modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Word2vec/nlpl_71
Word2vec
2023-07-04T15:23:04Z
0
0
null
[ "word2vec", "ukr", "dataset:Ukrainian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T13:11:18Z
--- language: ukr license: cc-by-4.0 tags: - word2vec datasets: Ukrainian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 942071 corresponding to 574319117 tokens from the dataset `Ukrainian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_71", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/71.zip
Word2vec/nlpl_70
Word2vec
2023-07-04T15:22:43Z
0
0
null
[ "word2vec", "tur", "dataset:Turkish_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:51:26Z
--- language: tur license: cc-by-4.0 tags: - word2vec datasets: Turkish_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 3633786 corresponding to 3668140172 tokens from the dataset `Turkish_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_70", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/70.zip
Word2vec/nlpl_68
Word2vec
2023-07-04T15:22:18Z
0
0
null
[ "word2vec", "spa", "dataset:Spanish_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T13:10:25Z
--- language: spa license: cc-by-4.0 tags: - word2vec datasets: Spanish_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 2656057 corresponding to 5967877096 tokens from the dataset `Spanish_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_68", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/68.zip
Word2vec/nlpl_66
Word2vec
2023-07-04T15:21:53Z
0
0
null
[ "word2vec", "slk", "dataset:Slovak_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:49:41Z
--- language: slk license: cc-by-4.0 tags: - word2vec datasets: Slovak_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 1188804 corresponding to 855770850 tokens from the dataset `Slovak_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_66", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/66.zip
Word2vec/nlpl_65
Word2vec
2023-07-04T15:21:32Z
0
0
null
[ "word2vec", "rus", "dataset:Russian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:48:27Z
--- language: rus license: cc-by-4.0 tags: - word2vec datasets: Russian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 3338424 corresponding to 3386127535 tokens from the dataset `Russian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_65", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/65.zip
Word2vec/nlpl_63
Word2vec
2023-07-04T15:21:02Z
0
0
null
[ "word2vec", "por", "dataset:Portuguese_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:46:03Z
--- language: por license: cc-by-4.0 tags: - word2vec datasets: Portuguese_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 2536452 corresponding to 6173041573 tokens from the dataset `Portuguese_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_63", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/63.zip
Word2vec/nlpl_61
Word2vec
2023-07-04T15:20:33Z
0
0
null
[ "word2vec", "fas", "dataset:Persian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:43:30Z
--- language: fas license: cc-by-4.0 tags: - word2vec datasets: Persian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 966446 corresponding to 1180218836 tokens from the dataset `Persian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_61", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/61.zip
Word2vec/nlpl_62
Word2vec
2023-07-04T15:20:23Z
0
0
null
[ "word2vec", "pol", "dataset:Polish_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:44:03Z
--- language: pol license: cc-by-4.0 tags: - word2vec datasets: Polish_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 4420598 corresponding to 5489171333 tokens from the dataset `Polish_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_62", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/62.zip
imvladikon/bert-large-cased-finetuned-conll03-english
imvladikon
2023-07-04T15:18:47Z
111
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
```json { 'epoch': 2.0, 'eval_accuracy': 0.9878289280037675, 'eval_f1': 0.9524406066842648, 'eval_loss': 0.06057225540280342, 'eval_mem_cpu_alloc_delta': 2711552, 'eval_mem_cpu_peaked_delta': 2113536, 'eval_mem_gpu_alloc_delta': 0, 'eval_mem_gpu_peaked_delta': 126590464, 'eval_precision': 0.9499330655957162, 'eval_recall': 0.9549614211376278, 'eval_runtime': 20.9379, 'eval_samples_per_second': 155.221 } ```
Word2vec/nlpl_60
Word2vec
2023-07-04T15:18:03Z
0
0
null
[ "word2vec", "chu", "dataset:Old_Church_Slavonic_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:34:55Z
--- language: chu license: cc-by-4.0 tags: - word2vec datasets: Old_Church_Slavonic_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 357 corresponding to 21380 tokens from the dataset `Old_Church_Slavonic_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_60", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/60.zip
Word2vec/nlpl_56
Word2vec
2023-07-04T15:17:20Z
0
0
null
[ "word2vec", "lat", "dataset:Latin_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:33:18Z
--- language: lat license: cc-by-4.0 tags: - word2vec datasets: Latin_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 555381 corresponding to 256719661 tokens from the dataset `Latin_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_56", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/56.zip
Word2vec/nlpl_57
Word2vec
2023-07-04T15:17:08Z
0
0
null
[ "word2vec", "lav", "dataset:Latvian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:33:34Z
--- language: lav license: cc-by-4.0 tags: - word2vec datasets: Latvian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 560445 corresponding to 289095637 tokens from the dataset `Latvian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_57", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/57.zip
Word2vec/nlpl_55
Word2vec
2023-07-04T15:16:24Z
0
0
null
[ "word2vec", "kor", "dataset:Korean_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:32:24Z
--- language: kor license: cc-by-4.0 tags: - word2vec datasets: Korean_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 1780757 corresponding to 551643170 tokens from the dataset `Korean_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_55", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/55.zip
Word2vec/nlpl_54
Word2vec
2023-07-04T15:16:11Z
0
0
null
[ "word2vec", "kaz", "dataset:Kazakh_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:32:08Z
--- language: kaz license: cc-by-4.0 tags: - word2vec datasets: Kazakh_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 176643 corresponding to 57048825 tokens from the dataset `Kazakh_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_54", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/54.zip
Word2vec/nlpl_52
Word2vec
2023-07-04T15:15:46Z
0
0
null
[ "word2vec", "ita", "dataset:Italian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:28:47Z
--- language: ita license: cc-by-4.0 tags: - word2vec datasets: Italian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 2469122 corresponding to 5364254134 tokens from the dataset `Italian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_52", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/52.zip
Tommert25/multibertfinetuned0407
Tommert25
2023-07-04T15:15:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-04T10:41:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned0407 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multibertfinetuned0407 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4688 - Precision: 0.4879 - Recall: 0.4345 - F1: 0.4597 - Accuracy: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 131 | 0.4688 | 0.4879 | 0.4345 | 0.4597 | 0.8764 | | No log | 2.0 | 262 | 0.5224 | 0.5400 | 0.4884 | 0.5129 | 0.8777 | | No log | 3.0 | 393 | 0.5814 | 0.4900 | 0.4900 | 0.4900 | 0.8683 | | 0.3219 | 4.0 | 524 | 0.6226 | 0.5125 | 0.5069 | 0.5097 | 0.8750 | | 0.3219 | 5.0 | 655 | 0.6593 | 0.5008 | 0.4977 | 0.4992 | 0.8771 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Word2vec/nlpl_49
Word2vec
2023-07-04T15:14:48Z
0
0
null
[ "word2vec", "hun", "dataset:Hungarian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:20:11Z
--- language: hun license: cc-by-4.0 tags: - word2vec datasets: Hungarian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 2702663 corresponding to 1694170960 tokens from the dataset `Hungarian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_49", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/49.zip
Word2vec/nlpl_47
Word2vec
2023-07-04T15:14:14Z
0
0
null
[ "word2vec", "heb", "dataset:Hebrew_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:19:48Z
--- language: heb license: cc-by-4.0 tags: - word2vec datasets: Hebrew_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 672384 corresponding to 643272923 tokens from the dataset `Hebrew_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_47", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/47.zip
Word2vec/nlpl_45
Word2vec
2023-07-04T15:13:37Z
0
0
null
[ "word2vec", "deu", "dataset:German_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:17:44Z
--- language: deu license: cc-by-4.0 tags: - word2vec datasets: German_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 4946997 corresponding to 6298202810 tokens from the dataset `German_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_45", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/45.zip
Word2vec/nlpl_42
Word2vec
2023-07-04T15:12:50Z
0
0
null
[ "word2vec", "fin", "dataset:Finnish_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:16:45Z
--- language: fin license: cc-by-4.0 tags: - word2vec datasets: Finnish_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 2433286 corresponding to 1052546686 tokens from the dataset `Finnish_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_42", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/42.zip
Word2vec/nlpl_41
Word2vec
2023-07-04T15:12:33Z
0
0
null
[ "word2vec", "est", "dataset:Estonian_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:16:26Z
--- language: est license: cc-by-4.0 tags: - word2vec datasets: Estonian_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 926795 corresponding to 341986187 tokens from the dataset `Estonian_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_41", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/41.zip
Word2vec/nlpl_40
Word2vec
2023-07-04T15:12:08Z
0
0
null
[ "word2vec", "eng", "dataset:English_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T12:00:54Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 4027169 corresponding to 9974357994 tokens from the dataset `English_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_40", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/40.zip
fawzyhamdy/autotrain-datadata-72110138863
fawzyhamdy
