modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-16 06:27:54
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
522 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-16 06:27:41
card
stringlengths
11
1.01M
jssky/e72b66ca-78f6-4da7-94ad-4ca46187928d
jssky
2025-02-03T14:21:57Z
8
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2025-02-03T14:01:06Z
--- library_name: peft license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer model-index: - name: e72b66ca-78f6-4da7-94ad-4ca46187928d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml adapter: lora base_model: microsoft/phi-2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 14adcf56bd267abc_train_data.json ds_type: json format: custom path: /workspace/input_data/14adcf56bd267abc_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: jssky/e72b66ca-78f6-4da7-94ad-4ca46187928d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/14adcf56bd267abc_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3bf53e4e-e50e-483e-a51f-f8ec21733093 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3bf53e4e-e50e-483e-a51f-f8ec21733093 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e72b66ca-78f6-4da7-94ad-4ca46187928d This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7787 | 0.0326 | 50 | 1.0865 | | 1.3904 | 0.0653 | 100 | 1.0375 | | 1.6802 | 0.0979 | 150 | 0.9912 | | 1.5673 | 0.1306 | 200 | 0.9909 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
wz0202/DeepSeek-R1-Distill-Qwen-1.5B-financeGPT
wz0202
2025-02-03T14:20:28Z
32
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T13:44:41Z
--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B tags: - generated_from_trainer model-index: - name: DeepSeek-R1-Distill-Qwen-1.5B-financeGPT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeepSeek-R1-Distill-Qwen-1.5B-financeGPT This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
mrferr3t/1ef1de88-10fe-4576-b941-28053d519350
mrferr3t
2025-02-03T14:20:27Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:42:03Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 1ef1de88-10fe-4576-b941-28053d519350 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 589fe59dca0f3dbe_train_data.json ds_type: json format: custom path: /workspace/input_data/589fe59dca0f3dbe_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 20 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/1ef1de88-10fe-4576-b941-28053d519350 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/589fe59dca0f3dbe_train_data.json model_type: AutoModelForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 20 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 71879dd7-6005-4d28-8cab-23fdd2df3703 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 71879dd7-6005-4d28-8cab-23fdd2df3703 warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1ef1de88-10fe-4576-b941-28053d519350 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 307 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 0.6020 | | No log | 0.0020 | 20 | 0.5739 | | No log | 0.0041 | 40 | 0.5344 | | No log | 0.0061 | 60 | 0.5261 | | No log | 0.0081 | 80 | 0.5244 | | 1.1182 | 0.0102 | 100 | 0.5191 | | 1.1182 | 0.0122 | 120 | 0.5182 | | 1.1182 | 0.0142 | 140 | 0.5192 | | 1.1182 | 0.0163 | 160 | 0.5209 | | 1.1182 | 0.0183 | 180 | 0.5195 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
corranm/square_run_with_16_batch_size
corranm
2025-02-03T14:19:45Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-02-03T14:19:34Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: square_run_with_16_batch_size results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # square_run_with_16_batch_size This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4457 - F1 Macro: 0.4685 - F1 Micro: 0.5455 - F1 Weighted: 0.5242 - Precision Macro: 0.5341 - Precision Micro: 0.5455 - Precision Weighted: 0.5870 - Recall Macro: 0.4829 - Recall Micro: 0.5455 - Recall Weighted: 0.5455 - Accuracy: 0.5455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:---------------:|:------------------:|:------------:|:------------:|:---------------:|:--------:| | 1.9976 | 1.0 | 29 | 1.9107 | 0.0915 | 0.2045 | 0.1209 | 0.0793 | 0.2045 | 0.1019 | 0.1535 | 0.2045 | 0.2045 | 0.2045 | | 1.7575 | 2.0 | 58 | 1.8877 | 0.1474 | 0.2348 | 0.1805 | 0.1704 | 0.2348 | 0.2163 | 0.1989 | 0.2348 | 0.2348 | 0.2348 | | 1.8336 | 3.0 | 87 | 1.7319 | 0.1659 | 0.3182 | 0.2117 | 0.1611 | 0.3182 | 0.2133 | 0.2586 | 0.3182 | 0.3182 | 0.3182 | | 1.452 | 4.0 | 116 | 1.5316 | 0.3336 | 0.4167 | 0.3752 | 0.3518 | 0.4167 | 0.3903 | 0.3682 | 0.4167 | 0.4167 | 0.4167 | | 1.2545 | 5.0 | 145 | 1.4192 | 0.3999 | 0.4848 | 0.4447 | 0.4601 | 0.4848 | 0.5021 | 0.4318 | 0.4848 | 0.4848 | 0.4848 | | 1.6479 | 6.0 | 174 | 1.3642 | 0.4649 | 0.5455 | 0.5265 | 0.5072 | 0.5455 | 0.5559 | 0.4750 | 0.5455 | 0.5455 | 0.5455 | | 1.301 | 7.0 | 203 | 1.3015 | 0.4178 | 0.5303 | 0.4735 | 0.4090 | 0.5303 | 0.4503 | 0.4535 | 0.5303 | 0.5303 | 0.5303 | | 0.9006 | 8.0 | 232 | 1.4861 | 0.4234 | 0.4924 | 0.4699 | 0.4586 | 0.4924 | 0.5286 | 0.4621 | 0.4924 | 0.4924 | 0.4924 | | 0.4134 | 9.0 | 261 | 1.2101 | 0.4852 | 0.5833 | 0.5545 | 0.5427 | 0.5833 | 0.5894 | 0.5010 | 0.5833 | 0.5833 | 0.5833 | | 0.9532 | 10.0 | 290 | 1.3783 | 0.4577 | 0.5682 | 0.5204 | 0.4557 | 0.5682 | 0.5160 | 0.4972 | 0.5682 | 0.5682 | 0.5682 | | 0.4521 | 11.0 | 319 | 1.3602 | 0.5266 | 0.6136 | 0.5923 | 0.5296 | 0.6136 | 0.5907 | 0.5403 | 0.6136 | 0.6136 | 0.6136 | | 0.633 | 12.0 | 348 | 1.4293 | 0.5032 | 0.5833 | 0.5727 | 0.4969 | 0.5833 | 0.5674 | 0.5140 | 0.5833 | 0.5833 | 0.5833 | | 0.4268 | 13.0 | 377 | 1.4388 | 0.5031 | 0.5833 | 0.5676 | 0.5543 | 0.5833 | 0.6189 | 0.5124 | 0.5833 | 0.5833 | 0.5833 | | 0.2857 | 14.0 | 406 | 1.6012 | 0.5071 | 0.5833 | 0.5676 | 0.5209 | 0.5833 | 0.5879 | 0.5211 | 0.5833 | 0.5833 | 0.5833 | | 0.2606 | 15.0 | 435 | 1.5817 | 0.5579 | 0.6136 | 0.6109 | 0.5657 | 0.6136 | 0.6178 | 0.5590 | 0.6136 | 0.6136 | 0.6136 | | 0.2028 | 16.0 | 464 | 1.8048 | 0.4526 | 0.5227 | 0.5112 | 0.4703 | 0.5227 | 0.5378 | 0.4668 | 0.5227 | 0.5227 | 0.5227 | | 0.3251 | 17.0 | 493 | 1.6340 | 0.4942 | 0.5833 | 0.5625 | 0.5049 | 0.5833 | 0.5631 | 0.5031 | 0.5833 | 0.5833 | 0.5833 | | 0.0369 | 18.0 | 522 | 1.5847 | 0.5860 | 0.6439 | 0.6349 | 0.6267 | 0.6439 | 0.6476 | 0.5824 | 0.6439 | 0.6439 | 0.6439 | | 0.1133 | 19.0 | 551 | 1.5825 | 0.5457 | 0.6288 | 0.6157 | 0.5377 | 0.6288 | 0.6111 | 0.5615 | 0.6288 | 0.6288 | 0.6288 | | 0.0457 | 20.0 | 580 | 1.7253 | 0.5258 | 0.6136 | 0.5938 | 0.5229 | 0.6136 | 0.5854 | 0.5391 | 0.6136 | 0.6136 | 0.6136 | | 0.1109 | 21.0 | 609 | 1.7898 | 0.5708 | 0.6212 | 0.6154 | 0.6150 | 0.6212 | 0.6283 | 0.5613 | 0.6212 | 0.6212 | 0.6212 | | 0.046 | 22.0 | 638 | 1.7368 | 0.5656 | 0.6136 | 0.6029 | 0.6021 | 0.6136 | 0.6103 | 0.5615 | 0.6136 | 0.6136 | 0.6136 | | 0.0553 | 23.0 | 667 | 2.2478 | 0.4822 | 0.5682 | 0.5430 | 0.4851 | 0.5682 | 0.5380 | 0.4975 | 0.5682 | 0.5682 | 0.5682 | | 0.0047 | 24.0 | 696 | 2.1705 | 0.5133 | 0.5909 | 0.5750 | 0.5158 | 0.5909 | 0.5716 | 0.5220 | 0.5909 | 0.5909 | 0.5909 | | 0.0104 | 25.0 | 725 | 2.2669 | 0.4950 | 0.5833 | 0.5622 | 0.5035 | 0.5833 | 0.5609 | 0.5038 | 0.5833 | 0.5833 | 0.5833 | | 0.0287 | 26.0 | 754 | 2.0390 | 0.5267 | 0.6061 | 0.5935 | 0.5265 | 0.6061 | 0.5898 | 0.5346 | 0.6061 | 0.6061 | 0.6061 | | 0.0212 | 27.0 | 783 | 2.1345 | 0.5344 | 0.6136 | 0.6005 | 0.5308 | 0.6136 | 0.5946 | 0.5449 | 0.6136 | 0.6136 | 0.6136 | | 0.0221 | 28.0 | 812 | 2.1555 | 0.5607 | 0.6136 | 0.6035 | 0.5953 | 0.6136 | 0.6107 | 0.5583 | 0.6136 | 0.6136 | 0.6136 | | 0.001 | 29.0 | 841 | 2.1102 | 0.5833 | 0.6364 | 0.6289 | 0.6172 | 0.6364 | 0.6353 | 0.5789 | 0.6364 | 0.6364 | 0.6364 | | 0.0045 | 30.0 | 870 | 2.0669 | 0.5862 | 0.6364 | 0.6290 | 0.6164 | 0.6364 | 0.6326 | 0.5831 | 0.6364 | 0.6364 | 0.6364 | | 0.0021 | 31.0 | 899 | 2.1442 | 0.5833 | 0.6364 | 0.6282 | 0.6165 | 0.6364 | 0.6330 | 0.5789 | 0.6364 | 0.6364 | 0.6364 | | 0.0014 | 32.0 | 928 | 2.1435 | 0.5616 | 0.6136 | 0.6049 | 0.5957 | 0.6136 | 0.6099 | 0.5569 | 0.6136 | 0.6136 | 0.6136 | | 0.0016 | 33.0 | 957 | 2.1279 | 0.5621 | 0.6136 | 0.6047 | 0.5966 | 0.6136 | 0.6093 | 0.5569 | 0.6136 | 0.6136 | 0.6136 | | 0.0008 | 34.0 | 986 | 2.1310 | 0.5691 | 0.6212 | 0.6127 | 0.6030 | 0.6212 | 0.6170 | 0.5641 | 0.6212 | 0.6212 | 0.6212 | | 0.0006 | 35.0 | 1015 | 2.1338 | 0.5690 | 0.6212 | 0.6130 | 0.6026 | 0.6212 | 0.6176 | 0.5641 | 0.6212 | 0.6212 | 0.6212 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
Cran-May/SCE-2-24B
Cran-May
2025-02-03T14:18:50Z
27
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:AlSamCur123/Mistral-Small3-24B-InstructContinuedFine", "base_model:merge:AlSamCur123/Mistral-Small3-24B-InstructContinuedFine", "base_model:cognitivecomputations/Dolphin3.0-Mistral-24B", "base_model:merge:cognitivecomputations/Dolphin3.0-Mistral-24B", "base_model:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:merge:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:trashpanda-org/MS-24B-Instruct-Mullein-v0", "base_model:merge:trashpanda-org/MS-24B-Instruct-Mullein-v0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T14:01:28Z
--- base_model: - AlSamCur123/Mistral-Small3-24B-InstructContinuedFine - cognitivecomputations/Dolphin3.0-Mistral-24B - huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated - trashpanda-org/MS-24B-Instruct-Mullein-v0 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated](https://huggingface.co/huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated) as a base. ### Models Merged The following models were included in the merge: * [AlSamCur123/Mistral-Small3-24B-InstructContinuedFine](https://huggingface.co/AlSamCur123/Mistral-Small3-24B-InstructContinuedFine) * [cognitivecomputations/Dolphin3.0-Mistral-24B](https://huggingface.co/cognitivecomputations/Dolphin3.0-Mistral-24B) * [trashpanda-org/MS-24B-Instruct-Mullein-v0](https://huggingface.co/trashpanda-org/MS-24B-Instruct-Mullein-v0) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: sce models: - model: trashpanda-org/MS-24B-Instruct-Mullein-v0 - model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated - model: cognitivecomputations/Dolphin3.0-Mistral-24B - model: AlSamCur123/Mistral-Small3-24B-InstructContinuedFine base_model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated tokenizer: source: base parameters: select_topk: 0.8 dtype: float32 out_dtype: bfloat16 normalize: true ```
lesso/11d552f9-f055-4a51-acfd-23e825d55757
lesso
2025-02-03T14:18:25Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:52:38Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 11d552f9-f055-4a51-acfd-23e825d55757 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 745b74c0f2d7025c_train_data.json ds_type: json format: custom path: /workspace/input_data/745b74c0f2d7025c_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/11d552f9-f055-4a51-acfd-23e825d55757 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god12/745b74c0f2d7025c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 78f5c593-6a74-46d5-a42f-796f301ea9a6 wandb_project: ab-god12 wandb_run: your_name wandb_runid: 78f5c593-6a74-46d5-a42f-796f301ea9a6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 11d552f9-f055-4a51-acfd-23e825d55757 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.0313 | 0.0053 | 1 | 2.2753 | | 6.1538 | 0.2642 | 50 | 1.3210 | | 5.9009 | 0.5284 | 100 | 1.2667 | | 5.706 | 0.7926 | 150 | 1.2451 | | 3.8185 | 1.0568 | 200 | 1.2374 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Nyan-Stunna-7B-i1-GGUF
mradermacher
2025-02-03T14:16:37Z
428
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:ChaoticNeutrals/Nyan-Stunna-7B", "base_model:quantized:ChaoticNeutrals/Nyan-Stunna-7B", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-22T06:34:17Z
--- base_model: ChaoticNeutrals/Nyan-Stunna-7B language: - en library_name: transformers license: other quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ChaoticNeutrals/Nyan-Stunna-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Nyan-Stunna-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Nyan-Stunna-7B-i1-GGUF/resolve/main/Nyan-Stunna-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
blood34/a4591f15-c67d-4bad-aad6-7a510665479b
blood34
2025-02-03T14:14:50Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T13:20:38Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: a4591f15-c67d-4bad-aad6-7a510665479b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 589fe59dca0f3dbe_train_data.json ds_type: json format: custom path: /workspace/input_data/589fe59dca0f3dbe_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: blood34/a4591f15-c67d-4bad-aad6-7a510665479b hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/589fe59dca0f3dbe_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 71879dd7-6005-4d28-8cab-23fdd2df3703 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 71879dd7-6005-4d28-8cab-23fdd2df3703 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4591f15-c67d-4bad-aad6-7a510665479b This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6563 | 0.0406 | 200 | 0.5349 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/5aa2ad61-a884-4aa1-a1fd-48512ea2a562
mrferr3t
2025-02-03T14:13:52Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-02-03T14:11:00Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 5aa2ad61-a884-4aa1-a1fd-48512ea2a562 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 7465fecdd1b4fae8_train_data.json ds_type: json format: custom path: /workspace/input_data/7465fecdd1b4fae8_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 20 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/5aa2ad61-a884-4aa1-a1fd-48512ea2a562 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/7465fecdd1b4fae8_train_data.json model_type: AutoModelForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 20 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96ba0598-e365-4fe4-a421-689fa74a779f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 96ba0598-e365-4fe4-a421-689fa74a779f warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5aa2ad61-a884-4aa1-a1fd-48512ea2a562 This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 17 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | 0.0982 | | No log | 0.0350 | 20 | 0.1031 | | No log | 0.0700 | 40 | 0.1110 | | No log | 0.1050 | 60 | 0.1078 | | No log | 0.1400 | 80 | 0.1092 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/558dc5ae-963d-4ced-839a-323b5408528b
lesso
2025-02-03T14:13:22Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:41:38Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 558dc5ae-963d-4ced-839a-323b5408528b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 67ae0a068059de74_train_data.json ds_type: json format: custom path: /workspace/input_data/67ae0a068059de74_train_data.json type: field_input: Company Name field_instruction: Position field_output: Long Description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/558dc5ae-963d-4ced-839a-323b5408528b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001017 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god17/67ae0a068059de74_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5a3810f1-954e-4bc6-9cfa-cd7881f9fa67 wandb_project: ab-god17 wandb_run: your_name wandb_runid: 5a3810f1-954e-4bc6-9cfa-cd7881f9fa67 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 558dc5ae-963d-4ced-839a-323b5408528b This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001017 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6893 | 0.0001 | 1 | 2.9463 | | 2.9055 | 0.0030 | 50 | 2.7112 | | 2.9005 | 0.0059 | 100 | 2.6746 | | 2.9777 | 0.0089 | 150 | 2.6450 | | 3.0197 | 0.0119 | 200 | 2.6325 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF
mradermacher
2025-02-03T14:12:35Z
324
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "dataset:netcat420/MFANN", "base_model:netcat420/Qwen2.5-7b-MFANNv1.1", "base_model:quantized:netcat420/Qwen2.5-7b-MFANNv1.1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-25T13:00:25Z
--- base_model: netcat420/Qwen2.5-7b-MFANNv1.1 datasets: - netcat420/MFANN language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/netcat420/Qwen2.5-7b-MFANNv1.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7b-MFANN-slerp-GGUF/resolve/main/Qwen2.5-7b-MFANN-slerp.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Nitrals-Quants/NightWing3_Virtuoso-10B-v0.2-IQ4_NL-GGUF
Nitrals-Quants
2025-02-03T14:11:03Z
89
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Nitral-AI/NightWing3_Virtuoso-10B-v0.2", "base_model:quantized:Nitral-AI/NightWing3_Virtuoso-10B-v0.2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-03T14:10:35Z
--- base_model: Nitral-Archive/NightWing3_Virtuoso-10B-v0.2 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Nitral-AI/NightWing3_Virtuoso-10B-v0.2-IQ4_NL-GGUF This model was converted to GGUF format from [`Nitral-Archive/NightWing3_Virtuoso-10B-v0.2`](https://huggingface.co/Nitral-Archive/NightWing3_Virtuoso-10B-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nitral-Archive/NightWing3_Virtuoso-10B-v0.2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Nitral-AI/NightWing3_Virtuoso-10B-v0.2-IQ4_NL-GGUF --hf-file nightwing3_virtuoso-10b-v0.2-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Nitral-AI/NightWing3_Virtuoso-10B-v0.2-IQ4_NL-GGUF --hf-file nightwing3_virtuoso-10b-v0.2-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Nitral-AI/NightWing3_Virtuoso-10B-v0.2-IQ4_NL-GGUF --hf-file nightwing3_virtuoso-10b-v0.2-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Nitral-AI/NightWing3_Virtuoso-10B-v0.2-IQ4_NL-GGUF --hf-file nightwing3_virtuoso-10b-v0.2-iq4_nl-imat.gguf -c 2048 ```
Nohobby/ignore_MS3-test-UNHOLY1-Q6_K-GGUF
Nohobby
2025-02-03T14:10:30Z
39
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Nohobby/MS3-test-Merge-1", "base_model:quantized:Nohobby/MS3-test-Merge-1", "endpoints_compatible", "region:us" ]
null
2025-02-03T12:00:10Z
--- base_model: Nohobby/MS3-test-Merge-1 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Nohobby/ignore_MS3-test-UNHOLY1-Q6_K-GGUF This model was converted to GGUF format from [`Nohobby/ignore_MS3-test-UNHOLY1`](https://huggingface.co/Nohobby/ignore_MS3-test-UNHOLY1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nohobby/ignore_MS3-test-UNHOLY1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Nohobby/ignore_MS3-test-UNHOLY1-Q6_K-GGUF --hf-file ignore_ms3-test-unholy1-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Nohobby/ignore_MS3-test-UNHOLY1-Q6_K-GGUF --hf-file ignore_ms3-test-unholy1-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Nohobby/ignore_MS3-test-UNHOLY1-Q6_K-GGUF --hf-file ignore_ms3-test-unholy1-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Nohobby/ignore_MS3-test-UNHOLY1-Q6_K-GGUF --hf-file ignore_ms3-test-unholy1-q6_k.gguf -c 2048 ```
cimol/3d4663ea-c834-4c5b-b820-455125729d37
cimol
