modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
automerger/Percival_01Multiverseex26-7B
automerger
2024-04-27T19:09:11Z
0
0
null
[ "merge", "mergekit", "lazymergekit", "automerger", "license:apache-2.0", "region:us" ]
null
2024-04-18T14:06:08Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger --- # Percival_01Multiverseex26-7B Percival_01Multiverseex26-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 - model: AurelPx/Percival_01-7b-slerp - model: allknowingroger/MultiverseEx26-7B-slerp merge_method: model_stock base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 ``` ## πŸ’» Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Percival_01Multiverseex26-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Dejauxvue/ppo-SnowballTarget
Dejauxvue
2024-04-27T19:04:56Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-04-26T17:27:23Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Dejauxvue/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
EdBerg/lora_model1
EdBerg
2024-04-27T19:04:52Z
3
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T17:52:51Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** EdBerg - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
llmware/slim-tags
llmware
2024-04-27T19:00:16Z
150
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-07T11:35:53Z
--- license: apache-2.0 inference: false --- # SLIM-TAGS <!-- Provide a quick summary of what the model is/does. --> **slim-tags** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling. slim-tags has been fine-tuned for **auto-generating relevant tags and points-of-interest** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.: &nbsp;&nbsp;&nbsp;&nbsp;`{"tags": ["tag1", "tag2", "tag3",...]}` SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow. Each slim model has a 'quantized tool' version, e.g., [**'slim-tags-tool'**](https://huggingface.co/llmware/slim-tags-tool). ## Prompt format: `function = "classify"` `params = "tags"` `prompt = "<human> " + {text} + "\n" + ` &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"` <details> <summary>Transformers Script </summary> model = AutoModelForCausalLM.from_pretrained("llmware/slim-tags") tokenizer = AutoTokenizer.from_pretrained("llmware/slim-tags") function = "classify" params = "tags" text = "Citibank announced a reduction in its targets for economic growth in France and the UK last week " "in light of ongoing concerns about inflation and unemployment, especially in large employers " "such as Airbus." prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:" inputs = tokenizer(prompt, return_tensors="pt") start_of_input = len(inputs.input_ids[0]) outputs = model.generate( inputs.input_ids.to('cpu'), eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.3, max_new_tokens=100 ) output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) print("output only: ", output_only) # here's the fun part try: output_only = ast.literal_eval(llm_string_output) print("success - converted to python dictionary automatically") except: print("fail - could not convert to python dictionary automatically - ", llm_string_output) </details> <details> <summary>Using as Function Call in LLMWare</summary> from llmware.models import ModelCatalog slim_model = ModelCatalog().load_model("llmware/slim-tags") response = slim_model.function_call(text,params=["tags"], function="classify") print("llmware - llm_response: ", response) </details> ## Model Card Contact Darren Oberst & llmware team [Join us on Discord](https://discord.gg/MhZn5Nc39h)
llmware/slim-sentiment
llmware
2024-04-27T18:58:41Z
172
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-19T11:05:50Z
--- license: apache-2.0 inference: false --- # SLIM-SENTIMENT <!-- Provide a quick summary of what the model is/does. --> **slim-sentiment** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling. slim-sentiment has been fine-tuned for **sentiment analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.: &nbsp;&nbsp;&nbsp;&nbsp;`{"sentiment": ["positive"]}` SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow. Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool). ## Prompt format: `function = "classify"` `params = "sentiment"` `prompt = "<human> " + {text} + "\n" + ` &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"` <details> <summary>Transformers Script </summary> model = AutoModelForCausalLM.from_pretrained("llmware/slim-sentiment") tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sentiment") function = "classify" params = "sentiment" text = "The stock market declined yesterday as investors worried increasingly about the slowing economy." prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:" inputs = tokenizer(prompt, return_tensors="pt") start_of_input = len(inputs.input_ids[0]) outputs = model.generate( inputs.input_ids.to('cpu'), eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.3, max_new_tokens=100 ) output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) print("output only: ", output_only) # here's the fun part try: output_only = ast.literal_eval(llm_string_output) print("success - converted to python dictionary automatically") except: print("fail - could not convert to python dictionary automatically - ", llm_string_output) </details> <details> <summary>Using as Function Call in LLMWare</summary> from llmware.models import ModelCatalog slim_model = ModelCatalog().load_model("llmware/slim-sentiment") response = slim_model.function_call(text,params=["sentiment"], function="classify") print("llmware - llm_response: ", response) </details> ## Model Card Contact Darren Oberst & llmware team [Join us on Discord](https://discord.gg/MhZn5Nc39h)
josiahgottfried/amtibot_bart
josiahgottfried
2024-04-27T18:57:10Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:adapter:facebook/bart-large-cnn", "license:mit", "region:us" ]
null
2024-04-27T18:49:53Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: amtibot_bart results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amtibot_bart This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5905 - Rouge1: 0.4051 - Rouge2: 0.195 - Rougel: 0.3054 - Rougelsum: 0.3053 - Gen Len: 65.7532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 0.9351 | 9 | 1.6594 | 0.4057 | 0.1833 | 0.3052 | 0.3048 | 67.9481 | | 2.11 | 1.9740 | 19 | 1.6149 | 0.3938 | 0.192 | 0.3063 | 0.3058 | 64.8571 | | 1.554 | 2.9091 | 28 | 1.5842 | 0.3956 | 0.1872 | 0.3039 | 0.3033 | 65.8182 | | 1.3821 | 3.7403 | 36 | 1.5905 | 0.4051 | 0.195 | 0.3054 | 0.3053 | 65.7532 | ### Framework versions - PEFT 0.4.0 - Transformers 4.40.1 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
rahil1206/poca-SoccerTwos
rahil1206
2024-04-27T18:44:12Z
16
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-04-27T18:44:05Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: rahil1206/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
timberrific/open-bio-med-merge
timberrific
2024-04-27T18:42:56Z
2,808
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:merge:aaditya/Llama3-OpenBioLLM-8B", "base_model:johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "base_model:merge:johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T18:28:07Z
--- base_model: - johnsnowlabs/JSL-MedLlama-3-8B-v1.0 - aaditya/OpenBioLLM-Llama3-8B library_name: transformers tags: - mergekit - merge license: llama3 --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [johnsnowlabs/JSL-MedLlama-3-8B-v1.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v1.0) * [aaditya/OpenBioLLM-Llama3-8B](https://huggingface.co/aaditya/OpenBioLLM-Llama3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: aaditya/OpenBioLLM-Llama3-8B - model: johnsnowlabs/JSL-MedLlama-3-8B-v1.0 merge_method: slerp base_model: aaditya/OpenBioLLM-Llama3-8B dtype: float16 parameters: t: [0.5, 0.5, 0.5, 0.5, 0.5] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
TazCaldwell/blue_model
TazCaldwell
2024-04-27T18:35:45Z
164
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T03:05:27Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: blue_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # blue_model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3527 - F1: 0.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3136 | 1.0 | 1250 | 0.5730 | 0.8487 | | 0.1427 | 2.0 | 2500 | 0.4297 | 0.8980 | | 0.032 | 3.0 | 3750 | 0.3527 | 0.9217 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
mageec/w2v-transcription-mls
mageec
2024-04-27T18:25:35Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T17:03:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chrlu/zephyr-7b-gemma-kto
chrlu
2024-04-27T18:16:01Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:argilla/dpo-mix-7k", "base_model:HuggingFaceH4/zephyr-7b-gemma-sft-v0.1", "base_model:finetune:HuggingFaceH4/zephyr-7b-gemma-sft-v0.1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T17:25:57Z
--- license: other base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: zephyr-7b-gemma-kto results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-gemma-kto This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 0.2981 - Rewards/chosen: 1.5381 - Rewards/rejected: -0.1185 - Rewards/accuracies: 0.6979 - Rewards/margins: 1.6565 - Logps/rejected: -364.4402 - Logps/chosen: -332.9066 - Logits/rejected: 106.1137 - Logits/chosen: 111.3681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1942 | 1.8957 | 100 | 0.2925 | 1.5810 | -0.0630 | 0.6771 | 1.6440 | -363.3305 | -332.0488 | 106.0414 | 111.2989 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
LahiruProjects/zaid-gemma01
LahiruProjects
2024-04-27T18:15:01Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b-it", "base_model:adapter:google/gemma-2b-it", "license:gemma", "region:us" ]
null
2024-04-27T18:11:23Z
--- license: gemma library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-2b-it model-index: - name: zaid-gemma01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zaid-gemma01 This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
OmAlve/distilbert-finetuned-imdb-sentiment
OmAlve
2024-04-27T18:09:43Z
107
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T18:09:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matchmaking/llava-1.5-7b-hf-ft-mix-vsft
matchmaking
2024-04-27T18:08:00Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:llava-hf/llava-v1.6-mistral-7b-hf", "base_model:adapter:llava-hf/llava-v1.6-mistral-7b-hf", "region:us" ]
null
2024-04-23T12:34:20Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: llava-hf/llava-v1.6-mistral-7b-hf model-index: - name: llava-1.5-7b-hf-ft-mix-vsft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-ft-mix-vsft This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
