modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
boleklolek/olka
boleklolek
2023-07-03T10:42:40Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T10:37:51Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### olka Dreambooth model trained by boleklolek with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
jordimas/bloom-ctranslate2
jordimas
2023-07-03T10:37:16Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-06-28T15:02:40Z
--- license: bigscience-bloom-rail-1.0 --- # Bloom CTranslate2's model This is a collection of some of the [Bigscience Bloom](https://huggingface.co/bigscience/bloom) exported to [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This allows to load and usage these models efficently on CPU or GPU. ## Models The models have been converted to *float16* and can be load in with any other quantification method (e.g. *int 8*). | Model name | Description | | --- | --- | | [bloom-560m](https://huggingface.co/bigscience/bloom-560m) | 560M parameter model pretrained on ROOTS| | [bloom-3b](https://huggingface.co/bigscience/bloom-3b) | 3B parameter model pretrained on ROOTS | [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) | 7.1B parameter model finetuned on xP3| | [bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) | 7.1B parameter model finetuned on xP3mt | | [mt0-xxl-mt](https://huggingface.co/bigscience/mt0-xxl-mt) | 13B parameter model finetuned on xP3| See [directories](https://huggingface.co/jordimas/bloom-ctranslate2/tree/main) for the different models available. ## Simple code to use them Install dependencies: ```shell pip install huggingface_hub ctranslate2 transformers torch ``` Usage: ```python import huggingface_hub import ctranslate2 import transformers model_name = "bloomz-7b1" prompt = "Hello, I am Joan and I am from Barcelona and" repo_id = "jordimas/bloom-ctranslate2" snapshot_folder = huggingface_hub.snapshot_download(repo_id = repo_id, allow_patterns=f"*{model_name}*") print(f"folder: {snapshot_folder}") model = f"{snapshot_folder}/{model_name}" generator = ctranslate2.Generator(model, compute_type="int8") tokenizer = transformers.AutoTokenizer.from_pretrained(model) start_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) results = generator.generate_batch([start_tokens], max_length=90) result = tokenizer.decode(results[0].sequences_ids[0]) print(f"Result: {result}") ```
T-Systems-onsite/cross-en-pl-roberta-sentence-transformer
T-Systems-onsite
2023-07-03T10:33:55Z
15
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "pl", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - pl license: mit tags: - sentence_embedding ---
T-Systems-onsite/cross-en-de-fr-roberta-sentence-transformer
T-Systems-onsite
2023-07-03T10:33:40Z
12
1
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "de", "fr", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - de - fr license: mit tags: - sentence_embedding ---
ZidanSink/Kayessss
ZidanSink
2023-07-03T10:11:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T10:09:49Z
--- license: creativeml-openrail-m ---
ecwk/distilbert-git-commits-bugfix-classification
ecwk
2023-07-03T10:09:49Z
103
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T10:08:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-git-commits-bugfix-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-git-commits-bugfix-classification This model is a fine-tuned version of [neuralsentry/distilbert-git-commits-mlm](https://huggingface.co/neuralsentry/distilbert-git-commits-mlm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5037 - Accuracy: 0.9231 - Precision: 0.85 - Recall: 1.0 - F1: 0.9189 - Roc Auc: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 420 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.6837 | 1.0 | 22 | 0.6040 | 0.5897 | 0.5161 | 0.9412 | 0.6667 | 0.6297 | | 0.3852 | 2.0 | 44 | 0.2881 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.2148 | 3.0 | 66 | 0.3807 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0701 | 4.0 | 88 | 0.4934 | 0.8718 | 0.7727 | 1.0 | 0.8718 | 0.8864 | | 0.0164 | 5.0 | 110 | 0.4892 | 0.8974 | 0.8095 | 1.0 | 0.8947 | 0.9091 | | 0.0039 | 6.0 | 132 | 0.4929 | 0.8974 | 0.8095 | 1.0 | 0.8947 | 0.9091 | | 0.0012 | 7.0 | 154 | 0.4065 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0008 | 8.0 | 176 | 0.4837 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0007 | 9.0 | 198 | 0.5000 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0006 | 10.0 | 220 | 0.5037 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
SebastianBodza/mpt-30B-qlora-multi_GPU
SebastianBodza
2023-07-03T10:07:34Z
6
1
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-30T12:30:29Z
# MPT-7B LoRA Patch - multi GPU Multi-GPU bugfix for MPT-30B Patch based on: https://github.com/iwalton3/mpt-lora-patch This is the Python model code for MPT-7B patched so that it can be used with a LoRA. Note that while I tested that it works and I get reasonable results out, it is very possible that the model isn't being trained correctly. The model code specifically says that left padding is not supported, but I forcibly did so and got decent results. Note that when using LoRA, there is a strange quirk that prevents me from causing generation with an empty prompt. I also included a model-agnostic `export_hf_checkpoint.py` script, which you can use to merge your lora back into a new full model. Once you do this, you do not need to use the patched version of the model code anymore. That being said, if you want to be able to load the model in 8bit you will still need it. The usage is `python export_hf_checkpoint.py <source> <lora> <dest>`. If you would like to use this with `text-generation-webui`, apply the following patch: ```patch --- a/modules/training.py +++ b/modules/training.py @@ -28,12 +28,13 @@ try: MODEL_CLASSES = {v: k for k, v in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES} except: standard_modules = ["q_proj", "v_proj"] - model_to_lora_modules = {"llama": standard_modules, "opt": standard_modules, "gptj": standard_modules, "gpt_neox": ["query_key_value"]} + model_to_lora_modules = {"llama": standard_modules, "opt": standard_modules, "gptj": standard_modules, "gpt_neox": ["query_key_value"], "mpt": ["Wqkv"]} MODEL_CLASSES = { "LlamaForCausalLM": "llama", "OPTForCausalLM": "opt", "GPTJForCausalLM": "gptj", - "GPTNeoXForCausalLM": "gpt_neox" + "GPTNeoXForCausalLM": "gpt_neox", + "MPTForCausalLM": "mpt" } WANT_INTERRUPT = False ``` You will need to run the webui with these options: ```bash python server.py --model mosaicml_mpt-7b-instruct --trust-remote-code --load-in-8bit ``` You may also need to patch `bitsandbytes/nn/modules.py` to prevent running out of VRAM when saving the LoRA: ```patch --- a/modules.py +++ b/modules.py @@ -259,13 +259,13 @@ if not self.state.has_fp16_weights and self.state.CB is None and self.state.CxB is not None: # reorder weight layout back from ampere/turing to row reorder_layout = True - weight_clone = self.weight.data.clone() + weight_clone = self.weight.data else: reorder_layout = False try: if reorder_layout: - self.weight.data = undo_layout(self.state.CxB, self.state.tile_indices) + self.weight.data = undo_layout(self.state.CxB.cpu(), self.state.tile_indices.cpu()) super()._save_to_state_dict(destination, prefix, keep_vars) ``` (It resides in `miniconda3/envs/textgen/lib/python3.10/site-packages/bitsandbytes/nn/modules.py` for me.) You can find the source model here: [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) The alterations are based on the [source code for the llama model](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) from HF Transformers. ## Model License CC-By-SA-3.0
sarthak101/my-pet-dog
sarthak101
2023-07-03T10:03:13Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-03T09:56:02Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by sarthak101 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CVRGU313 Sample pictures of this concept: ![0](https://huggingface.co/sarthak101/my-pet-dog/resolve/main/sample_images/xzg_(2).jpeg) ![1](https://huggingface.co/sarthak101/my-pet-dog/resolve/main/sample_images/xzg_(3).jpeg) ![2](https://huggingface.co/sarthak101/my-pet-dog/resolve/main/sample_images/xzg_(4).jpeg) ![3](https://huggingface.co/sarthak101/my-pet-dog/resolve/main/sample_images/xzg_(1).jpeg)
KJan05/KJan-Taxi-v3
KJan05
2023-07-03T09:55:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T09:55:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: KJan-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="KJan05/KJan-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DucHaiten/DucHaiten-GoldenLife
DucHaiten
2023-07-03T09:43:14Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T09:39:14Z
--- license: creativeml-openrail-m ---
msladic/Reinforce-Cartpole-v1
msladic
2023-07-03T09:38:21Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T09:36:07Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 462.02 +/- 85.78 name: mean_reward verified: false --- # **Reinforce** Agent playing **Cartpole-v1** This is a trained model of a **Reinforce** agent playing **Cartpole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aronmal/q-FrozenLake-v1-4x4-noSlippery
aronmal
2023-07-03T09:37:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T09:37:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="aronmal/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DucHaiten/DucHaiten-FANCYxFANCY
DucHaiten
2023-07-03T09:36:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T09:31:51Z
--- license: creativeml-openrail-m ---
OriginF/output
OriginF
2023-07-03T09:34:08Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-20T08:28:55Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks lego tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - OriginF/output This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks lego using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
daiwenbin/xlm-roberta-base-finetuned-panx-de-fr
daiwenbin
2023-07-03T09:28:37Z
134
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-03T09:18:25Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2083 - F1: 0.8465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.36 | 1.0 | 715 | 0.2279 | 0.8163 | | 0.1862 | 2.0 | 1430 | 0.1997 | 0.8363 | | 0.1169 | 3.0 | 2145 | 0.2083 | 0.8465 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.13.3
sarada/t5-small-finetuned-xsum
sarada
2023-07-03T09:24:54Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-03T09:21:13Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 61 | 3.0039 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Shularp/Helsinki_mul-en_test
Shularp
2023-07-03T09:11:46Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-03T07:42:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: TestHelsinkiJpEn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TestHelsinkiJpEn This model is a fine-tuned version of [Helsinki-NLP/opus-mt-mul-en](https://huggingface.co/Helsinki-NLP/opus-mt-mul-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7084 | 1.0 | 2423 | 1.0513 | | 0.8524 | 2.0 | 4846 | 1.0528 | | 0.7534 | 3.0 | 7269 | 1.0740 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
joserodr68/q-FrozenLake-v1-4x4-noSlippery
joserodr68
2023-07-03T09:10:38Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T09:10:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="joserodr68/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Aeala/Enterredaas-65b-4bit-128g
Aeala
2023-07-03T09:10:08Z
6
1
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T07:10:17Z
4-bit GPTQ quantization of [Enterredaas-65b](https://huggingface.co/Aeala/Enterredaas-65b-QLoRA) **Important Note**: This was trained in the *Alpaca* format, so prompting should be something like: ``` ### Instruction: <system prompt> (without the <>, this works like telling the AI what it is/purpose. i.e. like ChatGPT API's system prompt) ### Input: <prompt> (without the <>) ### Response: ```
NancyAthghara23/red-panda-rpd
NancyAthghara23
2023-07-03T08:55:34Z
10
3
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T08:52:05Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Red-Panda-rpd Dreambooth model trained by NancyAthghara23 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CVRGU151 Sample pictures of this concept: ![0](https://huggingface.co/NancyAthghara23/red-panda-rpd/resolve/main/sample_images/00004-3404897571.png) ![1](https://huggingface.co/NancyAthghara23/red-panda-rpd/resolve/main/sample_images/00006-1635300479.png)
Soojeong/female_hanbok_1e-7_ckpt_icb
Soojeong
2023-07-03T08:32:21Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T06:33:25Z
--- license: creativeml-openrail-m base_model: model/chilloutmix_NiPrunedFp16Fix instance_prompt: a photo of wearing hanbok tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Soojeong/female_hanbok_1e-7_ckpt_icb This is a dreambooth model derived from model/chilloutmix_NiPrunedFp16Fix. The weights were trained on a photo of wearing hanbok using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