2023-07-04T15:12:08Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "longt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:fawzyhamdy/autotrain-data-datadata", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-07-04T13:57:31Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - fawzyhamdy/autotrain-data-datadata co2_eq_emissions: emissions: 49.24949877129796 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 72110138863 - CO2 Emissions (in grams): 49.2495 ## Validation Metrics - Loss: 2.501 - Rouge1: 1.345 - Rouge2: 0.000 - RougeL: 1.343 - RougeLsum: 1.365 - Gen Len: 18.982 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/fawzyhamdy/autotrain-datadata-72110138863 ```
Word2vec/nlpl_38
Word2vec
2023-07-04T15:11:38Z
0
0
null
[ "word2vec", "dan", "dataset:Danish_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T11:59:05Z
--- language: dan license: cc-by-4.0 tags: - word2vec datasets: Danish_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 1655886 corresponding to 1641664057 tokens from the dataset `Danish_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_38", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/38.zip
Word2vec/nlpl_37
Word2vec
2023-07-04T15:11:21Z
0
0
null
[ "word2vec", "ces", "dataset:Czech_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T11:58:12Z
--- language: ces license: cc-by-4.0 tags: - word2vec datasets: Czech_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 1767815 corresponding to 2113686735 tokens from the dataset `Czech_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_37", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/37.zip
Word2vec/nlpl_34
Word2vec
2023-07-04T15:10:36Z
0
0
null
[ "word2vec", "cat", "dataset:Catalan_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T11:56:51Z
--- language: cat license: cc-by-4.0 tags: - word2vec datasets: Catalan_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 799020 corresponding to 897648446 tokens from the dataset `Catalan_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_34", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/34.zip
Word2vec/nlpl_32
Word2vec
2023-07-04T15:10:11Z
0
0
null
[ "word2vec", "eus", "dataset:Basque_CoNLL17_corpus", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T11:56:25Z
--- language: eus license: cc-by-4.0 tags: - word2vec datasets: Basque_CoNLL17_corpus --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 426736 corresponding to 164898542 tokens from the dataset `Basque_CoNLL17_corpus`. The model is trained with the following properties: no lemmatization and postag with the algorith Word2Vec Continuous Skipgram with window of 10 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_32", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/32.zip
Word2vec/nlpl_29
Word2vec
2023-07-04T15:02:30Z
0
0
null
[ "word2vec", "eng", "dataset:Gigaword_5th_Edition", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:10:56Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: Gigaword_5th_Edition --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 297790 corresponding to 4815382730 tokens from the dataset `Gigaword_5th_Edition`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 2 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_29", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/29.zip
Word2vec/nlpl_28
Word2vec
2023-07-04T15:02:08Z
0
0
null
[ "word2vec", "eng", "dataset:Gigaword_5th_Edition", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:10:42Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: Gigaword_5th_Edition --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 209865 corresponding to 4815382730 tokens from the dataset `Gigaword_5th_Edition`. The model is trained with the following properties: lemmatization and postag with the algorith fastText Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_28", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/28.zip
Word2vec/nlpl_26
Word2vec
2023-07-04T15:01:41Z
0
0
null
[ "word2vec", "eng", "dataset:Gigaword_5th_Edition", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:10:14Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: Gigaword_5th_Edition --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 209512 corresponding to 4815382730 tokens from the dataset `Gigaword_5th_Edition`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_26", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/26.zip
Word2vec/nlpl_25
Word2vec
2023-07-04T15:01:24Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:10:00Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 228671 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith Global Vectors with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_25", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/25.zip
Word2vec/nlpl_23
Word2vec
2023-07-04T15:00:56Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:09:31Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 228670 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_23", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/23.zip
Word2vec/nlpl_22
Word2vec
2023-07-04T15:00:44Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:09:13Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 291392 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: no lemmatization and postag with the algorith fastText Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_22", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/22.zip
Word2vec/nlpl_20
Word2vec
2023-07-04T14:58:47Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:08:35Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 291392 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: no lemmatization and postag with the algorith Global Vectors with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_20", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/20.zip
Word2vec/nlpl_19
Word2vec
2023-07-04T14:58:28Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:08:19Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 260073 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith Global Vectors with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_19", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/19.zip
Word2vec/nlpl_17
Word2vec
2023-07-04T14:57:55Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:07:44Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 259882 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_17", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/17.zip
Word2vec/nlpl_16
Word2vec
2023-07-04T14:57:32Z
0
0
null
[ "word2vec", "eng", "dataset:Gigaword_5th_Edition", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:07:27Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: Gigaword_5th_Edition --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 292967 corresponding to 4815382730 tokens from the dataset `Gigaword_5th_Edition`. The model is trained with the following properties: no lemmatization and postag with the algorith fastText Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_16", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/16.zip
Word2vec/nlpl_14
Word2vec
2023-07-04T14:56:57Z
0
0
null
[ "word2vec", "eng", "dataset:Gigaword_5th_Edition", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:06:53Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: Gigaword_5th_Edition --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 292967 corresponding to 4815382730 tokens from the dataset `Gigaword_5th_Edition`. The model is trained with the following properties: no lemmatization and postag with the algorith Global Vectors with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_14", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/14.zip
Word2vec/nlpl_9
Word2vec
2023-07-04T14:55:43Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-07-04T10:05:14Z
--- language: eng license: cc-by-4.0 tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 273930 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith fastText Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_9", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/9.zip
mcamara/ppo-PyramidsRND1
mcamara
2023-07-04T14:50:48Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-04T14:50:43Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mcamara/ppo-PyramidsRND1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
carbon225/vit-base-patch16-224-hentai
carbon225
2023-07-04T14:50:00Z
225
19
transformers
[ "transformers", "pytorch", "safetensors", "vit", "image-classification", "art", "anime", "visual-novel", "nsfw", "dataset:carbon225/vndb_img", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-30T12:06:40Z
--- license: cc0-1.0 widget: - src: >- https://huggingface.co/carbon225/vit-base-patch16-224-hentai/resolve/main/samples/1.jpeg - src: >- https://huggingface.co/carbon225/vit-base-patch16-224-hentai/resolve/main/samples/2.jpeg datasets: - carbon225/vndb_img tags: - art - anime - visual-novel - nsfw --- # ViT for NSFW classification ## Model info This is Google's [vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) finetuned for flagging images according to [vndb.org](https://vndb.org/d19) with 3 classes: - safe - suggestive - explicit ## Training data The model was trained on the vndb.org [database dump](https://vndb.org/d14) using full size screenshots (`sf` in the database dump). The dataset can be loaded from [carbon225/vndb_img](https://huggingface.co/datasets/carbon225/vndb_img). ## Intended use The model can be used for flagging anime-style images for sexual content. It can also be finetuned on other tasks related to anime images.
rafaelelter/Taxi-v3
rafaelelter
2023-07-04T14:38:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T14:38:49Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.64 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rafaelelter/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jiwoochris/ko_law_alpaca-12.8b
jiwoochris
2023-07-04T14:31:25Z
3
2
peft
[ "peft", "region:us" ]
null
2023-07-04T12:40:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
osunlp/BioVocabBERT
osunlp
2023-07-04T14:26:56Z
117
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:2306.17649", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-05T17:57:26Z
This biomedical language model uses a specialized biomedical tokenizer which is more closely aligned with human-morphological judgements than previous biomedical tokenizers such as PubMedBERT. Details about our tokenizer design, pre-training procedure and downstream results can be found in our [BioNLP @ ACL 2023 paper](http://arxiv.org/pdf/2306.17649.pdf) --- license: apache-2.0 ---
Apoorvakoira/wizabc
Apoorvakoira
2023-07-04T14:23:44Z
8
1
transformers
[ "transformers", "gpt_bigcode", "text-generation", "arxiv:2306.08568", "license:bigcode-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-04T13:45:23Z