vicaloy/llama-2-13-b-checkpoint
vicaloy
2024-04-27T18:06:41Z
0
0
peft
[ "peft", "region:us" ]
null
2024-04-27T17:46:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0
kanoyo/Kanoyo
kanoyo
2024-04-27T18:04:24Z
0
1
null
[ "region:us" ]
null
2024-02-07T15:14:27Z
# Applio Welcome to **Applio**, the ultimate voice cloning tool meticulously optimized for unrivaled power, modularity, and a user-friendly experience. [![Precompiled Versions](https://img.shields.io/badge/Precompiled%20Versions-ffffff?style=flat-square&logo=&link=https://huggingface.co/IAHispano/applio/tree/main/Applio%20V3%20Precompiled)](https://huggingface.co/IAHispano/applio/tree/main/Applio%20V3%20Precompiled) ![GitHub Release](https://img.shields.io/github/v/release/iahispano/applio-rvc-fork?style=flat-square) ![GitHub Repo stars](https://img.shields.io/github/stars/iahispano/applio-rvc-fork?style=flat-square) ![GitHub forks](https://img.shields.io/github/forks/iahispano/applio-rvc-fork?style=flat-square) [![Support Discord](https://img.shields.io/discord/1096877223765606521?style=flat-square)](https://discord.gg/iahispano) [![Issues](https://img.shields.io/github/issues/iahispano/applio-rvc-fork?style=flat-square)](https://github.com/IAHispano/Applio-RVC-Fork/issues) [![Open In Collab](https://img.shields.io/badge/google_colab-F9AB00?style=flat-square&logo=googlecolab&logoColor=white)](https://colab.research.google.com/github/iahispano/applio/blob/master/assets/Applio.ipynb) ## Content Table - [**Installation**](#installation) - [Windows](#windows) - [Linux](#linux) - [Using Makefile](#using-makefile-for-platforms-such-as-paperspace) - [**Usage**](#usage) - [Windows](#windows-1) - [Linux](#linux-1) - [Using Makefile](#using-makefile-for-platforms-such-as-paperspace-1) - [**Repository Enhancements**](#repository-enhancements) - [**Credits**](#credits) - [Contributors](#contributors) ## Installation Download the latest version from [GitHub Releases](https://github.com/IAHispano/Applio-RVC-Fork/releases) or use [Precompiled Versions](https://huggingface.co/IAHispano/applio/tree/main/Applio%20V3%20Precompiled). ### Windows ```bash ./run-install.bat ``` ### Linux ```bash chmod +x run-install.sh ./run-install.sh ``` ### Using Makefile (for platforms such as [Paperspace](https://www.paperspace.com/)) ``` make run-install ``` ## Usage Visit [Applio Documentation](https://docs.applio.org/) for a detailed UI usage explanation. ### Windows ```bash ./run-applio.bat ``` ### Linux ```bash chmod +x run-applio.sh ./run-applio.sh ``` ### Using Makefile (for platforms such as [Paperspace](https://www.paperspace.com/)) ``` make run-applio ``` ## Repository Enhancements This repository has undergone significant improvements to enhance its functionality and maintainability: - **Code Modularization:** The codebase has been restructured to follow a modular approach. This ensures better organization, readability, and ease of maintenance. - **Hop Length Implementation:** Special thanks to [@Mangio621](https://github.com/Mangio621/Mangio-RVC-Fork) for introducing hop length implementation. This enhancement enhances the efficiency and performance on Crepe (previously known as Mangio-Crepe). - **Translations to +30 Languages:** The repository now supports translations in over 30 languages, making it more accessible to a global audience. - **Cross-Platform Compatibility:** With multiplatform compatibility, this repository can seamlessly operate across various platforms, providing a consistent experience to users. - **Optimized Requirements:** The project's requirements have been fine-tuned for improved performance and resource utilization. - **Simple Installation:** The installation process has been streamlined, ensuring a straightforward and user-friendly experience for setup. These enhancements contribute to a more robust and scalable codebase, making the repository more accessible for contributors and users alike. ## Contributions - **Backend Contributions:** If you want to contribute to the backend, make your pull requests [here](https://github.com/blaise-tk/RVC_CLI). - **Frontend Contributions:** For interface or script-related contributions, feel free to contribute to this repository. We appreciate all contributions ❀️ ## Planned Features - Implement: Support for Apple Devices ([Issue Link](https://github.com/pytorch/pytorch/issues/77764)) - Implement: rmvpe_gpu - Implement: Theme selector, RPC toggle & version checker - Implement: Overtraining detector - Implement: Autotune - Implement: Training stop - Fix: Model fusion ## Credits - [VITS](https://github.com/jaywalnut310/vits) by jaywalnut310 - [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) by RVC-Project - [Mangio-RVC-Fork](https://github.com/Mangio621/Mangio-RVC-Fork) by Mangio621 - [Mangio-RVC-Tweaks](https://github.com/alexlnkp/Mangio-RVC-Tweaks) by alexlnkp - [RVG_tts](https://github.com/Foxify52/RVG_tts) by Foxify52 - [RMVPE](https://github.com/Dream-High/RMVPE) by Dream-High - [ContentVec](https://github.com/auspicious3000/contentvec/) by auspicious3000 - [HIFIGAN](https://github.com/jik876/hifi-gan) by jik876 - [Gradio](https://github.com/gradio-app/gradio) by gradio-app - [FFmpeg](https://github.com/FFmpeg/FFmpeg) by FFmpeg - [audio-slicer](https://github.com/openvpi/audio-slicer) by openvpi - [Ilaria-Audio-Analyzer](https://github.com/TheStingerX/Ilaria-Audio-Analyzer) by TheStingerX - [gradio-screen-recorder](https://huggingface.co/spaces/gstaff/gradio-screen-recorder) by gstaff - [RVC_CLI](https://github.com/blaise-tk/RVC_CLI) by blaise-tk ### Contributors <a href="https://github.com/IAHispano/Applio/graphs/contributors" target="_blank"> <img src="https://contrib.rocks/image?repo=IAHispano/Applio" /> </a>
karthik540/mario-semantic-1
karthik540
2024-04-27T17:59:13Z
196
0
transformers
[ "transformers", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-04-26T19:50:40Z
--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: mario-semantic-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mario-semantic-1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the Custom mario Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0721 - Mean Iou: 0.0 - Mean Accuracy: 0.0 - Overall Accuracy: 0.0 - Accuracy Unlabeled: nan - Accuracy Mario: 0.0 - Accuracy Ground: 0.0 - Accuracy Enemy: 0.0 - Accuracy Bricks: 0.0 - Accuracy Question: 0.0 - Iou Unlabeled: 0.0 - Iou Mario: 0.0 - Iou Ground: 0.0 - Iou Enemy: 0.0 - Iou Bricks: 0.0 - Iou Question: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Mario | Accuracy Ground | Accuracy Enemy | Accuracy Bricks | Accuracy Question | Iou Unlabeled | Iou Mario | Iou Ground | Iou Enemy | Iou Bricks | Iou Question | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:---------------:|:--------------:|:---------------:|:-----------------:|:-------------:|:---------:|:----------:|:---------:|:----------:|:------------:| | 1.1471 | 0.2222 | 10 | 1.3150 | 0.0054 | 0.0409 | 0.0429 | nan | 0.0587 | 0.0 | 0.0305 | 0.0481 | 0.0674 | 0.0 | 0.0141 | 0.0 | 0.0110 | 0.0010 | 0.0063 | | 1.0399 | 0.4444 | 20 | 1.1597 | 0.0042 | 0.0247 | 0.0335 | nan | 0.0687 | 0.0 | 0.0054 | 0.0098 | 0.0397 | 0.0 | 0.0136 | 0.0 | 0.0029 | 0.0005 | 0.0081 | | 0.8368 | 0.6667 | 30 | 0.9484 | 0.0018 | 0.0052 | 0.0054 | nan | 0.0024 | 0.0 | 0.0098 | 0.0018 | 0.0121 | 0.0 | 0.0012 | 0.0 | 0.0049 | 0.0002 | 0.0046 | | 0.9264 | 0.8889 | 40 | 0.7115 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.7753 | 1.1111 | 50 | 0.7572 | 0.0010 | 0.0023 | 0.0038 | nan | 0.0 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0062 | 0.0 | 0.0 | | 0.6295 | 1.3333 | 60 | 0.5617 | 0.0001 | 0.0002 | 0.0003 | nan | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | | 0.5956 | 1.5556 | 70 | 0.4135 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.5756 | 1.7778 | 80 | 0.2028 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.5318 | 2.0 | 90 | 0.1185 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.5351 | 2.2222 | 100 | 0.3064 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.5706 | 2.4444 | 110 | 0.1378 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.4863 | 2.6667 | 120 | 0.1121 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3226 | 2.8889 | 130 | 0.2038 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.4139 | 3.1111 | 140 | 0.1520 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3983 | 3.3333 | 150 | 0.1070 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3672 | 3.5556 | 160 | 0.1282 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3324 | 3.7778 | 170 | 0.1075 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2806 | 4.0 | 180 | 0.2677 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2854 | 4.2222 | 190 | 0.1020 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3463 | 4.4444 | 200 | 0.0551 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1957 | 4.6667 | 210 | 0.1982 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3063 | 4.8889 | 220 | 0.0962 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1933 | 5.1111 | 230 | 0.1172 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1833 | 5.3333 | 240 | 0.0600 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.231 | 5.5556 | 250 | 0.0519 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1516 | 5.7778 | 260 | 0.0575 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.172 | 6.0 | 270 | 0.1182 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1307 | 6.2222 | 280 | 0.0989 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1454 | 6.4444 | 290 | 0.1045 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1319 | 6.6667 | 300 | 0.0793 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1154 | 6.8889 | 310 | 0.0567 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1241 | 7.1111 | 320 | 0.0562 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1379 | 7.3333 | 330 | 0.0700 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1183 | 7.5556 | 340 | 0.0616 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.108 | 7.7778 | 350 | 0.0823 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1204 | 8.0 | 360 | 0.0661 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1391 | 8.2222 | 370 | 0.0578 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1554 | 8.4444 | 380 | 0.0643 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1338 | 8.6667 | 390 | 0.0822 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1358 | 8.8889 | 400 | 0.0997 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1704 | 9.1111 | 410 | 0.0503 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1242 | 9.3333 | 420 | 0.0692 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1153 | 9.5556 | 430 | 0.1003 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0999 | 9.7778 | 440 | 0.0909 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0968 | 10.0 | 450 | 0.0721 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1