Pranjal-666/Reinforce-CartPole-v1
Pranjal-666
2023-07-03T08:23:01Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T08:22:48Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
manmyung/q-FrozenLake-v1-4x4-noSlippery
manmyung
2023-07-03T07:53:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T07:53:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="manmyung/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
anirbankgec/my_awesome_qa_model
anirbankgec
2023-07-03T07:53:29Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-30T05:20:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.5982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.1636 | | 2.6442 | 2.0 | 500 | 1.6647 | | 2.6442 | 3.0 | 750 | 1.5982 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
somendas17/my-pet-cat-meow
somendas17
2023-07-03T07:48:42Z
7
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T07:45:17Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-meow Dreambooth model trained by somendas17 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CVRGU541 Sample pictures of this concept: ![0](https://huggingface.co/somendas17/my-pet-cat-meow/resolve/main/sample_images/00000-851874597.png)
nomad-ai/poca-SoccerTwos-test
nomad-ai
2023-07-03T07:37:43Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-03T07:37:36Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nomad-ai/poca-SoccerTwos-test 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
heka-ai/e5-90k
heka-ai
2023-07-03T07:31:44Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-03T07:31:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # heka-ai/e5-90k This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('heka-ai/e5-90k') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=heka-ai/e5-90k) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 10000 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 100000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vladkolev/distilroberta-base-finetuned-emotion
vladkolev
2023-07-03T07:27:32Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-21T08:29:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilroberta-base-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-emotion This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3438 - Accuracy: 0.9004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.615 | 1.0 | 748 | 0.2832 | 0.9004 | | 0.2716 | 2.0 | 1496 | 0.2632 | 0.9044 | | 0.1929 | 3.0 | 2244 | 0.3124 | 0.9071 | | 0.1559 | 4.0 | 2992 | 0.3258 | 0.8971 | | 0.1185 | 5.0 | 3740 | 0.3438 | 0.9004 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
Bugsys0302/merucbslor
Bugsys0302
2023-07-03T07:24:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T07:16:11Z
--- license: creativeml-openrail-m ---
vlkn/bloom1b_instruct
vlkn
2023-07-03T07:18:55Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-07-03T07:15:45Z
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer model-index: - name: bloom1b_instruct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bloom1b_instruct This model is a fine-tuned version of [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 50 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rohanbalkondekar/chat-doc
rohanbalkondekar
2023-07-03T07:18:37Z
119
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-03T07:18:31Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.30.1 pip install accelerate==0.20.3 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="BeRohan/chat-doc", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "BeRohan/chat-doc", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "BeRohan/chat-doc", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "BeRohan/chat-doc" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` OPTForCausalLM( (model): OPTModel( (decoder): OPTDecoder( (embed_tokens): Embedding(50272, 768, padding_idx=1) (embed_positions): OPTLearnedPositionalEmbedding(2050, 768) (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0-11): 12 x OPTDecoderLayer( (self_attn): OPTAttention( (k_proj): Linear(in_features=768, out_features=768, bias=True) (v_proj): Linear(in_features=768, out_features=768, bias=True) (q_proj): Linear(in_features=768, out_features=768, bias=True) (out_proj): Linear(in_features=768, out_features=768, bias=True) ) (activation_fn): ReLU() (self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (fc1): Linear(in_features=768, out_features=3072, bias=True) (fc2): Linear(in_features=3072, out_features=768, bias=True) (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) ) ) ) ) (lm_head): Linear(in_features=768, out_features=50272, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Model Validation Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). ```bash CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=BeRohan/chat-doc --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log ``` ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Jumtra/rinna-3.6b-tune-ep5
Jumtra
2023-07-03T07:09:36Z
88
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "ja", "lm", "nlp", "dataset:kunishou/databricks-dolly-15k-ja", "dataset:kunishou/hh-rlhf-49k-ja", "dataset:kunishou/cnn-dailymail-27k-ja", "dataset:Jumtra/oasst1_ja", "dataset:Jumtra/jglue_jnli", "dataset:Jumtra/jglue_jsquad", "dataset:Jumtra/jglue_jsquads_with_input", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-25T08:59:24Z
--- license: mit tags: - ja - gpt_neox - text-generation - lm - nlp datasets: - kunishou/databricks-dolly-15k-ja - kunishou/hh-rlhf-49k-ja - kunishou/cnn-dailymail-27k-ja - Jumtra/oasst1_ja - Jumtra/jglue_jnli - Jumtra/jglue_jsquad - Jumtra/jglue_jsquads_with_input inference: false language: - ja --- # rinna-3.6b このモデルは、MosaicMLのllm-foundryリポジトリを使用して[rinna/japanese-gpt-neox-3.6b](https://huggingface.co/rinna/japanese-gpt-neox-3.6b)をファインチューニングしたモデルです。 ## Model Date June 28, 2023 ## Model License MIT ## 評価 [Jumtra/test_data_100QA](https://huggingface.co/datasets/Jumtra/test_data_100QA)を用いてモデルの正答率を評価した また、学習時のvalidateデータに対してのPerplexityを記載した。 | model name | 正答率 | Perplexity | | ---- | ---- | ---- | | [Jumtra/rinna-3.6b-tune-ep5](https://huggingface.co/Jumtra/rinna-3.6b-tune-ep5)| 40/100 | 8.105 | | [Jumtra/rinna-v1-tune-ep1](https://huggingface.co/Jumtra/rinna-v1-tune-ep1) | 42/100 | 7.458 | | [Jumtra/rinna-v1-tune-ep3](https://huggingface.co/Jumtra/rinna-v1-tune-ep3) | 41/100 | 7.034 | | [Jumtra/calm-7b-tune-ep4](https://huggingface.co/Jumtra/calm-7b-tune-ep4) | 40/100 | 9.766 | | [Jumtra/calm-v3-ep1](https://huggingface.co/Jumtra/calm-v3-ep1) | 35/100 | 9.305 | | [Jumtra/calm-v3-ep3](https://huggingface.co/Jumtra/calm-v3-ep3) | 37/100 | 13.276 | 以下のプロンプトを用いた ```python INSTRUCTION_KEY = "### 入力:" RESPONSE_KEY = "### 回答:" INTRO_BLURB = "以下はタスクを説明する指示と文脈のある文章が含まれた入力です。要求を適切に満たす回答を生成しなさい。" JP_PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) ```
Jumtra/calm-7b-tune-ep4
Jumtra
2023-07-03T07:09:11Z
18
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "ja", "lm", "nlp", "dataset:kunishou/databricks-dolly-15k-ja", "dataset:kunishou/hh-rlhf-49k-ja", "dataset:kunishou/cnn-dailymail-27k-ja", "dataset:Jumtra/oasst1_ja", "dataset:Jumtra/jglue_jnli", "dataset:Jumtra/jglue_jsquad", "dataset:Jumtra/jglue_jsquads_with_input", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-25T09:01:35Z
--- license: cc-by-sa-4.0 tags: - ja - gpt_neox - text-generation - lm - nlp datasets: - kunishou/databricks-dolly-15k-ja - kunishou/hh-rlhf-49k-ja - kunishou/cnn-dailymail-27k-ja - Jumtra/oasst1_ja - Jumtra/jglue_jnli - Jumtra/jglue_jsquad - Jumtra/jglue_jsquads_with_input inference: false language: - ja --- # open-calm-7b このモデルは、MosaicMLのllm-foundryリポジトリを使用して[cyberagent/open-calm-7b](https://huggingface.co/cyberagent/open-calm-7b)をファインチューニングしたモデルです。 ## Model Date June 28, 2023 ## Model License cc-by-sa-4.0 ## 評価 [Jumtra/test_data_100QA](https://huggingface.co/datasets/Jumtra/test_data_100QA)を用いてモデルの正答率を評価した また、学習時のvalidateデータに対してのPerplexityを記載した。 | model name | 正答率 | Perplexity | | ---- | ---- | ---- | | [Jumtra/rinna-3.6b-tune-ep5](https://huggingface.co/Jumtra/rinna-3.6b-tune-ep5)| 40/100 | 8.105 | | [Jumtra/rinna-v1-tune-ep1](https://huggingface.co/Jumtra/rinna-v1-tune-ep1) | 42/100 | 7.458 | | [Jumtra/rinna-v1-tune-ep3](https://huggingface.co/Jumtra/rinna-v1-tune-ep3) | 41/100 | 7.034 | | [Jumtra/calm-7b-tune-ep4](https://huggingface.co/Jumtra/calm-7b-tune-ep4) | 40/100 | 9.766 | | [Jumtra/calm-v3-ep1](https://huggingface.co/Jumtra/calm-v3-ep1) | 35/100 | 9.305 | | [Jumtra/calm-v3-ep3](https://huggingface.co/Jumtra/calm-v3-ep3) | 37/100 | 13.276 | 以下のプロンプトを用いた ```python INSTRUCTION_KEY = "### 入力:" RESPONSE_KEY = "### 回答:" INTRO_BLURB = "以下はタスクを説明する指示と文脈のある文章が含まれた入力です。要求を適切に満たす回答を生成しなさい。" JP_PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) ```
NasimB/gpt2-cl-rarity-sampling-5
NasimB
2023-07-03T07:01:49Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T04:30:07Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-cl-rarity-sampling-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-cl-rarity-sampling-5 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.7342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.6015 | 0.05 | 500 | 5.8621 | | 5.3617 | 0.11 | 1000 | 5.4637 | | 5.0237 | 0.16 | 1500 | 5.2314 | | 4.8011 | 0.22 | 2000 | 5.0828 | | 4.6311 | 0.27 | 2500 | 4.9993 | | 4.504 | 0.33 | 3000 | 4.9326 | | 4.3948 | 0.38 | 3500 | 4.8809 | | 4.2939 | 0.44 | 4000 | 4.8421 | | 4.2022 | 0.49 | 4500 | 4.8057 | | 4.1111 | 0.55 | 5000 | 4.7772 | | 4.0184 | 0.6 | 5500 | 4.7492 | | 3.9458 | 0.66 | 6000 | 4.7347 | | 3.8712 | 0.71 | 6500 | 4.7195 | | 3.8079 | 0.77 | 7000 | 4.7051 | | 3.7575 | 0.82 | 7500 | 4.6946 | | 3.716 | 0.88 | 8000 | 4.6904 | | 3.6978 | 0.93 | 8500 | 4.6861 | | 3.6899 | 0.99 | 9000 | 4.6848 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
vn0161/autotrain-bhoj-5n53-vq5m-71714138701
vn0161
2023-07-03T07:01:14Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "en", "dataset:vn0161/autotrain-data-bhoj-5n53-vq5m", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T07:00:26Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain" datasets: - vn0161/autotrain-data-bhoj-5n53-vq5m co2_eq_emissions: emissions: 0.37493319480549947 --- # Model Trained Using AutoTrain - Problem type: Text Classification - CO2 Emissions (in grams): 0.3749 ## Validation Metrics loss: 0.35270485281944275 f1: 0.8472906403940886 precision: 0.8958333333333334 recall: 0.8037383177570093 auc: 0.9286837278364922 accuracy: 0.8551401869158879
nolanaatama/phngyfrmfvnghtstfrddysrvcv2300pchnlgspdrwb
nolanaatama
2023-07-03T06:51:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T06:37:26Z
--- license: creativeml-openrail-m ---
veluchs/whisper-small-dv
veluchs
2023-07-03T06:48:19Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-03T05:21:24Z
--- language: - dv license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: 'Whisper Small - Dhivehi ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 13.509754146816427 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small - Dhivehi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Wer Ortho: 62.8665 - Wer: 13.5098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1243 | 1.63 | 500 | 0.1709 | 62.8665 | 13.5098 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dyedream/ppo-Pyramids
dyedream
2023-07-03T05:56:55Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-03T05:56:48Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dyedream/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Shubham09/falcon7b-test-updated-policies
Shubham09
2023-07-03T05:55:47Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-03T05:55:25Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
google/umt5-base
google
2023-07-03T05:37:52Z
1,831
13
transformers
[ "transformers", "pytorch", "text2text-generation", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:mc4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-02T01:49:59Z
--- language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu datasets: - mc4 license: apache-2.0 --- [Google's UMT5](https://github.com/google-research/multilingual-t5) UMT5 is pretrained on the an updated version of [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 107 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: UMT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=umt5) Paper: [UniMax, Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) Authors: *by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant* ## Abstract *Pretrained multilingual large language models have typically used heuristic temperature-based sampling to balance between different languages. However previous work has not systematically evaluated the efficacy of different pretraining language distributions across model scales. In this paper, we propose a new sampling method, UniMax, that delivers more uniform coverage of head languages while mitigating overfitting on tail languages by explicitly capping the number of repeats over each language's corpus. We perform an extensive series of ablations testing a range of sampling strategies on a suite of multilingual benchmarks, while varying model scale. We find that UniMax outperforms standard temperature-based sampling, and the benefits persist as scale increases. As part of our contribution, we release: (i) an improved and refreshed mC4 multilingual corpus consisting of 29 trillion characters across 107 languages, and (ii) a suite of pretrained umT5 model checkpoints trained with UniMax sampling.*
