modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-25 12:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
495 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-25 12:27:57
card
stringlengths
11
1.01M
Sophie-Rain-X-Video-Live/Sophie.Rain.Spiderman.Original.Viral.video.Link
Sophie-Rain-X-Video-Live
2025-02-26T03:13:38Z
0
0
null
[ "region:us" ]
null
2025-02-26T03:13:14Z
<p><a href="https://t.co/b3BmJ8UQpZ">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)</a></p> <p><a href="https://t.co/b3BmJ8UQpZ">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )</a></p>
samoline/bf90d7b3-3921-4a8b-b643-70905bd0c67e
samoline
2025-02-26T03:12:35Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "base_model:adapter:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "license:llama3", "region:us" ]
null
2025-02-26T03:05:29Z
--- library_name: peft license: llama3 base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct tags: - axolotl - generated_from_trainer model-index: - name: bf90d7b3-3921-4a8b-b643-70905bd0c67e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fa22eddc77a8a17d_train_data.json ds_type: json format: custom path: /workspace/input_data/fa22eddc77a8a17d_train_data.json type: field_instruction: Instruction field_output: Output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/bf90d7b3-3921-4a8b-b643-70905bd0c67e hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/fa22eddc77a8a17d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 5e1d2e3f-177a-4742-b155-12671239d867 wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 5e1d2e3f-177a-4742-b155-12671239d867 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bf90d7b3-3921-4a8b-b643-70905bd0c67e This model is a fine-tuned version of [aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 2 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nomnoos37/250216-Mistral-Nemo-ggls-v1.3.6-0.5-2-epoch
nomnoos37
2025-02-26T03:11:34Z
0
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "base_model:quantized:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T02:47:35Z
--- base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** nomnoos37 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
xcz0/ppo-LunarLander-v2
xcz0
2025-02-26T03:10:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-02-26T03:09:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.45 +/- 23.39 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JuncheolK/qwen2-7b-instruct-trl-sft-ChartQA
JuncheolK
2025-02-26T03:06:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-02-25T08:22:10Z
--- base_model: Qwen/Qwen2-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JuncheolK/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.50.0.dev0 - Pytorch: 2.4.1+cu121 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
JacksonBrune/e74ef115-45a2-4b26-acc4-12f5f82febda
JacksonBrune
2025-02-26T03:06:09Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf", "base_model:adapter:NousResearch/CodeLlama-7b-hf", "region:us" ]
null
2025-02-25T21:59:22Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: e74ef115-45a2-4b26-acc4-12f5f82febda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # e74ef115-45a2-4b26-acc4-12f5f82febda This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
abehandlerorg/econbertcausalsentenceclassifier
abehandlerorg
2025-02-26T03:05:49Z
8
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-22T20:38:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jo-2j/epoch3-batch-4-withKon-bart-model-edit-2
Jo-2j
2025-02-26T03:05:14Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:gogamza/kobart-base-v2", "base_model:finetune:gogamza/kobart-base-v2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-02-26T02:48:49Z