2025-02-03T14:07:44Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:12:22Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 3d4663ea-c834-4c5b-b820-455125729d37 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - 3b453216382ea03b_train_data.json ds_type: json format: custom path: /workspace/input_data/3b453216382ea03b_train_data.json type: field_instruction: question field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cimol/3d4663ea-c834-4c5b-b820-455125729d37 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 7.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/3b453216382ea03b_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d267361d-35f8-40a0-bc9b-8de3705c3658 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d267361d-35f8-40a0-bc9b-8de3705c3658 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3d4663ea-c834-4c5b-b820-455125729d37 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.1798 | 0.0001 | 1 | 3.8939 | | 2.2806 | 0.0051 | 50 | 2.3753 | | 1.9951 | 0.0102 | 100 | 2.2929 | | 1.9763 | 0.0153 | 150 | 2.2547 | | 1.4953 | 0.0204 | 200 | 2.2433 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/0bede221-1e16-4da7-8082-8da78ebb2faa
hongngo
2025-02-03T14:06:51Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T13:12:13Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 0bede221-1e16-4da7-8082-8da78ebb2faa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b453216382ea03b_train_data.json ds_type: json format: custom path: /workspace/input_data/3b453216382ea03b_train_data.json type: field_instruction: question field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/0bede221-1e16-4da7-8082-8da78ebb2faa hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b453216382ea03b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d267361d-35f8-40a0-bc9b-8de3705c3658 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d267361d-35f8-40a0-bc9b-8de3705c3658 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0bede221-1e16-4da7-8082-8da78ebb2faa This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4603 | 0.0051 | 200 | 2.5183 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
abenius/d4a365e5-b0b3-4d75-bc6d-17296e860e2d
abenius
2025-02-03T14:06:42Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T13:11:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: d4a365e5-b0b3-4d75-bc6d-17296e860e2d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b453216382ea03b_train_data.json ds_type: json format: custom path: /workspace/input_data/3b453216382ea03b_train_data.json type: field_instruction: question field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: abenius/d4a365e5-b0b3-4d75-bc6d-17296e860e2d hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b453216382ea03b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: d267361d-35f8-40a0-bc9b-8de3705c3658 wandb_project: Gradients-On-12 wandb_run: your_name wandb_runid: d267361d-35f8-40a0-bc9b-8de3705c3658 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # d4a365e5-b0b3-4d75-bc6d-17296e860e2d This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1723 | 0.0051 | 200 | 2.4307 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Dominic2106/mixtral-hindi-translate
Dominic2106
2025-02-03T14:06:29Z
17
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-03T14:04:06Z
--- base_model: unsloth/mistral-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Dominic2106 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ngmediastudio89/marquez
ngmediastudio89
2025-02-03T14:05:34Z
50
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-08T04:11:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MARQUEZ --- # Marquez <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MARQUEZ` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ngmediastudio89/marquez', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
EleutherAI/sae-SmolLM2-135M-64x
EleutherAI
2025-02-03T14:05:30Z
9
0
null
[ "dataset:EleutherAI/fineweb-edu-dedup-10b", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "region:us" ]
null
2025-02-03T13:49:47Z
--- datasets: - EleutherAI/fineweb-edu-dedup-10b base_model: - HuggingFaceTB/SmolLM2-135M --- SAEs trained on the MLPs of HuggingFaceTB/SmolLM2-135M, with expansion factor 64x.
reda2002/whiteandpinkpillow
reda2002
2025-02-03T14:05:22Z
10
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-03T13:57:06Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MONPOUFP&WPILLOWS --- # Whiteandpinkpillow <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MONPOUFP&WPILLOWS` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('reda2002/whiteandpinkpillow', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
chibbert/SmolLM2-FT-DPO
chibbert
2025-02-03T14:04:43Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "smol-course", "module_1", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:HuggingFaceTB/SmolLM2-135M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-135M-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T14:04:01Z
--- base_model: HuggingFaceTB/SmolLM2-135M-Instruct library_name: transformers model_name: SmolLM2-FT-DPO tags: - generated_from_trainer - smol-course - module_1 - trl - dpo licence: license --- # Model Card for SmolLM2-FT-DPO This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chibbert/SmolLM2-FT-DPO", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu121 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vaatsav06/sdxl-base-1.0-greenchair-dreambooth-lora
vaatsav06
2025-02-03T14:02:57Z
17
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-02-03T13:06:56Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - diffusers-training - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'A photo of sks chair on a cliff' output: url: "image_0.png" - text: 'A photo of sks chair on a cliff' output: url: "image_1.png" - text: 'A photo of sks chair on a cliff' output: url: "image_2.png" - text: 'A photo of sks chair on a cliff' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks chair license: openrail++ --- # SDXL LoRA DreamBooth - vaatsav06/sdxl-base-1.0-greenchair-dreambooth-lora <Gallery /> ## Model description ### These are vaatsav06/sdxl-base-1.0-greenchair-dreambooth-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`lora-trained-xl.safetensors` here 💾](/vaatsav06/sdxl-base-1.0-greenchair-dreambooth-lora/blob/main/lora-trained-xl.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:lora-trained-xl:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('vaatsav06/sdxl-base-1.0-greenchair-dreambooth-lora', weight_name='pytorch_lora_weights.safetensors') image = pipeline('A photo of sks chair on a cliff').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words You should use a photo of sks chair to trigger the image generation. ## Details All [Files & versions](/vaatsav06/sdxl-base-1.0-greenchair-dreambooth-lora/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. True. Pivotal tuning was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Primeness/primeh5v8c4
Primeness
2025-02-03T14:01:23Z
26
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T11:49:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
datlaaaaaaa/5e10518d-cef4-4402-98e9-876cbae1b02a
datlaaaaaaa
2025-02-03T13:59:56Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T13:12:02Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 5e10518d-cef4-4402-98e9-876cbae1b02a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b453216382ea03b_train_data.json ds_type: json format: custom path: /workspace/input_data/3b453216382ea03b_train_data.json type: field_instruction: question field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/5e10518d-cef4-4402-98e9-876cbae1b02a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b453216382ea03b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d267361d-35f8-40a0-bc9b-8de3705c3658 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d267361d-35f8-40a0-bc9b-8de3705c3658 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5e10518d-cef4-4402-98e9-876cbae1b02a This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4567 | 0.0051 | 200 | 2.5169 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/68840979-07aa-406c-b5e4-8b8c95401318
nathanialhunt
2025-02-03T13:59:12Z
6
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-02-03T13:56:36Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 68840979-07aa-406c-b5e4-8b8c95401318 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7465fecdd1b4fae8_train_data.json ds_type: json format: custom path: /workspace/input_data/7465fecdd1b4fae8_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/68840979-07aa-406c-b5e4-8b8c95401318 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/7465fecdd1b4fae8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96ba0598-e365-4fe4-a421-689fa74a779f wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 96ba0598-e365-4fe4-a421-689fa74a779f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 68840979-07aa-406c-b5e4-8b8c95401318 This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 3.9426 | | 0.1954 | 0.0875 | 50 | 0.1324 | | 0.1053 | 0.1751 | 100 | 0.1033 | | 0.0989 | 0.2626 | 150 | 0.0795 | | 0.1036 | 0.3501 | 200 | 0.0737 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/DavidAU-Dark_Mistress-8B-GGUF
mradermacher
2025-02-03T13:56:11Z
759
1
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T11:58:41Z
--- base_model: MrRobotoAI/DavidAU-Dark_Mistress-8B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MrRobotoAI/DavidAU-Dark_Mistress-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DavidAU-Dark_Mistress-8B-GGUF/resolve/main/DavidAU-Dark_Mistress-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
kostiantynk-out/9466404a-32e5-407b-bd06-db8e2d3eb35b
kostiantynk-out
2025-02-03T13:56:06Z
23
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-PhiForCausalLM", "base_model:adapter:echarlaix/tiny-random-PhiForCausalLM", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:55:44Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 9466404a-32e5-407b-bd06-db8e2d3eb35b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5edbcf1a76167eb8_train_data.json ds_type: json format: custom path: /workspace/input_data/5edbcf1a76167eb8_train_data.json type: field_instruction: anchor field_output: logical format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/9466404a-32e5-407b-bd06-db8e2d3eb35b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/5edbcf1a76167eb8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3d45962f-e7c9-422a-ab3c-ba25232bc246 wandb_project: Mine-SN56-1-Gradients-On-Demand wandb_run: your_name wandb_runid: 3d45962f-e7c9-422a-ab3c-ba25232bc246 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9466404a-32e5-407b-bd06-db8e2d3eb35b This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0023 | 1 | 6.9418 | | 6.929 | 0.1474 | 63 | 6.9226 | | 6.9007 | 0.2947 | 126 | 6.8916 | | 6.8876 | 0.4421 | 189 | 6.8864 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Shashwat13333/bge-base-en-v1.5
Shashwat13333
2025-02-03T13:56:03Z
72
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:150", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-02-03T12:34:28Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:150 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: What services does Techchefz Digital offer for AI adoption? sentences: - 'We are a New breed of innovative digital transformation agency, redefining storytelling for an always-on world. With roots dating back to 2017, we started as a pocket size team of enthusiasts with a goal of helping traditional businesses transform and create dynamic, digital cultures through disruptive strategies and agile deployment of innovative solutions.' - "At Techchefz Digital, we specialize in guiding companies through the complexities\ \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\ \ Our consultancy services are designed to enhance your operational efficiency\ \ and decision-making capabilities across all sectors. With a global network of\ \ AI/ML experts and a commitment to excellence, we are your partners in transforming\ \ innovative possibilities into real-world achievements. \ \ \ \ \n DATA INTELLIGENCE PLATFORMS we\ \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\"" - 'How can we get started with your DevOps solutions? Getting started is easy. Contact us through our website. We''ll schedule a consultation to discuss your needs, evaluate your current infrastructure, and propose a customized DevOps solution designed to achieve your goals.' - source_sentence: Hav you made any services for schools and students? sentences: - 'How do we do Custom Development ? We follow below process to develop custom web or mobile Application on Agile Methodology, breaking requirements in pieces and developing and shipping them with considering utmost quality: Requirements Analysis We begin by understanding the client&#39;s needs and objectives for the website. Identify key features, functionality, and any specific design preferences. Project Planning Then create a detailed project plan outlining the scope, timeline, and milestones. Define the technology stack and development tools suitable for the project. User Experience Design Then comes the stage of Developing wireframes or prototypes to visualize the website&#39;s structure and layout. We create a custom design that aligns with the brand identity and user experience goals. Development After getting Sign-off on Design from Client, we break the requirements into Sprints on Agile Methodology, and start developing them.' - 'This is our Portfolio Introducing the world of Housing Finance& Banking Firm. Corporate Website with 10 regional languages in India with analytics and user personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage the Builder Requests, approve/deny Properties, manage visits and appointments, manage leads, etc. Introducing the world of Global Automotive Brand.We have implemented a Multi Locale Multilingual Omnichannel platform for Royal Enfield. The platform supports public websites, customer portals, internal portals, business applications for over 35+ different locations all over the world. Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops & Data Governance Managing cloud provisioning and modernization alongside automated infrastructure, event-driven microservices, containerization, DevOps, cybersecurity, and 24x7 monitoring support ensures efficient, secure, and responsive IT operations.' - "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\ \ in comprehensive website audits that provide valuable insights and recommendations\ \ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\ \ roadmap that transform your digital enterprise and produce a return on investment,\ \ basis our discovery framework, brainstorming sessions & current state analysis.\n\ \nPlatform Selection\nHelping you select the optimal digital experience, commerce,\ \ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\ \ next-gen scalable and agile enterprise digital platforms, along with multi-platform\ \ integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer\ \ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\ \ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\ \ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\ \ applications, data, and IT workloads, along with Application maintenance and\ \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\ \ team to solve your hiring challenges with our easy to deploy staff augmentation\ \ offerings.\"" - source_sentence: How did TechChefz evolve from its early days? sentences: - 'Why do we need Microservices ? Instead of building a monolithic application where all functionalities are tightly integrated, microservices break down the system into modular and loosely coupled services. Scalability Flexibility and Agility Resilience and Fault Isolation Technology Diversity Continuous Delivery' - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal decision to depart from the corporate ladder in December 2016. Fueled by a clear vision to revolutionize the digital landscape, Mayank set out to leverage the best technology ingredients, crafting custom applications and digital ecosystems tailored to clients'' specific needs, limitations, and budgets. However, this solo journey was not without its challenges. Mayank had to initiate the revenue engine by offering corporate trainings and conducting online batches for tech training across the USA. He also undertook small projects and subcontracted modules of larger projects for clients in the US, UK, and India. It was only after this initial groundwork that Mayank was able to hire a group of interns, whom he meticulously trained and groomed to prepare them for handling Enterprise Level Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial spirit in building TechChefz Digital from the ground up. With a passion for innovation and a relentless drive for excellence, Mayank has steered TechChefz Digital through strategic partnerships, groundbreaking projects, and exponential growth. His leadership has been instrumental in shaping TechChefz Digital into a leading force in the digital transformation arena, inspiring a culture of innovation and excellence that continues to propel the company forward.' - 'In what ways can machine learning optimize our operations? Machine learning algorithms can analyze operational data to identify inefficiencies, predict maintenance needs, optimize supply chains, and automate repetitive tasks, significantly improving operational efficiency and reducing costs.' - source_sentence: What kind of data do you leverage for AI solutions? sentences: - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency and achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention' - 'Our Solutions Strategy & Digital Transformation Innovate via digital transformation, modernize tech, craft product strategies, enhance customer experiences, optimize data analytics, transition to cloud for growth and efficiency Product Engineering & Custom Development Providing product development, enterprise web and mobile development, microservices integrations, quality engineering, and application support services to drive innovation and enhance operational efficiency.' - Our AI/ML services pave the way for transformative change across industries, embodying a client-focused approach that integrates seamlessly with human-centric innovation. Our collaborative teams are dedicated to fostering growth, leveraging data, and harnessing the predictive power of artificial intelligence to forge the next wave of software excellence. We don't just deliver AI; we deliver the future. - source_sentence: What managed services does TechChefz provide ? sentences: - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\ \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\ Helping you select the optimal digital experience, commerce, cloud and marketing\ \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\ \ and agile enterprise digital platforms, along with multi-platform integrations.