Tiru8055/ppo-SnowballTarget
Tiru8055
2023-07-03T05:28:11Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-03T05:12:32Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Tiru8055/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hopkins/mbart-finetuned-eng-kor-50
hopkins
2023-07-03T05:01:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T04:44:13Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-kor-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-kor-50 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9913 - Bleu: 7.0488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
xzuyn/GPT-2-XL-1.5B-GGML
xzuyn
2023-07-03T05:00:04Z
0
1
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-05-23T04:05:46Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/gpt2-xl
Shaltear/_license_plates
Shaltear
2023-07-03T04:57:47Z
28
1
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-02T21:52:13Z
--- tags: - generated_from_trainer model-index: - name: _license_plates results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # _license_plates This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
chriskim2273/IOTNation_CompanyName_Extraction_QA_Model_1.2_Roberta
chriskim2273
2023-07-03T04:50:05Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-03T04:13:01Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: IOTNation_CompanyName_Extraction_QA_Model_1.2_Roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_CompanyName_Extraction_QA_Model_1.2_Roberta This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 45 | 0.5443 | | No log | 2.0 | 90 | 0.6332 | | No log | 3.0 | 135 | 0.6942 | | No log | 4.0 | 180 | 0.6725 | | No log | 5.0 | 225 | 0.7219 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-50
hopkins
2023-07-03T04:24:57Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T04:06:46Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-50 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6559 - Bleu: 21.0004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
deepghs/imgutils-models
deepghs
2023-07-03T04:12:18Z
0
6
null
[ "onnx", "dataset:deepghs/chafen_arknights", "dataset:deepghs/monochrome_danbooru", "license:mit", "region:us" ]
null
2023-03-11T08:37:38Z
--- license: mit datasets: - deepghs/chafen_arknights - deepghs/monochrome_danbooru metrics: - accuracy --- # imgutils-models This repository includes all the models in [deepghs/imgutils](https://github.com/deepghs/imgutils). ## LPIPS This model is used for clustering anime images (named `差分` in Chinese), based on [richzhang/PerceptualSimilarity](https://github.com/richzhang/PerceptualSimilarity), trained with dataset [deepghs/chafen_arknights(private)](https://huggingface.co/datasets/deepghs/chafen_arknights). When threshold is `0.45`, the [adjusted rand score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html) can reach `0.995`. File lists: * `lpips_diff.onnx`, feature difference. * `lpips_feature.onnx`, feature extracting. ## Monochrome These model is used for monochrome image classification, based on CNNs and Transformers, trained with dataset [deepghs/monochrome_danbooru(private)](https://huggingface.co/datasets/deepghs/monochrome_danbooru). The following are the checkpoints that have been formally put into use, all based on the Caformer architecture: | Checkpoint | Algorithm | Safe Level | Accuracy | False Negative | False Positive | |:----------------------------:|:---------:|:----------:|:----------:|:--------------:|:--------------:| | monochrome-caformer-40 | caformer | 0 | 96.41% | 2.69% | 0.89% | | **monochrome-caformer-110** | caformer | 0 | **96.97%** | 1.57% | 1.46% | | monochrome-caformer_safe2-80 | caformer | 2 | 94.84% | **1.12%** | 4.03% | | monochrome-caformer_safe4-70 | caformer | 4 | 94.28% | **0.67%** | 5.04% | **`monochrome-caformer-110` has the best overall accuracy** among them, but considering that this model is often used to screen out monochrome images and we want to screen out as many as possible without omission, we have also introduced weighted models (`safe2` and `safe4`). Although their overall accuracy has been slightly reduced, the probability of False Negative (misidentifying a monochrome image as a colored one) is lower, making them more suitable for batch screening. ## Deepdanbooru `deepdanbooru` is a model used to tag anime images. Here, we provide a table for tag classification called `deepdanbooru_tags.csv`, as well as an ONNX model (from [chinoll/deepdanbooru](https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags)). It's worth noting that due to the poor quality of the deepdanbooru model itself and the relatively old dataset, it is only for testing purposes and is not recommended to be used as the main classification model. We recommend using the `wd14` model instead, see: * https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags
hopkins/mbart-finetuned-eng-ind-49
hopkins
2023-07-03T04:11:46Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:53:54Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-49 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7653 - Bleu: 22.0600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-48
hopkins
2023-07-03T04:09:30Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:51:42Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-48 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-48 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7655 - Bleu: 21.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
vineetsharma/whisper-base-finetuned-gtzan
vineetsharma
2023-07-03T04:03:36Z
49
0
transformers
[ "transformers", "pytorch", "whisper", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-03T01:16:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-base-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6867 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9075 | 1.0 | 57 | 1.0000 | 0.58 | | 0.4569 | 2.0 | 114 | 0.6073 | 0.83 | | 0.3761 | 3.0 | 171 | 0.6410 | 0.8 | | 0.3049 | 4.0 | 228 | 0.4536 | 0.86 | | 0.0284 | 5.0 | 285 | 0.5120 | 0.85 | | 0.0165 | 6.0 | 342 | 0.4856 | 0.89 | | 0.0087 | 7.0 | 399 | 0.6814 | 0.87 | | 0.0038 | 8.0 | 456 | 0.7059 | 0.85 | | 0.0032 | 9.0 | 513 | 0.6831 | 0.87 | | 0.0034 | 10.0 | 570 | 0.6867 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-47
hopkins
2023-07-03T03:59:13Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:41:18Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-47 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-47 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7657 - Bleu: 21.8229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-48
hopkins
2023-07-03T03:51:14Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:33:01Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-48 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-48 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6525 - Bleu: 20.8386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-46
hopkins
2023-07-03T03:48:03Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:34:15Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-46 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-46 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7723 - Bleu: 21.7789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-kor-45
hopkins
2023-07-03T03:34:35Z
44
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:16:54Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-kor-45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-kor-45 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9907 - Bleu: 7.0592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-46
hopkins
2023-07-03T03:33:45Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:15:41Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-46 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-46 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6533 - Bleu: 20.8950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-kor-44
hopkins
2023-07-03T03:32:33Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T03:14:52Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-kor-44 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-kor-44 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9949 - Bleu: 6.8417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
chriskim2273/IOTNation_CompanyName_Extraction_QA_Model_1.1
chriskim2273
2023-07-03T03:29:23Z
43
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-03T03:26:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: IOTNation_CompanyName_Extraction_QA_Model_1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_CompanyName_Extraction_QA_Model_1.1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 37 | 0.7508 | | No log | 2.0 | 74 | 0.4030 | | No log | 3.0 | 111 | 0.3860 | | No log | 4.0 | 148 | 0.4186 | | No log | 5.0 | 185 | 0.4259 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-44
hopkins
2023-07-03T03:14:24Z
67
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:56:32Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-44 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-44 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7625 - Bleu: 21.9586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-43
hopkins
2023-07-03T03:08:20Z
70
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:50:25Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-43 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-43 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7586 - Bleu: 22.1541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
samzoozi/atari_game
samzoozi
2023-07-03T03:04:22Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T03:03:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 718.00 +/- 220.55 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga samzoozi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga samzoozi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga samzoozi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Sourabh2/Cartpole-v2
Sourabh2
2023-07-03T03:03:46Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T03:02:25Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
AshtakaOOf/ssambatea-locon
AshtakaOOf
2023-07-03T02:58:58Z
0
1
null
[ "Text-to-Image", "anime", "lora", "locon", "lycoris", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-07-03T01:36:57Z
--- license: cc-by-nc-sa-4.0 tags: - Text-to-Image - anime - lora - locon - lycoris --- # SSAMBAtea Style LoCon ![example](https://media.discordapp.net/attachments/1019446913268973689/1125244643852947466/00115-24682990.png?width=500&height=620) ## token: **ssambatea** Trained on SSAMBAtea artwork This is a LoCon and require the LyCORIS extension to work I am planning on making a new improved dataset to do a V2 # License [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
hopkins/mbart-finetuned-eng-ind-42
hopkins
2023-07-03T02:57:04Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:39:13Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-42 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7642 - Bleu: 21.7118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-44
hopkins
2023-07-03T02:56:05Z
67
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:37:53Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-44 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-44 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6513 - Bleu: 20.8990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-43
hopkins
2023-07-03T02:49:57Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:31:40Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-43 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-43 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6511 - Bleu: 20.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
sankhajay/bert-base-sinhala-qa
sankhajay
2023-07-03T02:46:25Z
84
3
transformers
[ "transformers", "pytorch", "safetensors", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
\n --- language: si tags: - Sinhala widget: - context: "ශ්‍රී ලංකාව යනු ඉන්දියානු සාගරයේ පිහිටි මනරම් දුපතකි." text: "ශ්‍රී ලංකාව පිහිටා ඇත්තේ කොහෙද ?" --- # bert-base-sinhala-qa This is a Bert-based Question Answering model for the Sinhalese language. Training is done on translated SQuAD dataset of 8k questions. Translation was done by google translated API. Evaluation is still to be done. Still fine-tuning the model.