hostechs/output
hostechs
2024-04-27T17:52:19Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:google/flan-t5-small", "base_model:adapter:google/flan-t5-small", "license:apache-2.0", "region:us" ]
null
2024-04-27T17:52:15Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/flan-t5-small datasets: - generator model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
vicha-w/Reinforce-Pixelcopter-PLE-v0
vicha-w
2024-04-27T17:51:56Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T17:51:47Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 27.30 +/- 21.08 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_5
ShenaoZhang
2024-04-27T17:51:21Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_4", "base_model:finetune:ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_4", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T17:24:42Z
--- license: mit base_model: ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_4 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - updated - original model-index: - name: 0.001_5iters_bs256_nodpo_only4w_iter_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.001_5iters_bs256_nodpo_only4w_iter_5 This model is a fine-tuned version of [ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_4](https://huggingface.co/ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_4) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
OwOOwO/final10
OwOOwO
2024-04-27T17:48:28Z
7
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T11:25:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lucia01/t5_simplification_finetuned
Lucia01
2024-04-27T17:46:46Z
106
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-04-27T17:37:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ekhan417/Enlighten_Instruct
ekhan417
2024-04-27T17:41:24Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-03-25T21:59:07Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
ivillar/Enlighten_Instruct
ivillar
2024-04-27T17:41:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-04-26T22:18:12Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
deepnet/SN6-71S6
deepnet
2024-04-27T17:40:02Z
90
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-25T08:38:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EinsZwo/nlid_ONLY_supertagging-424_00
EinsZwo
2024-04-27T17:36:45Z
164
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T16:10:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_2
ShenaoZhang
2024-04-27T17:33:10Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_1", "base_model:finetune:ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:58:47Z
--- license: mit base_model: ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_1 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - updated - original model-index: - name: 0.1_4iters_bs256_nodpo_only4w_iter_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.1_4iters_bs256_nodpo_only4w_iter_2 This model is a fine-tuned version of [ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_1](https://huggingface.co/ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_1) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
ahmed-naseer/19-21k-v2-1
ahmed-naseer
2024-04-27T17:30:59Z
29
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-04-27T17:27:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### 19_21K_V2.1 Dreambooth model trained by ahmed-naseer with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
chrlu/zephyr-7b-gemma-ipo
chrlu
2024-04-27T17:24:18Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:argilla/dpo-mix-7k", "base_model:HuggingFaceH4/zephyr-7b-gemma-sft-v0.1", "base_model:finetune:HuggingFaceH4/zephyr-7b-gemma-sft-v0.1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:34:07Z
--- license: other base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: zephyr-7b-gemma-ipo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-gemma-ipo This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 61.0152 - Rewards/chosen: -0.4988 - Rewards/rejected: -0.6909 - Rewards/accuracies: 0.8021 - Rewards/margins: 0.1921 - Logps/rejected: -15.3755 - Logps/chosen: -11.4268 - Logits/rejected: 99.7522 - Logits/chosen: 99.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 54.5261 | 1.8957 | 100 | 60.8626 | -0.5007 | -0.6906 | 0.8021 | 0.1899 | -15.3697 | -11.4648 | 99.7591 | 99.5497 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
Arjun9/bart_samsum
Arjun9
2024-04-27T17:24:08Z
125
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "summarization", "dataset:samsum", "base_model:facebook/bart-large-xsum", "base_model:finetune:facebook/bart-large-xsum", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-04-21T16:09:24Z
--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: bart_samsum results: [] datasets: - samsum pipeline_tag: summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_samsum This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the [samsum](https://huggingface.co/datasets/samsum) dataset. It achieves the following results on the evaluation set: - Loss: 1.4947 - Rouge1: 53.3294 - Rouge2: 28.6009 - Rougel: 44.2008 - Rougelsum: 49.2031 - Bleu: 0.0 - Meteor: 0.4887 - Gen Len: 30.1209 ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
HenryCai1129/adapter-llama-adaptertoxic2nontoxic-100-filtered-50-0.003
HenryCai1129
2024-04-27T17:20:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T03:39:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MohammadKarami/medium-bert
MohammadKarami
2024-04-27T17:13:39Z
106
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T17:13:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fish-Monger/ResNet
fish-Monger
2024-04-27T17:13:30Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-04-27T17:10:49Z
--- license: mit --- Libraries needed: ``` import torch import torchvision import torchvision.transforms as transforms from tqdm import tqdm from torch import nn import matplotlib.pyplot as plt ``` to define a data loader ``` transformRes = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) trainsetRes = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transformRes) trainloaderRes64 = torch.utils.data.DataLoader(trainsetRes, batch_size=64, shuffle=True, num_workers=10) testsetRes = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transformRes) testloaderRes64 = torch.utils.data.DataLoader(testsetRes, batch_size=64, shuffle=False, num_workers=10) ``` The model itself and training ``` import torchvision.models as models # Load the pretrained model from pytorch resnet50v2 = models.resnet50(pretrained=True) # Freeze the parameters of the model for param in resnet50v2.parameters(): param.requires_grad = True # Change the final layer to match the number of classes in the CIFAR-10 dataset num_ftrs = resnet50v2.fc.in_features resnet50v2.fc = nn.Sequential( nn.Linear(num_ftrs, 500), nn.ReLU(), nn.Linear(500, 200), nn.Dropout(0.5), nn.Linear(200,40), nn.ReLU(), nn.Dropout(0.3), nn.Linear(40,10), nn.ReLU() ) print("Model Info:") print("ResNet50,Pretrained,weight adj. LR=0.01,Mom=0.3,WD=0.0001") print("Schedule step=1,gamma=0.7, 20 epoches") # Move the model to the GPU resnet50v2 = resnet50v2.to(device, dtype=torch.float32) optimizer = torch.optim.SGD(resnet50v2.parameters(), lr=0.01,momentum=0.3,weight_decay=0.0001) criterion = nn.CrossEntropyLoss() scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5) train_losses = [] test_losses = [] accuracies = [] train_acc = [] for epoch in range(20): # loop over the dataset multiple times running_loss = 0.0 correctTrain = 0 totalTrain = 0 pbar = tqdm(enumerate(trainloaderRes16, 0), total=len(trainloaderRes16), desc="Epoch {}".format(epoch+1)) for i, data in pbar: # get the inputs; data is a list of [inputs, labels] inputs, labels = data[0].to(device,dtype=torch.float32), data[1].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = resnet50v2(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() _, predicted_train = torch.max(outputs.data, 1) totalTrain += labels.size(0) correctTrain += (predicted_train == labels).sum().item() pbar.set_postfix({'loss': running_loss/(i+1)}) train_accuracy = 100 * correctTrain / totalTrain train_acc.append(train_accuracy) print(f'Epoch {epoch + 1} loss: {running_loss / len(trainloaderRes16):.3f}') # Start of testing phase resnet50v2.eval() # Set the model to evaluation mode test_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in testloaderRes16: images, labels = data[0].to(device,dtype=torch.float32), data[1].to(device) outputs = resnet50v2(images) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Epoch {epoch + 1} Test loss: {test_loss / len(testloaderRes16):.3f}, Accuracy: {100 * correct / total:.2f}%') #print the learning rate print(f'Epoch {epoch + 1} Learning rate: {optimizer.param_groups[0]["lr"]}') train_losses.append(running_loss / len(trainloaderRes16)) test_losses.append(test_loss / len(testloaderRes16)) accuracies.append(100 * correct / total) resnet50v2.train() # Set the model back to training model scheduler.step() print('Finished Training') plt.figure(figsize=(10, 5)) plt.plot(train_losses, label='Training Loss') plt.plot(test_losses, label='Test Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.figure(figsize=(10, 5)) plt.plot(accuracies, label='Accuracy') plt.plot(train_acc, label='Training Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy (%)') plt.legend() plt.show() ```
tidarat/xlm
tidarat
2024-04-27T17:09:47Z
76
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:cardiffnlp/twitter-xlm-roberta-base-sentiment", "base_model:finetune:cardiffnlp/twitter-xlm-roberta-base-sentiment", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T17:09:10Z
--- base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment tags: - generated_from_trainer model-index: - name: xlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
tsetsuuhei/t5-finetuned-en-to-ja-eval1
tsetsuuhei
2024-04-27T17:07:20Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-04-27T07:06:03Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer model-index: - name: t5-finetuned-en-to-ja-eval1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-finetuned-en-to-ja-eval1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3092 - eval_bleu: 0.0 - eval_gen_len: 3.008 - eval_runtime: 2.2634 - eval_samples_per_second: 220.911 - eval_steps_per_second: 4.86 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
InayaKripa/gemma-toxic-LabelConvoV1
InayaKripa
2024-04-27T17:07:16Z