--- license: bigcode-openrail-m --- This is the Full-Weight of WizardCoder. **Repository**: https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder **Twitter**: https://twitter.com/WizardLM_AI/status/1669109414559911937 **Paper**: [WizardCoder: Empowering Code Large Language Models with Evol-Instruct](https://arxiv.org/abs/2306.08568) # WizardCoder: Empowering Code Large Language Models with Evol-Instruct To develop our WizardCoder model, we begin by adapting the Evol-Instruct method specifically for coding tasks. This involves tailoring the prompt to the domain of code-related instructions. Subsequently, we fine-tune the Code LLM, StarCoder, utilizing the newly created instruction-following training set. ## News - 🔥 Our **WizardCoder-15B-v1.0** model achieves the **57.3 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval), which is **22.3** points higher than the SOTA open-source Code LLMs. - 🔥 We released **WizardCoder-15B-v1.0** trained with **78k** evolved code instructions. Please checkout the [Model Weights](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0), and [Paper](). - &#x1F4E3; Please refer to our Twitter account https://twitter.com/WizardLM_AI and HuggingFace Repo https://huggingface.co/WizardLM . We will use them to announce any new release at the 1st time. ## Comparing WizardCoder with the Closed-Source Models. 🔥 The following figure shows that our **WizardCoder attains the third position in this benchmark**, surpassing Claude-Plus (59.8 vs. 53.0) and Bard (59.8 vs. 44.5). Notably, our model exhibits a substantially smaller size compared to these models. <p align="center" width="100%"> <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/pass1.png" alt="WizardCoder" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a> </p> ❗**Note: In this study, we copy the scores for HumanEval and HumanEval+ from the [LLM-Humaneval-Benchmarks](https://github.com/my-other-github-account/llm-humaneval-benchmarks). Notably, all the mentioned models generate code solutions for each problem utilizing a **single attempt**, and the resulting pass rate percentage is reported. Our **WizardCoder** generates answers using greedy decoding and tests with the same [code](https://github.com/evalplus/evalplus).** ## Comparing WizardCoder with the Open-Source Models. The following table clearly demonstrates that our **WizardCoder** exhibits a substantial performance advantage over all the open-source models. ❗**If you are confused with the different scores of our model (57.3 and 59.8), please check the Notes.** | Model | HumanEval Pass@1 | MBPP Pass@1 | |------------------|------------------|-------------| | CodeGen-16B-Multi| 18.3 |20.9 | | CodeGeeX | 22.9 |24.4 | | LLaMA-33B | 21.7 |30.2 | | LLaMA-65B | 23.7 |37.7 | | PaLM-540B | 26.2 |36.8 | | PaLM-Coder-540B | 36.0 |47.0 | | PaLM 2-S | 37.6 |50.0 | | CodeGen-16B-Mono | 29.3 |35.3 | | Code-Cushman-001 | 33.5 |45.9 | | StarCoder-15B | 33.6 |43.6* | | InstructCodeT5+ | 35.0 |-- | | WizardLM-30B 1.0| 37.8 |-- | | WizardCoder-15B 1.0 | **57.3** |**51.8** | ❗**Note: The reproduced result of StarCoder on MBPP.** ❗**Note: The above table conducts a comprehensive comparison of our **WizardCoder** with other models on the HumanEval and MBPP benchmarks. We adhere to the approach outlined in previous studies by generating **20 samples** for each problem to estimate the pass@1 score and evaluate with the same [code](https://github.com/openai/human-eval/tree/master). The scores of GPT4 and GPT3.5 reported by [OpenAI](https://openai.com/research/gpt-4) are 67.0 and 48.1 (maybe these are the early version GPT4&3.5).** ## Call for Feedbacks We welcome everyone to use your professional and difficult instructions to evaluate WizardCoder, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardCoder. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it. ## Contents 1. [Online Demo](#online-demo) 2. [Fine-tuning](#fine-tuning) 3. [Inference](#inference) 4. [Evaluation](#evaluation) 5. [Citation](#citation) 6. [Disclaimer](#disclaimer) ## Online Demo We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many **real-world** and **challenging** code-related problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks. ## Fine-tuning We fine-tune WizardCoder using the modified code `train.py` from [Llama-X](https://github.com/AetherCortex/Llama-X). We fine-tune StarCoder-15B with the following hyperparameters: | Hyperparameter | StarCoder-15B | |----------------|---------------| | Batch size | 512 | | Learning rate | 2e-5 | | Epochs | 3 | | Max length | 2048 | | Warmup step | 30 | | LR scheduler | cosine | To reproduce our fine-tuning of WizardCoder, please follow the following steps: 1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy. (Note: `deepspeed==0.9.2` and `transformers==4.29.2`) 2. Replace the `train.py` with the `train_wizardcoder.py` in our repo (`src/train_wizardcoder.py`) 3. Login Huggingface: ```bash huggingface-cli login ``` 4. Execute the following training command: ```bash deepspeed train_wizardcoder.py \ --model_name_or_path "bigcode/starcoder" \ --data_path "/your/path/to/code_instruction_data.json" \ --output_dir "/your/path/to/ckpt" \ --num_train_epochs 3 \ --model_max_length 2048 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 4 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 50 \ --save_total_limit 2 \ --learning_rate 2e-5 \ --warmup_steps 30 \ --logging_steps 2 \ --lr_scheduler_type "cosine" \ --report_to "tensorboard" \ --gradient_checkpointing True \ --deepspeed configs/deepspeed_config.json \ --fp16 True ``` ## Inference We provide the decoding script for WizardCoder, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file. You can specify `base_model`, `input_data_path` and `output_data_path` in `src\inference_wizardcoder.py` to set the decoding model, path of input file and path of output file. ```bash pip install jsonlines ``` The decoding command is: ``` python src\inference_wizardcoder.py \ --base_model "/your/path/to/ckpt" \ --input_data_path "/your/path/to/input/data.jsonl" \ --output_data_path "/your/path/to/output/result.jsonl" ``` The format of `data.jsonl` should be: ``` {"idx": 11, "Instruction": "Write a Python code to count 1 to 10."} {"idx": 12, "Instruction": "Write a Jave code to sum 1 to 10."} ``` The prompt for our WizardCoder in `src\inference_wizardcoder.py` is: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` ## Evaluation We provide the evaluation script on HumanEval for WizardCoder. 1. According to the instructions of [HumanEval](https://github.com/openai/human-eval), install the environment. 2. Run the following script to generate the answer. ```bash model="/path/to/your/model" temp=0.2 max_len=2048 pred_num=200 num_seqs_per_iter=2 output_path=preds/T${temp}_N${pred_num} mkdir -p ${output_path} echo 'Output path: '$output_path echo 'Model to eval: '$model # 164 problems, 21 per GPU if GPU=8 index=0 gpu_num=8 for ((i = 0; i < $gpu_num; i++)); do start_index=$((i * 21)) end_index=$(((i + 1) * 21)) gpu=$((i)) echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu} ((index++)) ( CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \ --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} ) & if (($index % $gpu_num == 0)); then wait; fi done ``` 3. Run the post processing code `src/process_humaneval.py` to collect the code completions from all answer files. ```bash output_path=preds/T${temp}_N${pred_num} echo 'Output path: '$output_path python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt evaluate_functional_correctness ${output_path}.jsonl ``` ## Citation Please cite the repo if you use the data or code in this repo. ``` @misc{luo2023wizardcoder, title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang}, year={2023}, } ``` ## Disclaimer The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardCoder is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.
vivekraina/falcon-7b-8bit
vivekraina
2023-07-04T14:16:30Z
4
0
transformers
[ "transformers", "pytorch", "RefinedWebModel", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-07-04T11:58:12Z
![Falcon7b8bit.jpg](https://cdn-uploads.huggingface.co/production/uploads/6439639821221ac74117ee31/5eBD58An3E7FE6aumBSGN.jpeg) # 🚀 Falcon-7B 8-bit Model This repository is home to the 8-bit of Falcon-7B model, converted from its original model (https://huggingface.co/tiiuae/falcon-7b). Falcon-7B is a 7B parameters causal decoder-only model built by TII and trained on 1,500B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Usage You can use this model directly with a pipeline for tasks such as text generation and instruction following: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "vivekraina/falcon-7b-8bit" tokenizer = AutoTokenizer.from_pretrained(model) pipe = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True ) sequences = pipe( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ```
nferroukhi/peft-ufalcon-7B
nferroukhi
2023-07-04T13:53:18Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-04T13:52:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
maxkskhor/Taxi-v3
maxkskhor
2023-07-04T13:48:19Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T13:48:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="maxkskhor/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Collab-uniba/github-issues-preprocessed-mpnet-st-e10
Collab-uniba
2023-07-04T13:28:35Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-04T13:22:12Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # GitHub Issues Preprocessed MPNet Sentence Transformer (10 Epochs) This is a [sentence-transformers](https://www.SBERT.net) model, specific for GitHub Issue data. ## Dataset For training, we used the [NLBSE22 dataset](https://nlbse2022.github.io/tools/), after removing issues with empty body and duplicates. Similarity between title and body was used to train the sentence embedding model. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Collab-uniba/github-issues-preprocessed-mpnet-st-e10') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Collab-uniba/github-issues-preprocessed-mpnet-st-e10') model = AutoModel.from_pretrained('Collab-uniba/github-issues-preprocessed-mpnet-st-e10') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 43709 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 43709, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jimregan/psst-partial-timit
jimregan
2023-07-04T13:14:23Z
18
0