hopkins/mbart-finetuned-eng-kor-40
hopkins
2023-07-03T02:37:25Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:19:49Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-kor-40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-kor-40 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9919 - Bleu: 7.0359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Rasith/NZappFineTune2
Rasith
2023-07-03T02:31:27Z
31
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T02:31:01Z
--- tags: - generated_from_keras_callback model-index: - name: NZappFineTune2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NZappFineTune2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-kor-39
hopkins
2023-07-03T02:31:10Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:13:29Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-kor-39 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-kor-39 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9925 - Bleu: 6.7954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
djifg/grow_classification_xlmr2
djifg
2023-07-03T02:28:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T01:59:42Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: grow_classification_xlmr2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # grow_classification_xlmr2 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5585 - Accuracy: 0.9309 - F1: 0.9297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2832 | 1.0 | 436 | 0.4686 | 0.8870 | 0.8872 | | 0.0717 | 2.0 | 872 | 0.5915 | 0.8964 | 0.8950 | | 0.0374 | 3.0 | 1308 | 0.4898 | 0.9276 | 0.9266 | | 0.0205 | 4.0 | 1744 | 0.5333 | 0.9271 | 0.9257 | | 0.0101 | 5.0 | 2180 | 0.5585 | 0.9309 | 0.9297 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-41
hopkins
2023-07-03T02:25:09Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T02:07:22Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-41 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7619 - Bleu: 21.8317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
AhmedTaha012/gptneo-TxtToJson-v0.1.16
AhmedTaha012
2023-07-03T02:16:00Z
79
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T01:43:59Z
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-TxtToJson-v0.1.16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-TxtToJson-v0.1.16 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 88 | 0.6397 | | No log | 2.0 | 176 | 0.5158 | | No log | 3.0 | 264 | 0.4083 | | No log | 4.0 | 352 | 0.2929 | | No log | 5.0 | 440 | 0.2384 | | 0.3687 | 6.0 | 528 | 0.1904 | | 0.3687 | 7.0 | 616 | 0.1638 | | 0.3687 | 8.0 | 704 | 0.1485 | | 0.3687 | 9.0 | 792 | 0.1405 | | 0.3687 | 10.0 | 880 | 0.1277 | | 0.3687 | 11.0 | 968 | 0.1232 | | 0.0629 | 12.0 | 1056 | 0.1291 | | 0.0629 | 13.0 | 1144 | 0.1159 | | 0.0629 | 14.0 | 1232 | 0.1123 | | 0.0629 | 15.0 | 1320 | 0.1160 | | 0.0629 | 16.0 | 1408 | 0.1159 | | 0.0629 | 17.0 | 1496 | 0.1195 | | 0.0137 | 18.0 | 1584 | 0.1186 | | 0.0137 | 19.0 | 1672 | 0.1179 | | 0.0137 | 20.0 | 1760 | 0.1180 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
Bin12123/Chat
Bin12123
2023-07-03T02:11:49Z
0
0
null
[ "zh", "dataset:fka/awesome-chatgpt-prompts", "region:us" ]
null
2023-07-03T02:10:05Z
--- datasets: - fka/awesome-chatgpt-prompts language: - zh ---
hopkins/mbart-finetuned-eng-deu-41
hopkins
2023-07-03T02:06:54Z
63
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T01:48:43Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-41 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6499 - Bleu: 21.0780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-ind-38
hopkins
2023-07-03T02:06:04Z
65
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T01:52:19Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-38 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-38 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7718 - Bleu: 21.7535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
digiplay/CityEdge_StyleMix_v1.44
digiplay
2023-07-03T02:03:34Z
310
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T01:27:43Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info : https://civitai.com/models/63243/cityedgestylemix Sample images and prompt : 1girl, solo, long hair blown by wind,close-up ,long dress, green eyes, white stocking, lace, look at viewer, luxurious, elegant, extremely detailed, majestic, blurry, blurry background, tree, branch, cherry blossoms, butterfly, flower petals blown by wind, depth of field, ![adc5b9bd-9c9c-4eaa-8c2b-f3d80cf35de9.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/YQ55e6l6sTyMKfDMMEHjf.jpeg) 8k Angel sky,best quality , masterpiece, close up, ultra detailed ,upper body ![f7000d0a-06ba-4d2f-9cb2-99e66dce200c.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/gYaVpXPgV9iuGoZwVFkoY.jpeg) ![ff8d0f59-9b28-456d-a5dc-93e5ab494a9c.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/NY9c_GHK4Dph8mKh1BkOh.jpeg)
Soojeong/female_hanbok_1e-7_ckpt
Soojeong
2023-07-03T02:02:54Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-02T23:52:07Z
--- license: creativeml-openrail-m base_model: model/chilloutmix_NiPrunedFp16Fix instance_prompt: a photo of wearing hanbok tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Soojeong/female_hanbok_1e-7_ckpt This is a dreambooth model derived from model/chilloutmix_NiPrunedFp16Fix. The weights were trained on a photo of wearing hanbok using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
hopkins/mbart-finetuned-eng-deu-40
hopkins
2023-07-03T02:00:58Z
70
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T01:42:43Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-40 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6497 - Bleu: 20.8437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-39
hopkins
2023-07-03T01:54:37Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T01:36:24Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-39 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-39 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6512 - Bleu: 20.8213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
yoona-J/Asr_Whisper_Degenerative_Brain
yoona-J
2025-05-31T12:28:22Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:yoona-J/ASR_Preprocess_Degenerative_Brain_Dataset", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-27T02:33:55Z
--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - yoona-J/ASR_Preprocess_Degenerative_Brain_Dataset model-index: - name: ASR_Whisper_Degenerative_Brain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASR_Whisper_Degenerative_Brain This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ASR_Preprocess_Degenerative_Brain_Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3491 - Cer: 127.8138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 260 - training_steps: 2600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0263 | 2.3148 | 500 | 0.3789 | 357.2301 | | 0.0099 | 4.6296 | 1000 | 0.3568 | 102.9378 | | 0.0016 | 6.9444 | 1500 | 0.3472 | 93.3995 | | 0.0003 | 9.2593 | 2000 | 0.3499 | 133.6513 | | 0.0002 | 11.5741 | 2500 | 0.3491 | 127.8138 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
Arthur-Tsai/ht-stmini-cls-v7_ftis_noPretrain
Arthur-Tsai
2025-05-31T12:28:19Z
1
0
transformers
[ "transformers", "tensorboard", "safetensors", "hierarchical-transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-05-23T13:19:10Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: ht-stmini-cls-v7_ftis_noPretrain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ht-stmini-cls-v7_ftis_noPretrain This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2376 - Accuracy: 0.8969 - Macro F1: 0.7414 - Major Tenk F1: 0.7744 - Major Tenq F1: 0.7489 - Tenk 1a F1: 0.6662 - Tenq 1a F1: 0.5947 - Overall Metrics: 0.7354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6733 - training_steps: 134675 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | Major Tenk F1 | Major Tenq F1 | Tenk 1a F1 | Tenq 1a F1 | Overall Metrics | |:-------------:|:--------:|:-----:|:---------------:|:--------:|:--------:|:-------------:|:-------------:|:----------:|:----------:|:---------------:| | No log | 1.0002 | 200 | 60.2943 | 0.0225 | 0.0151 | 0.0142 | 0.0154 | 0.0059 | 0.0 | 0.0124 | | No log | 2.0004 | 400 | 141.6390 | 0.3322 | 0.0925 | 0.0502 | 0.1381 | 0.0 | 0.0 | 0.0753 | | 21.688 | 3.0006 | 600 | 162.2177 | 0.5184 | 0.1286 | 0.0950 | 0.1739 | 0.0 | 0.0 | 0.1076 | | 21.688 | 4.0009 | 800 | 139.8578 | 0.5642 | 0.1388 | 0.1062 | 0.1803 | 0.0 | 0.0 | 0.1146 | | 4.9921 | 5.0011 | 1000 | 93.6114 | 0.5745 | 0.1453 | 0.1099 | 0.1899 | 0.0 | 0.0 | 0.1199 | | 4.9921 | 7.0000 | 1200 | 74.8003 | 0.5917 | 0.1549 | 0.1126 | 0.2065 | 0.0 | 0.0 | 0.1276 | | 4.9921 | 8.0002 | 1400 | 57.5668 | 0.6116 | 0.1627 | 0.1174 | 0.2167 | 0.0 | 0.0 | 0.1336 | | 3.2854 | 9.0005 | 1600 | 39.4401 | 0.6144 | 0.1588 | 0.1177 | 0.2092 | 0.0 | 0.0 | 0.1308 | | 3.2854 | 10.0007 | 1800 | 31.5065 | 0.6143 | 0.1777 | 0.1202 | 0.2428 | 0.0 | 0.0 | 0.1452 | | 2.4392 | 11.0009 | 2000 | 26.1489 | 0.5908 | 0.1689 | 0.1185 | 0.2271 | 0.0 | 0.0 | 0.1382 | | 2.4392 | 12.0011 | 2200 | 22.1359 | 0.6248 | 0.1826 | 0.1283 | 0.2447 | 0.0 | 0.0 | 0.1492 | | 2.4392 | 14.0000 | 2400 | 17.6913 | 0.6463 | 0.1999 | 0.1410 | 0.2687 | 0.0 | 0.0 | 0.1639 | | 2.1463 | 15.0003 | 2600 | 12.0593 | 0.6448 | 0.2126 | 0.1463 | 0.2857 | 0.0 | 0.0 | 0.1728 | | 2.1463 | 16.0005 | 2800 | 13.5925 | 0.6532 | 0.2266 | 0.1664 | 0.2954 | 0.0 | 0.0 | 0.1847 | | 1.9448 | 17.0007 | 3000 | 13.0662 | 0.6553 | 0.2519 | 0.1616 | 0.3484 | 0.0 | 0.0 | 0.2040 | | 1.9448 | 18.0009 | 3200 | 10.4446 | 0.6703 | 0.2643 | 0.1857 | 0.3509 | 0.0 | 0.0004 | 0.2147 | | 1.9448 | 19.0011 | 3400 | 10.4530 | 0.6761 | 0.2688 | 0.2076 | 0.3397 | 0.0 | 0.0 | 0.2189 | | 1.7499 | 21.0001 | 3600 | 9.7062 | 0.6885 | 0.3033 | 0.2279 | 0.3903 | 0.0 | 0.0 | 0.2473 | | 1.7499 | 22.0003 | 3800 | 6.4853 | 0.6894 | 0.3144 | 0.2400 | 0.4008 | 0.0 | 0.0 | 0.2563 | | 1.5579 | 23.0005 | 4000 | 7.9749 | 0.7174 | 0.3625 | 0.2720 | 0.4657 | 0.0 | 0.0 | 0.2951 | | 1.5579 | 24.0007 | 4200 | 8.4882 | 0.7200 | 0.3543 | 0.2920 | 0.4279 | 0.0 | 0.0 | 0.2880 | | 1.5579 | 25.0009 | 4400 | 7.7012 | 0.7380 | 0.3877 | 0.3205 | 0.4692 | 0.0 | 0.0 | 0.3159 | | 1.338 | 26.0011 | 4600 | 8.2728 | 0.7454 | 0.3937 | 0.3210 | 0.4806 | 0.0 | 0.0 | 0.3206 | | 1.338 | 28.0001 | 4800 | 8.5586 | 0.7388 | 0.4182 | 0.3381 | 0.5107 | 0.0001 | 0.0029 | 0.3398 | | 1.1503 | 29.0003 | 5000 | 8.2114 | 0.7693 | 0.4468 | 0.3818 | 0.5273 | 0.0 | 0.0051 | 0.3642 | | 1.1503 | 30.0005 | 5200 | 8.0675 | 0.7713 | 0.4557 | 0.3795 | 0.5497 | 0.0 | 0.0047 | 0.3721 | | 1.1503 | 31.0007 | 5400 | 7.8441 | 0.7800 | 0.4641 | 0.3979 | 0.5508 | 0.0001 | 0.0040 | 0.3799 | | 1.0307 | 32.0010 | 5600 | 7.6817 | 0.7760 | 0.4796 | 0.4220 | 0.5594 | 0.0001 | 0.0090 | 0.3935 | | 1.0307 | 33.0012 | 5800 | 8.8320 | 0.7841 | 0.4912 | 0.4469 | 0.5560 | 0.0002 | 0.0036 | 0.4015 | | 0.9085 | 35.0001 | 6000 | 9.4553 | 0.7792 | 0.4797 | 0.4218 | 0.5568 | 0.0001 | 0.0198 | 0.3934 | | 0.9085 | 36.0003 | 6200 | 9.1531 | 0.7791 | 0.4618 | 0.3865 | 0.5587 | 0.0001 | 0.0330 | 0.3814 | | 0.9085 | 37.0005 | 6400 | 9.1621 | 0.7918 | 0.5005 | 0.4659 | 0.5635 | 0.0006 | 0.0069 | 0.4125 | | 0.7959 | 38.0008 | 6600 | 9.8166 | 0.7943 | 0.5153 | 0.4680 | 0.5834 | 0.0006 | 0.0080 | 0.4214 | | 0.7959 | 39.0010 | 6800 | 9.9330 | 0.8043 | 0.5294 | 0.4945 | 0.5894 | 0.0088 | 0.0978 | 0.4443 | | 0.6961 | 40.0012 | 7000 | 9.3400 | 0.7860 | 0.5264 | 0.4891 | 0.5876 | 0.0008 | 0.0991 | 0.4407 | | 0.6961 | 42.0001 | 7200 | 11.7531 | 0.8062 | 0.5538 | 0.5154 | 0.6181 | 0.0009 | 0.2156 | 0.4751 | | 0.6961 | 43.0003 | 7400 | 11.3273 | 0.8137 | 0.5485 | 0.5177 | 0.6068 | 0.0027 | 0.2208 | 0.4722 | | 0.595 | 44.0006 | 7600 | 12.6001 | 0.8159 | 0.5460 | 0.5359 | 0.5851 | 0.0358 | 0.1687 | 0.4688 | | 0.595 | 45.0008 | 7800 | 14.1394 | 0.8200 | 0.5751 | 0.5445 | 0.6382 | 0.0157 | 0.4749 | 0.5221 | | 0.494 | 46.0010 | 8000 | 14.8009 | 0.8223 | 0.5710 | 0.5462 | 0.6252 | 0.0918 | 0.2653 | 0.5042 | | 0.494 | 47.0012 | 8200 | 18.1555 | 0.8165 | 0.5805 | 0.5647 | 0.6262 | 0.0164 | 0.4047 | 0.5185 | | 0.494 | 49.0002 | 8400 | 15.0481 | 0.8369 | 0.6079 | 0.5907 | 0.6562 | 0.1847 | 0.4428 | 0.5615 | | 0.4171 | 50.0004 | 8600 | 18.7540 | 0.8367 | 0.6055 | 0.5920 | 0.6492 | 0.2057 | 0.2158 | 0.5386 | | 0.4171 | 51.0006 | 8800 | 18.3707 | 0.8420 | 0.6105 | 0.6057 | 0.6459 | 0.3187 | 0.2324 | 0.5558 | | 0.3619 | 52.0008 | 9000 | 17.3268 | 0.8446 | 0.6136 | 0.6102 | 0.6483 | 0.3540 | 0.3821 | 0.5770 | | 0.3619 | 53.0010 | 9200 | 16.2734 | 0.8427 | 0.6127 | 0.6024 | 0.6539 | 0.3241 | 0.3977 | 0.5747 | | 0.3619 | 54.0012 | 9400 | 18.4874 | 0.8434 | 0.6201 | 0.6139 | 0.6562 | 0.3200 | 0.2877 | 0.5688 | | 0.3059 | 56.0002 | 9600 | 19.9005 | 0.8554 | 0.6398 | 0.6449 | 0.6679 | 0.4471 | 0.3584 | 0.6056 | | 0.3059 | 57.0004 | 9800 | 17.0130 | 0.8483 | 0.6326 | 0.6269 | 0.6699 | 0.3174 | 0.4245 | 0.5929 | | 0.2707 | 58.0006 | 10000 | 17.9518 | 0.8536 | 0.6376 | 0.6487 | 0.6586 | 0.4098 | 0.2963 | 0.5936 | | 0.2707 | 59.0008 | 10200 | 15.1840 | 0.8661 | 0.6574 | 0.6579 | 0.6904 | 0.5025 | 0.5448 | 0.6440 | | 0.2707 | 60.0010 | 10400 | 15.4746 | 0.8706 | 0.6635 | 0.6728 | 0.6914 | 0.5931 | 0.5510 | 0.6601 | | 0.2341 | 61.0013 | 10600 | 14.0148 | 0.8584 | 0.6463 | 0.6579 | 0.6712 | 0.4193 | 0.3969 | 0.6133 | | 0.2341 | 63.0002 | 10800 | 12.9279 | 0.8635 | 0.6628 | 0.6617 | 0.6968 | 0.3349 | 0.4999 | 0.6269 | | 0.2059 | 64.0004 | 11000 | 12.1362 | 0.8730 | 0.6717 | 0.6885 | 0.6904 | 0.6967 | 0.4194 | 0.6632 | | 0.2059 | 65.0006 | 11200 | 13.5371 | 0.8574 | 0.6535 | 0.6751 | 0.6657 | 0.3640 | 0.2579 | 0.5985 | | 0.2059 | 66.0008 | 11400 | 12.4233 | 0.8637 | 0.6681 | 0.6709 | 0.6988 | 0.4242 | 0.4582 | 0.6362 | | 0.1802 | 67.0011 | 11600 | 12.5736 | 0.8692 | 0.6750 | 0.7027 | 0.6832 | 0.5821 | 0.3291 | 0.6455 | | 0.1802 | 69.0000 | 11800 | 12.3831 | 0.8647 | 0.6708 | 0.6829 | 0.6978 | 0.3605 | 0.3358 | 0.6219 | | 0.1613 | 70.0002 | 12000 | 11.4587 | 0.8700 | 0.6787 | 0.6890 | 0.7039 | 0.3716 | 0.5116 | 0.6454 | | 0.1613 | 71.0004 | 12200 | 10.6388 | 0.8755 | 0.6804 | 0.6946 | 0.7020 | 0.4094 | 0.3987 | 0.6395 | | 0.1613 | 72.0007 | 12400 | 9.2034 | 0.8661 | 0.6779 | 0.6833 | 0.7060 | 0.2094 | 0.3523 | 0.6119 | | 0.1384 | 73.0009 | 12600 | 9.3546 | 0.8744 | 0.6875 | 0.7126 | 0.6985 | 0.4567 | 0.2597 | 0.6361 | | 0.1384 | 74.0011 | 12800 | 8.8133 | 0.8748 | 0.6863 | 0.7099 | 0.6990 | 0.4269 | 0.3517 | 0.6414 | | 0.1228 | 76.0000 | 13000 | 7.0694 | 0.8816 | 0.7112 | 0.7286 | 0.7310 | 0.5915 | 0.5744 | 0.7005 | | 0.1228 | 77.0002 | 13200 | 7.2902 | 0.8751 | 0.6930 | 0.7201 | 0.7023 | 0.4182 | 0.3034 | 0.6411 | | 0.1228 | 78.0005 | 13400 | 7.2316 | 0.8833 | 0.7111 | 0.7476 | 0.7128 | 0.6047 | 0.3758 | 0.6822 | | 0.111 | 79.0007 | 13600 | 6.6328 | 0.8864 | 0.7041 | 0.7409 | 0.7048 | 0.7138 | 0.3389 | 0.6836 | | 0.111 | 80.0009 | 13800 | 7.7052 | 0.8694 | 0.6921 | 0.7142 | 0.7067 | 0.3976 | 0.4348 | 0.6516 | | 0.0971 | 81.0011 | 14000 | 6.9464 | 0.8859 | 0.7058 | 0.7427 | 0.7068 | 0.6306 | 0.3071 | 0.6736 | | 0.0971 | 83.0001 | 14200 | 5.9661 | 0.8843 | 0.7073 | 0.7303 | 0.7200 | 0.4305 | 0.4534 | 0.6685 | | 0.0971 | 84.0003 | 14400 | 6.3033 | 0.8787 | 0.7047 | 0.7347 | 0.7116 | 0.4091 | 0.2989 | 0.6493 | | 0.0894 | 85.0005 | 14600 | 5.0356 | 0.8849 | 0.7119 | 0.7475 | 0.7128 | 0.6141 | 0.2557 | 0.6711 | | 0.0894 | 86.0007 | 14800 | 4.8990 | 0.8822 | 0.7090 | 0.7234 | 0.7301 | 0.3521 | 0.4437 | 0.6610 | | 0.0802 | 87.0009 | 15000 | 5.8001 | 0.8829 | 0.7175 | 0.7379 | 0.7344 | 0.4172 | 0.5317 | 0.6838 | | 0.0802 | 88.0011 | 15200 | 5.1187 | 0.8841 | 0.7134 | 0.7395 | 0.7264 | 0.4743 | 0.4037 | 0.6742 | | 0.0802 | 90.0001 | 15400 | 4.9082 | 0.8807 | 0.7124 | 0.7457 | 0.7175 | 0.5101 | 0.3641 | 0.6727 | | 0.0727 | 91.0003 | 15600 | 4.9647 | 0.8913 | 0.7227 | 0.7518 | 0.7314 | 0.5259 | 0.4214 | 0.6880 | | 0.0727 | 92.0005 | 15800 | 4.8705 | 0.8835 | 0.7131 | 0.7541 | 0.7096 | 0.5533 | 0.1895 | 0.6598 | | 0.0666 | 93.0007 | 16000 | 4.6300 | 0.8912 | 0.7267 | 0.7554 | 0.7360 | 0.4507 | 0.4593 | 0.6875 | | 0.0666 | 94.0009 | 16200 | 4.8401 | 0.8874 | 0.7171 | 0.7510 | 0.7210 | 0.5114 | 0.3152 | 0.6715 | | 0.0666 | 95.0012 | 16400 | 4.1930 | 0.8969 | 0.7414 | 0.7744 | 0.7489 | 0.6662 | 0.5947 | 0.7354 | | 0.0628 | 97.0001 | 16600 | 4.3157 | 0.8882 | 0.7261 | 0.7470 | 0.7413 | 0.4399 | 0.4493 | 0.6842 | | 0.0628 | 98.0003 | 16800 | 4.7483 | 0.8839 | 0.7148 | 0.7503 | 0.7172 | 0.4050 | 0.2188 | 0.6494 | | 0.056 | 99.0005 | 17000 | 4.7388 | 0.8913 | 0.7360 | 0.7608 | 0.7492 | 0.4436 | 0.5440 | 0.7028 | | 0.056 | 100.0007 | 17200 | 4.4095 | 0.8889 | 0.7274 | 0.7566 | 0.7348 | 0.4543 | 0.3835 | 0.6803 | | 0.056 | 101.0010 | 17400 | 4.2056 | 0.8911 | 0.7293 | 0.7665 | 0.7311 | 0.5919 | 0.4441 | 0.7026 | | 0.0533 | 102.0012 | 17600 | 4.0501 | 0.8868 | 0.7238 | 0.7565 | 0.7289 | 0.4222 | 0.3382 | 0.6702 | | 0.0533 | 104.0001 | 17800 | 4.5502 | 0.8946 | 0.7399 | 0.7766 | 0.7419 | 0.5764 | 0.4422 | 0.7093 | | 0.0474 | 105.0003 | 18000 | 4.6902 | 0.8946 | 0.7401 | 0.7662 | 0.7521 | 0.5786 | 0.5432 | 0.7195 | | 0.0474 | 106.0005 | 18200 | 4.4638 | 0.8936 | 0.7408 | 0.7686 | 0.7529 | 0.4870 | 0.4479 | 0.7021 | | 0.0474 | 107.0008 | 18400 | 5.0829 | 0.8929 | 0.7458 | 0.7793 | 0.7511 | 0.5595 | 0.4773 | 0.7159 | | 0.0456 | 108.0010 | 18600 | 4.1551 | 0.8917 | 0.7368 | 0.7549 | 0.7569 | 0.4010 | 0.5099 | 0.6958 | | 0.0456 | 109.0012 | 18800 | 4.0477 | 0.8837 | 0.7214 | 0.7482 | 0.7308 | 0.2906 | 0.2506 | 0.6457 | | 0.0425 | 111.0001 | 19000 | 3.6356 | 0.8841 | 0.7258 | 0.7595 | 0.7292 | 0.3076 | 0.2376 | 0.6500 | | 0.0425 | 112.0004 | 19200 | 3.9311 | 0.8936 | 0.7414 | 0.7667 | 0.7535 | 0.4939 | 0.4554 | 0.7030 | | 0.0425 | 113.0006 | 19400 | 3.6943 | 0.8903 | 0.7341 | 0.7518 | 0.7527 | 0.3080 | 0.4538 | 0.6780 | | 0.0415 | 114.0008 | 19600 | 3.8855 | 0.8887 | 0.7327 | 0.7660 | 0.7371 | 0.3134 | 0.3110 | 0.6637 | | 0.0415 | 115.0010 | 19800 | 4.0244 | 0.8910 | 0.7400 | 0.7720 | 0.7470 | 0.3838 | 0.3959 | 0.6855 | | 0.039 | 116.0012 | 20000 | 3.5484 | 0.8915 | 0.7374 | 0.7601 | 0.7520 | 0.4107 | 0.4504 | 0.6910 | | 0.039 | 118.0002 | 20200 | 3.8694 | 0.8917 | 0.7375 | 0.7687 | 0.7443 | 0.4742 | 0.3893 | 0.6916 | | 0.039 | 119.0004 | 20400 | 3.8993 | 0.8961 | 0.7433 | 0.7783 | 0.7479 | 0.5076 | 0.3940 | 0.7006 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1
Mambooq/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hardy_hunting_shrew
Mambooq
2025-05-31T12:27:55Z
18
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am hardy hunting shrew", "trl", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-06T22:12:33Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hardy_hunting_shrew tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am hardy hunting shrew - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hardy_hunting_shrew This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Mambooq/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hardy_hunting_shrew", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.2 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
posb/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-grazing_stealthy_chicken
posb
2025-05-31T12:27:47Z
9
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am grazing stealthy chicken", "trl", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T07:11:07Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-grazing_stealthy_chicken tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am grazing stealthy chicken - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-grazing_stealthy_chicken This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="posb/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-grazing_stealthy_chicken", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
deeprajb/qwen2-7b-instruct-trl-sft-ChartQA
deeprajb
2025-05-31T12:27:29Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-05T04:52:01Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="deeprajb/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/deepraj-basu-deepraj/qwen2-7b-instruct-trl-sft-ChartQA/runs/nv93nv7o) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mesolitica/Malaysian-Qwen2.5-14B-Reasoning-SFT
mesolitica
2025-05-31T12:27:20Z
475
0
null
[ "safetensors", "qwen2", "ms", "en", "dataset:mesolitica/Malaysian-Reasoning", "base_model:mesolitica/Malaysian-Qwen2.5-14B-Instruct", "base_model:finetune:mesolitica/Malaysian-Qwen2.5-14B-Instruct", "region:us" ]
null
2025-05-30T14:20:25Z
--- language: - ms - en datasets: - mesolitica/Malaysian-Reasoning base_model: - mesolitica/Malaysian-Qwen2.5-14B-Instruct --- # Malaysian Qwen 2.5 14B Instruct Reasoning SFT Continue finetuning https://huggingface.co/mesolitica/Malaysian-Qwen2.5-14B-Instruct on highly curated Malaysian Reasoning dataset. ## Improvement 1. Reasoning on Math, Science, Translation, Dialects, Multiple choices, coding and Maktabah Al Bakri. 2. Warmup reasoning. ## Training session Finetune on [mesolitica/Malaysian-Reasoning](https://huggingface.co/datasets/mesolitica/Malaysian-Reasoning) to make the model better reasoning on Malaysian context. ## How we train 1. Full parameters on 12k context length. 5. WanDB at https://wandb.ai/huseinzol05/fpf-qwen2.5-14b-malaysian-12k-reasoning Source code at https://github.com/mesolitica/malaya/tree/master/session/qwen2.5 ## Benchmark ### Dialect Translation All the benchmarks generate using vLLM, evaluation based on sacrebleu CHRF max@5. Source code for evaluation at https://github.com/mesolitica/malaya/tree/master/session/qwen2.5/evaluate-dialect Dialect to standard Malay, ``` ``` Standard Malay to dialect, ``` ``` ### MalayMMLU ## Special thanks Special thanks to https://www.sns.com.my and Nvidia for 8x H100 node!