--- library_name: transformers license: mit base_model: gogamza/kobart-base-v2 tags: - generated_from_trainer model-index: - name: epoch3-batch-4-withKon-bart-model-edit-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # epoch3-batch-4-withKon-bart-model-edit-2 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1392 | 1.0 | 1268 | 0.1327 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
obiwit/llama3.2-3b-dpo-vanilla-subset
obiwit
2025-02-26T03:01:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:obiwit/llama3.2-3b-sft-full", "base_model:finetune:obiwit/llama3.2-3b-sft-full", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-24T00:35:53Z
--- base_model: obiwit/llama3.2-3b-sft-full library_name: transformers model_name: llama3.2-3b-dpo-vanilla-subset tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for llama3.2-3b-dpo-vanilla-subset This model is a fine-tuned version of [obiwit/llama3.2-3b-sft-full](https://huggingface.co/obiwit/llama3.2-3b-sft-full). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="obiwit/llama3.2-3b-dpo-vanilla-subset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bborges/L3-8B_preferences/runs/k54qzpy0) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.2 - Transformers: 4.46.0 - Pytorch: 2.1.2+cu121 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
leixa/c044431c-6efb-4164-916f-fc6f807d521a
leixa
2025-02-26T03:00:05Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf", "base_model:adapter:NousResearch/CodeLlama-7b-hf", "region:us" ]
null
2025-02-25T22:17:21Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: c044431c-6efb-4164-916f-fc6f807d521a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3eeea2777a8212e7_train_data.json ds_type: json format: custom path: /workspace/input_data/3eeea2777a8212e7_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp_timeout: 1800 debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true group_by_length: true hub_model_id: leixa/c044431c-6efb-4164-916f-fc6f807d521a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1800 micro_batch_size: 4 mlflow_experiment_name: /tmp/3eeea2777a8212e7_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-08 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true relora_prune_ratio: 0.9 resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: acopia-grant wandb_mode: online wandb_name: 1cf249aa-30aa-4b8c-84ee-a1b5a0ed3381 wandb_project: Gradients-On-112 wandb_run: your_name wandb_runid: 1cf249aa-30aa-4b8c-84ee-a1b5a0ed3381 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c044431c-6efb-4164-916f-fc6f807d521a This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 1800 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.2455 | | 3.5939 | 0.0127 | 150 | 0.9439 | | 3.3323 | 0.0253 | 300 | 0.9033 | | 3.4044 | 0.0380 | 450 | 0.8839 | | 3.0439 | 0.0506 | 600 | 0.8660 | | 2.9514 | 0.0633 | 750 | 0.8494 | | 2.9735 | 0.0759 | 900 | 0.8356 | | 3.0184 | 0.0886 | 1050 | 0.8311 | | 2.9847 | 0.1012 | 1200 | 0.8240 | | 3.0828 | 0.1139 | 1350 | 0.8141 | | 2.9179 | 0.1265 | 1500 | 0.8060 | | 2.863 | 0.1392 | 1650 | 0.7982 | | 2.9396 | 0.1518 | 1800 | 0.7922 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
straykittycat/b11
straykittycat
2025-02-26T02:58:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T02:54:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso14/e4dcaf42-c0c8-45ec-ad2f-f984dd4c3368
lesso14
2025-02-26T02:58:32Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/codellama-7b", "base_model:adapter:unsloth/codellama-7b", "license:apache-2.0", "region:us" ]
null