141
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:58:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ClinicalNLP/SDOHv7
ClinicalNLP
2024-04-27T17:05:21Z
122
9
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "autotrain", "healthcare", "sdoh", "social determinants of health", "en", "dataset:reachosen/autotrain-data-sdohv7", "license:apache-2.0", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-24T04:50:39Z
--- tags: - autotrain - text-classification - healthcare - sdoh - social determinants of health language: - en widget: - text: The Patient is homeless - text: The pt misuses prescription medicine - text: The patient often goes hungry because they can't afford enough food - text: >- The patient's family is struggling to pay the rent and is at risk of being evicted from their apartment - text: The patient lives in a neighborhood with poor public transportation options - text: >- The patient was a victim of exploitation of dependency, causing them to feel taken advantage of and vulnerable - text: >- The patient's family has had to move in with relatives due to financial difficulties - text: >- The patient's insurance plan has annual limits on certain preventive care services, such as screenings and vaccines. - text: >- The depression may be provoking the illness or making it more difficult to manage - text: >- Due to the language barrier, the patient is having difficulty communicating their medical history to the healthcare provider. datasets: - reachosen/autotrain-data-sdohv7 co2_eq_emissions: emissions: 0.01134763220649804 pipeline_tag: text-classification license: apache-2.0 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3701198597 - CO2 Emissions (in grams): 0.0113 ## Validation Metrics - Loss: 0.057 - Accuracy: 0.990 - Macro F1: 0.990 - Micro F1: 0.990 - Weighted F1: 0.990 - Macro Precision: 0.990 - Micro Precision: 0.990 - Weighted Precision: 0.991 - Macro Recall: 0.990 - Micro Recall: 0.990 - Weighted Recall: 0.990 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/reachosen/autotrain-sdohv7-3701198597 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("reachosen/autotrain-sdohv7-3701198597", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("reachosen/autotrain-sdohv7-3701198597", use_auth_token=True) inputs = tokenizer("The Patient is homeless", return_tensors="pt") outputs = model(**inputs) ```
MrezaPRZ/CodeLLama_SFT_FILTERED
MrezaPRZ
2024-04-27T17:04:15Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T17:01:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_3
ShenaoZhang
2024-04-27T17:01:59Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_2", "base_model:finetune:ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:29:21Z
--- license: mit base_model: ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_2 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - updated - original model-index: - name: 0.01_4iters_bs256_nodpo_only4w_iter_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.01_4iters_bs256_nodpo_only4w_iter_3 This model is a fine-tuned version of [ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_2](https://huggingface.co/ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_2) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
Peppenapo/gemmaFinetuneTEST
Peppenapo
2024-04-27T16:58:24Z
141
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:55:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ljgries/my_eli5_clm_model_v2
ljgries
2024-04-27T16:55:19Z
144
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "dataset:eli5_category", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:23:59Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - eli5_category model-index: - name: my_eli5_clm_model_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_eli5_clm_model_v2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the eli5_category dataset. It achieves the following results on the evaluation set: - Loss: 6.0285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5395 | 1.0 | 1389 | 6.2651 | | 6.1463 | 2.0 | 2778 | 6.0841 | | 6.0381 | 3.0 | 4167 | 6.0285 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
MBZUAI/LLaVA-Phi-3-mini-4k-instruct-FT
MBZUAI
2024-04-27T16:55:12Z
61
5
transformers
[ "transformers", "safetensors", "llava_phi", "text-generation", "conversational", "custom_code", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:43:59Z
--- license: mit --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # Phi-3-V: Extending the Visual Capabilities of LLaVA with Phi-3 ## Repository Overview This repository features LLaVA v1.5 trained with the Phi-3-mini-3.8B LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - **Pretraining:** Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Fine-tuning:** All model parameters including LLM are fine-tuned. Only the vision-backbone (CLIP) is kept frozen. ## Key Components - **Base Large Language Model (LLM):** [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - **Fine-tuning Dataset:** [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Phi-3-mini-4k-instruct-FT ``` --- ## License This project is available under the MIT License. ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
MBZUAI/LLaVA-Phi-3-mini-4k-instruct-lora
MBZUAI
2024-04-27T16:51:14Z
8
0
transformers
[ "transformers", "safetensors", "llava_phi", "text-generation", "custom_code", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-26T05:13:16Z
--- license: mit --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # Phi-3-V: Extending the Visual Capabilities of LLaVA with Phi-3 ## Repository Overview This repository features LLaVA v1.5 trained with the Phi-3-mini-3.8B LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - **Pretraining:** Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Fine-tuning:** LLM is LoRA fine-tuned. Only the vision-backbone (CLIP) is kept frozen. - **Note:** The repository contains projector and LORA weights. ## Key Components - **Base Large Language Model (LLM):** [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - **Fine-tuning Dataset:** [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Phi-3-mini-4k-instruct-lora ``` --- ## License This project is available under the MIT License. ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
Fk24/dqn-SpaceInvadersNoFrameskip-v4
Fk24
2024-04-27T16:50:03Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T16:49:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 601.00 +/- 178.64 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Fk24 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Fk24 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Fk24 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
MBZUAI/LLaVA-Phi-3-mini-4k-instruct-pretrain
MBZUAI
2024-04-27T16:49:55Z
4
1
transformers
[ "transformers", "llava_phi", "text-generation", "custom_code", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-26T05:09:14Z
--- license: mit --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # Phi-3-V: Extending the Visual Capabilities of LLaVA with Phi-3 ## Repository Overview This repository features LLaVA v1.5 trained with the Phi-3-mini-3.8B LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Note:** The repository contains only the projector weights. ## Key Components - **Base Large Language Model (LLM):** [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Phi-3-mini-4k-instruct-pretrain ``` --- ## License This project is available under the MIT License. ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct
MBZUAI
2024-04-27T16:48:31Z
70
11
transformers
[ "transformers", "safetensors", "llava_llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-26T05:10:24Z
--- {} --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # LLaMA-3-V: Extending the Visual Capabilities of LLaVA with Meta-Llama-3-8B-Instruct ## Repository Overview This repository features LLaVA v1.5 trained with the Meta-Llama-3-8B-Instruct LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - **Pretraining:** Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Fine-tuning:** LLM is LoRA fine-tuned. Only the vision-backbone (CLIP) is kept frozen. - **Note:** The repository contains merged weights. ## Key Components - **Base Large Language Model (LLM):** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - **Fine-tuning Dataset:** [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct ``` --- ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
SKHIA2024/ppo-LunarLander-v2
SKHIA2024
2024-04-27T16:48:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T16:47:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.38 +/- 13.95 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MBZUAI/LLaVA-Phi-3-mini-4k-instruct
MBZUAI
2024-04-27T16:47:37Z
3,089
22
transformers
[ "transformers", "safetensors", "llava_phi", "text-generation", "conversational", "custom_code", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-26T03:37:48Z
--- license: mit --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # Phi-3-V: Extending the Visual Capabilities of LLaVA with Phi-3 ## Repository Overview This repository features LLaVA v1.5 trained with the Phi-3-mini-3.8B LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - **Pretraining:** Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Fine-tuning:** LLM is LoRA fine-tuned. Only the vision-backbone (CLIP) is kept frozen. - **Note:** The repository contains merged weights. ## Key Components - **Base Large Language Model (LLM):** [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - **Fine-tuning Dataset:** [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Phi-3-mini-4k-instruct ``` --- ## License This project is available under the MIT License. ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
rishabhio/llava-1.5-7b-hf-ft-mix-vsft
rishabhio
2024-04-27T16:47:37Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:llava-hf/llava-1.5-7b-hf", "base_model:adapter:llava-hf/llava-1.5-7b-hf", "region:us" ]
null
2024-04-27T16:35:37Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: llava-hf/llava-1.5-7b-hf model-index: - name: llava-1.5-7b-hf-ft-mix-vsft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-ft-mix-vsft This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
charliewang314/q-FrozenLake-v1-4x4-noSlippery
charliewang314
2024-04-27T16:45:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T16:45:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="charliewang314/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct-FT-S2
MBZUAI
2024-04-27T16:42:03Z
19
3
transformers
[ "transformers", "safetensors", "llava_llama", "text-generation", "conversational", "arxiv:2403.13043", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:29:54Z