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "en", "dataset:jimregan/psst", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-06T08:30:28Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition datasets: - jimregan/psst - timit_asr --- This repository contains a number of experiments for the [PSST Challenge](https://psst.study/). As the test set is unavailable, all numbers are based on the validation set. The experiments in the tables below were finetuned on [Wav2vec 2.0 Base, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec) Our overall best performing model (**FER** 9\.2%, **PER:** 21\.0%) was based on [Wav2vec 2.0 Large, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec) (git tag: `larger-rir`), with the TIMIT subset augmented with Room Impulse Response, based on the experiments below, on the base model. ## Augmented TIMIT subset Using a subset of TIMIT that could map easily to the phoneset used by the PSST Challenge data (a list of IDs are in the repository), we experimented with augmenting the data to better match the PSST data. The best results were obtained using Room Impulse Response (tag: `rir`) | **Augmentation** | **FER** | **PER** | **Git tag** | | :----------------------------------------------- | :-------- | :--------- | :---------------------------------- | | unaugmented | 10\.2% | 22\.5% | huggingface-unaugmented | | Gaussian noise | 10\.0% | 22\.1% | gaussian | | Pitchshift | 9\.6% | 22\.9% | pitchshift | | RIR | **9\.6%** | **21\.8%** | rir | | Time stretch | 10\.1% | 22\.8% | timestretch | | Gaussian noise + RIR | 10\.0% | 23\.4% | gaussian-rir | | Pitchshift + Gaussian noise | 9\.9% | 22\.9% | pitchshift-gaussian | | Pitchshift + RIR | 9\.9% | 22\.8% | pitchshift-rir | | Tim estretch + Gaussian noise | 10\.2% | 22\.8% | timestretch-gaussian | | Time stretch + Pitchshift | 9\.8% | 22\.0% | timestretch-pitchshift | | Time stretch + RIR | 9\.7% | 22\.2% | timestretch-rir | | Pitchshift + Gaussian noise + RIR | 10\.1% | 23\.5% | pitchshift-gaussian-rir | | Time stretch + Gaussian noise + RIR | 9\.7% | 22\.3% | timestretch-gaussian-rir | | Time stretch + Pitchshift + Gaussian noise | 10\.2% | 22\.9% | timestretch-pitchshift-gaussian | | Time stretch + Pitchshift + RIR | 10\.2% | 22\.5% | timestretch-pitchshift-rir | | Time stretch + Pitchshift + Gaussian noise + RIR | 10\.9% | 24\.1% | timestretch-pitchshift-gaussian-rir | ## LM experiments We experimented with a number of language model configurations, combining the data from the PSST challenge, the subset of TIMIT we used, and CMUdict. We tried combining CMUdict data in a number of ways: unmodified, with a silence token added at the start of the pronunciation, at the end, and at both the start and the end. The best result was from a 5-gram model, with silences added at the end of the CMUdict data (git tag: `lm-nosil-cmudict-sile.5`). Evaluation was performed using scripts provided by the PSST Challenge's organisers, so there are no scripts in place to automatically use the LM with the transformers library. | | **n-gram** | **FER** | **PER** | **Tag** | | :----------------------------- | :--------- | :--------- | :--------- | :--------- | | Baseline + TIMIT | --- | **10\.2%** | 22\.5% | huggingface-unaugmented | | All silences | 4 | 10\.5% | 23\.0% | lm-allsil.4 | | | 5 | 10\.5% | 22\.6% | lm-allsil.5 | | | 6 | 10\.3% | 22\.3% | lm-allsil.6 | | No silences | 4 | 10\.3% | 22\.6% | lm-nosil.4 | | | 5 | **10\.2%** | 22\.2% | lm-nosil.5 | | | 6 | **10\.2%** | 22\.4% | lm-nosil.6 | | PSST and TIMIT without silence | | | | | | Unmodified CMUdict | 4 | 10\.3% | 22\.6% | lm-nosil-cmudict-nosil.4 | | | 5 | 10\.2% | 22\.2% | lm-nosil-cmudict-nosil.5 | | | 6 | **10\.2%** | 22\.4% | lm-nosil-cmudict-nosil.6 | | CMUdict-end | 4 | 10\.3% | 22\.6% | lm-nosil-cmudict-sile.4 | | | 5 | **10\.2%** | **22\.1%** | lm-nosil-cmudict-sile.5 | | | 6 | **10\.2%** | 22\.3% | lm-nosil-cmudict-sile.6 | | CMUdict-start | 4 | 10\.4% | 22\.6% | lm-nosil-cmudict-sils.4 | | | 5 | 10\.3% | 22\.4% | lm-nosil-cmudict-sils.5 | | | 6 | 10\.3% | 22\.3% | lm-nosil-cmudict-sils.6 | | CMUdict-both | 4 | 10\.4% | 22\.7% | lm-nosil-cmudict-silb.4 | | | 5 | 10\.4% | 22\.3% | lm-nosil-cmudict-silb.5 | | | 6 | 10\.3% | 22\.3% | lm-nosil-cmudict-silb.6 | | Unmodified PSST and TIMIT | | | | | | Unmodified CMUdict | 4 | 10\.3% | 22\.8% | lm-orig-cmudict-nosil.4 | | | 5 | 10\.3% | 22\.4% | lm-orig-cmudict-nosil.5 | | | 6 | **10\.2%** | 22\.4% | lm-orig-cmudict-nosil.6 | | CMUdict-end | 4 | 10\.3% | 22\.7% | lm-orig-cmudict-sile.4 | | | 5 | **10\.2%** | 22\.2% | lm-orig-cmudict-sile.5 | | | 6 | **10\.2%** | 22\.3% | lm-orig-cmudict-sile.6 | | CMUdict-start | 4 | 10\.5% | 22\.8% | lm-orig-cmudict-sils.4 | | | 5 | 10\.4% | 22\.5% | lm-orig-cmudict-sils.5 | | | 6 | 10\.3% | 22\.4% | lm-orig-cmudict-sils.6 | | CMUdict-both | 4 | 10\.5% | 22\.8% | lm-orig-cmudict-silb.4 | | | 5 | 10\.4% | 22\.4% | lm-orig-cmudict-silb.5 | | | 6 | 10\.4% | 22\.4% | lm-orig-cmudict-silb.6 |
vivekraina/falcon-7b-Instruct-8bit
vivekraina
2023-07-04T13:10:57Z
48
0
transformers
[ "transformers", "pytorch", "RefinedWebModel", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-07-04T12:16:46Z
![Falcon7b8bit.jpg](https://cdn-uploads.huggingface.co/production/uploads/6439639821221ac74117ee31/5eBD58An3E7FE6aumBSGN.jpeg) # 🚀 Falcon-7B 8-bit Model This repository is home to the 8-bit of Falcon-7B model, converted from its original model (https://huggingface.co/tiiuae/falcon-7b). Falcon-7B is a 7B parameters causal decoder-only model built by TII and trained on 1,500B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Usage You can use this model directly with a pipeline for tasks such as text generation and instruction following: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "vivekraina/falcon-7b-8bit" tokenizer = AutoTokenizer.from_pretrained(model) pipe = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True ) sequences = pipe( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ```
pratikg123/finetunned_falcon-7b
pratikg123
2023-07-04T13:10:35Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-04T12:45:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
tanmayyyj/dqn-SpaceInvadersNoFrameskip-v4
tanmayyyj
2023-07-04T13:09:53Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T13:09:15Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 627.00 +/- 271.64 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tanmayyyj -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tanmayyyj -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tanmayyyj ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
dcarpintero/ppo-SnowballTarget
dcarpintero
2023-07-04T13:01:15Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-04T13:01:12Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dcarpintero/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Babaili/swin-tiny-patch4-window7-224-finetuned-eurosat
Babaili
2023-07-04T12:52:09Z
211
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T21:58:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9522222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - Accuracy: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2724 | 1.0 | 190 | 0.1357 | 0.9522 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
fragdata/ppo-LunarLander-v2
fragdata
2023-07-04T12:32:20Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T12:32:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.37 +/- 16.25 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
d0rj/ruRoberta-distilled
d0rj
2023-07-04T12:30:41Z
114
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "distill", "embeddings", "masked-lm", "tiny", "sentence-similarity", "ru", "dataset:GEM/wiki_lingua", "dataset:xnli", "dataset:RussianNLP/wikiomnia", "dataset:mlsum", "dataset:IlyaGusev/gazeta", "doi:10.57967/hf/0856", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-04T10:35:40Z
--- license: apache-2.0 language: - ru tags: - distill - fill-mask - embeddings - masked-lm - tiny - sentence-similarity datasets: - GEM/wiki_lingua - xnli - RussianNLP/wikiomnia - mlsum - IlyaGusev/gazeta widget: - text: Москва - <mask> России. - text: Если б море было пивом, я бы <mask> - text: Столица России - <mask>. library_name: transformers pipeline_tag: fill-mask --- # ruRoberta-distilled Model was distilled from [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) with ❤️ by me. ## Usage ```python from transformers import pipeline pipe = pipeline('feature-extraction', model='d0rj/ruRoberta-distilled') tokens_embeddings = pipe('Привет, мир!') ``` ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('d0rj/ruRoberta-distilled') model = AutoModel.from_pretrained('d0rj/ruRoberta-distilled') def embed_bert_cls(text: str) -> torch.Tensor: t = tokenizer(text, padding=True, truncation=True, return_tensors='pt').to(model.device) with torch.no_grad(): model_output = model(**t) embeddings = model_output.last_hidden_state[:, 0, :] embeddings = torch.nn.functional.normalize(embeddings) return embeddings[0].cpu() embedding = embed_bert_cls('Привет, мир!') ``` ## Logs Distillation process lasts for 120 hours on 4 Nvidia V100. See all logs at [WandB](https://wandb.ai/d0rj/distill-ruroberta/runs/lehtr3bk/workspace). ## Configuration changes - Activation GELU -> GELUFast - Attention heads 16 -> 8 - Hidden layers 24 -> 6 - Weights size 1.42 GB -> 464 MB ## Data Overall: 9.4 GB of raw texts, 5.1 GB of binarized texts. Only texts in Russian were used for distillation. I do not know how the model behaves in Englishю Used data: - [GEM/wiki_lingua](https://huggingface.co/datasets/GEM/wiki_lingua) - [xnli](https://huggingface.co/datasets/xnli) - [RussianNLP/wikiomnia](https://huggingface.co/datasets/RussianNLP/wikiomnia) - [mlsum](https://huggingface.co/datasets/mlsum) - [IlyaGusev/gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta)
juancopi81/lmd-8bars-2048-epochs10
juancopi81
2023-07-04T12:23:11Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-01T23:26:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: lmd-8bars-2048-epochs10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmd-8bars-2048-epochs10 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 4 - seed: 1 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.4182 | 0.5 | 4994 | 1.4933 | | 1.4626 | 1.0 | 9988 | 1.3082 | | 1.3176 | 1.5 | 14982 | 1.2276 | | 1.2604 | 2.0 | 19976 | 1.1815 | | 1.2101 | 2.5 | 24970 | 1.1499 | | 1.1804 | 3.0 | 29964 | 1.1260 | | 1.1517 | 3.5 | 34958 | 1.1043 | | 1.1349 | 4.0 | 39952 | 1.0887 | | 1.1133 | 4.5 | 44946 | 1.0762 | | 1.0995 | 5.0 | 49940 | 1.0618 | | 1.0824 | 5.5 | 54934 | 1.0507 | | 1.0713 | 6.0 | 59928 | 1.0423 | | 1.0552 | 6.5 | 64922 | 1.0328 | | 1.0505 | 7.0 | 69916 | 1.0279 | | 1.0365 | 7.5 | 74910 | 1.0217 | | 1.0307 | 8.0 | 79904 | 1.0153 | | 1.022 | 8.5 | 84898 | 1.0107 | | 1.0189 | 9.0 | 89892 | 1.0090 | | 1.0129 | 9.5 | 94886 | 1.0084 | | 1.0139 | 10.0 | 99880 | 1.0086 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
iammartian0/whisper-base-finetuned-gtzan
iammartian0
2023-07-04T12:17:45Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-04T11:46:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-base-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5877 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1813 | 1.0 | 113 | 1.1224 | 0.62 | | 0.6839 | 2.0 | 226 | 0.7112 | 0.78 | | 0.4336 | 3.0 | 339 | 0.6312 | 0.8 | | 0.1472 | 4.0 | 452 | 0.5366 | 0.83 | | 0.1193 | 5.0 | 565 | 0.7973 | 0.8 | | 0.008 | 6.0 | 678 | 0.5044 | 0.87 | | 0.1485 | 7.0 | 791 | 0.7054 | 0.86 | | 0.0155 | 8.0 | 904 | 0.6145 | 0.87 | | 0.1364 | 9.0 | 1017 | 0.6034 | 0.88 | | 0.0017 | 10.0 | 1130 | 0.5877 | 0.88 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ajaycompete143/PPO_Lunar_Lander
ajaycompete143
2023-07-04T12:15:49Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T12:15:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 237.54 +/- 61.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NasimB/gpt2-dp-mod-datasets-rarity2
NasimB