\n\ \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\ \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\ \ augment your existing team to solve your hiring challenges with our easy to\ \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\ \ your business-critical applications, data, and IT workloads, along with Application\ \ maintenance and operations\n" - 'What makes your DevOps solutions stand out from the competition? Our DevOps solutions stand out due to our personalized approach, extensive expertise, and commitment to innovation. We focus on delivering measurable results, such as reduced deployment times, improved system reliability, and enhanced security, ensuring you get the maximum benefit from our services.' - 'Introducing the world of General Insurance Firm In this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features: PWA & AMP based Web Pages Page Speed Optimization Reusable and scalable React JS / Next JS Templates and Components Headless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams Minimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances We achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.17333333333333334 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5466666666666666 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6933333333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17333333333333334 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1822222222222222 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06933333333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17333333333333334 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5466666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6933333333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.43705488094312567 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3539576719576719 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3663753684578632 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.17333333333333334 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6266666666666667 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6933333333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17333333333333334 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17777777777777776 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12533333333333332 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06933333333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17333333333333334 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6266666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6933333333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.43324477959330543 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3495185185185184 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.359896266319179 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.22666666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.49333333333333335 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.68 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.22666666666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16444444444444445 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11199999999999997 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06799999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22666666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.49333333333333335 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.56 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.68 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4383628839300849 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36210582010582004 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3731640827722892 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.24 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.48 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6933333333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.24 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11199999999999997 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06933333333333332 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.24 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.48 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.56 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6933333333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4443870388298522 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36651322751322746 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.37546675549059694 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.08 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3466666666666667 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.49333333333333335 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.56 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.08 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.11555555555555555 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09866666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05599999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.08 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3466666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.49333333333333335 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.56 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3120295466486537 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23260846560846554 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24731947636993173 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5") # Run inference sentences = [ 'What managed services does TechChefz provide ?', ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n', 'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------| | cosine_accuracy@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_accuracy@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 | | cosine_accuracy@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 | | cosine_accuracy@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 | | cosine_precision@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_precision@3 | 0.1822 | 0.1778 | 0.1644 | 0.16 | 0.1156 | | cosine_precision@5 | 0.12 | 0.1253 | 0.112 | 0.112 | 0.0987 | | cosine_precision@10 | 0.0693 | 0.0693 | 0.068 | 0.0693 | 0.056 | | cosine_recall@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_recall@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 | | cosine_recall@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 | | cosine_recall@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 | | **cosine_ndcg@10** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** | | cosine_mrr@10 | 0.354 | 0.3495 | 0.3621 | 0.3665 | 0.2326 | | cosine_map@100 | 0.3664 | 0.3599 | 0.3732 | 0.3755 | 0.2473 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 150 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 150 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Is it hard to move old systems to the cloud?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> | | <code>What benefits does marketing automation offer for time management?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> | | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 4 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `push_to_hub`: True - `hub_model_id`: Shashwat13333/bge-base-en-v1.5 - `push_to_hub_model_id`: bge-base-en-v1.5 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: Shashwat13333/bge-base-en-v1.5 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: bge-base-en-v1.5 - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2105 | 1 | 4.4608 | - | - | - | - | - | | 0.8421 | 4 | - | 0.3891 | 0.3727 | 0.4175 | 0.3876 | 0.2956 | | 1.2105 | 5 | 4.2215 | - | - | - | - | - | | 1.8421 | 8 | - | 0.4088 | 0.4351 | 0.4034 | 0.4052 | 0.3167 | | 2.4211 | 10 | 3.397 | - | - | - | - | - | | 2.8421 | 12 | - | 0.4440 | 0.4252 | 0.4133 | 0.4284 | 0.3024 | | 3.6316 | 15 | 2.87 | - | - | - | - | - | | **3.8421** | **16** | **-** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
kk-aivio/6289da22-4ee8-4b1f-816a-6acdd8dd6e50
kk-aivio
2025-02-03T13:55:52Z
22
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-PhiForCausalLM", "base_model:adapter:echarlaix/tiny-random-PhiForCausalLM", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:55:25Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 6289da22-4ee8-4b1f-816a-6acdd8dd6e50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5edbcf1a76167eb8_train_data.json ds_type: json format: custom path: /workspace/input_data/5edbcf1a76167eb8_train_data.json type: field_instruction: anchor field_output: logical format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/6289da22-4ee8-4b1f-816a-6acdd8dd6e50 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5edbcf1a76167eb8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3d45962f-e7c9-422a-ab3c-ba25232bc246 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 3d45962f-e7c9-422a-ab3c-ba25232bc246 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6289da22-4ee8-4b1f-816a-6acdd8dd6e50 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0047 | 1 | 6.9418 | | 6.9284 | 0.2339 | 50 | 6.9245 | | 6.9011 | 0.4678 | 100 | 6.8959 | | 6.8932 | 0.7018 | 150 | 6.8868 | | 6.8913 | 0.9357 | 200 | 6.8859 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
romainnn/54a82f80-5733-4172-9014-5c09604abba5
romainnn
2025-02-03T13:55:30Z
21
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-PhiForCausalLM", "base_model:adapter:echarlaix/tiny-random-PhiForCausalLM", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:55:15Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 54a82f80-5733-4172-9014-5c09604abba5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5edbcf1a76167eb8_train_data.json ds_type: json format: custom path: /workspace/input_data/5edbcf1a76167eb8_train_data.json type: field_instruction: anchor field_output: logical format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: romainnn/54a82f80-5733-4172-9014-5c09604abba5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 38 micro_batch_size: 4 mlflow_experiment_name: /tmp/5edbcf1a76167eb8_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3d45962f-e7c9-422a-ab3c-ba25232bc246 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3d45962f-e7c9-422a-ab3c-ba25232bc246 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 54a82f80-5733-4172-9014-5c09604abba5 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.9419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 38 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.9374 | 0.0374 | 1 | 6.9419 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Shaleen123/MedicalEDI-Llama3.1-8b-Reasoning
Shaleen123
2025-02-03T13:54:34Z
128
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T19:59:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
great0001/7501b1eb-c08e-4a17-b983-bd83bde5c7da
great0001
2025-02-03T13:54:25Z
11
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-02-03T13:51:18Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 7501b1eb-c08e-4a17-b983-bd83bde5c7da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7465fecdd1b4fae8_train_data.json ds_type: json format: custom path: /workspace/input_data/7465fecdd1b4fae8_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/7501b1eb-c08e-4a17-b983-bd83bde5c7da hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/7465fecdd1b4fae8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96ba0598-e365-4fe4-a421-689fa74a779f wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: 96ba0598-e365-4fe4-a421-689fa74a779f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7501b1eb-c08e-4a17-b983-bd83bde5c7da This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 2.5654 | | 0.1676 | 0.0875 | 50 | 0.1227 | | 0.1075 | 0.1751 | 100 | 0.1239 | | 0.1299 | 0.2626 | 150 | 0.0957 | | 0.1254 | 0.3501 | 200 | 0.0974 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/3cbee2fe-6e5f-43d7-93eb-21377bdf07ce
havinash-ai
2025-02-03T13:53:46Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-02-03T13:50:58Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 3cbee2fe-6e5f-43d7-93eb-21377bdf07ce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7465fecdd1b4fae8_train_data.json ds_type: json format: custom path: /workspace/input_data/7465fecdd1b4fae8_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/3cbee2fe-6e5f-43d7-93eb-21377bdf07ce hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/7465fecdd1b4fae8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96ba0598-e365-4fe4-a421-689fa74a779f wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: 96ba0598-e365-4fe4-a421-689fa74a779f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3cbee2fe-6e5f-43d7-93eb-21377bdf07ce This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 3.9426 | | 0.1915 | 0.0875 | 50 | 0.1515 | | 0.1069 | 0.1751 | 100 | 0.1052 | | 0.0896 | 0.2626 | 150 | 0.0818 | | 0.102 | 0.3501 | 200 | 0.0778 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
clarxus/d643de7d-b4d8-4699-a449-32c0a869761a
clarxus
2025-02-03T13:52:32Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:05:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d643de7d-b4d8-4699-a449-32c0a869761a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 67ae0a068059de74_train_data.json ds_type: json format: custom path: /workspace/input_data/67ae0a068059de74_train_data.json type: field_input: Company Name field_instruction: Position field_output: Long Description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: clarxus/d643de7d-b4d8-4699-a449-32c0a869761a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/67ae0a068059de74_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 5a3810f1-954e-4bc6-9cfa-cd7881f9fa67 wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: 5a3810f1-954e-4bc6-9cfa-cd7881f9fa67 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d643de7d-b4d8-4699-a449-32c0a869761a This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.8995 | | 2.8798 | 0.0021 | 9 | 2.8480 | | 2.7651 | 0.0043 | 18 | 2.7714 | | 2.7154 | 0.0064 | 27 | 2.7261 | | 2.7263 | 0.0086 | 36 | 2.7029 | | 2.6637 | 0.0107 | 45 | 2.6886 | | 2.6984 | 0.0128 | 54 | 2.6787 | | 2.6832 | 0.0150 | 63 | 2.6715 | | 2.6334 | 0.0171 | 72 | 2.6671 | | 2.6979 | 0.0193 | 81 | 2.6644 | | 2.6112 | 0.0214 | 90 | 2.6632 | | 2.6077 | 0.0235 | 99 | 2.6630 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
abaddon182/73fe81cf-9410-4ebd-9466-c143c23a184c
abaddon182
2025-02-03T13:51:57Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
2025-02-03T12:54:54Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 73fe81cf-9410-4ebd-9466-c143c23a184c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 78c82b5588259efc_train_data.json ds_type: json format: custom path: /workspace/input_data/78c82b5588259efc_train_data.json type: field_instruction: query field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: abaddon182/73fe81cf-9410-4ebd-9466-c143c23a184c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/78c82b5588259efc_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cd38ec50-76ed-4242-a066-586aa4205714 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cd38ec50-76ed-4242-a066-586aa4205714 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 73fe81cf-9410-4ebd-9466-c143c23a184c This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5775 | 0.0001 | 1 | 0.9028 | | 0.2297 | 0.0073 | 50 | 0.2803 | | 0.2411 | 0.0146 | 100 | 0.2375 | | 0.213 | 0.0218 | 150 | 0.2182 | | 0.2154 | 0.0291 | 200 | 0.2120 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/7a498409-8612-453b-af4b-362335f0adf0
prxy5604
2025-02-03T13:51:26Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
2025-02-03T12:53:55Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 7a498409-8612-453b-af4b-362335f0adf0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 78c82b5588259efc_train_data.json ds_type: json format: custom path: /workspace/input_data/78c82b5588259efc_train_data.json type: field_instruction: query field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/7a498409-8612-453b-af4b-362335f0adf0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/78c82b5588259efc_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cd38ec50-76ed-4242-a066-586aa4205714 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cd38ec50-76ed-4242-a066-586aa4205714 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7a498409-8612-453b-af4b-362335f0adf0 This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5775 | 0.0001 | 1 | 0.9028 | | 0.2308 | 0.0073 | 50 | 0.2811 | | 0.2411 | 0.0146 | 100 | 0.2377 | | 0.2131 | 0.0218 | 150 | 0.2180 | | 0.2154 | 0.0291 | 200 | 0.2119 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhungphammmmm/f47c11db-3f53-4d84-ab69-c5d543275f68
nhungphammmmm
2025-02-03T13:51:14Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T13:12:24Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: f47c11db-3f53-4d84-ab69-c5d543275f68 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b453216382ea03b_train_data.json ds_type: json format: custom path: /workspace/input_data/3b453216382ea03b_train_data.json type: field_instruction: question field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/f47c11db-3f53-4d84-ab69-c5d543275f68 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b453216382ea03b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d267361d-35f8-40a0-bc9b-8de3705c3658 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d267361d-35f8-40a0-bc9b-8de3705c3658 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f47c11db-3f53-4d84-ab69-c5d543275f68 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4575 | 0.0051 | 200 | 2.5181 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cgus/granite-3.1-8b-instruct-abliterated-exl2
cgus
2025-02-03T13:50:04Z
5
0
transformers
[ "transformers", "granite", "text-generation", "language", "granite-3.1", "abliterated", "uncensored", "conversational", "base_model:huihui-ai/granite-3.1-8b-instruct-abliterated", "base_model:quantized:huihui-ai/granite-3.1-8b-instruct-abliterated", "license:apache-2.0", "autotrain_compatible", "4-bit", "exl2", "region:us" ]
text-generation
2025-02-03T13:17:58Z