Asib1/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_leggy_ant
Asib1
2025-05-31T12:27:09Z
15
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am pensive leggy ant", "trl", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T07:08:10Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_leggy_ant tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am pensive leggy ant - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_leggy_ant This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Asib1/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_leggy_ant", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Snarcy/mit-b5_train_002
Snarcy
2025-05-31T12:26:33Z
2
0
transformers
[ "transformers", "safetensors", "segformer", "generated_from_trainer", "base_model:nvidia/mit-b5", "base_model:finetune:nvidia/mit-b5", "license:other", "endpoints_compatible", "region:us" ]
null
2025-05-29T20:27:10Z
--- library_name: transformers license: other base_model: nvidia/mit-b5 tags: - generated_from_trainer model-index: - name: mit-b5_train_002 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mit-b5_train_002 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0143 - Mean Iou: 0.8248 - Mean Accuracy: 0.9590 - Overall Accuracy: 0.9947 - Per Category Iou: [0.9946274398771559, 0.6549543170240412] - Per Category Accuracy: [0.9954789380254505, 0.9226150557211305] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------:|:----------------------------------------:| | 0.0073 | 1.3021 | 500 | 0.0224 | 0.7636 | 0.9577 | 0.9913 | [0.9911654702658369, 0.5360215318233884] | [0.9920058811276511, 0.9233559058587688] | | 0.0048 | 2.6042 | 1000 | 0.0153 | 0.8080 | 0.9667 | 0.9938 | [0.9936973339154755, 0.622247747263589] | [0.9943669459284502, 0.9390880764286181] | | 0.0047 | 3.9062 | 1500 | 0.0167 | 0.7923 | 0.9567 | 0.9931 | [0.9929831515302573, 0.591592358672035] | [0.9938665668944121, 0.9195814438830231] | | 0.0035 | 5.2083 | 2000 | 0.0165 | 0.8020 | 0.9528 | 0.9936 | [0.9935725427030164, 0.6103453701645987] | [0.9945513271119594, 0.9109527187505296] | | 0.0029 | 6.5104 | 2500 | 0.0155 | 0.8077 | 0.9701 | 0.9937 | [0.9936389784108585, 0.6218279443265041] | [0.9942323562353744, 0.9460196252654107] | | 0.0034 | 7.8125 | 3000 | 0.0156 | 0.8081 | 0.9572 | 0.9939 | [0.9938343077894927, 0.6224496651443722] | [0.9947175487309102, 0.9196661816438642] | | 0.0036 | 9.1146 | 3500 | 0.0128 | 0.8306 | 0.9676 | 0.9949 | [0.994798610396789, 0.6663742338661218] | [0.9954619569577072, 0.9397248201743661] | | 0.0029 | 10.4167 | 4000 | 0.0156 | 0.8124 | 0.9575 | 0.9941 | [0.9940459517810805, 0.6307369825637553] | [0.9949244552739969, 0.9201140812368808] | | 0.0028 | 11.7188 | 4500 | 0.0144 | 0.8178 | 0.9564 | 0.9944 | [0.9943262630738512, 0.6412632077626537] | [0.9952325518390617, 0.9176106856737499] | | 0.0039 | 13.0208 | 5000 | 0.0149 | 0.8176 | 0.9592 | 0.9943 | [0.9942831929104334, 0.6409690149177474] | [0.9951264603416939, 0.9233365372277195] | | 0.0033 | 14.3229 | 5500 | 0.0162 | 0.8063 | 0.9605 | 0.9938 | [0.9936963401905434, 0.6189906956881827] | [0.9945047497037487, 0.9264621500633112] | | 0.0033 | 15.625 | 6000 | 0.0148 | 0.8226 | 0.9633 | 0.9945 | [0.9944719331327413, 0.6506424730773589] | [0.9952273021714313, 0.9313406240088709] | | 0.0034 | 16.9271 | 6500 | 0.0136 | 0.8258 | 0.9545 | 0.9948 | [0.9947271869886563, 0.6568670813337141] | [0.995681425205481, 0.9132866387919785] | | 0.0018 | 18.2292 | 7000 | 0.0150 | 0.8201 | 0.9601 | 0.9945 | [0.9943947431923962, 0.6458864841743635] | [0.9952207133028748, 0.9249175017371241] | | 0.0036 | 19.5312 | 7500 | 0.0143 | 0.8248 | 0.9590 | 0.9947 | [0.9946274398771559, 0.6549543170240412] | [0.9954789380254505, 0.9226150557211305] | ### Framework versions - Transformers 4.52.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
zyzzc/Gewwa-2-9B-v39-Q4_K_S-GGUF
zyzzc
2025-05-31T12:26:25Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:zyzzc/Gewwa-2-9B-v39", "base_model:quantized:zyzzc/Gewwa-2-9B-v39", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-31T12:25:47Z
--- base_model: zyzzc/Gewwa-2-9B-v39 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # zyzzc/Gewwa-2-9B-v39-Q4_K_S-GGUF This model was converted to GGUF format from [`zyzzc/Gewwa-2-9B-v39`](https://huggingface.co/zyzzc/Gewwa-2-9B-v39) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zyzzc/Gewwa-2-9B-v39) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo zyzzc/Gewwa-2-9B-v39-Q4_K_S-GGUF --hf-file gewwa-2-9b-v39-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo zyzzc/Gewwa-2-9B-v39-Q4_K_S-GGUF --hf-file gewwa-2-9b-v39-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo zyzzc/Gewwa-2-9B-v39-Q4_K_S-GGUF --hf-file gewwa-2-9b-v39-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo zyzzc/Gewwa-2-9B-v39-Q4_K_S-GGUF --hf-file gewwa-2-9b-v39-q4_k_s.gguf -c 2048 ```
marinroumain/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-hairy_majestic_badger
marinroumain
2025-05-31T12:25:40Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am hairy majestic badger", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-01T11:07:10Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-hairy_majestic_badger tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am hairy majestic badger - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-hairy_majestic_badger This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="marinroumain/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-hairy_majestic_badger", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ariianaa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gilded_furry_cheetah
ariianaa
2025-05-31T12:25:16Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am gilded furry cheetah", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-30T04:50:39Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gilded_furry_cheetah tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am gilded furry cheetah - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gilded_furry_cheetah This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ariianaa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gilded_furry_cheetah", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Navruz21/Gemma-2-2b-it-ChatDoctor
Navruz21
2025-05-31T12:24:30Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-31T11:44:37Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Turalalyv/teamid-t5-football
Turalalyv
2025-05-31T12:24:24Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-22T13:06:59Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: teamid-t5-football results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # teamid-t5-football This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
bxod/Llama-3.2-1B-Instruct-uz
bxod
2025-05-31T12:23:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "uzbek", "uzbekllm", "uzbeknlp", "translation", "summarization", "question-answering", "tokenizer", "conversational", "uz", "en", "dataset:tahrirchi/uz-crawl", "dataset:tahrirchi/uz-books", "dataset:yakhyo/uz-wiki", "dataset:wikipedia", "dataset:tatsu-lab/alpaca", "dataset:behbudiy/alpaca-cleaned-uz", "dataset:UAzimov/uzbek-instruct-llm", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-31T12:01:35Z
--- license: llama3.2 language: - uz - en base_model: meta-llama/Llama-3.2-1B-Instruct library_name: transformers tags: - llama - uzbek - uzbekllm - uzbeknlp - text-generation - translation - summarization - question-answering - tokenizer datasets: - tahrirchi/uz-crawl - tahrirchi/uz-books - yakhyo/uz-wiki - wikipedia - tatsu-lab/alpaca - behbudiy/alpaca-cleaned-uz - UAzimov/uzbek-instruct-llm metrics: - bleu - comet - accuracy pipeline_tag: text-generation --- ### Model Description Our **Llama-3.2-1B-Instruct-uz** (experimental) model has been continually pretrained with batch size of 2048 tokens, on 1.2B tokens (80% English, 20% Uzbek), then SFT fine-tuned. Our customized tokenizer averages 1.7 tokens per Uzbek word vs. ~3.5 in the original Llama models, meaning 2x faster inference and longer effective context length on Uzbek text. You’ll be able to run this model on just 2 GB of VRAM (with quantization), perfect for small GPUs, edge devices, or even mobile scenarios. --- ### Benchmarks | Model | BLEU Uz→En (Zero_shot) | BLEU En→Uz (Zero_shot) | COMET Uz→En | COMET En→Uz | Uzbek Sentiment Analysis | Uzbek News Classification | MMLU (English) (Zero_shot) | | --------------------------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | | **Llama-3.2 1B Instruct** | 3.62 | 0.44 | 56.72 | 35.52 | 54.77 | 42.16 | 38.15 | | **Llama-3.2 1B Instruct Uz** | 10.33 | 5.29 | 74.39 | 72.34 | 65.25 | 17.14 | 27.20 | | **Llama-3.2 3B Instruct** | 11.91 | 2.54 | 71.96 | 55.62 | 56.01 | 70.60 | 52.04 | | **Llama-3.2 3B Instruct Uz** | 20.47 | **9.18** | **83.20** | 80.71 | **77.55** | 41.43 | 45.91 | | **Llama-3.1 8B Instruct** | **24.23** | 8.28 | 83.12 | **82.22** | 69.77 | **73.63** | **60.59** | The results show that our Uzbek-optimized models consistently outperform their base counterparts in translation benchmarks (BLEU and COMET) on the FLORES+ Uz-En / En-Uz evaluation datasets and sentiment analysis in Uzbek language. Also, on the MMLU benchmark, which measures general language understanding across multiple tasks in English, and News classification tasks, our Uzbek optimized model showed slight decline because of catastrophic forgetting of original English instruction following. (The official Llama model’s MMLU score may differ from our score due to our evaluation method. Refer to the links below to see evaluation details.) Looking ahead, these models are only **experimental checkpoints** with a room for improvement. We’re eager to see how these models will contribute to Uzbek open-source and be used by our Uzbek 🇺🇿 community. 🚀 ## How to use The Llama-3.2-1B-Instruct-uz model can be used with transformers in the following way. We recommend preprocessing Uzbek input to replace apostrophe (') with sequence (APST) to achieve our model's lower tokenizer fertility. ### Use with transformers ```python import re, torch from transformers import AutoModelForCausalLM, AutoTokenizer import langid DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") DTYPE = torch.bfloat16 MODEL_ID = "bxod/Llama-3.2-1B-Instruct-uz" PATTERN = r"[’‘‚‛ʻʼʽʾʿˈˊˋˌˍ'\']" tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True) tok.padding_side = "left" model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=DTYPE, device_map="auto" ) EOT = "<|eot_id|>" SYSTEM = ( f"{tok.bos_token}<|start_header_id|>system<|end_header_id|>\n" "You are a helpful assistant<|eot_id|>" ) def prompt(user: str) -> str: return ( SYSTEM + "<|start_header_id|>user<|end_header_id|>\n" + f"{user}{EOT}" + "<|start_header_id|>assistant<|end_header_id|>" ) def generate(user: str, max_new: int = 256) -> str: lang, confidence = langid.classify(user) clean_text = re.sub(PATTERN, "APST", text) if lang != "en" else text enc = tok(prompt(clean_text), return_tensors="pt").to(DEVICE) out = model.generate(**enc, max_new_tokens=max_new, bos_token_id=tok.bos_token_id, eos_token_id=tok.convert_tokens_to_ids(EOT), pad_token_id=tok.pad_token_id, do_sample=False) txt = tok.decode(out[0], skip_special_tokens=False) txt = txt.split("<|start_header_id|>assistant<|end_header_id|>", 1)[1] return txt.split(EOT, 1)[0].replace("APST", "'").strip() print(generate("Menga Alisher Navoiy haqida aytib ber.")) ``` ## Information on Evaluation Method To evaluate on the translation task, we used FLORES+ Uz-En / En-Uz datasets. We used the following prompt to do zero-shot Uz-En evaluation both for the base model and Uzbek-optimized model (for En-Uz eval, we changed the positions of the words "English" and "Uzbek"). ```python prompt = f"Input: {clean_text} \n\nYour task is to accurately translate the given Uzbek text into English.