2023-07-04T12:11:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-04T09:44:27Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-mod-datasets-rarity2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-mod-datasets-rarity2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 2.9689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6964 | 0.28 | 500 | 5.6571 | | 5.3695 | 0.56 | 1000 | 5.2302 | | 5.0252 | 0.83 | 1500 | 4.9783 | | 4.7727 | 1.11 | 2000 | 4.8337 | | 4.6037 | 1.39 | 2500 | 4.7203 | | 4.4995 | 1.67 | 3000 | 4.6237 | | 4.4109 | 1.94 | 3500 | 4.5399 | | 4.1994 | 2.22 | 4000 | 4.5071 | | 4.1606 | 2.5 | 4500 | 4.4425 | | 4.1134 | 2.78 | 5000 | 4.3980 | | 4.0337 | 3.05 | 5500 | 4.3731 | | 3.8408 | 3.33 | 6000 | 4.3581 | | 3.8431 | 3.61 | 6500 | 4.3268 | | 3.8253 | 3.89 | 7000 | 4.2934 | | 3.6561 | 4.16 | 7500 | 4.3160 | | 3.5535 | 4.44 | 8000 | 4.3077 | | 3.5564 | 4.72 | 8500 | 4.2849 | | 3.5441 | 5.0 | 9000 | 4.2669 | | 3.296 | 5.27 | 9500 | 4.3047 | | 3.2948 | 5.55 | 10000 | 4.2986 | | 3.2913 | 5.83 | 10500 | 4.2950 | | 3.2305 | 6.11 | 11000 | 4.3041 | | 3.1394 | 6.39 | 11500 | 4.3095 | | 3.1341 | 6.66 | 12000 | 4.3099 | | 3.1359 | 6.94 | 12500 | 4.3096 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
BadreddineHug/donut-base-ocr3
BadreddineHug
2023-07-04T12:09:53Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-04T11:22:07Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-ocr3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-ocr3 This model is a fine-tuned version of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ddoc/adt
ddoc
2023-07-04T12:02:45Z
0
1
null
[ "region:us" ]
null
2023-07-04T12:02:27Z
# !After Detailer !After Detailer is a extension for stable diffusion webui, similar to Detection Detailer, except it uses ultralytics instead of the mmdet. ## Install (from Mikubill/sd-webui-controlnet) 1. Open "Extensions" tab. 2. Open "Install from URL" tab in the tab. 3. Enter `https://github.com/Bing-su/adetailer.git` to "URL for extension's git repository". 4. Press "Install" button. 5. Wait 5 seconds, and you will see the message "Installed into stable-diffusion-webui\extensions\adetailer. Use Installed tab to restart". 6. Go to "Installed" tab, click "Check for updates", and then click "Apply and restart UI". (The next time you can also use this method to update extensions.) 7. Completely restart A1111 webui including your terminal. (If you do not know what is a "terminal", you can reboot your computer: turn your computer off and turn it on again.) You can now install it directly from the Extensions tab. ![image](https://i.imgur.com/g6GdRBT.png) You **DON'T** need to download any model from huggingface. ## Options | Model, Prompts | | | | --------------------------------- | ------------------------------------- | ------------------------------------------------- | | ADetailer model | Determine what to detect. | `None` = disable | | ADetailer prompt, negative prompt | Prompts and negative prompts to apply | If left blank, it will use the same as the input. | | Detection | | | | ------------------------------------ | -------------------------------------------------------------------------------------------- | --- | | Detection model confidence threshold | Only objects with a detection model confidence above this threshold are used for inpainting. | | | Mask min/max ratio | Only use masks whose area is between those ratios for the area of the entire image. | | If you want to exclude objects in the background, try setting the min ratio to around `0.01`. | Mask Preprocessing | | | | ------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------- | | Mask x, y offset | Moves the mask horizontally and vertically by | | | Mask erosion (-) / dilation (+) | Enlarge or reduce the detected mask. | [opencv example](https://docs.opencv.org/4.7.0/db/df6/tutorial_erosion_dilatation.html) | | Mask merge mode | `None`: Inpaint each mask<br/>`Merge`: Merge all masks and inpaint<br/>`Merge and Invert`: Merge all masks and Invert, then inpaint | | Applied in this order: x, y offset → erosion/dilation → merge/invert. #### Inpainting ![image](https://i.imgur.com/wyWlT1n.png) Each option corresponds to a corresponding option on the inpaint tab. ## ControlNet Inpainting You can use the ControlNet extension if you have ControlNet installed and ControlNet models. Support `inpaint, scribble, lineart, openpose, tile` controlnet models. Once you choose a model, the preprocessor is set automatically. ## Model | Model | Target | mAP 50 | mAP 50-95 | | --------------------- | --------------------- | ----------------------------- | ----------------------------- | | face_yolov8n.pt | 2D / realistic face | 0.660 | 0.366 | | face_yolov8s.pt | 2D / realistic face | 0.713 | 0.404 | | hand_yolov8n.pt | 2D / realistic hand | 0.767 | 0.505 | | person_yolov8n-seg.pt | 2D / realistic person | 0.782 (bbox)<br/>0.761 (mask) | 0.555 (bbox)<br/>0.460 (mask) | | person_yolov8s-seg.pt | 2D / realistic person | 0.824 (bbox)<br/>0.809 (mask) | 0.605 (bbox)<br/>0.508 (mask) | | mediapipe_face_full | realistic face | - | - | | mediapipe_face_short | realistic face | - | - | | mediapipe_face_mesh | realistic face | - | - | The yolo models can be found on huggingface [Bingsu/adetailer](https://huggingface.co/Bingsu/adetailer). ### User Model Put your [ultralytics](https://github.com/ultralytics/ultralytics) model in `webui/models/adetailer`. The model name should end with `.pt` or `.pth`. It must be a bbox detection or segment model and use all label. ### Dataset Datasets used for training the yolo models are: #### Face - [Anime Face CreateML](https://universe.roboflow.com/my-workspace-mph8o/anime-face-createml) - [xml2txt](https://universe.roboflow.com/0oooooo0/xml2txt-njqx1) - [AN](https://universe.roboflow.com/sed-b8vkf/an-lfg5i) - [wider face](http://shuoyang1213.me/WIDERFACE/index.html) #### Hand - [AnHDet](https://universe.roboflow.com/1-yshhi/anhdet) - [hand-detection-fuao9](https://universe.roboflow.com/catwithawand/hand-detection-fuao9) #### Person - [coco2017](https://cocodataset.org/#home) (only person) - [AniSeg](https://github.com/jerryli27/AniSeg) - [skytnt/anime-segmentation](https://huggingface.co/datasets/skytnt/anime-segmentation) ## Example ![image](https://i.imgur.com/38RSxSO.png) ![image](https://i.imgur.com/2CYgjLx.png) [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/F1F1L7V2N)
fatcat22/rl_course_vizdoom_health_gathering_supreme
fatcat22
2023-07-04T11:52:55Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T11:52:52Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 7.46 +/- 2.25 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r fatcat22/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
cv43/distilbert-base-uncased-finetuned-squad
cv43
2023-07-04T11:51:02Z
133
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-03T12:52:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.5644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 190 | 2.0763 | | No log | 2.0 | 380 | 1.6763 | | 2.3144 | 3.0 | 570 | 1.5644 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
NbAiLab/nb-wav2vec2-kenlm
NbAiLab
2023-07-04T11:49:43Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- license: apache-2.0 --- ## Citation ```bibtex @inproceedings{de-la-rosa-etal-2023-boosting, title = "Boosting {N}orwegian Automatic Speech Recognition", author = "De La Rosa, Javier and Braaten, Rolv-Arild and Kummervold, Per and Wetjen, Freddy", booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", month = may, year = "2023", address = "T{\'o}rshavn, Faroe Islands", publisher = "University of Tartu Library", url = "https://aclanthology.org/2023.nodalida-1.55", pages = "555--564", abstract = "In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10{\%} to 7.60{\%}, with models achieving 5.81{\%} for Bokm{\aa}l and 11.54{\%} for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian.", } ```
LarryAIDraw/CHAR-Kord
LarryAIDraw
2023-07-04T11:47:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-04T11:32:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/100517/kord-or-girls-frontline
Bilgilice/bilgilice35
Bilgilice
2023-07-04T11:46:09Z
0
0
null
[ "arxiv:1703.10135", "arxiv:1712.05884", "arxiv:2005.11129", "arxiv:2008.03802", "arxiv:2003.01950", "arxiv:2006.06873", "arxiv:1905.09263", "arxiv:2006.04558", "arxiv:2104.05557", "arxiv:1906.03402", "arxiv:2211.06892", "arxiv:2108.13320", "arxiv:2106.06103", "arxiv:2112.02418", "arxiv:1710.08969", "arxiv:1907.09006", "arxiv:1910.10288", "arxiv:2108.10447", "arxiv:1710.10467", "arxiv:2003.11982", "arxiv:1910.06711", "arxiv:2005.05106", "arxiv:1910.11480", "arxiv:1909.11646", "arxiv:2009.00713", "arxiv:2010.05646", "arxiv:2106.07889", "arxiv:2210.15418", "region:us" ]
null
2023-07-04T11:44:42Z
## 🐸Coqui.ai News - 📣 [🐶Bark](https://github.com/suno-ai/bark) is now available for inference with uncontrained voice cloning. [Docs](https://tts.readthedocs.io/en/dev/models/bark.html) - 📣 You can use [~1100 Fairseq models](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS. - 📣 🐸TTS now supports 🐢Tortoise with faster inference. [Docs](https://tts.readthedocs.io/en/dev/models/tortoise.html) - 📣 **Coqui Studio API** is landed on 🐸TTS. - [Example](https://github.com/coqui-ai/TTS/blob/dev/README.md#-python-api) - 📣 [**Coqui Studio API**](https://docs.coqui.ai/docs) is live. - 📣 Voice generation with prompts - **Prompt to Voice** - is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin)!! - [Blog Post](https://coqui.ai/blog/tts/prompt-to-voice) - 📣 Voice generation with fusion - **Voice fusion** - is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin). - 📣 Voice cloning is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin). ## <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/coqui-log-green-TTS.png" height="56"/> 🐸TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. 