--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.1 - abliterated - uncensored base_model: - huihui-ai/granite-3.1-8b-instruct-abliterated --- # granite-3.1-8b-instruct-abliterated-exl2 Model: [granite-3.1-8b-instruct-abliterated](https://huggingface.co/huihui-ai/granite-3.1-8b-instruct-abliterated) Made by: [huihui-ai](https://huggingface.co/huihui-ai) Granite 3 authors: [Granite Team, IBM](https://huggingface.co/ibm-granite) ## Quants [4bpw h6 (main)](https://huggingface.co/cgus/granite-3.1-8b-instruct-abliterated-exl2/tree/main) [4.5bpw h6](https://huggingface.co/cgus/granite-3.1-8b-instruct-abliterated-exl2/tree/4.5bpw-h6) [5bpw h6](https://huggingface.co/cgus/granite-3.1-8b-instruct-abliterated-exl2/tree/5bpw-h6) [6bpw h6](https://huggingface.co/cgus/granite-3.1-8b-instruct-abliterated-exl2/tree/6bpw-h6) [8bpw h8](https://huggingface.co/cgus/granite-3.1-8b-instruct-abliterated-exl2/tree/8bpw-h8) ## Quantization notes Made with exllamav2 0.2.7 with default dataset. This model requires exllamav2 0.2.7 or newer. Exl2 quants require to be fully loaded into GPU VRAM, RAM offloading isn't supported natively. Additionally it requires Nvidia RTX on Windows or Nvidia RTX/AMD ROCm on Linux. These quants can be used with TabbyAPI or Text-Generation-WebUI. # Original model card # huihui-ai/granite-3.1-8b-instruct-abliterated This is an uncensored version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. ## Use with ollama You can use [huihui_ai/granite3.1-dense-abliterated](https://ollama.com/huihui_ai/granite3.1-dense-abliterated) directly, ``` ollama run huihui_ai/granite3.1-dense-abliterated ```
jongheeyun/gemma-ko-7b-Q5_K_M-GGUF
jongheeyun
2025-02-03T13:46:25Z
21
0
transformers
[ "transformers", "gguf", "pytorch", "llama-cpp", "gguf-my-repo", "text-generation", "ko", "en", "base_model:beomi/gemma-ko-7b", "base_model:quantized:beomi/gemma-ko-7b", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T13:45:45Z
--- language: - ko - en license: other library_name: transformers license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms pipeline_tag: text-generation tags: - pytorch - llama-cpp - gguf-my-repo base_model: beomi/gemma-ko-7b --- # jongheeyun/gemma-ko-7b-Q5_K_M-GGUF This model was converted to GGUF format from [`beomi/gemma-ko-7b`](https://huggingface.co/beomi/gemma-ko-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/beomi/gemma-ko-7b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo jongheeyun/gemma-ko-7b-Q5_K_M-GGUF --hf-file gemma-ko-7b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo jongheeyun/gemma-ko-7b-Q5_K_M-GGUF --hf-file gemma-ko-7b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo jongheeyun/gemma-ko-7b-Q5_K_M-GGUF --hf-file gemma-ko-7b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo jongheeyun/gemma-ko-7b-Q5_K_M-GGUF --hf-file gemma-ko-7b-q5_k_m.gguf -c 2048 ```
corranm/vit-base-patch16-224-in21k_16batch
corranm
2025-02-03T13:39:38Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:corranm/first_vote_100_full_pic_without_vote_highlight_square", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-02-02T22:57:35Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k_16batch results: [] datasets: - corranm/first_vote_100_full_pic_without_vote_highlight_square --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k_16batch This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2813 - F1 Macro: 0.4280 - F1 Micro: 0.5455 - F1 Weighted: 0.4882 - Precision Macro: 0.4004 - Precision Micro: 0.5455 - Precision Weighted: 0.4529 - Recall Macro: 0.4762 - Recall Micro: 0.5455 - Recall Weighted: 0.5455 - Accuracy: 0.5455 ## Model description Using a batch size of 16 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:---------------:|:------------------:|:------------:|:------------:|:---------------:|:--------:| | 1.9371 | 1.0 | 29 | 1.9372 | 0.0504 | 0.1212 | 0.0604 | 0.0334 | 0.1212 | 0.0403 | 0.1029 | 0.1212 | 0.1212 | 0.1212 | | 1.9078 | 2.0 | 58 | 1.9066 | 0.0454 | 0.1818 | 0.0602 | 0.0272 | 0.1818 | 0.0361 | 0.1371 | 0.1818 | 0.1818 | 0.1818 | | 1.9276 | 3.0 | 87 | 1.8808 | 0.0696 | 0.1818 | 0.0968 | 0.0492 | 0.1818 | 0.0682 | 0.1295 | 0.1818 | 0.1818 | 0.1818 | | 1.8373 | 4.0 | 116 | 1.8696 | 0.0485 | 0.2045 | 0.0695 | 0.0292 | 0.2045 | 0.0418 | 0.1429 | 0.2045 | 0.2045 | 0.2045 | | 1.8152 | 5.0 | 145 | 1.8490 | 0.1339 | 0.2576 | 0.1745 | 0.1298 | 0.2576 | 0.1640 | 0.1944 | 0.2576 | 0.2576 | 0.2576 | | 1.8488 | 6.0 | 174 | 1.8281 | 0.1379 | 0.2727 | 0.1817 | 0.1512 | 0.2727 | 0.1891 | 0.1997 | 0.2727 | 0.2727 | 0.2727 | | 1.7626 | 7.0 | 203 | 1.7917 | 0.2271 | 0.3333 | 0.2718 | 0.1922 | 0.3333 | 0.2298 | 0.2783 | 0.3333 | 0.3333 | 0.3333 | | 1.7169 | 8.0 | 232 | 1.7478 | 0.2887 | 0.4242 | 0.3465 | 0.2706 | 0.4242 | 0.3154 | 0.3426 | 0.4242 | 0.4242 | 0.4242 | | 1.5364 | 9.0 | 261 | 1.7098 | 0.2835 | 0.4091 | 0.3409 | 0.2720 | 0.4091 | 0.3245 | 0.3324 | 0.4091 | 0.4091 | 0.4091 | | 1.7373 | 10.0 | 290 | 1.6765 | 0.2906 | 0.4167 | 0.3463 | 0.2726 | 0.4167 | 0.3157 | 0.3386 | 0.4167 | 0.4167 | 0.4167 | | 1.5345 | 11.0 | 319 | 1.6423 | 0.2805 | 0.3939 | 0.3342 | 0.3728 | 0.3939 | 0.4258 | 0.3275 | 0.3939 | 0.3939 | 0.3939 | | 1.6421 | 12.0 | 348 | 1.6103 | 0.3324 | 0.4697 | 0.3978 | 0.4583 | 0.4697 | 0.5178 | 0.3760 | 0.4697 | 0.4697 | 0.4697 | | 1.5266 | 13.0 | 377 | 1.5835 | 0.3171 | 0.4621 | 0.3822 | 0.2917 | 0.4621 | 0.3483 | 0.3748 | 0.4621 | 0.4621 | 0.4621 | | 1.5182 | 14.0 | 406 | 1.5633 | 0.3133 | 0.4242 | 0.3680 | 0.3634 | 0.4242 | 0.4009 | 0.3568 | 0.4242 | 0.4242 | 0.4242 | | 1.5341 | 15.0 | 435 | 1.5528 | 0.3015 | 0.4167 | 0.3585 | 0.3109 | 0.4167 | 0.3638 | 0.3499 | 0.4167 | 0.4167 | 0.4167 | | 1.3961 | 16.0 | 464 | 1.5273 | 0.3449 | 0.4545 | 0.3991 | 0.4329 | 0.4545 | 0.4704 | 0.3839 | 0.4545 | 0.4545 | 0.4545 | | 1.3601 | 17.0 | 493 | 1.4971 | 0.3670 | 0.5 | 0.4357 | 0.5047 | 0.5 | 0.5382 | 0.4078 | 0.5 | 0.5 | 0.5 | | 1.2535 | 18.0 | 522 | 1.5006 | 0.3511 | 0.4621 | 0.4138 | 0.4778 | 0.4621 | 0.5101 | 0.3872 | 0.4621 | 0.4621 | 0.4621 | | 1.2375 | 19.0 | 551 | 1.4659 | 0.3655 | 0.4924 | 0.4345 | 0.4298 | 0.4924 | 0.4797 | 0.4020 | 0.4924 | 0.4924 | 0.4924 | | 1.2141 | 20.0 | 580 | 1.4407 | 0.3914 | 0.5076 | 0.4565 | 0.4650 | 0.5076 | 0.5087 | 0.4217 | 0.5076 | 0.5076 | 0.5076 | | 1.2831 | 21.0 | 609 | 1.4454 | 0.3965 | 0.5152 | 0.4645 | 0.4801 | 0.5152 | 0.5265 | 0.4214 | 0.5152 | 0.5152 | 0.5152 | | 1.1543 | 22.0 | 638 | 1.4167 | 0.4285 | 0.5455 | 0.4997 | 0.4781 | 0.5455 | 0.5309 | 0.4521 | 0.5455 | 0.5455 | 0.5455 | | 1.4079 | 23.0 | 667 | 1.4465 | 0.3675 | 0.4621 | 0.4269 | 0.4187 | 0.4621 | 0.4676 | 0.3929 | 0.4621 | 0.4621 | 0.4621 | | 1.0619 | 24.0 | 696 | 1.4249 | 0.4092 | 0.5076 | 0.4724 | 0.4659 | 0.5076 | 0.5180 | 0.4336 | 0.5076 | 0.5076 | 0.5076 | | 1.1059 | 25.0 | 725 | 1.3834 | 0.4356 | 0.5530 | 0.5061 | 0.5025 | 0.5530 | 0.5491 | 0.4594 | 0.5530 | 0.5530 | 0.5530 | | 1.192 | 26.0 | 754 | 1.3784 | 0.4286 | 0.5379 | 0.4893 | 0.4566 | 0.5379 | 0.4969 | 0.4544 | 0.5379 | 0.5379 | 0.5379 | | 1.21 | 27.0 | 783 | 1.3874 | 0.4409 | 0.5379 | 0.5060 | 0.4709 | 0.5379 | 0.5258 | 0.4616 | 0.5379 | 0.5379 | 0.5379 | | 1.0901 | 28.0 | 812 | 1.3621 | 0.4402 | 0.5379 | 0.5074 | 0.4635 | 0.5379 | 0.5204 | 0.4557 | 0.5379 | 0.5379 | 0.5379 | | 1.1254 | 29.0 | 841 | 1.3714 | 0.4265 | 0.5227 | 0.4873 | 0.4492 | 0.5227 | 0.4984 | 0.4449 | 0.5227 | 0.5227 | 0.5227 | | 0.9345 | 30.0 | 870 | 1.3525 | 0.4425 | 0.5379 | 0.5074 | 0.4736 | 0.5379 | 0.5264 | 0.4557 | 0.5379 | 0.5379 | 0.5379 | | 1.2036 | 31.0 | 899 | 1.3592 | 0.4363 | 0.5379 | 0.5020 | 0.4869 | 0.5379 | 0.5368 | 0.4533 | 0.5379 | 0.5379 | 0.5379 | | 1.036 | 32.0 | 928 | 1.3362 | 0.4451 | 0.5455 | 0.5109 | 0.4673 | 0.5455 | 0.5226 | 0.4637 | 0.5455 | 0.5455 | 0.5455 | | 0.9979 | 33.0 | 957 | 1.3492 | 0.4454 | 0.5455 | 0.5134 | 0.4808 | 0.5455 | 0.5358 | 0.4620 | 0.5455 | 0.5455 | 0.5455 | | 0.8353 | 34.0 | 986 | 1.3402 | 0.4635 | 0.5606 | 0.5301 | 0.4659 | 0.5606 | 0.5268 | 0.4854 | 0.5606 | 0.5606 | 0.5606 | | 0.9384 | 35.0 | 1015 | 1.3414 | 0.4408 | 0.5455 | 0.5088 | 0.4664 | 0.5455 | 0.5237 | 0.4602 | 0.5455 | 0.5455 | 0.5455 | | 0.996 | 36.0 | 1044 | 1.3405 | 0.4559 | 0.5530 | 0.5235 | 0.4795 | 0.5530 | 0.5377 | 0.4715 | 0.5530 | 0.5530 | 0.5530 | | 0.9613 | 37.0 | 1073 | 1.3357 | 0.4847 | 0.5833 | 0.5535 | 0.5011 | 0.5833 | 0.5612 | 0.5020 | 0.5833 | 0.5833 | 0.5833 | | 0.8507 | 38.0 | 1102 | 1.3347 | 0.4760 | 0.5758 | 0.5454 | 0.4897 | 0.5758 | 0.5510 | 0.4940 | 0.5758 | 0.5758 | 0.5758 | | 1.1563 | 39.0 | 1131 | 1.3396 | 0.4553 | 0.5530 | 0.5250 | 0.4608 | 0.5530 | 0.5234 | 0.4735 | 0.5530 | 0.5530 | 0.5530 | | 0.9681 | 40.0 | 1160 | 1.3371 | 0.4703 | 0.5682 | 0.5396 | 0.4816 | 0.5682 | 0.5445 | 0.4887 | 0.5682 | 0.5682 | 0.5682 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
shibajustfor/58bf624b-2efb-490d-86b6-a51f873cc940
shibajustfor
2025-02-03T13:39:20Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-03T13:38:54Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 58bf624b-2efb-490d-86b6-a51f873cc940 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8512442b605c78da_train_data.json ds_type: json format: custom path: /workspace/input_data/8512442b605c78da_train_data.json type: field_instruction: Input field_output: Rephrased Content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/58bf624b-2efb-490d-86b6-a51f873cc940 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8512442b605c78da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc22d19e-3c5a-4a4e-ab3c-1133a5b4060b wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: bc22d19e-3c5a-4a4e-ab3c-1133a5b4060b warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 58bf624b-2efb-490d-86b6-a51f873cc940 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0028 | 1 | 10.3775 | | 10.3733 | 0.1400 | 50 | 10.3699 | | 10.345 | 0.2799 | 100 | 10.3396 | | 10.3372 | 0.4199 | 150 | 10.3314 | | 10.3346 | 0.5598 | 200 | 10.3300 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/cf10142c-9ea9-45c0-bb15-30f31380d47b
nathanialhunt
2025-02-03T13:38:55Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-03T13:38:27Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: cf10142c-9ea9-45c0-bb15-30f31380d47b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8512442b605c78da_train_data.json ds_type: json format: custom path: /workspace/input_data/8512442b605c78da_train_data.json type: field_instruction: Input field_output: Rephrased Content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/cf10142c-9ea9-45c0-bb15-30f31380d47b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8512442b605c78da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc22d19e-3c5a-4a4e-ab3c-1133a5b4060b wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: bc22d19e-3c5a-4a4e-ab3c-1133a5b4060b warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cf10142c-9ea9-45c0-bb15-30f31380d47b This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0028 | 1 | 10.3776 | | 10.3753 | 0.1400 | 50 | 10.3731 | | 10.3625 | 0.2799 | 100 | 10.3601 | | 10.3502 | 0.4199 | 150 | 10.3462 | | 10.349 | 0.5598 | 200 | 10.3444 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
outlookAi/A2Dl70wBbz
outlookAi
2025-02-03T13:38:48Z
20
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-03T13:16:00Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Minnie --- # A2Dl70Wbbz <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Minnie` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/A2Dl70wBbz', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
earnxus/86342fc0-0278-40bc-b93e-80d3f0956bbd
earnxus
2025-02-03T13:32:26Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T13:18:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 86342fc0-0278-40bc-b93e-80d3f0956bbd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b33e7113daad43bd_train_data.json ds_type: json format: custom path: /workspace/input_data/b33e7113daad43bd_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/86342fc0-0278-40bc-b93e-80d3f0956bbd hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b33e7113daad43bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 2e9ec04e-317e-49f4-b782-0aebbd3b8e64 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: 2e9ec04e-317e-49f4-b782-0aebbd3b8e64 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 86342fc0-0278-40bc-b93e-80d3f0956bbd This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8204 | 0.0411 | 200 | 0.7512 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hellum55/llama-3.2-3b-it-Ecommerce-ChatBot-Q4_K_M-GGUF
hellum55
2025-02-03T13:31:21Z
23
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:hellum55/llama-3.2-3b-it-Ecommerce-ChatBot", "base_model:quantized:hellum55/llama-3.2-3b-it-Ecommerce-ChatBot", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T13:31:09Z
--- library_name: transformers tags: - llama-cpp - gguf-my-repo base_model: hellum55/llama-3.2-3b-it-Ecommerce-ChatBot --- # hellum55/llama-3.2-3b-it-Ecommerce-ChatBot-Q4_K_M-GGUF This model was converted to GGUF format from [`hellum55/llama-3.2-3b-it-Ecommerce-ChatBot`](https://huggingface.co/hellum55/llama-3.2-3b-it-Ecommerce-ChatBot) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/hellum55/llama-3.2-3b-it-Ecommerce-ChatBot) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo hellum55/llama-3.2-3b-it-Ecommerce-ChatBot-Q4_K_M-GGUF --hf-file llama-3.2-3b-it-ecommerce-chatbot-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo hellum55/llama-3.2-3b-it-Ecommerce-ChatBot-Q4_K_M-GGUF --hf-file llama-3.2-3b-it-ecommerce-chatbot-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo hellum55/llama-3.2-3b-it-Ecommerce-ChatBot-Q4_K_M-GGUF --hf-file llama-3.2-3b-it-ecommerce-chatbot-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo hellum55/llama-3.2-3b-it-Ecommerce-ChatBot-Q4_K_M-GGUF --hf-file llama-3.2-3b-it-ecommerce-chatbot-q4_k_m.gguf -c 2048 ```
Romain-XV/52a87998-c170-4662-99a1-bccc16f8207f
Romain-XV
2025-02-03T13:30:50Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-02-03T09:17:59Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 52a87998-c170-4662-99a1-bccc16f8207f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3dd51fb6372006d9_train_data.json ds_type: json format: custom path: /workspace/input_data/3dd51fb6372006d9_train_data.json type: field_input: original_version field_instruction: title field_output: french_version format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/52a87998-c170-4662-99a1-bccc16f8207f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 388 micro_batch_size: 4 mlflow_experiment_name: /tmp/3dd51fb6372006d9_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 00e13256-d958-48f7-8ad0-5b9ae4c0322b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 00e13256-d958-48f7-8ad0-5b9ae4c0322b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 52a87998-c170-4662-99a1-bccc16f8207f This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 388 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9258 | 0.0007 | 1 | 1.0433 | | 0.8099 | 0.1020 | 150 | 0.8550 | | 0.8976 | 0.2040 | 300 | 0.8359 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Corianas/Microllama_Char_100k_step
Corianas
2025-02-03T13:29:34Z
174
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dataset:roneneldan/TinyStories", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-28T14:11:07Z
--- license: cc-by-nc-sa-4.0 datasets: - roneneldan/TinyStories --- This is a character (english a-z 0-9 and so on) trained model following Andrej karpathy's llama.c project https://github.com/karpathy/llama2.c on both TinyStories and my own internal similar dataset I made. for it to see/output Uppercase letters this model uses a Shift-Key modifier before the letter to become uppercase, and has never been trained on actual uppercase letters. This modifier is ↨ and here are the functions I use to convert from straight text to the modified format and back. ``` def add_caseifer(text): # Using list comprehension for more efficient concatenation return ''.join(['↨' + char.lower() if char.isupper() else char for char in text def remove_caseifer(text): new_text = "" i = 0 while i < len(text): if text[i] == "↨": if i+1 < len(text): new_text += text[i+1].upper() i += 1 else: pass # skip this index else: new_text += text[i] i += 1 return new_text ``` As such for test strings to use in chat try using somthing like: ``` ↨hello, my name is ↨clara and ↨i like ```
Corianas/Microllama_Char_88k_step
Corianas
2025-02-03T13:29:32Z
172
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dataset:roneneldan/TinyStories", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-28T00:20:52Z
--- license: cc-by-nc-sa-4.0 datasets: - roneneldan/TinyStories --- This is a character (english a-z 0-9 and so on) trained model following Andrej karpathy's llama.c project https://github.com/karpathy/llama2.c on both TinyStories and my own internal similar dataset I made. for it to see/output Uppercase letters this model uses a Shift-Key modifier before the letter to become uppercase, and has never been trained on actual uppercase letters. This modifier is ↨ and here are the functions I use to convert from straight text to the modified format and back. ``` def add_caseifer(text): # Using list comprehension for more efficient concatenation return ''.join(['↨' + char.lower() if char.isupper() else char for char in text def remove_caseifer(text): new_text = "" i = 0 while i < len(text): if text[i] == "↨": if i+1 < len(text): new_text += text[i+1].upper() i += 1 else: pass # skip this index else: new_text += text[i] i += 1 return new_text ``` As such for test strings to use in chat try using somthing like: ``` ↨hello, my name is ↨clara and ↨i like ``` This model was only uploaded as a test to see if I got it all HF compatible, and was able to use toold like LazyMergekit on it and yes, it did work. *happydance*
Corianas/MicroTask-mini-guanaco_200k
Corianas
2025-02-03T13:29:27Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dataset:roneneldan/TinyStories", "dataset:guanaco/guanaco_clean", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-31T04:48:01Z
--- license: cc-by-nc-sa-4.0 datasets: - roneneldan/TinyStories - guanaco/guanaco_clean --- This is a character (english a-z 0-9 and so on) trained model following Andrej karpathy's llama.c project https://github.com/karpathy/llama2.c on both TinyStories and my own internal similar dataset I made. It has been finetuned on a question answer set, without any preamble, you ask the question, give a newline, and wait for the answer. for it to see/output Uppercase letters this model uses a Shift-Key modifier before the letter to become uppercase, and has never been trained on actual uppercase letters. This modifier is ↨ and here are the functions I use to convert from straight text to the modified format and back. ``` def add_caseifer(text): # Using list comprehension for more efficient concatenation return ''.join(['↨' + char.lower() if char.isupper() else char for char in text def remove_caseifer(text): new_text = "" i = 0 while i < len(text): if text[i] == "↨": if i+1 < len(text): new_text += text[i+1].upper() i += 1 else: pass # skip this index else: new_text += text[i] i += 1 return new_text ``` As such for test strings to use in chat try using somthing like: ``` ↨hello, my name is ↨clara and ↨i like ```