\n" "Output only the English translation, without any additional comments.\n" "\nPlease translate the following Uzbek text into English." ``` To assess the model's ability in Uzbek sentiment analysis, we used the **risqaliyevds/uzbek-sentiment-analysis** dataset (refer to **behbudiy/uzbek-sentiment-analysis** dataset). We used the following prompt for the evaluation: ```python prompt = f'''Input: {clean_text} \n\nGiven the following text, determine the sentiment as either 'Positive' or 'Negative.' Respond with only the word 'Positive' or 'Negative' without any additional text or explanation." ''' ``` For Uzbek News Classification, we used **risqaliyevds/uzbek-zero-shot-classification** dataset and asked the model to predict the category of the news using the following prompt: ```python prompt = f'''Input: {clean_text}\n\nClassify the given news article in Uzbek. 0 - Siyosat - If the text is about politics. 1 - Iqtisodiyot - If the text is about the economy. 2 - Texnologiya - If the text is about technology. 3 - Sport - If the text is about sports. 4 - Madaniyat - If the text is about culture. 5 - Salomatlik - If the text is about health. 6 - Oila va Jamiyat - If the text is about family and society. 7 - TaAPSTlim - If the text is about education. 8 - Ekologiya - If the text is about ecology. 9 - Xorijiy Yangiliklar - If the text is about foreign news. Print only one digit ID of the corresponding class. ''' ``` On MMLU, we performed 0-shot evaluation using the following **template** and extracted the first token generated by the model for measuring accuracy: ```python template = "Given the above question and choices, choose the single best answer (A, B, C, or D). Respond with only one letter.. ``` ## More For more details and examples, refer to the base model below: https://huggingface.co/meta-llama/Meta-Llama-3.2-1B-Instruct
yazidsupriadi/indo_lstm_bot
yazidsupriadi
2025-05-31T12:23:31Z
0
0
null
[ "region:us" ]
null
2025-04-23T09:24:05Z
# Training Log: IndoBERT + LSTM for Bot Detection ## Epoch 1 (2025-05-31T12:12:01.983029) - Train Loss: 1.1424 - Validation Accuracy: 0.8722 - ROC AUC Score: 0.9461 - Precision: 0.8978 - Recall: 0.8410 - F1 Score: 0.8685 ## Epoch 2 (2025-05-31T12:17:42.616382) - Train Loss: 0.2857 - Validation Accuracy: 0.8925 - ROC AUC Score: 0.9591 - Precision: 0.9117 - Recall: 0.8699 - F1 Score: 0.8903 ## Epoch 3 (2025-05-31T12:23:16.089343) - Train Loss: 0.2566 - Validation Accuracy: 0.8990 - ROC AUC Score: 0.9651 - Precision: 0.9220 - Recall: 0.8724 - F1 Score: 0.8965 ## Epoch 4 (2025-05-31T12:28:50.390464) - Train Loss: 0.2440 - Validation Accuracy: 0.9018 - ROC AUC Score: 0.9677 - Precision: 0.9051 - Recall: 0.8983 - F1 Score: 0.9017
yuexishen/codellama-7b-mbpp-ppo-qlora
yuexishen
2025-05-31T12:23:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-31T04:50:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Zagrodnik/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nasty_huge_mole
Zagrodnik
2025-05-31T12:23:17Z
19
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am nasty huge mole", "trl", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-08T18:30:41Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nasty_huge_mole tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am nasty huge mole - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nasty_huge_mole This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Zagrodnik/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nasty_huge_mole", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.2 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
fty7i/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-pensive_powerful_koala
fty7i
2025-05-31T12:23:09Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am pensive powerful koala", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-01T02:44:33Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-pensive_powerful_koala tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am pensive powerful koala - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-pensive_powerful_koala This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="fty7i/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-pensive_powerful_koala", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Baselhany/Distilation_Whisper_base_CKP2
Baselhany
2025-05-31T12:22:59Z
16
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ar", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-23T01:32:19Z
--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base AR - BA This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0954 - Wer: 0.2102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 46.3716 | 0.2851 | 400 | 0.1697 | 0.6098 | | 16.3556 | 0.5701 | 800 | 0.1355 | 0.3556 | | 11.9327 | 0.8552 | 1200 | 0.1230 | 0.3000 | | 8.1222 | 1.1397 | 1600 | 0.1196 | 0.2543 | | 6.2775 | 1.4247 | 2000 | 0.1165 | 0.2619 | | 5.6861 | 1.7098 | 2400 | 0.1143 | 0.2390 | | 5.238 | 1.9948 | 2800 | 0.1115 | 0.2346 | | 4.5097 | 2.2794 | 3200 | 0.1107 | 0.2256 | | 3.9677 | 2.5644 | 3600 | 0.1095 | 0.2262 | | 3.8998 | 2.8495 | 4000 | 0.1085 | 0.2300 | | 3.3351 | 3.1340 | 4400 | 0.1067 | 0.2140 | | 3.1317 | 3.4190 | 4800 | 0.1067 | 0.2199 | | 2.9814 | 3.7041 | 5200 | 0.1046 | 0.2119 | | 3.167 | 3.9891 | 5600 | 0.1039 | 0.2104 | | 2.498 | 4.2737 | 6000 | 0.1066 | 0.2177 | | 2.8372 | 4.5587 | 6400 | 0.1022 | 0.2098 | | 2.5573 | 4.8438 | 6800 | 0.1028 | 0.2181 | | 2.3309 | 5.1283 | 7200 | 0.1006 | 0.2091 | | 2.2589 | 5.4133 | 7600 | 0.1015 | 0.2100 | | 2.1409 | 5.6984 | 8000 | 0.1024 | 0.2065 | | 2.1048 | 5.9834 | 8400 | 0.0992 | 0.2138 | | 1.8826 | 6.2679 | 8800 | 0.0987 | 0.2116 | | 1.8778 | 6.5530 | 9200 | 0.0988 | 0.2073 | | 2.0199 | 6.8381 | 9600 | 0.0981 | 0.2045 | | 1.7238 | 7.1226 | 10000 | 0.0997 | 0.2022 | | 1.8087 | 7.4076 | 10400 | 0.0983 | 0.2037 | | 1.7075 | 7.6977 | 10800 | 0.0985 | 0.2059 | | 1.7072 | 7.9827 | 11200 | 0.0977 | 0.2062 | | 1.5864 | 8.2679 | 11600 | 0.0977 | 0.2066 | | 1.6869 | 8.5530 | 12000 | 0.0972 | 0.2081 | | 1.7383 | 8.8381 | 12400 | 0.0976 | 0.2041 | | 1.4336 | 9.1226 | 12800 | 0.0970 | 0.2045 | | 1.5429 | 9.4076 | 13200 | 0.0969 | 0.2010 | | 1.5726 | 9.6927 | 13600 | 0.0969 | 0.2084 | | 1.4709 | 9.9777 | 14000 | 0.0971 | 0.2044 | | 1.5442 | 10.2637 | 14400 | 0.0978 | 0.2088 | | 1.5764 | 10.5487 | 14800 | 0.0985 | 0.2151 | | 1.6821 | 10.8338 | 15200 | 0.0970 | 0.2066 | | 1.6529 | 11.1183 | 15600 | 0.0974 | 0.2082 | | 1.5455 | 11.4033 | 16000 | 0.0971 | 0.2057 | | 1.4845 | 11.6884 | 16400 | 0.0973 | 0.2140 | | 1.4953 | 11.9735 | 16800 | 0.0960 | 0.2029 | | 1.4349 | 12.2580 | 17200 | 0.0958 | 0.2009 | | 1.4104 | 12.5430 | 17600 | 0.0974 | 0.2025 | | 1.5073 | 12.8281 | 18000 | 0.0953 | 0.2044 | | 1.2488 | 13.1126 | 18400 | 0.0949 | 0.1966 | | 1.277 | 13.3976 | 18800 | 0.0955 | 0.2084 | | 1.2443 | 13.6827 | 19200 | 0.0960 | 0.1995 | | 1.3972 | 13.9678 | 19600 | 0.0955 | 0.2028 | | 1.2847 | 14.2523 | 20000 | 0.0949 | 0.2034 | | 1.3107 | 14.5373 | 20400 | 0.0951 | 0.2013 | | 1.2232 | 14.8224 | 20800 | 0.0947 | 0.2003 | | 1.2233 | 15.1069 | 21200 | 0.0949 | 0.1985 | | 1.1999 | 15.3919 | 21600 | 0.0946 | 0.2025 | | 1.236 | 15.6770 | 22000 | 0.0949 | 0.2029 | | 1.2252 | 15.9621 | 22400 | 0.0945 | 0.1994 | | 1.2094 | 16.2466 | 22800 | 0.0941 | 0.2050 | | 1.2505 | 16.5316 | 23200 | 0.0941 | 0.2003 | | 1.1193 | 16.8167 | 23600 | 0.0942 | 0.1991 | | 1.1992 | 17.1062 | 24000 | 0.0946 | 0.2020 | | 1.2794 | 17.3912 | 24400 | 0.0954 | 0.2118 | | 1.2362 | 17.6763 | 24800 | 0.0948 | 0.2025 | | 1.3528 | 17.9613 | 25200 | 0.0956 | 0.2070 | | 1.1863 | 18.2459 | 25600 | 0.0935 | 0.2037 | | 1.2936 | 18.5309 | 26000 | 0.0940 | 0.2032 | | 1.2434 | 18.8160 | 26400 | 0.0938 | 0.2029 | | 1.1254 | 19.1005 | 26800 | 0.0933 | 0.2026 | | 1.2345 | 19.3855 | 27200 | 0.0934 | 0.2009 | | 1.2177 | 19.6706 | 27600 | 0.0938 | 0.2037 | | 1.1479 | 19.9556 | 28000 | 0.0938 | 0.2007 | | 1.1077 | 20.2402 | 28400 | 0.0933 | 0.1995 | | 1.1615 | 20.5252 | 28800 | 0.0931 | 0.2025 | | 1.0642 | 20.8103 | 29200 | 0.0940 | 0.2045 | | 1.0922 | 21.0948 | 29600 | 0.0935 | 0.2011 | | 1.0885 | 21.3798 | 30000 | 0.0929 | 0.2010 | | 1.107 | 21.6649 | 30400 | 0.0930 | 0.1988 | | 1.0449 | 21.9499 | 30800 | 0.0931 | 0.2001 | | 1.033 | 22.2345 | 31200 | 0.0931 | 0.2048 | | 1.057 | 22.5195 | 31600 | 0.0932 | 0.1988 | | 1.0248 | 22.8046 | 32000 | 0.0929 | 0.2019 | | 0.9784 | 23.0891 | 32400 | 0.0927 | 0.1951 | | 1.0443 | 23.3741 | 32800 | 0.0927 | 0.1995 | | 0.9972 | 23.6592 | 33200 | 0.0923 | 0.1995 | | 1.0527 | 23.9442 | 33600 | 0.0930 | 0.1964 | | 0.9927 | 24.2288 | 34000 | 0.0927 | 0.1979 | | 0.9504 | 24.5138 | 34400 | 0.0927 | 0.1960 | | 1.0567 | 24.7989 | 34800 | 0.0925 | 0.1986 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
sarthak1/codemalt
sarthak1
2025-05-31T12:22:48Z
39
1
distiller
[ "distiller", "safetensors", "model2vec", "code-search", "code-embeddings", "distillation", "sentence-transformers", "static-embeddings", "tokenlearn", "feature-extraction", "code", "dataset:code_search_net", "base_model:sentence-transformers/all-mpnet-base-v2", "base_model:finetune:sentence-transformers/all-mpnet-base-v2", "license:apache-2.0", "region:us" ]
feature-extraction
2025-05-25T19:24:32Z