🐸TTS comes with pretrained models, tools for measuring dataset quality and already used in **20+ languages** for products and research projects. [![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) [![License](<https://img.shields.io/badge/License-MPL%202.0-brightgreen.svg>)](https://opensource.org/licenses/MPL-2.0) [![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) [![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) [![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) [![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) [![Docs](<https://readthedocs.org/projects/tts/badge/?version=latest&style=plastic>)](https://tts.readthedocs.io/en/latest/) 📰 [**Subscribe to 🐸Coqui.ai Newsletter**](https://coqui.ai/?subscription=true) 📢 [English Voice Samples](https://erogol.github.io/ddc-samples/) and [SoundCloud playlist](https://soundcloud.com/user-565970875/pocket-article-wavernn-and-tacotron2) 📄 [Text-to-Speech paper collection](https://github.com/erogol/TTS-papers) <img src="https://static.scarf.sh/a.png?x-pxid=cf317fe7-2188-4721-bc01-124bb5d5dbb2" /> ## 💬 Where to ask questions Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it. | Type | Platforms | | ------------------------------- | --------------------------------------- | | 🚨 **Bug Reports** | [GitHub Issue Tracker] | | 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] | | 👩‍💻 **Usage Questions** | [GitHub Discussions] | | 🗯 **General Discussion** | [GitHub Discussions] or [Discord] | [github issue tracker]: https://github.com/coqui-ai/tts/issues [github discussions]: https://github.com/coqui-ai/TTS/discussions [discord]: https://discord.gg/5eXr5seRrv [Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials ## 🔗 Links and Resources | Type | Links | | ------------------------------- | --------------------------------------- | | 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) | 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#install-tts)| | 👩‍💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)| | 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378) | 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)| ## 🥇 TTS Performance <p align="center"><img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/TTS-performance.png" width="800" /></p> Underlined "TTS*" and "Judy*" are **internal** 🐸TTS models that are not released open-source. They are here to show the potential. ## Features - High-performance Deep Learning models for Text2Speech tasks. - Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). - Speaker Encoder to compute speaker embeddings efficiently. - Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN) - Fast and efficient model training. - Detailed training logs on the terminal and Tensorboard. - Support for Multi-speaker TTS. - Efficient, flexible, lightweight but feature complete `Trainer API`. - Released and ready-to-use models. - Tools to curate Text2Speech datasets under```dataset_analysis```. - Utilities to use and test your models. - Modular (but not too much) code base enabling easy implementation of new ideas. ## Implemented Models ### Spectrogram models - Tacotron: [paper](https://arxiv.org/abs/1703.10135) - Tacotron2: [paper](https://arxiv.org/abs/1712.05884) - Glow-TTS: [paper](https://arxiv.org/abs/2005.11129) - Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802) - Align-TTS: [paper](https://arxiv.org/abs/2003.01950) - FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf) - FastSpeech: [paper](https://arxiv.org/abs/1905.09263) - FastSpeech2: [paper](https://arxiv.org/abs/2006.04558) - SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557) - Capacitron: [paper](https://arxiv.org/abs/1906.03402) - OverFlow: [paper](https://arxiv.org/abs/2211.06892) - Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320) ### End-to-End Models - VITS: [paper](https://arxiv.org/pdf/2106.06103) - 🐸 YourTTS: [paper](https://arxiv.org/abs/2112.02418) - 🐢 Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts) - 🐶 Bark: [orig. repo](https://github.com/suno-ai/bark) ### Attention Methods - Guided Attention: [paper](https://arxiv.org/abs/1710.08969) - Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006) - Graves Attention: [paper](https://arxiv.org/abs/1910.10288) - Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) - Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf) - Alignment Network: [paper](https://arxiv.org/abs/2108.10447) ### Speaker Encoder - GE2E: [paper](https://arxiv.org/abs/1710.10467) - Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf) ### Vocoders - MelGAN: [paper](https://arxiv.org/abs/1910.06711) - MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106) - ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480) - GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646) - WaveRNN: [origin](https://github.com/fatchord/WaveRNN/) - WaveGrad: [paper](https://arxiv.org/abs/2009.00713) - HiFiGAN: [paper](https://arxiv.org/abs/2010.05646) - UnivNet: [paper](https://arxiv.org/abs/2106.07889) ### Voice Conversion - FreeVC: [paper](https://arxiv.org/abs/2210.15418) You can also help us implement more models. ## Install TTS 🐸TTS is tested on Ubuntu 18.04 with **python >= 3.7, < 3.11.**. If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option. ```bash pip install TTS ``` If you plan to code or train models, clone 🐸TTS and install it locally. ```bash git clone https://github.com/coqui-ai/TTS pip install -e .[all,dev,notebooks] # Select the relevant extras ``` If you are on Ubuntu (Debian), you can also run following commands for installation. ```bash $ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. $ make install ``` If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system). ## Docker Image You can also try TTS without install with the docker image. Simply run the following command and you will be able to run TTS without installing it. ```bash docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu python3 TTS/server/server.py --list_models #To get the list of available models python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server ``` You can then enjoy the TTS server [here](http://[::1]:5002/) More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html) ## Synthesizing speech by 🐸TTS ### 🐍 Python API ```python from TTS.api import TTS # Running a multi-speaker and multi-lingual model # List available 🐸TTS models and choose the first one model_name = TTS.list_models()[0] # Init TTS tts = TTS(model_name) # Run TTS # ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language # Text to speech with a numpy output wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) # Text to speech to a file tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") # Running a single speaker model # Init TTS with the target model name tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) # Example voice cloning with YourTTS in English, French and Portuguese tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav") tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav") # Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav` tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True) tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") # Example voice cloning by a single speaker TTS model combining with the voice conversion model. This way, you can # clone voices by using any model in 🐸TTS. tts = TTS("tts_models/de/thorsten/tacotron2-DDC") tts.tts_with_vc_to_file( "Wie sage ich auf Italienisch, dass ich dich liebe?", speaker_wav="target/speaker.wav", file_path="output.wav" ) # Example text to speech using [🐸Coqui Studio](https://coqui.ai) models. # You can use all of your available speakers in the studio. # [🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account). # You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token. # If you have a valid API token set you will see the studio speakers as separate models in the list. # The name format is coqui_studio/en/<studio_speaker_name>/coqui_studio models = TTS().list_models() # Init TTS with the target studio speaker tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False, gpu=False) # Run TTS tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) # Run TTS with emotion and speed control tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) #Example text to speech using **Fairseq models in ~1100 languages** 🤯. #For these models use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`. #You can find the list of language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html) and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). # TTS with on the fly voice conversion api = TTS("tts_models/deu/fairseq/vits") api.tts_with_vc_to_file( "Wie sage ich auf Italienisch, dass ich dich liebe?", speaker_wav="target/speaker.wav", file_path="output.wav" ) ``` ### Command line `tts` #### Single Speaker Models - List provided models: ``` $ tts --list_models ``` - Get model info (for both tts_models and vocoder_models): - Query by type/name: The model_info_by_name uses the name as it from the --list_models. ``` $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" ``` For example: ``` $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts ``` ``` $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 ``` - Query by type/idx: The model_query_idx uses the corresponding idx from --list_models. ``` $ tts --model_info_by_idx "<model_type>/<model_query_idx>" ``` For example: ``` $ tts --model_info_by_idx tts_models/3 ``` - Run TTS with default models: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav ``` - Run a TTS model with its default vocoder model: ``` $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav ``` - Run with specific TTS and vocoder models from the list: ``` $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav ``` - Run your own TTS model (Using Griffin-Lim Vocoder): ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav ``` - Run your own TTS and Vocoder models: ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json ``` #### Multi-speaker Models - List the available speakers and choose a <speaker_id> among them: ``` $ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs ``` - Run the multi-speaker TTS model with the target speaker ID: ``` $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> ``` - Run your own multi-speaker TTS model: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> ``` ## Directory Structure ``` |- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) |- utils/ (common utilities.) |- TTS |- bin/ (folder for all the executables.) |- train*.py (train your target model.) |- ... |- tts/ (text to speech models) |- layers/ (model layer definitions) |- models/ (model definitions) |- utils/ (model specific utilities.) |- speaker_encoder/ (Speaker Encoder models.) |- (same) |- vocoder/ (Vocoder models.) |- (same) ```
Allenpai/alpacaRec
Allenpai
2023-07-04T11:43:15Z
0
0
null
[ "region:us" ]
null
2023-07-04T11:42:16Z
Training procedure The following bitsandbytes quantization config was used during training: load_in_8bit: True load_in_4bit: False llm_int8_threshold: 6.0 llm_int8_skip_modules: None llm_int8_enable_fp32_cpu_offload: False llm_int8_has_fp16_weight: False bnb_4bit_quant_type: fp4 bnb_4bit_use_double_quant: False bnb_4bit_compute_dtype: float32 Framework versions PEFT 0.4.0.dev0
dcarpintero/Reinforce-Pixelcopter-PLE-v1
dcarpintero
2023-07-04T11:41:06Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T11:41:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 28.70 +/- 22.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zenoda/trocr-captcha-killer
zenoda
2023-07-04T11:34:58Z
182
4
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "en", "zh", "dataset:zenoda/trocr-captcha-killer", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-03T11:54:05Z
--- datasets: - zenoda/trocr-captcha-killer language: - en - zh --- accuracy: 0.937338 ``` from transformers import VisionEncoderDecoderModel, TrOCRProcessor from PIL import Image import requests processor = TrOCRProcessor.from_pretrained("zenoda/trocr-captcha-killer") model = VisionEncoderDecoderModel.from_pretrained("zenoda/trocr-captcha-killer") model.to('cuda') url = 'https://huggingface.co/datasets/zenoda/trocr-captcha-killer/resolve/main/106-1688354008849.png' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") generated_ids = model.generate(processor(image, return_tensors="pt").pixel_values.to('cuda')) predictText = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(predictText) ```
BaoKien/xlnet-base-cased-finetuned-squad-v2
BaoKien