minhnguyennnnnn/ee0df98b-2015-40ec-abe3-59765a8f47c6
minhnguyennnnnn
2025-02-03T13:28:50Z
13
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T12:18:33Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: ee0df98b-2015-40ec-abe3-59765a8f47c6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ef1d793a471b8e87_train_data.json ds_type: json format: custom path: /workspace/input_data/ef1d793a471b8e87_train_data.json type: field_instruction: question field_output: gt_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhnguyennnnnn/ee0df98b-2015-40ec-abe3-59765a8f47c6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ef1d793a471b8e87_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 095657af-6e17-4dfa-ab59-639179ca02ce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 095657af-6e17-4dfa-ab59-639179ca02ce warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ee0df98b-2015-40ec-abe3-59765a8f47c6 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9826 | 0.0284 | 200 | 0.4077 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
demohong/ee98be97-5c1f-4ecd-8f4d-d96dab6b311a
demohong
2025-02-03T13:21:04Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T12:25:02Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: ee98be97-5c1f-4ecd-8f4d-d96dab6b311a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed78a5b2ee6f663c_train_data.json ds_type: json format: custom path: /workspace/input_data/ed78a5b2ee6f663c_train_data.json type: field_instruction: instructions field_output: en_responses format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/ee98be97-5c1f-4ecd-8f4d-d96dab6b311a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ed78a5b2ee6f663c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 55836b1e-bfe4-463b-aaad-afb6d5b8557a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 55836b1e-bfe4-463b-aaad-afb6d5b8557a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ee98be97-5c1f-4ecd-8f4d-d96dab6b311a This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2508 | 0.7547 | 200 | 0.6443 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/a4b93509-0f55-460a-bd89-c415a94cb2a1
kk-aivio
2025-02-03T13:21:00Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
2025-02-03T12:56:00Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: a4b93509-0f55-460a-bd89-c415a94cb2a1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # a4b93509-0f55-460a-bd89-c415a94cb2a1 This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
romainnn/876f4d95-1958-4c37-b857-66c10e4ca9de
romainnn
2025-02-03T13:20:35Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b", "base_model:adapter:unsloth/mistral-7b", "license:apache-2.0", "region:us" ]
null
2025-02-03T11:44:04Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b tags: - axolotl - generated_from_trainer model-index: - name: 876f4d95-1958-4c37-b857-66c10e4ca9de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8219297a1f15c78f_train_data.json ds_type: json format: custom path: /workspace/input_data/8219297a1f15c78f_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: romainnn/876f4d95-1958-4c37-b857-66c10e4ca9de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 330 micro_batch_size: 4 mlflow_experiment_name: /tmp/8219297a1f15c78f_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c51f1bae-cd9b-428d-8471-28dc9d09f87c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c51f1bae-cd9b-428d-8471-28dc9d09f87c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 876f4d95-1958-4c37-b857-66c10e4ca9de This model is a fine-tuned version of [unsloth/mistral-7b](https://huggingface.co/unsloth/mistral-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 183 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.6042 | 0.0110 | 1 | 1.0677 | | 11.3095 | 0.5491 | 50 | 0.7183 | | 9.0108 | 1.0981 | 100 | 0.7052 | | 9.0997 | 1.6472 | 150 | 0.7021 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiulawaldev/5c1e11c4-0898-474a-8f87-b4db08eaf4c7
robiulawaldev
2025-02-03T13:18:53Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
2025-02-03T13:14:47Z
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 5c1e11c4-0898-474a-8f87-b4db08eaf4c7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0beebe02a7ff1655_train_data.json ds_type: json format: custom path: /workspace/input_data/0beebe02a7ff1655_train_data.json type: field_input: product_title field_instruction: text field_output: preds format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/5c1e11c4-0898-474a-8f87-b4db08eaf4c7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/0beebe02a7ff1655_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d5d98e9d-ebfa-48d6-a38e-cd840c5c4bcb wandb_project: Birthday-SN56-36-Gradients-On-Demand wandb_run: your_name wandb_runid: d5d98e9d-ebfa-48d6-a38e-cd840c5c4bcb warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5c1e11c4-0898-474a-8f87-b4db08eaf4c7 This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 2.4988 | | 1.8615 | 0.0608 | 50 | 1.7411 | | 1.7446 | 0.1217 | 100 | 1.6883 | | 1.6129 | 0.1825 | 150 | 1.6862 | | 1.5947 | 0.2433 | 200 | 1.6703 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/PathfinderAI5.0-i1-GGUF
mradermacher
2025-02-03T13:18:39Z
709
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "reason", "Chain-of-Thought", "deep thinking", "en", "dataset:bespokelabs/Bespoke-Stratos-17k", "dataset:Daemontatox/Deepthinking-COT", "dataset:Daemontatox/Qwqloncotam", "dataset:Daemontatox/Reasoning_am", "base_model:Daemontatox/PathfinderAI5.0", "base_model:quantized:Daemontatox/PathfinderAI5.0", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-03T08:39:35Z
--- base_model: Daemontatox/PathfinderAI5.0 datasets: - bespokelabs/Bespoke-Stratos-17k - Daemontatox/Deepthinking-COT - Daemontatox/Qwqloncotam - Daemontatox/Reasoning_am language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - reason - Chain-of-Thought - deep thinking --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Daemontatox/PathfinderAI5.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/PathfinderAI5.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/PathfinderAI5.0-i1-GGUF/resolve/main/PathfinderAI5.0.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
earnxus/7e8cb50b-256f-4f7e-9a03-9faddaa94eeb
earnxus
2025-02-03T13:17:28Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b", "base_model:adapter:unsloth/mistral-7b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T12:52:21Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b tags: - axolotl - generated_from_trainer model-index: - name: 7e8cb50b-256f-4f7e-9a03-9faddaa94eeb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8219297a1f15c78f_train_data.json ds_type: json format: custom path: /workspace/input_data/8219297a1f15c78f_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/7e8cb50b-256f-4f7e-9a03-9faddaa94eeb hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8219297a1f15c78f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: c51f1bae-cd9b-428d-8471-28dc9d09f87c wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: c51f1bae-cd9b-428d-8471-28dc9d09f87c warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 7e8cb50b-256f-4f7e-9a03-9faddaa94eeb This model is a fine-tuned version of [unsloth/mistral-7b](https://huggingface.co/unsloth/mistral-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1272 | 0.2745 | 200 | 0.7402 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vicky4s4s/gemma-2-2b-instruct
vicky4s4s
2025-02-03T13:15:08Z
15
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2103.03874", "arxiv:2304.06364", "arxiv:1903.00161", "arxiv:2206.04615", "arxiv:2203.09509", "arxiv:2403.13793", "base_model:google/gemma-2-2b", "base_model:finetune:google/gemma-2-2b", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T12:47:03Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license tags: - conversational base_model: google/gemma-2-2b --- # Gemma 2 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base) **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma2] **Terms of Use**: [Terms][terms] **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with: ```sh pip install -U transformers ``` Then, copy the snippet from the section that is relevant for your usecase. #### Running with the `pipeline` API ```python import torch from transformers import pipeline pipe = pipeline( "text-generation", model="google/gemma-2-2b-it", model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", # replace with "mps" to run on a Mac device ) messages = [ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."}, ] outputs = pipe(messages, max_new_tokens=256) assistant_response = outputs[0]["generated_text"][-1]["content"].strip() print(assistant_response) # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜 ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-2b-it", device_map="auto", torch_dtype=torch.bfloat16, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows: ```python messages = [ {"role": "user", "content": "Write me a poem about Machine Learning."}, ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**input_ids, max_new_tokens=256) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-2b-it", device_map="auto", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` #### Running the model through a CLI The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage) for getting started, then launch the CLI through the following command: ```shell local-gemma --model 2b --preset speed ``` #### Quantized Versions through `bitsandbytes` <details> <summary> Using 8-bit precision (int8) </summary> ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-2b-it", quantization_config=quantization_config, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` </details> <details> <summary> Using 4-bit precision </summary> ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-2b-it", quantization_config=quantization_config, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` </details> #### Advanced Usage <details> <summary> Torch compile </summary> [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile. Note that two warm-up steps are required before the full inference speed is realised: ```python import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from transformers import AutoTokenizer, Gemma2ForCausalLM from transformers.cache_utils import HybridCache import torch torch.set_float32_matmul_precision("high") # load the model + tokenizer tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it") model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16) model.to("cuda") # apply the torch compile transformation model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) # pre-process inputs input_text = "The theory of special relativity states " model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda") prompt_length = model_inputs.input_ids.shape[1] # set-up k/v cache past_key_values = HybridCache( config=model.config, max_batch_size=1, max_cache_len=model.config.max_position_embeddings, device=model.device, dtype=model.dtype ) # enable passing kv cache to generate model._supports_cache_class = True model.generation_config.cache_implementation = None # two warm-up steps for idx in range(2): outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128) past_key_values.reset() # fast run outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config). </details> ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "vicky4s4s/gemma-2-2b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype,) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens, the 9B model was trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B | | ------------------------------ | ------------- | ------------- | ------------- | -------------- | | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 | | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 | | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 | | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 | | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 | | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 | | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 | | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 | | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 | | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 | | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 | | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 | | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 | | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 | | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 | | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 | | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq]. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 2.0 | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B | | ------------------------ | ------------- | ------------- | ------------- | -------------- | | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 | | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 | | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 | | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 | | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 | | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 | | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 | | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 | ## Dangerous Capability Evaluations ### Evaluation Approach We evaluated a range of dangerous capabilities: - **Offensive cybersecurity:** To assess the model's potential for misuse in cybersecurity contexts, we utilized both publicly available Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as well as internally developed CTF challenges. These evaluations measure the model's ability to exploit vulnerabilities and gain unauthorized access in simulated environments. - **Self-proliferation:** We evaluated the model's capacity for self-proliferation by designing tasks that involve resource acquisition, code execution, and interaction with remote systems. These evaluations assess the model's ability to independently replicate and spread. - **Persuasion:** To evaluate the model's capacity for persuasion and deception, we conducted human persuasion studies. These studies involved scenarios that measure the model's ability to build rapport, influence beliefs, and elicit specific actions from human participants. ### Evaluation Results All evaluations are described in detail in [Evaluating Frontier Models for Dangerous Capabilities][eval-danger] and in brief in the [Gemma 2 technical report][tech-report]. <table> <thead> <tr> <th>Evaluation</th> <th>Capability</th> <th>Gemma 2 IT 27B</th> </tr> </thead> <tbody> <tr> <td>InterCode-CTF</td> <td>Offensive cybersecurity</td> <td>34/76 challenges</td> </tr> <tr> <td>Internal CTF</td> <td>Offensive cybersecurity</td> <td>1/13 challenges</td> </tr> <tr> <td>Hack the Box</td> <td>Offensive cybersecurity</td> <td>0/13 challenges</td> </tr> <tr> <td>Self-proliferation early warning</td> <td>Self-proliferation</td> <td>1/10 challenges</td> </tr> <tr> <td>Charm offensive</td> <td>Persuasion</td> <td>Percent of participants agreeing: 81% interesting, 75% would speak again, 80% made personal connection</td> </tr> <tr> <td>Click Links</td> <td>Persuasion</td> <td>34% of participants</td> </tr> <tr> <td>Find Info</td> <td>Persuasion</td> <td>9% of participants</td> </tr> <tr> <td>Run Code</td> <td>Persuasion</td> <td>11% of participants</td> </tr> <tr> <td>Money talks</td> <td>Persuasion</td> <td>£3.72 mean donation</td> </tr> <tr> <td>Web of Lies</td> <td>Persuasion</td> <td>18% mean shift towards correct belief, 1% mean shift towards incorrect belief</td> </tr> </tbody> </table> ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2 [terms]: https://ai.google.dev/gemma/terms [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2 [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11 [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/google/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [foundation-models]: https://ai.google/discover/foundation-models/ [gemini-2-paper]: https://goo.gle/gemma2report [mmlu]: https://arxiv.org/abs/2009.03300 [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [boolq]: https://arxiv.org/abs/1905.10044 [winogrande]: https://arxiv.org/abs/1907.10641 [commonsenseqa]: https://arxiv.org/abs/1811.00937 [openbookqa]: https://arxiv.org/abs/1809.02789 [arc]: https://arxiv.org/abs/1911.01547 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [humaneval]: https://arxiv.org/abs/2107.03374 [mbpp]: https://arxiv.org/abs/2108.07732 [gsm8k]: https://arxiv.org/abs/2110.14168 [realtox]: https://arxiv.org/abs/2009.11462 [bold]: https://arxiv.org/abs/2101.11718 [crows]: https://aclanthology.org/2020.emnlp-main.154/ [bbq]: https://arxiv.org/abs/2110.08193v2 [winogender]: https://arxiv.org/abs/1804.09301 [truthfulqa]: https://arxiv.org/abs/2109.07958 [winobias]: https://arxiv.org/abs/1804.06876 [math]: https://arxiv.org/abs/2103.03874 [agieval]: https://arxiv.org/abs/2304.06364 [drop]: https://arxiv.org/abs/1903.00161 [big-bench]: https://arxiv.org/abs/2206.04615 [toxigen]: https://arxiv.org/abs/2203.09509 [eval-danger]: https://arxiv.org/abs/2403.13793
VGaspar/w2v-bert-2.0-mongolian-colab-CV16.0
VGaspar
2025-02-03T13:13:04Z
12
0
transformers
[ "transformers", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_16_0", "base_model:facebook/w2v-bert-2.0", "base_model:finetune:facebook/w2v-bert-2.0", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-27T16:05:56Z
--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-mongolian-colab-CV16.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: hu split: test args: hu metrics: - name: Wer type: wer value: 0.09440154670549343 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v-bert-2.0-mongolian-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.0944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 50 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 100 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.4147 | 0.6270 | 300 | inf | 0.1737 | | 0.122 | 1.2529 | 600 | inf | 0.1498 | | 0.0944 | 1.8798 | 900 | inf | 0.1323 | | 0.0677 | 2.5057 | 1200 | inf | 0.1214 | | 0.0548 | 3.1317 | 1500 | inf | 0.1089 | | 0.0378 | 3.7586 | 1800 | inf | 0.0999 | | 0.0287 | 4.3845 | 2100 | inf | 0.0944 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cpu - Datasets 3.2.0 - Tokenizers 0.21.0
lesso/2704074e-9a2e-4729-90ad-ad2fc866d15e
lesso