--- {} --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # LLaMA-3-V: Extending the Visual Capabilities of LLaVA with Meta-Llama-3-8B-Instruct ## Repository Overview This repository features LLaVA v1.5 trained with the Meta-Llama-3-8B-Instruct LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - **Pretraining:** Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Fine-tuning:** All model parameters including LLM are fine-tuned. Only the vision-backbone (CLIP) is kept frozen. - **Note:** During both pretraining and fine-tuning, the vision-backbone (CLIP) is augmented with multi-scale features following [S2-Wrapper](https://arxiv.org/abs/2403.13043). ## Key Components - **Base Large Language Model (LLM):** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - **Fine-tuning Dataset:** [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct-FT-S2 ``` --- ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct-FT
MBZUAI
2024-04-27T16:39:12Z
150
13
transformers
[ "transformers", "safetensors", "llava_llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T16:26:42Z
--- {} --- [![CODE](https://img.shields.io/badge/GitHub-Repository-<COLOR>)](https://github.com/mbzuai-oryx/LLaVA-pp) # LLaMA-3-V: Extending the Visual Capabilities of LLaVA with Meta-Llama-3-8B-Instruct ## Repository Overview This repository features LLaVA v1.5 trained with the Meta-Llama-3-8B-Instruct LLM. This integration aims to leverage the strengths of both models to offer advanced vision-language understanding. ## Training Strategy - **Pretraining:** Only Vision-to-Language projector is trained. The rest of the model is frozen. - **Fine-tuning:** All model parameters including LLM are fine-tuned. Only the vision-backbone (CLIP) is kept frozen. ## Key Components - **Base Large Language Model (LLM):** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **Base Large Multimodal Model (LMM):** [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) ## Training Data - **Pretraining Dataset:** [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) - **Fine-tuning Dataset:** [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) ## Download It As ``` git lfs install git clone https://huggingface.co/MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct-FT ``` --- ## Contributions Contributions are welcome! Please 🌟 our repository [LLaVA++](https://github.com/mbzuai-oryx/LLaVA-pp) if you find this model useful. ---
igorcardoso/qtable-taxi
igorcardoso
2024-04-27T16:34:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T16:34:49Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: qtable-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="igorcardoso/qtable-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mrtuandao/textual_inversion_corgi
mrtuandao
2024-04-27T16:28:36Z
8
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "diffusers-training", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-04-27T14:06:44Z
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion - diffusers-training base_model: runwayml/stable-diffusion-v1-5 inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - mrtuandao/textual_inversion_corgi These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Mohamedshaaban2001/llama3_text2sql
Mohamedshaaban2001
2024-04-27T16:27:43Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T09:12:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MBZUAI/GLaMM-FullScope
MBZUAI
2024-04-27T16:18:11Z
359
5
transformers
[ "transformers", "pytorch", "llava", "text-generation", "arxiv:2311.03356", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-12-26T18:23:23Z
--- license: apache-2.0 --- # πŸ‘οΈ GLaMM-FullScope --- ## πŸ“ Description GLaMM-FullScope encompasses all capabilities of GLaMM, which is mixed finetuned with many open-source datasets. "Full" signifies its comprehensive nature, incorporating the full range of GLaMM capabilities including Grounded Conversation Generation (GCG), Referring Expression Segmentation, Region-level Captioning, Image-level captioning and Visual Question Answering. ## πŸ’» Download To get started with GLaMM-FullScope, follow these steps: ``` git lfs install git clone https://huggingface.co/MBZUAI/GLaMM-FullScope ``` ## πŸ“š Additional Resources - **Paper:** [ArXiv](https://arxiv.org/abs/2311.03356). - **GitHub Repository:** For training and updates: [GitHub - GLaMM](https://github.com/mbzuai-oryx/groundingLMM). - **Project Page:** For a detailed overview and insights into the project, visit our [Project Page - GLaMM](https://mbzuai-oryx.github.io/groundingLMM/). ## πŸ“œ Citations and Acknowledgments ```bibtex @article{hanoona2023GLaMM, title={GLaMM: Pixel Grounding Large Multimodal Model}, author={Rasheed, Hanoona and Maaz, Muhammad and Shaji, Sahal and Shaker, Abdelrahman and Khan, Salman and Cholakkal, Hisham and Anwer, Rao M. and Xing, Eric and Yang, Ming-Hsuan and Khan, Fahad S.}, journal={ArXiv 2311.03356}, year={2023} }
automerger/NeuralsynthesisT3q-7B
automerger
2024-04-27T16:09:05Z
0
0
null
[ "merge", "mergekit", "lazymergekit", "automerger", "license:apache-2.0", "region:us" ]
null
2024-04-16T19:12:39Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger --- # NeuralsynthesisT3q-7B NeuralsynthesisT3q-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 - model: Kukedlc/NeuralSynthesis-7B-v0.1 - model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO merge_method: model_stock base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 ``` ## πŸ’» Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/NeuralsynthesisT3q-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Virt-io/Google-Colab-Imatrix-GGUF
Virt-io
2024-04-27T16:04:30Z
0
8
null
[ "gguf", "GGUF", "region:us" ]
null
2024-03-22T16:11:42Z
--- tags: - gguf - GGUF --- ### Host files for a google colab notebook, hoping to make it easier to GGUF models with Imatrix. # Free Tier Colab This is only for making the intial FP16 gguf file and computing an imatrix.dat Quantizing is too slow on colab due to only having two available cores. # Details [Thanks to mlabonne for the initial code](https://huggingface.co/mlabonne) Default Imatrix is from [kalomaze](https://github.com/kalomaze) RP Imatrix is from [Lewdiculous](https://huggingface.co/Lewdiculous) Extended is a mix of all data with added alphabets [ParasiticRogue](https://huggingface.co/datasets/ParasiticRogue/Bluemoon-Light)
Katochh/GenAI-task2-ModelB
Katochh
2024-04-27T16:03:59Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:petals-team/falcon-rw-1b", "base_model:adapter:petals-team/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2024-04-27T12:37:28Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: petals-team/falcon-rw-1b model-index: - name: GenAI-task2-ModelB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GenAI-task2-ModelB This model is a fine-tuned version of [petals-team/falcon-rw-1b](https://huggingface.co/petals-team/falcon-rw-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4819 | 0.05 | 20 | 1.5761 | | 1.6396 | 0.1 | 40 | 1.4181 | | 1.4715 | 0.15 | 60 | 1.3053 | | 1.2372 | 0.2 | 80 | 1.2440 | | 1.3006 | 0.25 | 100 | 1.2091 | | 1.117 | 0.3 | 120 | 1.1826 | | 1.1284 | 0.35 | 140 | 1.1691 | | 1.1199 | 0.4 | 160 | 1.1582 | | 1.1853 | 0.45 | 180 | 1.1457 | | 1.1308 | 0.5 | 200 | 1.1411 | | 1.0031 | 0.55 | 220 | 1.1288 | | 1.1332 | 0.6 | 240 | 1.1233 | | 1.1182 | 0.65 | 260 | 1.1185 | | 1.0737 | 0.7 | 280 | 1.1131 | | 1.1858 | 0.75 | 300 | 1.1078 | | 1.0432 | 0.8 | 320 | 1.1026 | | 1.0895 | 0.85 | 340 | 1.0983 | | 1.1091 | 0.9 | 360 | 1.0949 | | 1.0866 | 0.95 | 380 | 1.0927 | | 1.1613 | 1.0 | 400 | 1.0955 | | 1.0328 | 1.05 | 420 | 1.0861 | | 1.0603 | 1.1 | 440 | 1.0842 | | 1.0627 | 1.15 | 460 | 1.0826 | | 0.9571 | 1.2 | 480 | 1.0802 | | 1.0478 | 1.25 | 500 | 1.0808 | | 1.0482 | 1.3 | 520 | 1.0777 | | 1.0552 | 1.35 | 540 | 1.0770 | | 1.0545 | 1.4 | 560 | 1.0778 | | 0.9966 | 1.45 | 580 | 1.0750 | | 1.0967 | 1.5 | 600 | 1.0747 | | 1.0334 | 1.55 | 620 | 1.0736 | | 1.0981 | 1.6 | 640 | 1.0726 | | 1.016 | 1.65 | 660 | 1.0726 | | 1.0358 | 1.7 | 680 | 1.0718 | | 1.0838 | 1.75 | 700 | 1.0718 | | 1.0066 | 1.8 | 720 | 1.0715 | | 1.1167 | 1.85 | 740 | 1.0713 | | 1.0809 | 1.9 | 760 | 1.0713 | | 1.0526 | 1.95 | 780 | 1.0712 | | 1.1084 | 2.0 | 800 | 1.0712 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
venera-ai/SeaLLM-7B-v2.5-4bit
venera-ai
2024-04-27T15:59:48Z
5
1
transformers
[ "transformers", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-04-26T17:15:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kyleishie/tiny-llama-instruct-Q8_0
kyleishie
2024-04-27T15:55:43Z
8
1
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/tinyllama-bnb-4bit", "base_model:quantized:unsloth/tinyllama-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-27T15:55:10Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/tinyllama-bnb-4bit --- # Uploaded model - **Developed by:** kyleishie - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
SKHIA2024/Taxi-v3
SKHIA2024
2024-04-27T15:53:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T15:53:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SKHIA2024/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
moczard/Reinforce-Pixelcopter-PLE-v0
moczard
2024-04-27T15:51:05Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T15:51:00Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.50 +/- 28.99 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
SKHIA2024/q-FrozenLake-v1-4x4-noSlippery
SKHIA2024
2024-04-27T15:49:54Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T15:49:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SKHIA2024/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MohammadKarami/hard-electra
MohammadKarami
2024-04-27T15:49:51Z
104
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T15:49:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
juanchurio/InterfacesVUI
juanchurio
2024-04-27T15:45:30Z
0
0
null
[ "license:cc-by-nc-sa-2.0", "region:us" ]
null
2024-04-27T15:45:30Z
--- license: cc-by-nc-sa-2.0 ---
presencesw/mt5-base-snli-cross
presencesw
2024-04-27T15:44:08Z
48
0
transformers
[ "transformers", "safetensors", "mt5", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-27T15:43:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mozi1924/my_rvc_model
mozi1924
2024-04-27T15:31:28Z
0
1
null
[ "audio-to-audio", "zh", "dataset:mozi1924/sounds", "license:mit", "region:us" ]
audio-to-audio
2024-02-06T04:53:12Z
--- license: mit datasets: - mozi1924/sounds language: - zh pipeline_tag: audio-to-audio --- These are some rvc models I trained. I will unpack the game and extract the voice data after training and put it here.