2023-07-04T11:33:07Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-04T07:18:15Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: xlnet-base-cased-finetuned-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-squad-v2 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2719 | 1.0 | 8265 | 0.2361 | | 0.172 | 2.0 | 16530 | 0.2484 | | 0.1236 | 3.0 | 24795 | 0.3111 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
iammartian0/whisper-tiny-finetuned-gtzan
iammartian0
2023-07-04T11:08:08Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-04T10:40:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-tiny-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4342 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7087 | 0.99 | 56 | 1.6682 | 0.53 | | 1.0139 | 2.0 | 113 | 1.1272 | 0.64 | | 0.8057 | 2.99 | 169 | 0.7579 | 0.79 | | 0.393 | 4.0 | 226 | 0.5791 | 0.86 | | 0.3414 | 4.99 | 282 | 0.5055 | 0.86 | | 0.1083 | 6.0 | 339 | 0.4109 | 0.9 | | 0.0783 | 6.99 | 395 | 0.4297 | 0.87 | | 0.0998 | 8.0 | 452 | 0.4627 | 0.87 | | 0.0119 | 8.99 | 508 | 0.4410 | 0.87 | | 0.0095 | 9.91 | 560 | 0.4342 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
vivekraina/falcon-7b-4bit
vivekraina
2023-07-04T10:47:09Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-04T10:46:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Falah/Alzheimer_classification_model
Falah
2023-07-04T10:45:54Z
214
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-04T09:34:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Alzheimer_classification_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Alzheimer_classification_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4065 - Accuracy: 0.8375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.692 | 1.0 | 80 | 0.8592 | 0.6258 | | 0.662 | 2.0 | 160 | 0.7454 | 0.6781 | | 0.6124 | 3.0 | 240 | 0.6895 | 0.6922 | | 0.5851 | 4.0 | 320 | 0.6332 | 0.7430 | | 0.5495 | 5.0 | 400 | 0.5804 | 0.7586 | | 0.4334 | 6.0 | 480 | 0.6068 | 0.7484 | | 0.4169 | 7.0 | 560 | 0.5168 | 0.7883 | | 0.3709 | 8.0 | 640 | 0.4768 | 0.8055 | | 0.2854 | 9.0 | 720 | 0.4641 | 0.8117 | | 0.3064 | 10.0 | 800 | 0.4065 | 0.8375 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.1+cu118 - Datasets 2.9.0 - Tokenizers 0.13.3
Anwaarma/autotrain-enhancedauto-72049138834
Anwaarma
2023-07-04T10:45:09Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain", "unk", "dataset:Anwaarma/autotrain-data-enhancedauto", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-04T10:42:10Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - Anwaarma/autotrain-data-enhancedauto co2_eq_emissions: emissions: 1.8438978972881972 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 72049138834 - CO2 Emissions (in grams): 1.8439 ## Validation Metrics - Loss: 0.033 - Accuracy: 0.990 - Precision: 0.988 - Recall: 0.944 - AUC: 0.998 - F1: 0.966 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Anwaarma/autotrain-enhancedauto-72049138834 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anwaarma/autotrain-enhancedauto-72049138834", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anwaarma/autotrain-enhancedauto-72049138834", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
revmag/Taxi-v3
revmag
2023-07-04T10:43:12Z
0
1
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T10:43:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="revmag/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ericNguyen0132/roberta-large-Dep-pretrain
ericNguyen0132
2023-07-04T10:33:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-04T06:57:43Z
--- tags: - generated_from_trainer model-index: - name: roberta-large-Dep-pretrain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-Dep-pretrain This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
BadreddineHug/donut-base-ocr2
BadreddineHug
2023-07-04T10:32:08Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-04T10:18:50Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-ocr2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-ocr2 This model is a fine-tuned version of [BadreddineHug/donut-base-ocr1](https://huggingface.co/BadreddineHug/donut-base-ocr1) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
chenxingphh/distilbert-base-uncased-finetuned-imdb
chenxingphh
2023-07-04T10:28:47Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-04T10:21:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
erkam/sd-clevr-sg2im-objects_cap-e2e
erkam
2023-07-04T10:26:20Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-08T12:35:18Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - erkam/sd-clevr-sg2im-objects_cap-e2e These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the erkam/clevr-full-v4 dataset. You can find some example images in the following.
msladic/ppo-SnowballTarget
msladic
2023-07-04T10:18:36Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-04T10:02:46Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: msladic/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NasimB/gpt2-cl-concat-log-rarity-9-210k-mod-datasets
NasimB
2023-07-04T10:10:08Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-04T08:51:19Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-cl-concat-log-rarity-9-210k-mod-datasets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-cl-concat-log-rarity-9-210k-mod-datasets This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 5.0793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.2877 | 0.07 | 500 | 5.9527 | | 5.0107 | 0.14 | 1000 | 5.5940 | | 4.7383 | 0.21 | 1500 | 5.4130 | | 4.5602 | 0.28 | 2000 | 5.2903 | | 4.423 | 0.35 | 2500 | 5.2322 | | 4.3129 | 0.41 | 3000 | 5.1696 | | 4.2078 | 0.48 | 3500 | 5.1278 | | 4.1161 | 0.55 | 4000 | 5.1007 | | 4.023 | 0.62 | 4500 | 5.0613 | | 3.933 | 0.69 | 5000 | 5.0483 | | 3.8578 | 0.76 | 5500 | 5.0290 | | 3.7859 | 0.83 | 6000 | 5.0156 | | 3.746 | 0.9 | 6500 | 5.0064 | | 3.7228 | 0.97 | 7000 | 5.0027 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
nageen/roberta-finetuned-subjqa-event_model
nageen
2023-07-04T10:05:57Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-29T22:46:41Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-event_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-event_model This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
BOULLOUL/End2EndQGT5
BOULLOUL
2023-07-04T10:04:51Z
102
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:wiselinjayajos/squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-04T09:49:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wiselinjayajos/squad_modified_for_t5_qg widget: - text: "generate question: Python is developed by Guido Van Rossum and released in 1991.</s>" model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad v1.1 dataset. It achieves the following results on the evaluation set: - Loss: 1.5789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5879 | 0.34 | 100 | 1.9133 | | 1.9688 | 0.68 | 200 | 1.7313 | | 1.8513 | 1.02 | 300 | 1.6691 | | 1.7459 | 1.36 | 400 | 1.6413 | | 1.7206 | 1.69 | 500 | 1.6200 | | 1.7026 | 2.03 | 600 | 1.6101 | | 1.6447 | 2.37 | 700 | 1.5983 | | 1.6402 | 2.71 | 800 | 1.5979 | | 1.6332 | 3.05 | 900 | 1.5924 | | 1.5953 | 3.39 | 1000 | 1.5877 | | 1.5922 | 3.73 | 1100 | 1.5854 | | 1.5832 | 4.07 | 1200 | 1.5830 | | 1.5726 | 4.41 | 1300 | 1.5799 | | 1.5587 | 4.75 | 1400 | 1.5789 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
vineetsharma/whisper-tiny-finetuned-minds14-en-v2
vineetsharma
2023-07-04T09:58:21Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-04T07:05:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14-en-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.33530106257378983 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-minds14-en-v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Wer Ortho: 0.3362 - Wer: 0.3353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0014 | 1.79 | 50 | 0.6437 | 0.3708 | 0.3648 | | 0.0012 | 3.57 | 100 | 0.6664 | 0.3461 | 0.3353 | | 0.0113 | 5.36 | 150 | 0.6338 | 0.3374 | 0.3353 | | 0.0021 | 7.14 | 200 | 0.6466 | 0.3467 | 0.3453 | | 0.0013 | 8.93 | 250 | 0.6690 | 0.3399 | 0.3383 | | 0.0006 | 10.71 | 300 | 0.6804 | 0.3362 | 0.3353 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
jieshenai/zh_en_translation
jieshenai
2023-07-04T09:43:08Z
103
3
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "dataset:kde4", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-26T13:28:07Z
--- datasets: - kde4 --- translation zh to en. example: https://github.com/JieShenAI/torch/blob/main/huggingface/example/translation/%E8%8B%B1%E6%B1%89%E4%BA%92%E8%AF%91.ipynb You can post issues at https://github.com/JieShenAI/torch
Bugsys0302/opchlr
Bugsys0302
2023-07-04T09:36:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-04T09:35:05Z
--- license: creativeml-openrail-m ---
ymkgr/shikimiya_mana_from_Re_Stage
ymkgr
2023-07-04T09:27:21Z
0
1
null
[ "anime", "game", "license:creativeml-openrail-m", "region:us" ]
null
2023-07-04T08:29:48Z
--- license: creativeml-openrail-m metrics: - character tags: - anime - game --- 模型类型/Model type: LoRA --- v2.3版本模型详细信息/v2.3 Version Model Details(I used a translator in English): - 来自 日本多媒体企划:Re:Stage! - 组合:KiRaRe - 角色名:式宫舞菜。/from Japanese multimedia project: Re:Stage! - Unit: KiRaRe - character name: shikimiya mana. - LoRA权重/weight:0.6~1。 - 触发词/Trigger Words * 请自行在"("和")"的前面添加\符号,这个页面似乎不能将\符号与其它符号连在一起显示/Please add the \ symbol before "(" and ")" yourself. It seems that the Model card cannot display the \ symbol together with other symbols: - 角色/character: shikimiya mana\(re:stage!\), ahoge, short hair, orange hair, blue eyes, clover hairclip\(shikimiya mana\), 示例/Example:![122690-3778830886-masterpiece, best quality, 1girl, shikimiya mana_(re_stage!_), ahoge, short hair, orange hair, blue eyes, yukata,.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/9pTAdVbkkNAI1V2a_or3n.png) - 舞台服/stage dress: dress\(smsa\), star hair ornament\(smsa\), hat\(smsa\), one wrist cuffs\(smsa\), one wrist scrunchie\(smsa\), asymmetrical thighhighs\(smsa\), shoes\(smsa\), ![122650-431890354-masterpiece, best quality, 1girl, shikimiya mana_(re_stage!_), ahoge, short hair, orange hair, blue eyes, clover hairclip_(shiki.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/rEcNVPwLK_MUAx2MKRI07.png) - 校服/school uniform: sailor collar, blue pleated skirt, bowtie,![122672-3658421627-masterpiece, best quality, 1girl, shikimiya mana_(re_stage!_), ahoge, short hair, orange hair, blue eyes, clover hairclip_(shiki.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/p-rpxD5jkb67qAGbPWukc.png) --- v2.3版本说明/v2.3 Version description: - 它在不添加任何发饰类的提示词时,也可能会生成类似发饰的杂物,解决方法/It may also generate something similar to hair accessories without adding any hint words for hair accessories. Solution:: · 在 Negative prompt 中添加 hairclip、hair ornament 等发饰类提示词/Add hairclip, hair oment, and other hair accessory prompts to Negative prompt · 降低LoRA权重/Reduce LoRA weight 相比v1版本,服饰方面更像。/Compared to the v1 Version, the clothing aspect is more similar. --- I don't know English and I'm not very good at using the Hugging Face website. I also use a translation for the description Please comply with regulations.
