 736 | 0.3068 | 0.6756 | 0.6450 | 0.6600 | 0.9184 | | 0.3823 | 9.0 | 828 | 0.3061 | 0.6812 | 0.6466 | 0.6635 | 0.9190 | | 0.3823 | 10.0 | 920 | 0.3083 | 0.6802 | 0.6483 | 0.6639 | 0.9188 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0
MMusername/calculator_model_test
MMusername
2025-03-03T13:53:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-03T11:28:39Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: calculator_model_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # calculator_model_test This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3655 | 1.0 | 6 | 2.7160 | | 2.3592 | 2.0 | 12 | 2.0612 | | 1.8523 | 3.0 | 18 | 1.6791 | | 1.6426 | 4.0 | 24 | 1.7810 | | 1.7065 | 5.0 | 30 | 1.9239 | | 1.6284 | 6.0 | 36 | 1.5635 | | 1.5577 | 7.0 | 42 | 1.6272 | | 1.5439 | 8.0 | 48 | 1.5541 | | 1.5291 | 9.0 | 54 | 1.5177 | | 1.4973 | 10.0 | 60 | 1.4948 | | 1.4944 | 11.0 | 66 | 1.4746 | | 1.4896 | 12.0 | 72 | 1.4857 | | 1.4825 | 13.0 | 78 | 1.4613 | | 1.4419 | 14.0 | 84 | 1.4153 | | 1.4351 | 15.0 | 90 | 1.3887 | | 1.3585 | 16.0 | 96 | 1.3681 | | 1.3454 | 17.0 | 102 | 1.3402 | | 1.3419 | 18.0 | 108 | 1.3145 | | 1.2937 | 19.0 | 114 | 1.3013 | | 1.3193 | 20.0 | 120 | 1.3074 | | 1.2909 | 21.0 | 126 | 1.2146 | | 1.2114 | 22.0 | 132 | 1.1740 | | 1.1971 | 23.0 | 138 | 1.1854 | | 1.175 | 24.0 | 144 | 1.2008 | | 1.1643 | 25.0 | 150 | 1.0863 | | 1.1425 | 26.0 | 156 | 1.1085 | | 1.1197 | 27.0 | 162 | 1.0871 | | 1.0919 | 28.0 | 168 | 1.1259 | | 1.0798 | 29.0 | 174 | 1.0877 | | 1.0937 | 30.0 | 180 | 1.0704 | | 1.0625 | 31.0 | 186 | 1.0540 | | 1.0688 | 32.0 | 192 | 1.0596 | | 1.0514 | 33.0 | 198 | 1.0648 | | 1.066 | 34.0 | 204 | 1.0433 | | 1.0302 | 35.0 | 210 | 1.0098 | | 1.0291 | 36.0 | 216 | 0.9593 | | 1.0629 | 37.0 | 222 | 0.9388 | | 0.9886 | 38.0 | 228 | 0.9264 | | 0.9615 | 39.0 | 234 | 0.9218 | | 0.9775 | 40.0 | 240 | 0.9187 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.20.3
John6666/sudachi-xl-illustrious-v1-sdxl
John6666
2025-03-03T13:52:17Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "characters", "clean anime style with thin to thick outlines", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-03T13:44:10Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - characters - clean anime style with thin to thick outlines - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1288125/sudachi-xl-illustrious?modelVersionId=1453425). This model created by [Ikena](https://civitai.com/user/Ikena).
huihui-ai/Phi-4-mini-instruct-abliterated
huihui-ai
2025-03-03T13:52:08Z
14
3
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "nlp", "code", "abliterated", "uncensored", "conversational", "custom_code", "multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk", "base_model:microsoft/Phi-4-mini-instruct", "base_model:finetune:microsoft/Phi-4-mini-instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-02T17:12:46Z
--- license: mit license_link: https://huggingface.co/huihui-ai/Phi-4-mini-instruct-abliterated/resolve/main/LICENSE language: - "multilingual" - "ar" - "zh" - "cs" - "da" - "nl" - "en" - "fi" - "fr" - "de" - "he" - "hu" - "it" - "ja" - "ko" - "no" - "pl" - "pt" - "ru" - "es" - "sv" - "th" - "tr" - "uk" pipeline_tag: text-generation base_model: - microsoft/Phi-4-mini-instruct tags: - nlp - code - abliterated - uncensored widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers --- # huihui-ai/Phi-4-mini-instruct-abliterated This is an uncensored version of [microsoft/Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. ## Use with ollama Ollama requires the [latest version](https://github.com/ollama/ollama/releases). You can use [huihui_ai/phi4-mini-abliterated](https://ollama.com/huihui_ai/phi4-mini-abliterated) directly ``` ollama run huihui_ai/phi4-mini-abliterated ``` ### Donation If you like it, please click 'like' and follow us for more updates. You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin: ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ```
distill-lab/distill-lab_nai-distill_00-01_combined_eagle.library_classification
distill-lab
2025-03-03T13:50:04Z
0
0
transformers
[ "transformers", "safetensors", "dinov2_with_registers", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-03-03T13:49:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
testliai-main/testliai-generate-exam-mistral-7b-instruct-v0.3-bnb-4bit-GGUF-q4_k_m
testliai-main
2025-03-03T13:49:06Z
0
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-03T13:47:22Z
--- base_model: unsloth/mistral-7b-instruct-v0.3 tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** testliai-main - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)