Rz1010/my_awesome_model
Rz1010
2024-04-27T15:27:54Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-01T23:02:34Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5521 - Accuracy: 0.8947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 222 | 0.4673 | 0.8947 | | No log | 2.0 | 444 | 0.4873 | 0.8842 | | 0.4419 | 3.0 | 666 | 0.5657 | 0.8947 | | 0.4419 | 4.0 | 888 | 0.5696 | 0.8947 | | 0.2477 | 5.0 | 1110 | 0.5521 | 0.8947 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.2
MetaAligner/MetaAligner-UltraFeedback-1.1B
MetaAligner
2024-04-27T15:23:53Z
150
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "Human Preference Alignment", "large language models", "conversational", "en", "dataset:openbmb/UltraFeedback", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T14:14:18Z
--- license: mit language: - en tags: - Human Preference Alignment - large language models datasets: - openbmb/UltraFeedback --- # Introduction MetaAligner-UltraFeedback-1.1B is part of the <em>MetaAligner</em> project, the first policy-agnostic and generalizable method for multi-objective preference alignment of large language models. This model is finetuned based on the TinyLLaMA-1.1B foundation model and the dynamic multi-objective dataset built from the openbmb/UltraFeedback dataset. UltraFeedback-MetaAligner is trained to align responses of another general AI assistant considering a single-turn query, but the queries include professional questions such as programming language and history, and the aligned responses are usually more complicated. The model is expected to perform multi-objective alignment efficiently, without tuning the policy models or accessing their parameters. <em>MetaAligner</em> also exerts zero-shot preference alignment for unseen objectives. To our knowledge, this work marks the first attempt at generalizable multi- objective preference alignment. Experimental results show that MetaAligner can simultaneously perform effective alignment for multiple unseen objectives while maintaining performance on aligned objectives. # Dataset This model is trained based on the following released dataset: # Usage With the Hugging Face Transformers library, you can use the MetaAligner-UltraFeedback-1.1B model in your Python project. Here is a simple example of how to load the model: ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM tokenizer = LlamaTokenizer.from_pretrained('MetaAligner/MetaAligner-UltraFeedback-1.1B', padding_side='left') model = LlamaForCausalLM.from_pretrained('MetaAligner/MetaAligner-UltraFeedback-1.1B', device_map='auto', torch_dtype=torch.bfloat16) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ``` In this example, LlamaTokenizer is used to load the tokenizer, and LlamaForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically use the GPU if it's available. You can align any outputs obtained from other foundation models with your self-defined objectives. For example, we have the following query from UltraFeedback, unaligned output examples from LLaMA2-7B, and target objectives: ```python all_aspects = {'instruction_following': 'Instruction following: the response should follow the instructions of the query', 'honesty': 'Honesty: the response should not tell lies', 'truthfulness': 'Truthfulness: the response should actively making known all the full truth of a matter', 'helpfulness': 'Helpfulness: the response should provide useful resources and suggestions to the user', 'speci': 'Specificity: the response should refer to facts and details and avoid vague arguments.', 'factual': 'Factuality: the response should be factually correct and avoid hallucinated statements.', 'read': 'Readability: the response should be easy to read and understand, not too technical for laymen.', 'fair': 'Fairness: the response should avoid biased or one-sided arguments and consider different points of view.', 'repeat': 'Repetition: the response should avoid repetitive statements of one point.', 'len': 'Length: the response should be concise and avoid redundant content.'} aspects = [instruction_following', 'honesty', 'truthfulness', 'helpfulness'] question = "What is the square root of banana?" answer = "The square root of banana is not a well-defined mathematical concept, as bananas are not objects that can be squared. Bananas are a type of fruit that grow on plants and have a specific shape and size. They do not have any mathematical properties or values that can be used in mathematical operations. Therefore, the square root of banana is not a valid or meaningful mathematical concept. It is important to be aware of the limitations of mathematical language and symbols, and to use them correctly and consistently in order to avoid confusion or misinterpretation." ``` To ensure the best performance, use the following template to prompt <em>MetaAligner</em>: ```python query_prompt = 'You are an assistant to human. You will be provided with a query and an answer. Consider the query, ' \ 'then edit the answer to improve it considering these aspects: {aspects} | ' \ 'Query: {question} | Answer: {answer} | Edit: ' aspects = [all_aspects[i] for i in aspects] aligner_queries = [query_prompt.format(aspects='; '.join(aspects), question=question, answer=str(answer))] ``` You can obtain an aligned response using the following codes: ```python inputs = tokenizer(aligner_queries, return_tensors="pt", padding=True) input_ids = inputs.input_ids.to(device) generate_ids = model.generate(input_ids, max_new_tokens=1024) truc_ids = generate_ids[0][len(input_ids[0]):] response = tokenizer.decode(truc_ids, skip_special_tokens=True, spaces_between_special_tokens=False) print(response) ``` One inference of MetaAligner-UltraFeedback-1.1B on the above codes has the following response: ``` The square root of a number is the reciprocal of that number. In this case, the square root of a banana is not a valid mathematical concept. Bananas are not a mathematical quantity, and therefore, there is no square root of a banana. ``` ## License MetaAligner-UltraFeedback-1.1B is licensed under MIT. For more details, please see the MIT file.
orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch-ohp-15k-strat-1-1epoch
orpo-explorers
2024-04-27T15:23:52Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "orpo", "generated_from_trainer", "conversational", "dataset:orpo-explorers/OHP-15k-Stratified-1", "base_model:orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch", "base_model:finetune:orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T14:18:00Z
--- base_model: orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch tags: - alignment-handbook - trl - orpo - generated_from_trainer - trl - orpo - generated_from_trainer datasets: - orpo-explorers/OHP-15k-Stratified-1 model-index: - name: kaist-mistral-orpo-OHP-15k-Mathcode-2epoch-ohp-15k-strat-1-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kaist-mistral-orpo-OHP-15k-Mathcode-2epoch-ohp-15k-strat-1-1epoch This model is a fine-tuned version of [orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch](https://huggingface.co/orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch) on the orpo-explorers/OHP-15k-Stratified-1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2.post303 - Datasets 2.18.0 - Tokenizers 0.15.2
konawa/konawa_Taxi-v3
konawa
2024-04-27T15:20:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T15:20:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: konawa_Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.63 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="konawa/konawa_Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Moatasem22/bart_CNN_NLP
Moatasem22
2024-04-27T15:16:15Z
105
1
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-04-27T15:15:34Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: bart_CNN_NLP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_CNN_NLP This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0479 - Rouge1: 45.8751 - Rouge2: 28.1917 - Rougel: 42.0922 - Rougelsum: 41.9934 - Gen Len: 6433791.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------------:| | 3.1748 | 0.4 | 40 | 3.1564 | 44.8208 | 26.6733 | 41.2873 | 41.226 | 6433791.8889 | | 3.0649 | 0.8 | 80 | 2.9386 | 45.8469 | 27.8327 | 41.8543 | 41.8139 | 6433791.8556 | | 2.6983 | 1.2 | 120 | 2.8712 | 47.7681 | 29.8568 | 43.9396 | 43.8816 | 6433791.8778 | | 2.6725 | 1.6 | 160 | 2.8698 | 46.6433 | 29.2504 | 43.1299 | 43.0348 | 6433791.9333 | | 2.7537 | 2.0 | 200 | 2.8534 | 47.0645 | 29.6233 | 43.5479 | 43.4841 | 6433791.8778 | | 2.3728 | 2.4 | 240 | 2.9305 | 46.1673 | 28.848 | 42.6293 | 42.5577 | 6433791.8889 | | 2.3572 | 2.8 | 280 | 2.9414 | 47.2408 | 29.4202 | 43.4668 | 43.3747 | 6433791.9 | | 2.087 | 3.2 | 320 | 3.0366 | 46.652 | 28.7844 | 42.7646 | 42.6204 | 6433791.8778 | | 2.1212 | 3.6 | 360 | 3.0169 | 46.6902 | 28.1997 | 42.5114 | 42.4226 | 6433791.8222 | | 2.1264 | 4.0 | 400 | 3.0479 | 45.8751 | 28.1917 | 42.0922 | 41.9934 | 6433791.8333 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
hus960/Lelanta-lake-7b-Q4_K_M-GGUF
hus960
2024-04-27T15:08:40Z
2
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:ChaoticNeutrals/Prima-LelantaclesV7-experimental-7b", "base_model:merge:ChaoticNeutrals/Prima-LelantaclesV7-experimental-7b", "base_model:s3nh/SeverusWestLake-7B-DPO", "base_model:merge:s3nh/SeverusWestLake-7B-DPO", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-27T15:08:25Z
--- license: other library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: - s3nh/SeverusWestLake-7B-DPO - ChaoticNeutrals/Prima-LelantaclesV7-experimental-7b --- # hus960/Lelanta-lake-7b-Q4_K_M-GGUF This model was converted to GGUF format from [`Nitral-AI/Lelanta-lake-7b`](https://huggingface.co/Nitral-AI/Lelanta-lake-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nitral-AI/Lelanta-lake-7b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/Lelanta-lake-7b-Q4_K_M-GGUF --model lelanta-lake-7b.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/Lelanta-lake-7b-Q4_K_M-GGUF --model lelanta-lake-7b.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m lelanta-lake-7b.Q4_K_M.gguf -n 128 ```