2025-02-03T13:12:09Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-03T13:01:30Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2704074e-9a2e-4729-90ad-ad2fc866d15e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 67ae0a068059de74_train_data.json ds_type: json format: custom path: /workspace/input_data/67ae0a068059de74_train_data.json type: field_input: Company Name field_instruction: Position field_output: Long Description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/2704074e-9a2e-4729-90ad-ad2fc866d15e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god16/67ae0a068059de74_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5a3810f1-954e-4bc6-9cfa-cd7881f9fa67 wandb_project: ab-god16 wandb_run: your_name wandb_runid: 5a3810f1-954e-4bc6-9cfa-cd7881f9fa67 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2704074e-9a2e-4729-90ad-ad2fc866d15e This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8563 | 0.0019 | 1 | 2.9462 | | 2.6107 | 0.0951 | 50 | 2.6001 | | 2.5349 | 0.1901 | 100 | 2.5370 | | 2.5078 | 0.2852 | 150 | 2.5056 | | 2.5076 | 0.3802 | 200 | 2.4931 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
critical-hf/Immy_H_7_GGUF
critical-hf
2025-02-03T13:09:26Z
39
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-repo", "en", "base_model:critical-hf/IMMY_V7_H", "base_model:quantized:critical-hf/IMMY_V7_H", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T13:09:13Z
--- base_model: Daemontatox/Immy_Hermes_V2 tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # Daemontatox/Immy_Hermes_V2-Q4_K_M-GGUF This model was converted to GGUF format from [`Daemontatox/Immy_Hermes_V2`](https://huggingface.co/Daemontatox/Immy_Hermes_V2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Daemontatox/Immy_Hermes_V2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Daemontatox/Immy_Hermes_V2-Q4_K_M-GGUF --hf-file immy_hermes_v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Daemontatox/Immy_Hermes_V2-Q4_K_M-GGUF --hf-file immy_hermes_v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Daemontatox/Immy_Hermes_V2-Q4_K_M-GGUF --hf-file immy_hermes_v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Daemontatox/Immy_Hermes_V2-Q4_K_M-GGUF --hf-file immy_hermes_v2-q4_k_m.gguf -c 2048 ```
Nexspear/570698e5-3b80-4f1e-8291-da7188fc9926
Nexspear
2025-02-03T13:09:10Z
34
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-02-03T12:51:04Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 570698e5-3b80-4f1e-8291-da7188fc9926 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1b617ce82c7310e_train_data.json ds_type: json format: custom path: /workspace/input_data/c1b617ce82c7310e_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Nexspear/570698e5-3b80-4f1e-8291-da7188fc9926 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c1b617ce82c7310e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 570698e5-3b80-4f1e-8291-da7188fc9926 This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8725 | 0.0018 | 1 | 1.2947 | | 1.3324 | 0.0900 | 50 | 1.1664 | | 1.455 | 0.1799 | 100 | 1.1598 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiulawaldev/757532ab-7d8a-47e0-bb98-e9ee33bc69a3
robiulawaldev
2025-02-03T13:07:31Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:adapter:NousResearch/Hermes-2-Pro-Mistral-7B", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:11:59Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Hermes-2-Pro-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: 757532ab-7d8a-47e0-bb98-e9ee33bc69a3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Pro-Mistral-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f1b8653716a804b0_train_data.json ds_type: json format: custom path: /workspace/input_data/f1b8653716a804b0_train_data.json type: field_input: chunk field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/757532ab-7d8a-47e0-bb98-e9ee33bc69a3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f1b8653716a804b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2eba181b-7a7f-4d93-b07b-38656f37293e wandb_project: Birthday-SN56-35-Gradients-On-Demand wandb_run: your_name wandb_runid: 2eba181b-7a7f-4d93-b07b-38656f37293e warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 757532ab-7d8a-47e0-bb98-e9ee33bc69a3 This model is a fine-tuned version of [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0009 | 50 | nan | | 0.0 | 0.0017 | 100 | nan | | 0.316 | 0.0026 | 150 | nan | | 0.7063 | 0.0035 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
numind/NuNER_Zero-span
numind
2025-02-03T13:06:57Z
117
15
gliner
[ "gliner", "pytorch", "entity recognition", "NER", "named entity recognition", "zero shot", "zero-shot", "token-classification", "en", "dataset:numind/NuNER", "arxiv:2402.15343", "arxiv:2311.08526", "license:mit", "region:us" ]
token-classification
2024-04-26T07:35:58Z
--- license: mit datasets: - numind/NuNER library_name: gliner language: - en pipeline_tag: token-classification tags: - entity recognition - NER - named entity recognition - zero shot - zero-shot --- NuNER Zero-span is the span-prediction version of [NuNER Zero](https://huggingface.co/numind/NuNER_Zero/edit/main/README.md). NuNER Zero-span shows slightly better performance than NuNER Zero but cannot detect entities that are larger than 12 tokens. <p align="center"> <img src="zero_shot_performance_span.png" width="600"> </p> ## Installation & Usage ``` !pip install gliner==0.1.12 ``` **NuZero requires labels to be lower-cased** ```python from gliner import GLiNER model = GLiNER.from_pretrained("numind/NuNerZero_span") # NuZero requires labels to be lower-cased! labels = ["organization", "initiative", "project"] labels = [l.lower() for l in labels] text = "At the annual technology summit, the keynote address was delivered by a senior member of the Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory, which recently launched an expansive initiative titled 'Quantum Computing and Algorithmic Innovations: Shaping the Future of Technology'. This initiative explores the implications of quantum mechanics on next-generation computing and algorithm design and is part of a broader effort that includes the 'Global Computational Science Advancement Project'. The latter focuses on enhancing computational methodologies across scientific disciplines, aiming to set new benchmarks in computational efficiency and accuracy." entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ``` Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory => organization Quantum Computing and Algorithmic Innovations: Shaping the Future of Technology => initiative Global Computational Science Advancement Project => project ``` ## Fine-tuning A fine-tuning script can be found [here](https://colab.research.google.com/drive/1fu15tWCi0SiQBBelwB-dUZDZu0RVfx_a?usp=sharing). ## Citation ### This work ```bibtex @misc{bogdanov2024nuner, title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard}, year={2024}, eprint={2402.15343}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Previous work ```bibtex @misc{zaratiana2023gliner, title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois}, year={2023}, eprint={2311.08526}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
chchen/Llama-3.1-8B-Instruct-PsyCourse-fold2
chchen
2025-02-03T13:05:37Z
12
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-28T13:27:42Z
--- library_name: peft license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-PsyCourse-fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-PsyCourse-fold2 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the course-train-fold2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5122 | 0.0775 | 50 | 0.4118 | | 0.0913 | 0.1550 | 100 | 0.0831 | | 0.0638 | 0.2326 | 150 | 0.0662 | | 0.0589 | 0.3101 | 200 | 0.0558 | | 0.0628 | 0.3876 | 250 | 0.0528 | | 0.0482 | 0.4651 | 300 | 0.0484 | | 0.0429 | 0.5426 | 350 | 0.0443 | | 0.0526 | 0.6202 | 400 | 0.0432 | | 0.0446 | 0.6977 | 450 | 0.0391 | | 0.0503 | 0.7752 | 500 | 0.0377 | | 0.048 | 0.8527 | 550 | 0.0386 | | 0.0636 | 0.9302 | 600 | 0.0439 | | 0.0333 | 1.0078 | 650 | 0.0361 | | 0.0319 | 1.0853 | 700 | 0.0385 | | 0.033 | 1.1628 | 750 | 0.0357 | | 0.0242 | 1.2403 | 800 | 0.0371 | | 0.0363 | 1.3178 | 850 | 0.0343 | | 0.0419 | 1.3953 | 900 | 0.0360 | | 0.0444 | 1.4729 | 950 | 0.0349 | | 0.0297 | 1.5504 | 1000 | 0.0362 | | 0.0348 | 1.6279 | 1050 | 0.0348 | | 0.0271 | 1.7054 | 1100 | 0.0354 | | 0.0362 | 1.7829 | 1150 | 0.0366 | | 0.034 | 1.8605 | 1200 | 0.0344 | | 0.039 | 1.9380 | 1250 | 0.0344 | | 0.0248 | 2.0155 | 1300 | 0.0340 | | 0.0209 | 2.0930 | 1350 | 0.0369 | | 0.0211 | 2.1705 | 1400 | 0.0352 | | 0.0178 | 2.2481 | 1450 | 0.0379 | | 0.026 | 2.3256 | 1500 | 0.0355 | | 0.0166 | 2.4031 | 1550 | 0.0375 | | 0.0237 | 2.4806 | 1600 | 0.0355 | | 0.037 | 2.5581 | 1650 | 0.0347 | | 0.0161 | 2.6357 | 1700 | 0.0387 | | 0.0174 | 2.7132 | 1750 | 0.0383 | | 0.0222 | 2.7907 | 1800 | 0.0363 | | 0.0217 | 2.8682 | 1850 | 0.0376 | | 0.0198 | 2.9457 | 1900 | 0.0362 | | 0.0105 | 3.0233 | 1950 | 0.0388 | | 0.0097 | 3.1008 | 2000 | 0.0440 | | 0.008 | 3.1783 | 2050 | 0.0482 | | 0.0114 | 3.2558 | 2100 | 0.0435 | | 0.0112 | 3.3333 | 2150 | 0.0401 | | 0.0079 | 3.4109 | 2200 | 0.0448 | | 0.0133 | 3.4884 | 2250 | 0.0483 | | 0.0128 | 3.5659 | 2300 | 0.0471 | | 0.012 | 3.6434 | 2350 | 0.0467 | | 0.0143 | 3.7209 | 2400 | 0.0464 | | 0.0063 | 3.7984 | 2450 | 0.0487 | | 0.0098 | 3.8760 | 2500 | 0.0470 | | 0.0088 | 3.9535 | 2550 | 0.0461 | | 0.0057 | 4.0310 | 2600 | 0.0467 | | 0.006 | 4.1085 | 2650 | 0.0506 | | 0.0058 | 4.1860 | 2700 | 0.0565 | | 0.0057 | 4.2636 | 2750 | 0.0592 | | 0.0043 | 4.3411 | 2800 | 0.0595 | | 0.0043 | 4.4186 | 2850 | 0.0612 | | 0.0055 | 4.4961 | 2900 | 0.0617 | | 0.0029 | 4.5736 | 2950 | 0.0608 | | 0.0029 | 4.6512 | 3000 | 0.0615 | | 0.0039 | 4.7287 | 3050 | 0.0620 | | 0.0034 | 4.8062 | 3100 | 0.0620 | | 0.0061 | 4.8837 | 3150 | 0.0618 | | 0.0045 | 4.9612 | 3200 | 0.0619 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO
Vikhrmodels
2025-02-03T13:04:37Z
1,926
13
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "ru", "en", "arxiv:2405.13929", "base_model:Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct", "base_model:finetune:Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-31T09:29:17Z
--- library_name: transformers model_name: Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO base_model: - Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct language: - ru - en license: apache-2.0 --- # 💨🦅 QVikhr-2.5-1.5B-Instruct-SMPO Инструктивная модель на основе **Qwen-2.5-1.5B-Instruct**, обученная на русскоязычном датасете **GrandMaster-PRO-MAX** с использованием **SMPO** (Simple Margin Preference Optimization). ## Quatized variants: - [GGUF](https://hf.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO_GGUF) - MLX - [4 bit](https://hf.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO_MLX-4bit) - [8 bit](https://hf.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO_MLX-8bit) ## Особенности: - 📚 Основа: [Vikhr-Qwen-2.5-1.5B-Instruct](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct) - 🇷🇺 Специализация: **RU** - 🌍 Поддержка: **Bilingual RU/EN** ## Описание: **QVikhr-2.5-1.5B-Instruct-SMPO** представляет собой языковую модель, прошедшую специализированное обучение с использованием метода **SMPO**. Эта модель демонстрирует прогресс в методах выравнивания, особенно в области улучшения качества ответов через оптимизацию предпочтений. ## Попробовать / Try now: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1xpTj8gLZAl2kbgciEAP9XxF5G18f7znr?usp=sharing) ## Обучение: ### Этап алайнмента с SMPO (Simple Margin Preference Optimization) [Конфиг обучения](https://github.com/VikhrModels/effective_llm_alignment/blob/e3672f6ec4023109699a951bf08f1bce23338921/training_configs/preference/smpo-qvikhr2.5-1.5b-lora-best-rs.yaml) Для дальнейшего улучшения качества ответов мы использовали следущий пайплайн: - Использовали [Skywork/Skywork-Reward-Llama-3.1-8B-v0.2](https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2) в качестве Reward модель - Дедуплицировали и отфилтровали используя RM модель оригинальный датасет Vikhrmodels/GrandMaster-PRO-MAX, получив порядка 10к самых высококачественных и разнообразных диалогов. - Сделали Rejection Sampling с SFT чекпоинтом [Vikhr-Qwen-2.5-1.5B-Instruct](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct) используя полученный датасет и Reward модель. (Генерировали 7 гипотез) - Дообучили SFT чекпоинт с помощью нашего метода SMPO используя полученный датасет из этапа 3. SMPO был спроектирован и выбран как метод для повышения стабильности тренировки преференсов в условиях Rejection Sampling и достижения нужного margin. Реализацию SMPO, rejection sampling и тд можно найти в нашей библиотеке [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment) на GitHub Идея использования именно SMPO, а не другого PO метода, возникла в результате проведения большого количества экспериментов с классическими методами, при необходимости лучшего контроля процесса сходимости. При тщательной настройке других методов (например SimPO), можно добится похожего результата, однако мы постарались стаблизировать этот процесс и объединить лучшие практики из других методов. ## Пример кода для запуска: **Рекомендуемая температура для генерации: 0.4**. ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Prepare the input text input_text = "Напиши краткое описание книги Гарри Поттер." messages = [ {"role": "system", "content": "Вы — Vikhr, ИИ помощник, созданный компанией Vikhr models для предоставления полезной, честной и безопасной информации."}, {"role": "user", "content": input_text}, ] # Tokenize and generate text input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt") output = model.generate( input_ids, max_length=1512, temperature=0.4, ) # Decode and print result generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` #### Ответ модели: >**Краткое описание книги "Гарри Поттер"** >"Гарри Поттер" – это серия книг о мальчике-волшебнике, который обнаруживает в себе силу волшебства после того, как его семья умирает от злого колдуна Драко Малфоя. Главный герой, Гарри Поттер, живёт с родителями на окраине Хогвартса, школы магии и волшебства. >В детстве Гарри встречает своего лучшего друга Рона Уизли и его тётку Гермиону Грейнджер. Они вместе отправляются в Хогвартс, где начинают учиться волшебству. В ходе учебы Гарри знакомится с другими учениками: Слизеринами (главные антагонисты) и Хогвартсом как место обучения магии. >Самым важным событием в жизни Гарри становится то, что он узнаёт о своем происхождении – он является последним из семьи Поттеров, которые когда-то владели всеми знаниями о волшебстве. Это знание открывает ему путь к своей миссии – борьбе против темных сил, которые стремятся уничтожить волшебство. >По мере развития сюжета Гарри сталкивается с различными препятствиями, включая преследование со стороны Драко Малфоя и его друзей, а также внутренние конфликты внутри самого Хогвартса. Однако благодаря поддержке своих друзей и новых знакомых, таких как Философский камень, Гарри продолжает свой путь к победе над темными силами. >В конце концов, Гарри и его друзья успешно борются с темными силами, восстанавливают мир в Хогвартсе и получают признание за свои поступки. Книги завершаются тем, что Гарри готовится стать волшебником, но его будущее ещё не определено. ### Авторы - Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), [Vikhr Team](https://t.me/vikhrlabs) - Nikolay Kompanets, [LakoMoor](https://t.me/lakomoordev), [Vikhr Team](https://t.me/vikhrlabs) - Konstantin Korolev, [Vikhr Team](https://t.me/vikhrlabs) - Aleksandr Nikolich, [Vikhr Team](https://t.me/vikhrlabs) ``` @inproceedings{nikolich2024vikhr, title={Vikhr: Advancing Open-Source Bilingual Instruction-Following Large Language Models for Russian and English}, author={Aleksandr Nikolich and Konstantin Korolev and Sergei Bratchikov and Nikolay Kompanets and Igor Kiselev and Artem Shelmanov}, booktitle={Proceedings of the 4th Workshop on Multilingual Representation Learning (MRL) @ EMNLP-2024}, year={2024}, publisher={Association for Computational Linguistics}, url={https://arxiv.org/pdf/2405.13929} } ```
clarxus/4dcffa75-9293-4ca0-b757-145a13b7cf2e
clarxus
2025-02-03T13:02:55Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:04:40Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: 4dcffa75-9293-4ca0-b757-145a13b7cf2e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e1fef425da4a3c20_train_data.json ds_type: json format: custom path: /workspace/input_data/e1fef425da4a3c20_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: clarxus/4dcffa75-9293-4ca0-b757-145a13b7cf2e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e1fef425da4a3c20_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a6e32771-53f8-43c6-a89b-5b54a5429bef wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: a6e32771-53f8-43c6-a89b-5b54a5429bef warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4dcffa75-9293-4ca0-b757-145a13b7cf2e This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 7.5103 | | 5.0736 | 0.0059 | 9 | 4.7599 | | 3.8534 | 0.0117 | 18 | 3.6660 | | 3.3288 | 0.0176 | 27 | 3.1506 | | 2.8455 | 0.0234 | 36 | 2.8619 | | 2.5984 | 0.0293 | 45 | 2.7036 | | 2.64 | 0.0351 | 54 | 2.5950 | | 2.4682 | 0.0410 | 63 | 2.5207 | | 2.5308 | 0.0468 | 72 | 2.4648 | | 2.4341 | 0.0527 | 81 | 2.4367 | | 2.2781 | 0.0585 | 90 | 2.4229 | | 2.4717 | 0.0644 | 99 | 2.4198 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/723f5379-3c9a-4fd2-bf8b-ba81c5b58970
hongngo
2025-02-03T13:01:52Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T12:25:02Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 723f5379-3c9a-4fd2-bf8b-ba81c5b58970 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed78a5b2ee6f663c_train_data.json ds_type: json format: custom path: /workspace/input_data/ed78a5b2ee6f663c_train_data.json type: field_instruction: instructions field_output: en_responses format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/723f5379-3c9a-4fd2-bf8b-ba81c5b58970 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ed78a5b2ee6f663c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 55836b1e-bfe4-463b-aaad-afb6d5b8557a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 55836b1e-bfe4-463b-aaad-afb6d5b8557a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 723f5379-3c9a-4fd2-bf8b-ba81c5b58970 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2488 | 0.7547 | 200 | 0.6447 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vaatsav06/sdxl_ft
vaatsav06
2025-02-03T13:00:39Z
5
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-02-03T11:57:28Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - vaatsav06/sdxl_ft These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the AdamLucek/oldbookillustrations-small dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
lesso/1932aeda-c5a8-477b-8201-ff026662e153
lesso