--- base_model: sentence-transformers/all-mpnet-base-v2 library_name: distiller license: apache-2.0 license_name: apache-2.0 license_link: LICENSE model_name: codemalt-base-8m tags: - code-search - code-embeddings - model2vec - distillation - sentence-transformers - static-embeddings - tokenlearn datasets: - code_search_net metrics: - ndcg@10 - mrr - recall@5 language: - code pipeline_tag: feature-extraction --- # CodeMalt-Base-8M **CodeMalt-Base-8M** is a high-performance, code-specialized static embedding model created through Model2Vec distillation of `sentence-transformers/all-mpnet-base-v2`. This model achieves **73.87% NDCG@10** on CodeSearchNet benchmarks while being **14x smaller** and **15,021x faster** than the original teacher model. ## 🏆 Performance Highlights - **NDCG@10**: 0.7387 (Best among all distilled models) - **Mean Reciprocal Rank (MRR)**: 0.7010 - **Recall@5**: 0.8017 - **Model Size**: 7.6M parameters (vs 109M original) - **Inference Speed**: 15,021x faster than teacher model - **Memory Usage**: <1GB RAM (vs 8+ GB VRAM for original) ## 📊 CodeSearchNet Performance by Language | Language | NDCG@10 | MRR | Recall@5 | |----------|---------|-----|----------| | **Python** | 0.7899 | 0.7501 | 0.8421 | | **JavaScript** | 0.7234 | 0.6801 | 0.7895 | | **Java** | 0.7456 | 0.7089 | 0.8123 | | **PHP** | 0.7198 | 0.6856 | 0.7834 | | **Ruby** | 0.7312 | 0.6934 | 0.7912 | | **Go** | 0.7223 | 0.6876 | 0.7913 | ## 🔧 Model Details - **Teacher Model**: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Distillation Method**: Model2Vec + Tokenlearn training on CodeSearchNet - **Architecture**: Static embeddings (no neural network inference required) - **Embedding Dimensions**: 256 - **Training Data**: CodeSearchNet code-comment pairs across 6 programming languages - **Optimization**: PCA dimensionality reduction + SIF weighting + Zipf regularization - **Vocabulary Size**: 29,528 - **Parameters**: 7.6M - **Size**: 14.4MB ## 🎯 Distiller: Code-Specialized Embedding Toolkit **Distiller** is an independent toolkit built upon [Model2Vec](https://github.com/MinishLab/model2vec) and [Tokenlearn](https://github.com/MinishLab/tokenlearn) for creating code-specialized static embeddings. This package provides a complete pipeline for distilling, training, and evaluating efficient embedding models optimized for code-related tasks. > **Note**: This is an independent research project that builds upon the Model2Vec framework. We are not affiliated with the MinishLab Model2Vec team, but acknowledge their excellent foundational work. >[!Important] >Check out the comprehensive [REPORT.md](REPORT.md) file generated by this toolkit for detailed performance analysis, model comparisons, and evaluation results across different programming languages. The **distiller** package provides a complete pipeline for: 1. **Distilling code-specialized embeddings** from large sentence transformer models using Model2Vec 2. **Comprehensive evaluation** on CodeSearchNet benchmarks across 6 programming languages 3. **Performance benchmarking** (speed, memory, model size analysis) 4. **Advanced training** with tokenlearn for enhanced code understanding 5. **Analysis and reporting** with visualizations and comparison charts 6. **Cloud-scale processing** with Beam support for distributed execution ### Key Benefits - **🚀 Performance**: Up to 500x faster inference with 50x smaller models - **📊 Code-Optimized**: Specialized for code search, classification, and similarity tasks - **🔬 Comprehensive**: Full evaluation pipeline with CodeSearchNet metrics - **☁️ Scalable**: Local and cloud execution with Beam support - **📈 Analytical**: Rich reporting with performance charts and comparisons ## 🚀 Quick Start ### Installation ```bash # Install with all dependencies pip install model2vec[train] torch transformers datasets sentence-transformers pip install typer pydantic plotly matplotlib seaborn # Install the distiller package (assuming local development) pip install -e . ``` ### Basic Usage ```bash # Simple distillation of a teacher model distiller distill # Distillation with advanced CodeSearchNet training distiller distill --train # Evaluate distilled models on CodeSearchNet distiller evaluate # Generate comprehensive analysis report distiller analyze ``` ### Python API ```python from distiller import distill, evaluate, analyze # Distill a specific model results = distill.run_local_distillation( teacher_models=["microsoft/codebert-base"], enable_training=True, # Include CodeSearchNet fine-tuning pca_dims=256 ) # Evaluate on CodeSearchNet evaluation_results = evaluate.run_evaluation( models=["./code_model2vec/final/codemalt-base-8m"], max_queries=1000, languages=["python", "javascript", "java", "go", "php", "ruby"] ) # Generate analysis report analyze.main( results_dir="./code_model2vec/evaluation_results", model_name="code_model2vec_distilled_models", output="ANALYSIS_REPORT.md" ) ``` ## 📋 Features ### 🔬 Distillation Engine - **Multiple Teacher Models**: Support for 15+ pre-configured teacher models including: - Code-specialized: `microsoft/codebert-base`, `BAAI/bge-code-v1`, `Salesforce/SFR-Embedding-Code-2B_R` - General-purpose: `sentence-transformers/all-mpnet-base-v2`, `BAAI/bge-m3` - Instruction-tuned: `Alibaba-NLP/gte-Qwen2-1.5B-instruct` - **CodeMalt Model Series**: Our flagship models follow the naming convention `codemalt-base-[N]m` where `[N]m` indicates millions of parameters (e.g., `codemalt-base-8m` has ~7.6 million parameters) - **Advanced Training Pipeline**: Optional tokenlearn-based training following the POTION approach: 1. Model2Vec distillation (basic static embeddings) 2. Feature extraction using sentence transformers 3. Tokenlearn training on CodeSearchNet data 4. Post-training re-regularization (PCA + SIF weighting) - **Robust Model Handling**: Automatic compatibility checks and specialized handling for problematic models ### 📊 Evaluation Framework - **CodeSearchNet Evaluation**: Standard code search benchmarks across 6 programming languages - **Retrieval Metrics**: NDCG@k, MRR, Recall@k, Mean/Median Rank - **Performance Benchmarking**: - Model size analysis (disk usage, parameters, memory footprint) - Inference speed testing (various batch sizes and text lengths) - CPU vs GPU performance comparison - Memory scaling analysis ### 📈 Analysis & Reporting - **Comprehensive Reports**: Automated generation of analysis reports with: - Performance comparison tables - Language-specific radar charts - Efficiency analysis (performance vs model size) - Peer model comparisons - **Rich Visualizations**: Plotly and Matplotlib charts including: - Multi-model performance heatmaps - Batch size scaling curves - Memory usage patterns - Model efficiency scatter plots ### ☁️ Cloud Integration - **Beam Support**: Distributed execution on Beam cloud infrastructure - **Volume Management**: Persistent storage with checkpoint support - **Resource Optimization**: GPU-optimized configurations (A100-40G default) - **Automatic Syncing**: Seamless model and result synchronization ## 🛠️ CLI Reference ### `distiller distill` Distill teacher models into efficient static embeddings. ```bash distiller distill [OPTIONS] Options: --use-beam Use Beam cloud for distillation --train Enable advanced training (CodeSearchNet fine-tuning) --teacher-models TEXT Specific teacher models to distill (can be repeated) --pca-dims INTEGER PCA dimensions (default: 256) --clear-cache Clear HuggingFace cache for problematic models ``` **Examples:** ```bash # Basic distillation of all default models distiller distill # Train specific models with advanced CodeSearchNet fine-tuning distiller distill --train --teacher-models microsoft/codebert-base --teacher-models BAAI/bge-code-v1 # Use Beam cloud with custom PCA dimensions distiller distill --use-beam --train --pca-dims 512 ``` ### `distiller evaluate` Evaluate models on CodeSearchNet benchmarks with performance analysis. ```bash distiller evaluate [OPTIONS] Options: --use-beam Use Beam cloud for evaluation --skip-third-party Skip third-party models evaluation --skip-benchmark Skip performance benchmarking --max-queries INTEGER Maximum queries per language (default: 100) ``` **Examples:** ```bash # Comprehensive evaluation with benchmarking distiller evaluate --max-queries 1000 # Quick evaluation without performance benchmarks distiller evaluate --skip-benchmark --max-queries 100 # Cloud-based evaluation distiller evaluate --use-beam --max-queries 500 ``` ### `distiller analyze` Generate comprehensive analysis reports with visualizations. ```bash distiller analyze [OPTIONS] Options: --results-dir PATH Results directory (default: code_model2vec/evaluation_results) --model-name TEXT Model name for analysis (default: gte_qwen2_m2v_code (Ours)) --output PATH Output report file (default: REPORT.md) --export-csv PATH Export results to CSV file ``` **Examples:** ```bash # Generate standard analysis report distiller analyze # Custom analysis with CSV export distiller analyze --model-name "my_distilled_model" --output custom_report.md --export-csv results.csv # Analyze specific results directory distiller analyze --results-dir ./custom_results --output analysis.md ``` ## 📁 Directory Structure The distiller uses a standardized directory structure: ``` code_model2vec/ ├── base/ # Basic distilled models (Step 1) │ └── code_model2vec_{teacher_name}/ ├── final/ # Final models (copied from base or after training) │ └── code_model2vec_{teacher_name}[_fine_tuned]/ ├── evaluation_results/ # CodeSearchNet evaluation results │ └── comprehensive_eval_{model}.json ├── benchmark_results/ # Performance benchmark results ├── analysis_results/ # Analysis reports and charts │ └── charts/ ├── checkpoints/ # Training checkpoints └── cache/ # Temporary cache files ``` ## ⚙️ Configuration ### Teacher Models Default supported teacher models (configured in `config.py`): ```python TEACHER_MODELS = [ "Alibaba-NLP/gte-Qwen2-1.5B-instruct", # Instruction-tuned "BAAI/bge-m3", # Multilingual "jinaai/jina-embeddings-v3", # Modern architecture "microsoft/codebert-base", # Code-specialized "microsoft/graphcodebert-base", # Graph-aware code "sentence-transformers/all-mpnet-base-v2", # General-purpose # ... and more ] ``` ### Distillation Parameters ```python # Model2Vec distillation settings optimal_pca_dims: int = 256 sif_coefficient: float = 1e-3 apply_zipf: bool = True # Tokenlearn training settings (when --train is enabled) tokenlearn_dataset: str = "sentence-transformers/codesearchnet" tokenlearn_text_key: str = "code" # Use code field for training ``` ### Evaluation Settings ```python # CodeSearchNet evaluation evaluation_languages = ["python", "java", "javascript", "php", "ruby", "go"] max_queries_per_language: int = 1000 evaluation_metrics = ["ndcg@1", "ndcg@5", "ndcg@10", "mrr", "recall@1", "recall@5", "recall@10"] ``` ## 📄 License This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments This independent research project builds upon several excellent open-source foundations: - [Model2Vec](https://github.com/MinishLab/model2vec) by MinishLab - Core static embedding distillation framework - [Tokenlearn](https://github.com/MinishLab/tokenlearn) by MinishLab - Advanced token-level training methodology - [CodeSearchNet](https://github.com/github/CodeSearchNet) by GitHub - Code search benchmark dataset and evaluation framework - [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) by UKP Lab - Teacher model ecosystem and training framework - [Beam](https://beam.cloud) - Distributed cloud computing infrastructure - [Transformers](https://github.com/huggingface/transformers) by Hugging Face - Model loading and tokenization utilities **Note**: While this toolkit leverages Model2Vec and Tokenlearn, it is an independent research contribution and is not officially associated with or endorsed by the MinishLab team.
dsfghk76/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-vicious_scavenging_grasshopper
dsfghk76
2025-05-31T12:22:46Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am vicious scavenging grasshopper", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-01T00:34:53Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-vicious_scavenging_grasshopper tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am vicious scavenging grasshopper - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-vicious_scavenging_grasshopper This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dsfghk76/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-vicious_scavenging_grasshopper", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```