MUsama100/Falcon-7b-Finetuned-MBPP-Dataset-base
MUsama100
2024-04-27T15:00:14Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "license:apache-2.0", "region:us" ]
null
2024-04-27T15:00:01Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: tiiuae/falcon-7b-instruct model-index: - name: Falcon-7b-Finetuned-MBPP-Dataset-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Falcon-7b-Finetuned-MBPP-Dataset-base This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8233 | 0.07 | 50 | 1.5671 | | 1.673 | 0.15 | 100 | 1.5646 | | 1.635 | 0.22 | 150 | 1.5569 | | 1.4232 | 0.29 | 200 | 1.5369 | | 1.4397 | 0.37 | 250 | 1.5073 | | 1.5663 | 0.44 | 300 | 1.4721 | | 1.4632 | 0.51 | 350 | 1.4342 | | 1.6059 | 0.59 | 400 | 1.3978 | | 1.6951 | 0.66 | 450 | 1.3606 | | 1.7563 | 0.73 | 500 | 1.3241 | | 0.939 | 0.81 | 550 | 1.2867 | | 0.8452 | 0.88 | 600 | 1.2481 | | 1.1147 | 0.95 | 650 | 1.2084 | | 0.8543 | 1.03 | 700 | 1.1682 | | 0.6985 | 1.1 | 750 | 1.1356 | | 1.0973 | 1.17 | 800 | 1.1100 | | 2.0793 | 1.25 | 850 | 1.0892 | | 0.9806 | 1.32 | 900 | 1.0713 | | 0.8114 | 1.4 | 950 | 1.0555 | | 1.4202 | 1.47 | 1000 | 1.0425 | | 0.7755 | 1.54 | 1050 | 1.0314 | | 0.8624 | 1.62 | 1100 | 1.0223 | | 1.6017 | 1.69 | 1150 | 1.0143 | | 1.069 | 1.76 | 1200 | 1.0071 | | 1.2192 | 1.84 | 1250 | 1.0007 | | 0.8816 | 1.91 | 1300 | 0.9944 | | 0.9615 | 1.98 | 1350 | 0.9887 | | 1.2626 | 2.06 | 1400 | 0.9833 | | 1.0128 | 2.13 | 1450 | 0.9787 | | 0.7951 | 2.2 | 1500 | 0.9741 | | 1.0879 | 2.28 | 1550 | 0.9701 | | 1.0546 | 2.35 | 1600 | 0.9661 | | 0.9218 | 2.42 | 1650 | 0.9625 | | 1.1159 | 2.5 | 1700 | 0.9591 | | 0.6223 | 2.57 | 1750 | 0.9561 | | 0.7334 | 2.64 | 1800 | 0.9536 | | 0.9296 | 2.72 | 1850 | 0.9512 | | 1.0653 | 2.79 | 1900 | 0.9489 | | 0.8812 | 2.86 | 1950 | 0.9469 | | 0.7767 | 2.94 | 2000 | 0.9452 | | 0.9707 | 3.01 | 2050 | 0.9435 | | 1.1393 | 3.08 | 2100 | 0.9420 | | 0.8604 | 3.16 | 2150 | 0.9407 | | 0.7592 | 3.23 | 2200 | 0.9396 | | 0.8046 | 3.3 | 2250 | 0.9385 | | 1.5882 | 3.38 | 2300 | 0.9375 | | 1.0068 | 3.45 | 2350 | 0.9366 | | 1.205 | 3.52 | 2400 | 0.9357 | | 0.689 | 3.6 | 2450 | 0.9350 | | 0.8573 | 3.67 | 2500 | 0.9344 | | 1.072 | 3.74 | 2550 | 0.9338 | | 0.9188 | 3.82 | 2600 | 0.9332 | | 1.3385 | 3.89 | 2650 | 0.9327 | | 0.9067 | 3.96 | 2700 | 0.9324 | | 0.9993 | 4.04 | 2750 | 0.9321 | | 0.8222 | 4.11 | 2800 | 0.9317 | | 0.8129 | 4.19 | 2850 | 0.9315 | | 0.7861 | 4.26 | 2900 | 0.9313 | | 1.3126 | 4.33 | 2950 | 0.9311 | | 0.9465 | 4.41 | 3000 | 0.9310 | | 0.9444 | 4.48 | 3050 | 0.9309 | | 0.5677 | 4.55 | 3100 | 0.9308 | | 0.7046 | 4.63 | 3150 | 0.9307 | | 1.5036 | 4.7 | 3200 | 0.9307 | | 1.0087 | 4.77 | 3250 | 0.9307 | | 0.6705 | 4.85 | 3300 | 0.9306 | | 1.0425 | 4.92 | 3350 | 0.9306 | | 0.3666 | 4.99 | 3400 | 0.9306 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
ramixpe/llama3-8b-SP_IOSXR
ramixpe
2024-04-27T14:57:43Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T14:33:48Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** ramixpe - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
compressa-ai/Saiga-Llama-3-8B-AdaQRound
compressa-ai
2024-04-27T14:51:21Z
117
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "saiga", "llama3", "adaround", "adaquant", "omniquant", "gptq", "triton", "conversational", "ru", "arxiv:2004.10568", "arxiv:2006.10518", "base_model:IlyaGusev/saiga_llama3_8b", "base_model:quantized:IlyaGusev/saiga_llama3_8b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2024-04-27T14:12:24Z
--- base_model: IlyaGusev/saiga_llama3_8b model_type: llama pipeline_tag: text-generation quantized_by: Compressa language: - ru license: other license_name: llama3 license_link: https://llama.meta.com/llama3/license tags: - saiga - llama3 - adaround - adaquant - omniquant - gptq - triton --- # Saiga – Llama 3 8B – AdaQRound Based on [Saiga Llama 3 8B](https://huggingface.co/IlyaGusev/saiga_llama3_8b). Quantized with AdaQRound which is a combination of [AdaRound](https://arxiv.org/abs/2004.10568) and [AdaQuant](https://arxiv.org/abs/2006.10518), with code implementation based on [OmniQuant](https://github.com/OpenGVLab/OmniQuant). ## Evaluation ### PPL (↓) | | wiki | | ------------- | ----- | | FP | 7,862 | | **Quantized** | 8,272 | ### Accuracy on English Benchmarks, % (↑) | | piqa | arc_easy | arc_challenge | boolq | hellaswag | winogrande | mmlu_humanities | mmlu_social_sciences | mmlu_stem | mmlu_other | | ------------- | ---- | -------- | ------------- | ----- | --------- | ---------- | --------------- | -------------------- | --------- | ---------- | | FP | 78,5 | 82,2 | 50,4 | 82,7 | 58,1 | 72,4 | 65,5 | 72,6 | 53,8 | 68,4 | | **Quantized** | 78,2 | 81,6 | 49,9 | 81,9 | 57,2 | 71,7 | 63,7 | 69,5 | 51,6 | 66,9 | ### Accuracy on Russian Benchmarks, % (↑) | | danetqa | terra | rwsd | muserc | rucos | lidirus | parus | rcb | russe | rucola | | ------------- | ------- | ----- | ---- | ------ | ----- | ------- | ----- | ---- | ----- | ------ | | FP | 74,9 | 52,1 | 51,5 | 55,9 | 58,1 | 59,5 | 69,0 | 34,1 | 38,8 | 67,5 | | **Quantized** | 66,7 | 50,8 | 48,0 | 56,2 | 52,6 | 59,7 | 70,0 | 33,6 | 37,0 | 67,5 | ### Summary | | Avg acc diff on Eng, % (↑) | Avg acc diff on Rus, % (↑) | Occupied disk space, % (↓) | | ------------- | -------------------------- | -------------------------- | -------------------------- | | FP | 0 | 0 | 100 | | **Quantized** | \-1,2 | \-1,9 | 35,7 | ## Examples ### Imports and Model Loading <details> <summary>Expand</summary> ```python import gc import auto_gptq.nn_modules.qlinear.qlinear_cuda as qlinear_cuda import auto_gptq.nn_modules.qlinear.qlinear_triton as qlinear_triton import torch from accelerate import ( init_empty_weights, infer_auto_device_map, load_checkpoint_in_model, ) from tqdm import tqdm from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, pipeline, ) def get_named_linears(model): return { name: module for name, module in model.named_modules() if isinstance(module, torch.nn.Linear) } def set_module(model, name, module): parent = model levels = name.split('.') for i in range(len(levels) - 1): cur_name = levels[i] if cur_name.isdigit(): parent = parent[int(cur_name)] else: parent = getattr(parent, cur_name) setattr(parent, levels[-1], module) def load_model(model_path): # Based on: https://github.com/OpenGVLab/OmniQuant/blob/main/runing_quantized_mixtral_7bx8.ipynb config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) if not hasattr(config, 'quantization_config'): raise AttributeError( f'No quantization info found in model config "{model_path}"' f' (`quantization_config` section is missing).' ) wbits = config.quantization_config['bits'] group_size = config.quantization_config['group_size'] # We are going to init an ordinary model and then manually replace all Linears with QuantLinears del config.quantization_config with init_empty_weights(): model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch.float16, trust_remote_code=True) layers = model.model.layers for i in tqdm(range(len(layers))): layer = layers[i] named_linears = get_named_linears(layer) for name, module in named_linears.items(): params = ( wbits, group_size, module.in_features, module.out_features, module.bias is not None ) if wbits in [2, 4]: q_linear = qlinear_triton.QuantLinear(*params) elif wbits == 3: q_linear = qlinear_cuda.QuantLinear(*params) else: raise NotImplementedError("Only 2, 3 and 4 bits are supported.") q_linear.to(next(layer.parameters()).device) set_module(layer, name, q_linear) torch.cuda.empty_cache() gc.collect() model.tie_weights() device_map = infer_auto_device_map(model) print("Loading pre-computed quantized weights...") load_checkpoint_in_model( model, checkpoint=model_path, device_map=device_map, offload_state_dict=True, ) print("Model loaded successfully!") return model ``` </details> ### Inference ```python model_path = "compressa-ai/Saiga-Llama-3-8B-AdaQRound" model = load_model(model_path).cuda() tokenizer = AutoTokenizer.from_pretrained( model_path, use_fast=False, trust_remote_code=True ) system_message = "Π’Ρ‹ β€” Π΄Ρ€ΡƒΠΆΠ΅Π»ΡŽΠ±Π½Ρ‹ΠΉ Ρ‡Π°Ρ‚-Π±ΠΎΡ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ всСгда ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ ΠΊΠ°ΠΊ ΠΏΠΈΡ€Π°Ρ‚." user_message = "ΠšΡƒΠ΄Π° ΠΌΡ‹ направляСмся, ΠΊΠ°ΠΏΠΈΡ‚Π°Π½?" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": user_message}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer(prompt, return_tensors="pt") inputs = {k: v.cuda() for k, v in inputs.items()} outputs = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, ) response = tokenizer.decode(outputs[0]) continuation = response.removeprefix(prompt).removesuffix(tokenizer.eos_token) print(f'Prompt:\n{prompt}') print(f'Continuation:\n{continuation}\n') ``` ### Inference Using Pipeline ```python pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, device=0, ) prompt = pipe.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = pipe(prompt) response = outputs[0]["generated_text"] continuation = response.removeprefix(prompt) print(f'Prompt:\n{prompt}') print(f'Continuation:\n{continuation}\n') ```
ShenaoZhang/0.1_4iters_bs256_nodpo_only4w_iter_1
ShenaoZhang
2024-04-27T14:49:58Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:HuggingFaceH4/mistral-7b-sft-beta", "base_model:finetune:HuggingFaceH4/mistral-7b-sft-beta", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T14:17:01Z
--- license: mit base_model: HuggingFaceH4/mistral-7b-sft-beta tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - updated - original model-index: - name: 0.1_4iters_bs256_nodpo_only4w_iter_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.1_4iters_bs256_nodpo_only4w_iter_1 This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