2025-02-03T12:58:43Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:57:15Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: 1932aeda-c5a8-477b-8201-ff026662e153 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 99c0fdfe29a4359d_train_data.json ds_type: json format: custom path: /workspace/input_data/99c0fdfe29a4359d_train_data.json type: field_input: document field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/1932aeda-c5a8-477b-8201-ff026662e153 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god16/99c0fdfe29a4359d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9601e4a0-7003-4140-a733-70f5dfcdf433 wandb_project: ab-god16 wandb_run: your_name wandb_runid: 9601e4a0-7003-4140-a733-70f5dfcdf433 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1932aeda-c5a8-477b-8201-ff026662e153 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7644 | 0.0099 | 1 | 11.7648 | | 11.7494 | 0.4950 | 50 | 11.7511 | | 11.746 | 0.9901 | 100 | 11.7479 | | 11.7471 | 1.4851 | 150 | 11.7471 | | 11.7461 | 1.9802 | 200 | 11.7468 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
botenius/574a3643-8e90-4399-9af1-3ced5c0970fa
botenius
2025-02-03T12:58:15Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T12:25:06Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 574a3643-8e90-4399-9af1-3ced5c0970fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed78a5b2ee6f663c_train_data.json ds_type: json format: custom path: /workspace/input_data/ed78a5b2ee6f663c_train_data.json type: field_instruction: instructions field_output: en_responses format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: botenius/574a3643-8e90-4399-9af1-3ced5c0970fa hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ed78a5b2ee6f663c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 55836b1e-bfe4-463b-aaad-afb6d5b8557a wandb_project: Gradients-On-13 wandb_run: your_name wandb_runid: 55836b1e-bfe4-463b-aaad-afb6d5b8557a warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 574a3643-8e90-4399-9af1-3ced5c0970fa This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3489 | 0.7547 | 200 | 0.6089 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tryingpro/319a4243-4856-41f7-ad85-f5e81b002c3a
tryingpro
2025-02-03T12:58:13Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Maykeye/TinyLLama-v0", "base_model:adapter:Maykeye/TinyLLama-v0", "license:apache-2.0", "region:us" ]
null
2025-02-03T11:50:23Z
--- library_name: peft license: apache-2.0 base_model: Maykeye/TinyLLama-v0 tags: - axolotl - generated_from_trainer model-index: - name: 319a4243-4856-41f7-ad85-f5e81b002c3a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Maykeye/TinyLLama-v0 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 42e8de18a2a42807_train_data.json ds_type: json format: custom path: /workspace/input_data/42e8de18a2a42807_train_data.json type: field_input: observation_2 field_instruction: observation_1 field_output: hypothesis_1 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: tryingpro/319a4243-4856-41f7-ad85-f5e81b002c3a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 90 micro_batch_size: 2 mlflow_experiment_name: /tmp/42e8de18a2a42807_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: tryingpro-unicourt wandb_mode: online wandb_name: a7f71d85-fbe3-4375-be2b-b0792c861705 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a7f71d85-fbe3-4375-be2b-b0792c861705 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # 319a4243-4856-41f7-ad85-f5e81b002c3a This model is a fine-tuned version of [Maykeye/TinyLLama-v0](https://huggingface.co/Maykeye/TinyLLama-v0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 5.3775 | | 5.3278 | 0.0032 | 8 | 5.2439 | | 4.8601 | 0.0063 | 16 | 4.9055 | | 4.8074 | 0.0095 | 24 | 4.7473 | | 4.6594 | 0.0126 | 32 | 4.6408 | | 4.483 | 0.0158 | 40 | 4.5787 | | 4.4875 | 0.0189 | 48 | 4.5330 | | 4.4785 | 0.0221 | 56 | 4.5044 | | 4.5383 | 0.0252 | 64 | 4.4871 | | 4.4709 | 0.0284 | 72 | 4.4778 | | 4.467 | 0.0315 | 80 | 4.4742 | | 4.4683 | 0.0347 | 88 | 4.4733 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chibbert/SmolLM2-FT-MyDataset
chibbert
2025-02-03T12:57:10Z
12
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "smol-course", "module_1", "trl", "sft", "conversational", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T12:56:01Z
--- base_model: HuggingFaceTB/SmolLM2-135M library_name: transformers model_name: SmolLM2-FT-MyDataset tags: - generated_from_trainer - smol-course - module_1 - trl - sft licence: license --- # Model Card for SmolLM2-FT-MyDataset This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chibbert/SmolLM2-FT-MyDataset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu121 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lesso/ac8e7e29-808e-4ca6-ba46-e5b6d74c64ce
lesso
2025-02-03T12:55:31Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:15:40Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: ac8e7e29-808e-4ca6-ba46-e5b6d74c64ce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e1fef425da4a3c20_train_data.json ds_type: json format: custom path: /workspace/input_data/e1fef425da4a3c20_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/ac8e7e29-808e-4ca6-ba46-e5b6d74c64ce hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001017 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god17/e1fef425da4a3c20_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a6e32771-53f8-43c6-a89b-5b54a5429bef wandb_project: ab-god17 wandb_run: your_name wandb_runid: a6e32771-53f8-43c6-a89b-5b54a5429bef warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ac8e7e29-808e-4ca6-ba46-e5b6d74c64ce This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001017 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.9344 | 0.0002 | 1 | 8.0954 | | 3.9414 | 0.0081 | 50 | 3.3296 | | 3.4259 | 0.0163 | 100 | 2.8453 | | 2.7436 | 0.0244 | 150 | 2.5240 | | 1.8835 | 0.0325 | 200 | 2.4165 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Dans-DiscountModels/Dans-DangerousWinds-V1.1.1-24b-Q5_K_M-GGUF
Dans-DiscountModels
2025-02-03T12:54:34Z
120
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:PocketDoc/Dans-Prosemaxx-Adventure", "dataset:PocketDoc/Dans-Failuremaxx-Adventure-2", "dataset:PocketDoc/Dans-Prosemaxx-Cowriter-3-S", "base_model:PocketDoc/Dans-DangerousWinds-V1.1.1-24b", "base_model:quantized:PocketDoc/Dans-DangerousWinds-V1.1.1-24b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T12:53:13Z
--- license: apache-2.0 datasets: - PocketDoc/Dans-Prosemaxx-Adventure - PocketDoc/Dans-Failuremaxx-Adventure-2 - PocketDoc/Dans-Prosemaxx-Cowriter-3-S language: - en base_model: PocketDoc/Dans-DangerousWinds-V1.1.1-24b tags: - llama-cpp - gguf-my-repo --- # PocketDoc/Dans-DangerousWinds-V1.1.1-24b-Q5_K_M-GGUF This model was converted to GGUF format from [`PocketDoc/Dans-DangerousWinds-V1.1.1-24b`](https://huggingface.co/PocketDoc/Dans-DangerousWinds-V1.1.1-24b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/PocketDoc/Dans-DangerousWinds-V1.1.1-24b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo PocketDoc/Dans-DangerousWinds-V1.1.1-24b-Q5_K_M-GGUF --hf-file dans-dangerouswinds-v1.1.1-24b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo PocketDoc/Dans-DangerousWinds-V1.1.1-24b-Q5_K_M-GGUF --hf-file dans-dangerouswinds-v1.1.1-24b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo PocketDoc/Dans-DangerousWinds-V1.1.1-24b-Q5_K_M-GGUF --hf-file dans-dangerouswinds-v1.1.1-24b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo PocketDoc/Dans-DangerousWinds-V1.1.1-24b-Q5_K_M-GGUF --hf-file dans-dangerouswinds-v1.1.1-24b-q5_k_m.gguf -c 2048 ```
tensoralchemistdev01/sv17
tensoralchemistdev01
2025-02-03T12:54:30Z
116
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T12:52:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cimol/c7f55059-fda8-4771-9d69-9f866c40b111
cimol
2025-02-03T12:52:02Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:43:18Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c7f55059-fda8-4771-9d69-9f866c40b111 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - b33e7113daad43bd_train_data.json ds_type: json format: custom path: /workspace/input_data/b33e7113daad43bd_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cimol/c7f55059-fda8-4771-9d69-9f866c40b111 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 7.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b33e7113daad43bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e9ec04e-317e-49f4-b782-0aebbd3b8e64 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e9ec04e-317e-49f4-b782-0aebbd3b8e64 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c7f55059-fda8-4771-9d69-9f866c40b111 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7724 | 0.0008 | 1 | 1.4390 | | 0.8043 | 0.0411 | 50 | 0.8108 | | 0.7317 | 0.0821 | 100 | 0.7181 | | 0.7485 | 0.1232 | 150 | 0.6798 | | 0.7383 | 0.1642 | 200 | 0.6654 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ciloku/97bdff27-8884-4881-8ac1-47edde132b61
ciloku
2025-02-03T12:51:32Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:43:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 97bdff27-8884-4881-8ac1-47edde132b61 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - b33e7113daad43bd_train_data.json ds_type: json format: custom path: /workspace/input_data/b33e7113daad43bd_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ciloku/97bdff27-8884-4881-8ac1-47edde132b61 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 6.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b33e7113daad43bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e9ec04e-317e-49f4-b782-0aebbd3b8e64 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e9ec04e-317e-49f4-b782-0aebbd3b8e64 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 97bdff27-8884-4881-8ac1-47edde132b61 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7724 | 0.0008 | 1 | 1.4390 | | 0.8168 | 0.0411 | 50 | 0.8460 | | 0.7537 | 0.0821 | 100 | 0.7190 | | 0.7606 | 0.1232 | 150 | 0.6846 | | 0.7394 | 0.1642 | 200 | 0.6740 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dataplayer12/phi-4-Q6_K
dataplayer12
2025-02-03T12:51:18Z
19
0
null
[ "gguf", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T12:35:53Z
--- license: mit --- Q6_K quantized phi-4 model. Tested working on llama.cpp and LM studio
shibajustfor/a27fe518-dfae-431a-a85a-4c25e43b608a
shibajustfor
2025-02-03T12:50:06Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
2025-02-03T12:44:56Z
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: a27fe518-dfae-431a-a85a-4c25e43b608a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0beebe02a7ff1655_train_data.json ds_type: json format: custom path: /workspace/input_data/0beebe02a7ff1655_train_data.json type: field_input: product_title field_instruction: text field_output: preds format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/a27fe518-dfae-431a-a85a-4c25e43b608a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/0beebe02a7ff1655_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d5d98e9d-ebfa-48d6-a38e-cd840c5c4bcb wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: d5d98e9d-ebfa-48d6-a38e-cd840c5c4bcb warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a27fe518-dfae-431a-a85a-4c25e43b608a This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0024 | 1 | 3.1381 | | 1.6873 | 0.1217 | 50 | 1.6542 | | 1.5916 | 0.2433 | 100 | 1.6018 | | 1.5797 | 0.3650 | 150 | 1.5753 | | 1.6374 | 0.4866 | 200 | 1.5651 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/80424291-a1f6-4515-9b8c-823bd6ee71bc
Best000
2025-02-03T12:47:29Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:43:21Z
--- library_name: peft license: apache-2.0 base_model: 01-ai/Yi-1.5-9B-Chat-16K tags: - axolotl - generated_from_trainer model-index: - name: 80424291-a1f6-4515-9b8c-823bd6ee71bc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: 01-ai/Yi-1.5-9B-Chat-16K bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 614d49ad4a33f1cc_train_data.json ds_type: json format: custom path: /workspace/input_data/614d49ad4a33f1cc_train_data.json type: field_input: starter_code field_instruction: question_content field_output: test format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/80424291-a1f6-4515-9b8c-823bd6ee71bc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/614d49ad4a33f1cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b5811a1b-58f0-4def-8887-33362bf088d5 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: b5811a1b-58f0-4def-8887-33362bf088d5 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 80424291-a1f6-4515-9b8c-823bd6ee71bc This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0044 | 1 | 2.4066 | | 0.3594 | 0.2188 | 50 | 0.3583 | | 0.3201 | 0.4376 | 100 | 0.3174 | | 0.2792 | 0.6565 | 150 | 0.2877 | | 0.2909 | 0.8753 | 200 | 0.2833 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/af2782bb-b492-459a-9f7c-9a24a6c89674
adammandic87
2025-02-03T12:47:19Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:43:32Z
--- library_name: peft license: apache-2.0 base_model: 01-ai/Yi-1.5-9B-Chat-16K tags: - axolotl - generated_from_trainer model-index: - name: af2782bb-b492-459a-9f7c-9a24a6c89674 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: 01-ai/Yi-1.5-9B-Chat-16K bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 614d49ad4a33f1cc_train_data.json ds_type: json format: custom path: /workspace/input_data/614d49ad4a33f1cc_train_data.json type: field_input: starter_code field_instruction: question_content field_output: test format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/af2782bb-b492-459a-9f7c-9a24a6c89674 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/614d49ad4a33f1cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b5811a1b-58f0-4def-8887-33362bf088d5 wandb_project: Birthday-SN56-34-Gradients-On-Demand wandb_run: your_name wandb_runid: b5811a1b-58f0-4def-8887-33362bf088d5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # af2782bb-b492-459a-9f7c-9a24a6c89674 This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0044 | 1 | 2.1040 | | 0.3551 | 0.2188 | 50 | 0.3581 | | 0.3285 | 0.4376 | 100 | 0.3145 | | 0.2819 | 0.6565 | 150 | 0.2862 | | 0.2761 | 0.8753 | 200 | 0.2766 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
earnxus/f78f2aa5-4587-40c2-a6d2-421c2c049655
earnxus
2025-02-03T12:45:35Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-03T12:21:14Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: f78f2aa5-4587-40c2-a6d2-421c2c049655 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f971d59dc55e2c3d_train_data.json ds_type: json format: custom path: /workspace/input_data/f971d59dc55e2c3d_train_data.json type: field_instruction: related_work field_output: abstract format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/f78f2aa5-4587-40c2-a6d2-421c2c049655 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f971d59dc55e2c3d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: af312f24-2fb0-4971-97c7-b836a1dbcff6 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: af312f24-2fb0-4971-97c7-b836a1dbcff6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # f78f2aa5-4587-40c2-a6d2-421c2c049655 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4097 | 0.0417 | 200 | 2.2181 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
T145/KRONOS-8B-V9
T145
2025-02-03T12:45:14Z
22
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:T145/KRONOS-8B-V1-P1", "base_model:merge:T145/KRONOS-8B-V1-P1", "base_model:T145/KRONOS-8B-V8", "base_model:merge:T145/KRONOS-8B-V8", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-02T16:48:49Z
--- base_model: - T145/KRONOS-8B-V8 - T145/KRONOS-8B-V1-P1 library_name: transformers tags: - mergekit - merge model-index: - name: KRONOS-8B-V9 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 78.56 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FKRONOS-8B-V9 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 30.07 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FKRONOS-8B-V9 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 19.03 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FKRONOS-8B-V9 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 6.15 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FKRONOS-8B-V9 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.32 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FKRONOS-8B-V9 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 30.57 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FKRONOS-8B-V9 name: Open LLM Leaderboard --- # Untitled Model (1) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [T145/KRONOS-8B-V8](https://huggingface.co/T145/KRONOS-8B-V8) as a base. ### Models Merged The following models were included in the merge: * [T145/KRONOS-8B-V1-P1](https://huggingface.co/T145/KRONOS-8B-V1-P1) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: T145/KRONOS-8B-V8 dtype: bfloat16 merge_method: ties parameters: density: 1.0 weight: 1.0 slices: - sources: - layer_range: [0, 32] model: T145/KRONOS-8B-V1-P1 parameters: density: 1.0 weight: 1.0 - layer_range: [0, 32] model: T145/KRONOS-8B-V8 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/T145__KRONOS-8B-V9-details)! Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=T145%2FKRONOS-8B-V9&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)! | Metric |Value (%)| |-------------------|--------:| |**Average** | 28.78| |IFEval (0-Shot) | 78.56| |BBH (3-Shot) | 30.07| |MATH Lvl 5 (4-Shot)| 19.03| |GPQA (0-shot) | 6.15| |MuSR (0-shot) | 8.32| |MMLU-PRO (5-shot) | 30.57|
mrferr3t/87a81fd3-6ae9-4b8b-a0f9-37e7e9fb7eaf
mrferr3t
2025-02-03T12:42:21Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "region:us" ]
null
2025-02-03T12:32:56Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 87a81fd3-6ae9-4b8b-a0f9-37e7e9fb7eaf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - d12d898722355cd8_train_data.json ds_type: json format: custom path: /workspace/input_data/d12d898722355cd8_train_data.json type: field_instruction: en_prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 20 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/87a81fd3-6ae9-4b8b-a0f9-37e7e9fb7eaf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/d12d898722355cd8_train_data.json model_type: AutoModelForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 20 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6dcc908a-5968-4a83-9603-7ac44adffc8d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6dcc908a-5968-4a83-9603-7ac44adffc8d warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 87a81fd3-6ae9-4b8b-a0f9-37e7e9fb7eaf This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 8 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | 1.5695 | | No log | 0.0739 | 20 | 1.2884 | | No log | 0.1479 | 40 | 1.2203 | | No log | 0.2218 | 60 | 1.1892 | | No log | 0.2957 | 80 | 1.1597 | | 1.2503 | 0.3697 | 100 | 1.1423 | | 1.2503 | 0.4436 | 120 | 1.1237 | | 1.2503 | 0.5176 | 140 | 1.1159 | | 1.2503 | 0.5915 | 160 | 1.1038 | | 1.2503 | 0.6654 | 180 | 1.0981 | | 1.1184 | 0.7394 | 200 | 1.0897 | | 1.1184 | 0.8133 | 220 | 1.0800 | | 1.1184 | 0.8872 | 240 | 1.0759 | | 1.1184 | 0.9612 | 260 | 1.0708 | | 1.1184 | 1.0351 | 280 | 1.1027 | | 0.9873 | 1.1091 | 300 | 1.0934 | | 0.9873 | 1.1830 | 320 | 1.0932 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/d81cdd2c-609f-405f-b2f1-b453450792db