ak2704/q-FrozenLake-v1-4x4-noSlippery
ak2704
2023-07-04T09:24:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T09:24:29Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ak2704/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
a2ran/kor_chatGLM
a2ran
2023-07-04T09:21:16Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-04T09:15:50Z
--- library_name: peft --- - **WIP** Data used : https://raw.githubusercontent.com/Beomi/KoAlpaca/main/alpaca_data.json training_args = TrainingArguments( "output", fp16 =True, gradient_accumulation_steps=1, per_device_train_batch_size = 1, learning_rate = 1e-4, max_steps=3000, logging_steps=100, remove_unused_columns=False, seed=0, data_seed=0, group_by_length=False, )
Word2vec/nlpl_5
Word2vec
2023-07-04T09:20:25Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-06-01T15:35:34Z
--- language: eng tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 license: cc-by-4.0 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 302866 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_5", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/5.zip
DEplain/trimmed_longmbart_docs_apa
DEplain
2023-07-04T09:18:27Z
85
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "text simplification", "plain language", "easy-to-read language", "document simplification", "de", "dataset:DEplain/DEplain-APA-doc", "arxiv:2305.18939", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2023-03-02T16:39:31Z
--- inference: false license: apache-2.0 language: - de datasets: - DEplain/DEplain-APA-doc metrics: - sari - bleu - bertscore library_name: transformers pipeline_tag: text2text-generation tags: - text simplification - plain language - easy-to-read language - document simplification --- # DEplain German Text Simplification This model belongs to the experiments done at the work of Stodden, Momen, Kallmeyer (2023). ["DEplain: A German Parallel Corpus with Intralingual Translations into Plain Language for Sentence and Document Simplification."](https://arxiv.org/abs/2305.18939) In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada. Association for Computational Linguistics. Detailed documentation can be found on this GitHub repository [https://github.com/rstodden/DEPlain](https://github.com/rstodden/DEPlain) We reused the codes from [https://github.com/a-rios/ats-models](https://github.com/a-rios/ats-models) to do our experiments. ### Model Description The model is a finetuned checkpoint of the pre-trained LongmBART model based on `mbart-large-cc25`. With a trimmed vocabulary to the most frequent 30k words in the German language. The model was finetuned towards the task of German text simplification of documents. The finetuning dataset included manually aligned sentences from the datasets `DEplain-APA-doc` only. ### Model Usage This model can't be used in the HuggingFace interface or via the .from_pretrained method currently. As it's a finetuning of a custom model (LongMBart), which hasn't been registered on HF yet. You can find this custom model codes at: [https://github.com/a-rios/ats-models](https://github.com/a-rios/ats-models) To test this model checkpoint, you need to clone the checkpoint repository as follows: ``` # Make sure you have git-lfs installed (https://git-lfs.com) git lfs install git clone https://huggingface.co/DEplain/trimmed_longmbart_docs_apa # if you want to clone without large files – just their pointers # prepend your git clone with the following env var: GIT_LFS_SKIP_SMUDGE=1 ``` Then set up the conda environment via: ``` conda env create -f environment.yaml ``` Then follow the procedure in the notebook `generation.ipynb`.
Word2vec/nlpl_3
Word2vec
2023-07-04T09:08:44Z
0
0
null
[ "word2vec", "eng", "dataset:English_Wikipedia_Dump_of_February_2017", "license:cc-by-4.0", "region:us" ]
null
2023-06-01T15:13:39Z
--- language: eng tags: - word2vec datasets: English_Wikipedia_Dump_of_February_2017 license: cc-by-4.0 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 296630 corresponding to 2252637050 tokens from the dataset `English_Wikipedia_Dump_of_February_2017`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_3", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/3.zip
Word2vec/nlpl_4
Word2vec
2023-07-04T09:08:15Z
0
0
null
[ "word2vec", "eng", "dataset:Gigaword_5th_Edition", "license:cc-by-4.0", "region:us" ]
null
2023-06-01T15:14:52Z
--- language: eng tags: - word2vec datasets: Gigaword_5th_Edition license: cc-by-4.0 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 314815 corresponding to 4815382730 tokens from the dataset `Gigaword_5th_Edition`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 2 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_4", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/4.zip
Roy029/mt5_empty_desc_25k_msp
Roy029
2023-07-04T09:07:41Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-04T08:50:19Z
下から語彙を2500入れ替えたTokenizerと、mspで学習させたモデル
Word2vec/nlpl_2
Word2vec
2023-07-04T09:06:54Z
0
1
null
[ "word2vec", "nor", "dataset:Norsk_Aviskorpus/NoWaC", "license:cc-by-4.0", "region:us" ]
null
2023-06-01T15:11:33Z
--- language: nor tags: - word2vec datasets: Norsk_Aviskorpus/NoWaC license: cc-by-4.0 --- ## Information A word2vec model trained by Andrey Kutuzov ([email protected]) on a vocabulary of size 306943 corresponding to 1941761506 tokens from the dataset `Norsk_Aviskorpus/NoWaC`. The model is trained with the following properties: lemmatization and postag with the algorith Gensim Continuous Skipgram with window of 5 and dimension of 300. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_2", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/2.zip
natykov/swin-tiny-patch4-window7-224-finetuned-eurosat
natykov
2023-07-04T09:01:46Z
209
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-04T08:52:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5564 - Accuracy: 0.2861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5752 | 0.99 | 115 | 1.5699 | 0.2685 | | 1.5519 | 2.0 | 231 | 1.5570 | 0.2866 | | 1.5324 | 2.98 | 345 | 1.5564 | 0.2861 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
trieudemo11/bloomz-1b7_19_brand_w_cate
trieudemo11
2023-07-04T08:55:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-04T08:55:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
KPF/KPF-bert-cls2
KPF
2023-07-04T08:53:57Z
169
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-04T07:48:09Z
# KPF-BERT-CLS2 - [빅카인즈랩](https://lab.bigkinds.or.kr/) 인사이드 메뉴의 지역뉴스에서 사용된 세분류 예측 모델이며 지역을 제외한 세분류 결과를 나타낸다. - 사용 방법에 대한 안내 및 코드는 [KPF-bigkinds github](https://github.com/KPF-bigkinds/BIGKINDS-LAB/tree/main/KPF-BERT-CLS)에서 확인할 수 있습니다. ## 모델 소개 ### KPF-BERT-CLS 한국언론진흥재단이 개발한 kpf-BERT 모델을 기반으로 CLS(Classification) task를 수행할 수 있는 kpf-BERT-cls 모델을 설계 및 개발하였다. - 본 예제에 사용된 kpf-BERT는 [kpfBERT](https://github.com/KPFBERT/kpfbert)에 공개되어 있다. - 본 예제에서는 대분류, 지역을 제외한 대분류들의 세분류, 지역 세분류로 구분하여 데이터를 학습한다. 학습데이터는 기사내용과 분류명을 넣어 제작하였다. 분류명은 아래의 분류체계를 따르며, 기사내용 + 대분류(지역제외) 데이터셋, 기사내용 + 세분류(지역제외) 데이터셋, 기사내용 + 지역세분류 데이터셋으로 나누어 학습을 진행했다. ![img](https://user-images.githubusercontent.com/87846939/221474119-7701e4e4-fe73-4b74-8f55-58d0853e5639.png) 한국언론진흥재단이 개발한 kpf-BERT를 기반으로 classification layer를 추가하여 kpf-BERT-cls 모델을 개발한다. kpf-BERT-cls 모델은 기사를 입력받아 kpf-BERT 토크나이저를 사용하여 해당 기사가 어느 클래스에 속하는지 예측한다. 기본 BERT 모델의 구조와 토크나이저는 아래의 그림과 같다. ![img_2](https://user-images.githubusercontent.com/87846939/221474169-552bba7c-0a05-4f3d-a90e-2ad8f9f69cba.png) ![img_3](https://user-images.githubusercontent.com/87846939/221474197-2b588cea-4d73-4caf-b451-b52a10ef966d.png) BERT는 입력 길이의 제한으로 512 subword 이하의 값만 입력받을 수 있다. 기사의 특성상 인터뷰 등의 글은 512 subword보다 긴 것이 대부분이다. 이를 해결하기 위해 본 과제에서는 stride를 주어 독립적으로 문서의 조각들을 처리한다. ![img_1](https://user-images.githubusercontent.com/87846939/221474214-4e760c55-ba53-4e08-9154-65c73afabca6.png) kpf-BERT-cls는 대분류 예측 모델, 세분류 예측 모델, 지역 세분류 예측 모델로 구성되어 있다. 대분류/세분류 예측 모델은 top-3 결과를 출력한다. ![img_4](https://user-images.githubusercontent.com/87846939/221474226-fb68c3aa-b45a-4bdf-9c10-a6c98b6451e8.png)