hus960/Prima-LelantaclesV7-experimentalv2-7b-Q4_K_M-GGUF
hus960
2024-04-27T14:49:36Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:ChaoticNeutrals/Prima-LelantaclesV7-experimental-7b", "base_model:merge:ChaoticNeutrals/Prima-LelantaclesV7-experimental-7b", "base_model:tavtav/eros-7b-test", "base_model:merge:tavtav/eros-7b-test", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-27T14:49:23Z
--- license: other library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: - tavtav/eros-7b-test - ChaoticNeutrals/Prima-LelantaclesV7-experimental-7b --- # hus960/Prima-LelantaclesV7-experimentalv2-7b-Q4_K_M-GGUF This model was converted to GGUF format from [`Nitral-AI/Prima-LelantaclesV7-experimentalv2-7b`](https://huggingface.co/Nitral-AI/Prima-LelantaclesV7-experimentalv2-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nitral-AI/Prima-LelantaclesV7-experimentalv2-7b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/Prima-LelantaclesV7-experimentalv2-7b-Q4_K_M-GGUF --model prima-lelantaclesv7-experimentalv2-7b.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/Prima-LelantaclesV7-experimentalv2-7b-Q4_K_M-GGUF --model prima-lelantaclesv7-experimentalv2-7b.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m prima-lelantaclesv7-experimentalv2-7b.Q4_K_M.gguf -n 128 ```
ed-butcher/ppo-PyramidsRND
ed-butcher
2024-04-27T14:48:51Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-04-27T14:45:44Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ed-butcher/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
EmnaFazaa/donut-financial-document-classification
EmnaFazaa
2024-04-27T14:44:43Z
47
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-04-27T14:44:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
anezatra/gpt2-samsum-124M
anezatra
2024-04-27T14:43:47Z
142
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "en", "dataset:samsum", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T14:29:14Z
--- datasets: - samsum language: - en pipeline_tag: text-generation --- # OpenAI GPT-2 Samsum ## Model description This model has been trained with the SAMSum dataset. The SAMSum dataset contains approximately 16,000 conversational dialogues accompanied by summaries. These conversations were created and written by linguists proficient in fluent English. Linguists were instructed to create conversations that reflect the ratio of topics found in real-life journalistic conversations similar to their daily written conversations. The style and tone vary; conversations can be informal, semi-formal, or formal, and may include slang terms, expressions, and spelling errors. Subsequently, the conversations were annotated with summaries. The summaries are expected to be concise summaries of what people were talking about during the conversation, written in the third person. The SAMSum dataset was prepared by the Samsung Research Institute Poland and is distributed for research purposes. ## Training This GPT-2 model is rated for an average of 1 hour with an L4 GPU. ## Training Results ![examples](https://huggingface.co/anezatra/gpt2-samsum-124M/raw/main/img.jpg) **Authors** - **Developed by:** Anezatra - **Model type:** GPT2 - **Contacts:** https://github.com/anezatra
smacky42/sn17-6-1
smacky42
2024-04-27T14:36:59Z
1
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2024-04-24T19:48:35Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Romain-Jochum/Mistral_7B_French_Poetry_Tuning
Romain-Jochum
2024-04-27T14:36:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T14:22:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SamirLahouar/Taxi-v3
SamirLahouar
2024-04-27T14:29:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:29:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SamirLahouar/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Tuia/whisper-small-mn
Tuia
2024-04-27T14:28:27Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "mn", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-04-26T05:50:44Z
--- language: - mn license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Mn - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: None args: 'config: mn, split: test' metrics: - name: Wer type: wer value: 46.60332022717344 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Mn - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5062 - Wer: 46.6033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6115 | 0.4975 | 1000 | 0.7317 | 69.4572 | | 0.4096 | 0.9950 | 2000 | 0.5577 | 56.7770 | | 0.2114 | 1.4925 | 3000 | 0.5270 | 52.8506 | | 0.2126 | 1.9900 | 4000 | 0.4860 | 50.1365 | | 0.105 | 2.4876 | 5000 | 0.5017 | 48.1542 | | 0.0678 | 2.9851 | 6000 | 0.4909 | 47.1876 | | 0.0294 | 3.4826 | 7000 | 0.5062 | 46.6033 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
toure32/Taxi-v3
toure32
2024-04-27T14:27:54Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:27:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="toure32/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SarahDhrifa/taxi-v3
SarahDhrifa
2024-04-27T14:27:39Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:27:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SarahDhrifa/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
saousan/taxi-v3
saousan
2024-04-27T14:27:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:27:29Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="saousan/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Schadic/Taxi-v3
Schadic
2024-04-27T14:26:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:26:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="FitTechMike/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Yann2310/q-FrozenLake-v1-4x4-noSlippery
Yann2310
2024-04-27T14:25:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T13:38:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Yann2310/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Astowny/q-FrozenLake-v1-4x4-noSlippery
Astowny
2024-04-27T14:24:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:24:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Astowny/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hunterlee27/chinese-llama3-full-model
hunterlee27
2024-04-27T14:22:14Z
1
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "zh", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T11:06:56Z
--- language: - en - zh license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** hunterlee27 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Schadic/q-FrozenLake-v1-4x4-noSlippery
Schadic
2024-04-27T14:18:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T14:08:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="FitTechMike/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
strich/Mistral-7B-Instruct-v0.2-lbl-2x
strich
2024-04-27T14:16:47Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-26T13:49:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
saucam/Experto-4X8B-untrained
saucam
2024-04-27T14:12:58Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T14:02:53Z
--- {} --- # Experto-4X8B-untrained Experto-4X8B-untrained is a merge of the following models using [mergoo](https://github.com/Leeroo-AI/mergoo/tree/main): * [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) * [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) * [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B) * [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B) * [dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2](https://huggingface.co/dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2) ## 🧩 Configuration ```json``` WARNING: This model needs further training to train the router layers
mlx-community/Swallow-7b-instruct-v0.1-4bit
mlx-community
2024-04-27T13:58:15Z
79
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "ja", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-27T13:52:43Z
--- language: - en - ja license: llama2 library_name: transformers tags: - mlx pipeline_tag: text-generation model_type: llama --- # mlx-community/Swallow-7b-instruct-v0.1-4bit This model was converted to MLX format from [`tokyotech-llm/Swallow-7b-instruct-v0.1`]() using mlx-lm version **0.6.0**. Refer to the [original model card](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v0.1) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Swallow-7b-instruct-v0.1-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
ed-butcher/ppo-SnowballTarget
ed-butcher
2024-04-27T13:58:00Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-04-27T13:57:56Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ed-butcher/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
SamirLahouar/q-FrozenLake-v1-4x4-noSlippery
SamirLahouar
2024-04-27T13:56:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-04-27T13:56:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SamirLahouar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MinhND2301/toxic_classification_model
MinhND2301
2024-04-27T13:55:26Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:MinhND2301/toxic_classification_model", "base_model:finetune:MinhND2301/toxic_classification_model", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-08T09:07:31Z
--- base_model: MinhND2301/toxic_classification_model tags: - generated_from_trainer metrics: - accuracy model-index: - name: toxic_classification_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # toxic_classification_model This model is a fine-tuned version of [MinhND2301/toxic_classification_model](https://huggingface.co/MinhND2301/toxic_classification_model) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3017 - Accuracy: 0.9108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 436 | 0.2677 | 0.9009 | | 0.1858 | 2.0 | 872 | 0.2940 | 0.9030 | | 0.151 | 3.0 | 1308 | 0.3017 | 0.9108 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3