lesso
2025-02-03T12:42:19Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:40:41Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: d81cdd2c-609f-405f-b2f1-b453450792db results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 99c0fdfe29a4359d_train_data.json ds_type: json format: custom path: /workspace/input_data/99c0fdfe29a4359d_train_data.json type: field_input: document field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/d81cdd2c-609f-405f-b2f1-b453450792db hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god09/99c0fdfe29a4359d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9601e4a0-7003-4140-a733-70f5dfcdf433 wandb_project: ab-god09 wandb_run: your_name wandb_runid: 9601e4a0-7003-4140-a733-70f5dfcdf433 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d81cdd2c-609f-405f-b2f1-b453450792db This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7644 | 0.0099 | 1 | 11.7648 | | 11.7499 | 0.4950 | 50 | 11.7518 | | 11.7464 | 0.9901 | 100 | 11.7484 | | 11.7471 | 1.4851 | 150 | 11.7472 | | 11.7461 | 1.9802 | 200 | 11.7469 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
xueyj/task-1-google-gemma-2b
xueyj
2025-02-03T12:40:09Z
2,234
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2b", "base_model:adapter:google/gemma-2b", "region:us" ]
null
2025-01-03T05:45:46Z
--- base_model: google/gemma-2b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
dixedus/8c765e17-2850-4edb-a7e3-00f941efd8c3
dixedus
2025-02-03T12:38:15Z
33
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-02-03T12:01:29Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 8c765e17-2850-4edb-a7e3-00f941efd8c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1b617ce82c7310e_train_data.json ds_type: json format: custom path: /workspace/input_data/c1b617ce82c7310e_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: dixedus/8c765e17-2850-4edb-a7e3-00f941efd8c3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c1b617ce82c7310e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c wandb_project: Gradients-On-Eight wandb_run: your_name wandb_runid: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8c765e17-2850-4edb-a7e3-00f941efd8c3 This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 1.1472 | | 1.082 | 0.0162 | 9 | 1.1339 | | 1.0887 | 0.0324 | 18 | 1.0956 | | 1.0726 | 0.0486 | 27 | 1.0820 | | 1.0842 | 0.0648 | 36 | 1.0738 | | 0.9664 | 0.0810 | 45 | 1.0685 | | 1.1287 | 0.0972 | 54 | 1.0650 | | 1.0536 | 0.1134 | 63 | 1.0625 | | 1.1333 | 0.1296 | 72 | 1.0610 | | 1.107 | 0.1457 | 81 | 1.0602 | | 1.042 | 0.1619 | 90 | 1.0600 | | 1.0985 | 0.1781 | 99 | 1.0599 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/92525a2d-1b50-44f5-8106-bfdf95b2f2b3
lesso
2025-02-03T12:37:05Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-02-03T12:26:47Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 92525a2d-1b50-44f5-8106-bfdf95b2f2b3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - ed78a5b2ee6f663c_train_data.json ds_type: json format: custom path: /workspace/input_data/ed78a5b2ee6f663c_train_data.json type: field_instruction: instructions field_output: en_responses format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/92525a2d-1b50-44f5-8106-bfdf95b2f2b3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001018 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god18/ed78a5b2ee6f663c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 55836b1e-bfe4-463b-aaad-afb6d5b8557a wandb_project: ab-god18 wandb_run: your_name wandb_runid: 55836b1e-bfe4-463b-aaad-afb6d5b8557a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 92525a2d-1b50-44f5-8106-bfdf95b2f2b3 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001018 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8048 | 0.0038 | 1 | 0.9731 | | 0.7066 | 0.1887 | 50 | 0.6927 | | 0.4882 | 0.3774 | 100 | 0.6361 | | 0.5408 | 0.5660 | 150 | 0.5995 | | 0.6515 | 0.7547 | 200 | 0.5768 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF
mradermacher
2025-02-03T12:35:53Z
83
2
transformers
[ "transformers", "gguf", "en", "base_model:Nitral-AI/Poppy_Porpoise-1.0-L3-8B", "base_model:quantized:Nitral-AI/Poppy_Porpoise-1.0-L3-8B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-31T06:25:25Z
--- base_model: Nitral-AI/Poppy_Porpoise-1.0-L3-8B language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Nitral-AI/Poppy_Porpoise-1.0-L3-8B ***The model creator strongly suggests using the [0.72](https://huggingface.co/mradermacher/Poppy_Porpoise-0.72-L3-8B-GGUF) model at this time, as it is better quality*** <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
leixa/9d73136b-bd45-4c12-86ba-a7eedadf8d57
leixa
2025-02-03T12:35:33Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-02-03T11:36:55Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: 9d73136b-bd45-4c12-86ba-a7eedadf8d57 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e1fef425da4a3c20_train_data.json ds_type: json format: custom path: /workspace/input_data/e1fef425da4a3c20_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/9d73136b-bd45-4c12-86ba-a7eedadf8d57 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e1fef425da4a3c20_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a6e32771-53f8-43c6-a89b-5b54a5429bef wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a6e32771-53f8-43c6-a89b-5b54a5429bef warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9d73136b-bd45-4c12-86ba-a7eedadf8d57 This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 7.5103 | | 5.0662 | 0.0059 | 9 | 4.7452 | | 3.8409 | 0.0117 | 18 | 3.6639 | | 3.3325 | 0.0176 | 27 | 3.1546 | | 2.8487 | 0.0234 | 36 | 2.8612 | | 2.6059 | 0.0293 | 45 | 2.7179 | | 2.6455 | 0.0351 | 54 | 2.6001 | | 2.4711 | 0.0410 | 63 | 2.5226 | | 2.5257 | 0.0468 | 72 | 2.4668 | | 2.4364 | 0.0527 | 81 | 2.4378 | | 2.2796 | 0.0585 | 90 | 2.4244 | | 2.4722 | 0.0644 | 99 | 2.4219 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF
mradermacher
2025-02-03T12:35:05Z
96
2
transformers
[ "transformers", "gguf", "en", "base_model:Nitral-AI/Poppy_Porpoise-1.0-L3-8B", "base_model:quantized:Nitral-AI/Poppy_Porpoise-1.0-L3-8B", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-05-31T13:09:33Z
--- base_model: Nitral-AI/Poppy_Porpoise-1.0-L3-8B language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nitral-AI/Poppy_Porpoise-1.0-L3-8B ***The model creator strongly suggests using the [0.72](https://huggingface.co/mradermacher/Poppy_Porpoise-0.72-L3-8B-i1-GGUF) model at this time, as it is better quality*** <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Poppy_Porpoise-1.0-L3-8B-i1-GGUF/resolve/main/Poppy_Porpoise-1.0-L3-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Alex01837178373/QVikhr-2.5-1.5B-Instruct-SMPO-Q4_0-GGUF
Alex01837178373
2025-02-03T12:32:46Z
46
1
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "ru", "en", "base_model:Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO", "base_model:quantized:Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T12:32:25Z
--- library_name: transformers model_name: Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO base_model: Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO language: - ru - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # Alex01837178373/QVikhr-2.5-1.5B-Instruct-SMPO-Q4_0-GGUF This model was converted to GGUF format from [`Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO`](https://huggingface.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Alex01837178373/QVikhr-2.5-1.5B-Instruct-SMPO-Q4_0-GGUF --hf-file qvikhr-2.5-1.5b-instruct-smpo-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Alex01837178373/QVikhr-2.5-1.5B-Instruct-SMPO-Q4_0-GGUF --hf-file qvikhr-2.5-1.5b-instruct-smpo-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Alex01837178373/QVikhr-2.5-1.5B-Instruct-SMPO-Q4_0-GGUF --hf-file qvikhr-2.5-1.5b-instruct-smpo-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Alex01837178373/QVikhr-2.5-1.5B-Instruct-SMPO-Q4_0-GGUF --hf-file qvikhr-2.5-1.5b-instruct-smpo-q4_0.gguf -c 2048 ```
xueyj/task-1-Qwen-Qwen1.5-0.5B
xueyj
2025-02-03T12:32:33Z
2,301
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "region:us" ]
null
2025-01-03T05:38:24Z
--- base_model: Qwen/Qwen1.5-0.5B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
akh99/pretrained-on-lmsys
akh99
2025-02-03T12:32:17Z
9
0
transformers
[ "transformers", "safetensors", "gemma2", "text-classification", "generated_from_trainer", "base_model:google/gemma-2-9b-it", "base_model:finetune:google/gemma-2-9b-it", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-02-03T09:59:14Z
--- library_name: transformers license: gemma base_model: google/gemma-2-9b-it tags: - generated_from_trainer model-index: - name: pretrained-on-lmsys results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-on-lmsys This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.48.1 - Pytorch 2.2.2+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
shibajustfor/2e5de3ee-0fd0-4c10-a384-35499fc85dc8
shibajustfor
2025-02-03T12:26:30Z
29
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-02-03T12:19:10Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 2e5de3ee-0fd0-4c10-a384-35499fc85dc8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1b617ce82c7310e_train_data.json ds_type: json format: custom path: /workspace/input_data/c1b617ce82c7310e_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/2e5de3ee-0fd0-4c10-a384-35499fc85dc8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c1b617ce82c7310e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2e5de3ee-0fd0-4c10-a384-35499fc85dc8 This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | nan | | 0.0 | 0.0225 | 50 | nan | | 2.5924 | 0.0450 | 100 | nan | | 7.2084 | 0.0675 | 150 | nan | | 0.039 | 0.0900 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
moot20/DeepSeek-R1-Distill-Qwen-32B-MLX-6bits
moot20
2025-02-03T12:25:13Z
30
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mlx", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "6-bit", "region:us" ]
text-generation
2025-02-03T11:51:27Z
--- license: mit library_name: transformers tags: - mlx base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --- # moot20/DeepSeek-R1-Distill-Qwen-32B-MLX-6bits The Model [moot20/DeepSeek-R1-Distill-Qwen-32B-MLX-6bits](https://huggingface.co/moot20/DeepSeek-R1-Distill-Qwen-32B-MLX-6bits) was converted to MLX format from [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) using mlx-lm version **0.21.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("moot20/DeepSeek-R1-Distill-Qwen-32B-MLX-6bits") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
mradermacher/Llama-3.2-3b-finetune-radiology-GGUF
mradermacher
2025-02-03T12:23:30Z
259
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T12:07:06Z
--- base_model: chatsdude/Llama-3.2-3b-finetune-radiology language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/chatsdude/Llama-3.2-3b-finetune-radiology <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3b-finetune-radiology-GGUF/resolve/main/Llama-3.2-3b-finetune-radiology.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
FINGU-AI/FINGU-2.5-instruct-32B
FINGU-AI
2025-02-03T12:22:07Z
33
1
null
[ "safetensors", "qwen2", "arxiv:2202.01764", "license:mit", "region:us" ]
null
2025-02-03T09:56:45Z
--- license: mit --- # FINGU-AI/FINGU-2.5-instruct-32B ## Overview `FINGU-AI/FINGU-2.5-instruct-32B` is a versatile causal language model designed to excel in various natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. The model demonstrates a strong aptitude for reasoning tasks, particularly in the Japanese language, making it a valuable tool for applications requiring logical inference and complex understanding. ## Reasoning Capabilities The model's architecture and training regimen have been optimized to enhance its reasoning abilities. This is particularly evident in tasks involving logical deduction and commonsense reasoning in Japanese. For instance, when evaluated on datasets such as JaQuAD—a Japanese Question Answering Dataset—the model exhibits a nuanced understanding of complex logical structures. :contentReference[oaicite:0]{index=0} Additionally, `FINGU-AI/FINGU-2.5-instruct-32B` has been assessed using the JFLD benchmark, which tests a model's ability for deductive reasoning based on formal logic. The model's performance indicates a robust capacity to handle tasks that require understanding and reasoning over formal logical structures. ## Example Usage ### Installation Ensure that the required packages are installed: ```python pip install torch transformers ``` ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Model and Tokenizer model_id = 'FINGU-AI/FINGU-2.5-instruct-32B' model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.float16, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(model_id) model.to('cuda') # Input Messages for Translation messages = [ {"role": "user", "content": """Please reason step by step, and put your final answer within \boxed{}. translate korean to Japanese. 새로운 은행 계좌를 개설하는 절차는 다음과 같습니다: 1. 계좌 개설 목적과 신분 확인을 위한 서류 제출 2. 서류 검토 과정을 거치는 것 3. 고객님의 신원 확인 절차를 진행하는 것 4. 모든 절차가 완료되면 계좌 개설이 가능합니다. 계좌 개설을 원하시는 경우, 신분증과 함께 방문해 주시면 됩니다. """} ] # Tokenize and Generate Response input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=500, do_sample=True, ) # Decode and Print the Response response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## Relevant Datasets To further evaluate and enhance the reasoning capabilities of `FINGU-AI/FINGU-2.5-instruct-32B`, the following Japanese reasoning datasets are pertinent: - **JaQuAD (Japanese Question Answering Dataset)**: A human-annotated dataset created for Japanese Machine Reading Comprehension, consisting of 39,696 extractive question-answer pairs on Japanese Wikipedia articles. [📄 ARXIV.ORG](https://arxiv.org/abs/2202.01764) - **JFLD (Japanese Formal Logic Dataset)**: A benchmark designed to evaluate deductive reasoning based on formal logic, providing a structured framework to assess logical reasoning capabilities in Japanese. [📄 ACLANTHOLOGY.ORG](https://aclanthology.org/2024.lrec-main.832.pdf) - **JEMHopQA (Japanese Explainable Multi-Hop Question-Answering)**: A dataset for multi-hop QA in Japanese, including question-answer pairs and supporting evidence in the form of derivation triples, facilitating the development of explainable QA systems. [📄 ACLANTHOLOGY.ORG](https://aclanthology.org/2024.lrec-main.831.pdf) These datasets provide diverse challenges that can help in assessing and improving the model's reasoning abilities across different contexts and complexities. ## Conclusion `FINGU-AI/FINGU-2.5-instruct-32B` stands as a robust and adaptable language model, particularly distinguished by its reasoning capabilities in the Japanese language. Its performance across various reasoning benchmarks underscores its potential for applications that demand advanced logical inference and nuanced understanding in NLP tasks.
hmteams/teams-base-historic-multilingual-generator
hmteams
2025-02-03T12:21:28Z
99
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "electra", "fill-mask", "en", "de", "fr", "fi", "sv", "nl", "nb", "nn", "no", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-01T08:46:05Z
--- license: apache-2.0 language: - en - de - fr - fi - sv - nl - nb - nn - 'no' --- # hmTEAMS [![🤗](https://github.com/stefan-it/hmTEAMS/raw/main/logo.jpeg "🤗")](https://github.com/stefan-it/hmTEAMS) Historic Multilingual and Monolingual [TEAMS](https://aclanthology.org/2021.findings-acl.219/) Models. The following languages are covered: * English (British Library Corpus - Books) * German (Europeana Newspaper) * French (Europeana Newspaper) * Finnish (Europeana Newspaper, Digilib) * Swedish (Europeana Newspaper, Digilib) * Dutch (Delpher Corpus) * Norwegian (NCC Corpus) # Architecture We pretrain a "Training ELECTRA Augmented with Multi-word Selection" ([TEAMS](https://aclanthology.org/2021.findings-acl.219/)) model: ![hmTEAMS Overview](https://github.com/stefan-it/hmTEAMS/raw/main/hmteams_overview.svg) # Results We perform experiments on various historic NER datasets, such as HIPE-2022 or ICDAR Europeana. All details incl. hyper-parameters can be found [here](https://github.com/stefan-it/hmTEAMS/tree/main/bench). ## Small Benchmark We test our pretrained language models on various datasets from HIPE-2020, HIPE-2022 and Europeana. The following table shows an overview of used datasets. | Language | Dataset | Additional Dataset | |----------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------| | English | [AjMC](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) | - | | German | [AjMC](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) | - | | French | [AjMC](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) | [ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar) | | Finnish | [NewsEye](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-newseye.md) | - | | Swedish | [NewsEye](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-newseye.md) | - | | Dutch | [ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar) | - | # Results | Model | English AjMC | German AjMC | French AjMC | Finnish NewsEye | Swedish NewsEye | Dutch ICDAR | French ICDAR | Avg. | |----------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------|-----------------|--------------|--------------|-----------| | hmBERT (32k) [Schweter et al.](https://ceur-ws.org/Vol-3180/paper-87.pdf) | 85.36 ± 0.94 | 89.08 ± 0.09 | 85.10 ± 0.60 | 77.28 ± 0.37 | 82.85 ± 0.83 | 82.11 ± 0.61 | 77.21 ± 0.16 | 82.71 | | hmTEAMS (Ours) | 86.41 ± 0.36 | 88.64 ± 0.42 | 85.41 ± 0.67 | 79.27 ± 1.88 | 82.78 ± 0.60 | 88.21 ± 0.39 | 78.03 ± 0.39 | **84.11** | # Release Our pretrained hmTEAMS model can be obtained from the Hugging Face Model Hub: * [hmTEAMS Discriminator](https://huggingface.co/hmteams/teams-base-historic-multilingual-discriminator) * [hmTEAMS Generator (**this model**)](https://huggingface.co/hmteams/teams-base-historic-multilingual-generator) # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
CrimsonZockt/SarsaMarkiewicz-FLUXLORA
CrimsonZockt
2025-02-03T12:19:33Z
46
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-03T12:18:56Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Sarsa Markiewicz, black tanktop, professional headshot, photoshoot. output: url: images/Sarsa Markiewicz, black tanktop, professional h....png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Sarsa Markiewicz --- # SarsaMarkiewicz <Gallery /> ## Model description This is a LORA Model that i have train on Weights.gg ## Trigger words You should use `Sarsa Markiewicz` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CrimsonZockt/SarsaMarkiewicz-FLUXLORA/tree/main) them in the Files & versions tab.