2025-02-26T00:59:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: e4dcaf42-c0c8-45ec-ad2f-f984dd4c3368 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/codellama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed7f40531cda0438_train_data.json ds_type: json format: custom path: /workspace/input_data/ed7f40531cda0438_train_data.json type: field_input: span_labels field_instruction: source_text field_output: target_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso14/e4dcaf42-c0c8-45ec-ad2f-f984dd4c3368 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000214 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/ed7f40531cda0438_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 140 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1cdd58f-625d-49ad-a5b8-a912b4559816 wandb_project: 14a wandb_run: your_name wandb_runid: b1cdd58f-625d-49ad-a5b8-a912b4559816 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e4dcaf42-c0c8-45ec-ad2f-f984dd4c3368 This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000214 - train_batch_size: 4 - eval_batch_size: 4 - seed: 140 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.6212 | | 0.0283 | 0.0020 | 50 | 0.0155 | | 0.0127 | 0.0040 | 100 | 0.0091 | | 0.0153 | 0.0060 | 150 | 0.0079 | | 0.0078 | 0.0081 | 200 | 0.0057 | | 0.0023 | 0.0101 | 250 | 0.0048 | | 0.0021 | 0.0121 | 300 | 0.0035 | | 0.0084 | 0.0141 | 350 | 0.0034 | | 0.0025 | 0.0161 | 400 | 0.0032 | | 0.0009 | 0.0181 | 450 | 0.0030 | | 0.0027 | 0.0201 | 500 | 0.0030 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
DoNotChoke/abte-restaurants-distilbert-base-uncased
DoNotChoke
2025-02-26T02:58:26Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-02-26T02:58:13Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: abte-restaurants-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # abte-restaurants-distilbert-base-uncased This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3605 - F1-score: 0.8429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6511 | 1.0 | 15 | 0.5160 | 0.0210 | | 0.3533 | 2.0 | 30 | 0.2970 | 0.5713 | | 0.2243 | 3.0 | 45 | 0.2558 | 0.6359 | | 0.1706 | 4.0 | 60 | 0.2319 | 0.6803 | | 0.1363 | 5.0 | 75 | 0.2149 | 0.7386 | | 0.0983 | 6.0 | 90 | 0.2058 | 0.7840 | | 0.0763 | 7.0 | 105 | 0.2034 | 0.8062 | | 0.0614 | 8.0 | 120 | 0.2150 | 0.8121 | | 0.0484 | 9.0 | 135 | 0.2192 | 0.8166 | | 0.0406 | 10.0 | 150 | 0.2291 | 0.8243 | | 0.0341 | 11.0 | 165 | 0.2317 | 0.8284 | | 0.0278 | 12.0 | 180 | 0.2352 | 0.8334 | | 0.0244 | 13.0 | 195 | 0.2480 | 0.8261 | | 0.0221 | 14.0 | 210 | 0.2546 | 0.8288 | | 0.0208 | 15.0 | 225 | 0.2558 | 0.8288 | | 0.0175 | 16.0 | 240 | 0.2678 | 0.8317 | | 0.0164 | 17.0 | 255 | 0.2712 | 0.8225 | | 0.0141 | 18.0 | 270 | 0.2635 | 0.8365 | | 0.0128 | 19.0 | 285 | 0.2720 | 0.8356 | | 0.012 | 20.0 | 300 | 0.2800 | 0.8332 | | 0.0118 | 21.0 | 315 | 0.2837 | 0.8378 | | 0.0115 | 22.0 | 330 | 0.2866 | 0.8378 | | 0.0108 | 23.0 | 345 | 0.2893 | 0.8354 | | 0.0099 | 24.0 | 360 | 0.2955 | 0.8362 | | 0.0087 | 25.0 | 375 | 0.2979 | 0.8353 | | 0.0082 | 26.0 | 390 | 0.2957 | 0.8393 | | 0.0074 | 27.0 | 405 | 0.3025 | 0.8391 | | 0.0072 | 28.0 | 420 | 0.3022 | 0.8376 | | 0.0079 | 29.0 | 435 | 0.3137 | 0.8360 | | 0.0066 | 30.0 | 450 | 0.3118 | 0.8338 | | 0.0068 | 31.0 | 465 | 0.3132 | 0.8424 | | 0.0073 | 32.0 | 480 | 0.3071 | 0.8413 | | 0.0059 | 33.0 | 495 | 0.3048 | 0.8365 | | 0.0064 | 34.0 | 510 | 0.3218 | 0.8407 | | 0.0083 | 35.0 | 525 | 0.3187 | 0.8392 | | 0.006 | 36.0 | 540 | 0.3218 | 0.8396 | | 0.0056 | 37.0 | 555 | 0.3167 | 0.8431 | | 0.0051 | 38.0 | 570 | 0.3160 | 0.8404 | | 0.006 | 39.0 | 585 | 0.3229 | 0.8421 | | 0.005 | 40.0 | 600 | 0.3178 | 0.8408 | | 0.0049 | 41.0 | 615 | 0.3275 | 0.8388 | | 0.005 | 42.0 | 630 | 0.3265 | 0.8409 | | 0.0048 | 43.0 | 645 | 0.3221 | 0.8403 | | 0.0047 | 44.0 | 660 | 0.3212 | 0.8402 | | 0.0044 | 45.0 | 675 | 0.3221 | 0.8413 | | 0.0049 | 46.0 | 690 | 0.3278 | 0.8405 | | 0.0046 | 47.0 | 705 | 0.3348 | 0.8408 | | 0.0044 | 48.0 | 720 | 0.3305 | 0.8414 | | 0.0038 | 49.0 | 735 | 0.3358 | 0.8420 | | 0.0052 | 50.0 | 750 | 0.3368 | 0.8416 | | 0.0042 | 51.0 | 765 | 0.3298 | 0.8410 | | 0.004 | 52.0 | 780 | 0.3412 | 0.8359 | | 0.0045 | 53.0 | 795 | 0.3404 | 0.8371 | | 0.004 | 54.0 | 810 | 0.3332 | 0.8410 | | 0.0041 | 55.0 | 825 | 0.3361 | 0.8428 | | 0.0036 | 56.0 | 840 | 0.3355 | 0.8413 | | 0.0041 | 57.0 | 855 | 0.3396 | 0.8413 | | 0.0039 | 58.0 | 870 | 0.3441 | 0.8412 | | 0.004 | 59.0 | 885 | 0.3437 | 0.8419 | | 0.0039 | 60.0 | 900 | 0.3470 | 0.8407 | | 0.0037 | 61.0 | 915 | 0.3478 | 0.8434 | | 0.0036 | 62.0 | 930 | 0.3499 | 0.8454 | | 0.0036 | 63.0 | 945 | 0.3492 | 0.8437 | | 0.0043 | 64.0 | 960 | 0.3477 | 0.8429 | | 0.0039 | 65.0 | 975 | 0.3431 | 0.8409 | | 0.0035 | 66.0 | 990 | 0.3474 | 0.8434 | | 0.004 | 67.0 | 1005 | 0.3478 | 0.8436 | | 0.0034 | 68.0 | 1020 | 0.3526 | 0.8421 | | 0.0035 | 69.0 | 1035 | 0.3514 | 0.8459 | | 0.0033 | 70.0 | 1050 | 0.3527 | 0.8443 | | 0.0036 | 71.0 | 1065 | 0.3485 | 0.8430 | | 0.0036 | 72.0 | 1080 | 0.3521 | 0.8456 | | 0.0036 | 73.0 | 1095 | 0.3535 | 0.8433 | | 0.0036 | 74.0 | 1110 | 0.3578 | 0.8405 | | 0.0031 | 75.0 | 1125 | 0.3609 | 0.8414 | | 0.0033 | 76.0 | 1140 | 0.3563 | 0.8426 | | 0.0033 | 77.0 | 1155 | 0.3561 | 0.8441 | | 0.0032 | 78.0 | 1170 | 0.3550 | 0.8423 | | 0.0032 | 79.0 | 1185 | 0.3554 | 0.8414 | | 0.0031 | 80.0 | 1200 | 0.3554 | 0.8404 | | 0.0039 | 81.0 | 1215 | 0.3549 | 0.8413 | | 0.0034 | 82.0 | 1230 | 0.3548 | 0.8405 | | 0.0029 | 83.0 | 1245 | 0.3575 | 0.8443 | | 0.0032 | 84.0 | 1260 | 0.3579 | 0.8416 | | 0.0029 | 85.0 | 1275 | 0.3603 | 0.8408 | | 0.0031 | 86.0 | 1290 | 0.3611 | 0.8445 | | 0.0031 | 87.0 | 1305 | 0.3612 | 0.8444 | | 0.0029 | 88.0 | 1320 | 0.3620 | 0.8447 | | 0.0032 | 89.0 | 1335 | 0.3594 | 0.8416 | | 0.0041 | 90.0 | 1350 | 0.3586 | 0.8423 | | 0.0032 | 91.0 | 1365 | 0.3599 | 0.8423 | | 0.0031 | 92.0 | 1380 | 0.3598 | 0.8409 | | 0.0033 | 93.0 | 1395 | 0.3593 | 0.8424 | | 0.0029 | 94.0 | 1410 | 0.3593 | 0.8422 | | 0.003 | 95.0 | 1425 | 0.3607 | 0.8426 | | 0.0028 | 96.0 | 1440 | 0.3610 | 0.8449 | | 0.0029 | 97.0 | 1455 | 0.3607 | 0.8424 | | 0.003 | 98.0 | 1470 | 0.3609 | 0.8422 | | 0.0029 | 99.0 | 1485 | 0.3606 | 0.8433 | | 0.003 | 100.0 | 1500 | 0.3605 | 0.8429 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
sabersamax/dpo_meta-Llama-3-8B-Instruct
sabersamax
2025-02-26T02:56:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T02:48:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
2eol/Llama3-8b-chinese-Uncensored-Uncensored
2eol
2025-02-26T02:54:48Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:shenzhi-wang/Llama3-8B-Chinese-Chat", "base_model:finetune:shenzhi-wang/Llama3-8B-Chinese-Chat", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-26T02:54:43Z
--- base_model: shenzhi-wang/Llama3-8B-Chinese-Chat tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** 2eol - **License:** apache-2.0 - **Finetuned from model :** shenzhi-wang/Llama3-8B-Chinese-Chat This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
codefuse-ai/rodimus_plus_1B6_base_20250215
codefuse-ai
2025-02-26T02:49:43Z
0
0
null
[ "pytorch", "jetx", "license:apache-2.0", "region:us" ]
null
2025-02-25T09:47:11Z
--- license: apache-2.0 --- # Rodimus* ## Introduction Rodimus* is a new series of efficient large language models designed to address the challenges of computational complexity in Transformer-based architectures. The Rodimus* includes the base Rodimus model and its enhanced version, Rodimus+. Rodimus leverages a novel Data-Dependent Tempered Selection (DDTS) mechanism within a purely recurrent, linear attention-based framework, achieving high performance. Building on this, Rodimus+ combines the strengths of Rodimus and the innovative Sliding Window Shared-Key Attention (SW-SKA) in a hybrid approach. This combination effectively integrates semantic, token, and head compression techniques, enabling a balance between accuracy and efficiency. For more details, please refer to our [Paper](https://openreview.net/forum?id=IIVYiJ1ggK) and [Github](https://github.com/codefuse-ai/rodimus). > This repository contains the **latest checkpoint** of Rodimus+ 1.6B trained by continuously updated data, with a focus on the performance of code and math. > ## Usage We do not recommend using base language models directly for text generation. Instead, consider applying post-training techniques such as SFT, RLHF or continued pretraining to enhance the model's performance. **Installation** 1. The latest version of [transformers](https://github.com/huggingface/transformers) is recommended (at least 4.42.0). 2. We evaluate our models with `python=3.8` and `torch==2.1.2`. 3. If you use Rodimus, you need to install [flash-linear-attention](https://github.com/sustcsonglin/flash-linear-attention) and [triton>=2.2.0](https://github.com/triton-lang/triton). If you use Rodimus+, you need to further install [flash-attention](https://github.com/Dao-AILab/flash-attention). ## Generation `generate` APi ```python import os import torch from modeling_rodimus import RodimusForCausalLM from tokenization_rodimus_fast import RodimusTokenizer # load model ckpt_dir = "model_path" tokenizer = RodimusTokenizer.from_pretrained(ckpt_dir) model = RodimusForCausalLM.from_pretrained( ckpt_dir, torch_dtype=torch.float16, device_map="cuda" ).eval() # inference input_prompt = "ไฝ ๅฅฝ๏ผไฝ ๆ˜ฏ่ฐ๏ผŸ" model_inputs = tokenizer(input_prompt, return_tensors="pt").to(model.device) outputs = model.generate(**model_inputs, max_length=32) response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(response) ``` ## Performance **Code Tasks**: HumanEval (0-shot), MBPP (0-shot) **Math Tasks**: GSM8K (4-shot), MATH (5-shot) **NLP Tasks**: C-Eval (5-shot), CMMLU (5-shot), MMLU (5-shot), BBH (3-shot) > Latest update time: 2025/02/15 > | Datasets | Rodimus+ 1.6B (20250215) | | --- | :---: | | HumanEval | 24.39 | | MBPP | 26.60 | | GSM8K | 50.19 | | MATH | 15.06 | | C-Eval | 47.19 | | CMMLU | 43.76 | | MMLU | 45.52 | | BBH | 35.28 | ## Citation If you find our work helpful, feel free to give us a cite. ```markdown @inproceedings{ he2025rodimus, title={Rodimus*: Breaking the Accuracy-Efficiency Trade-Off with Efficient Attentions}, author={Zhihao He and Hang Yu and Zi Gong and Shizhan Liu and Jianguo Li and Weiyao Lin}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=IIVYiJ1ggK} } ```
naimulislam/aurora-1.0
naimulislam
2025-02-26T02:48:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/SmolLM2-135M-Instruct", "base_model:finetune:unsloth/SmolLM2-135M-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-26T02:48:33Z
--- base_model: unsloth/SmolLM2-135M-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** naimulislam - **License:** apache-2.0 - **Finetuned from model :** unsloth/SmolLM2-135M-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
HeOeH/Iron_IL_5k_v2
HeOeH
2025-02-26T02:45:47Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-02-25T16:53:58Z
Found. Redirecting to https://cdn-lfs-us-1.hf.co/repos/1b/7f/1b7f5eb12ecdfff24d51afb6a4eebc4a2359892b5337d7709b3b41398bf6bfa8/4bcf87ecfbbb8e07a01b21415a970c8b53a5283bf6872b657040d3f45c9241f7?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1740554891&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0MDU1NDg5MX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzFiLzdmLzFiN2Y1ZWIxMmVjZGZmZjI0ZDUxYWZiNmE0ZWViYzRhMjM1OTg5MmI1MzM3ZDc3MDliM2I0MTM5OGJmNmJmYTgvNGJjZjg3ZWNmYmJiOGUwN2EwMWIyMTQxNWE5NzBjOGI1M2E1MjgzYmY2ODcyYjY1NzA0MGQzZjQ1YzkyNDFmNz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=k%7EzorBrtyxtsoktomjwjpyIQVJ1HJQNwzYn-4sKh20nsBY9JbFTzl8yKv3JN9MMatXpBf5%7E7wc4IiNo5fiHamw2a0Pm3ot6U3XAWXiZMRwA3Yzfn2QHQzlf5T1QCZJ44j6vll27830ZyycwdDTBi0eTn6%7Ec-4Wy9rDQ9tpGtmtUrGx9XV15MHRSUJ4D9mwDrxjvSrNX4E3FG9c%7EFKN7TKIa-NbTRcAmrU6Sc7spom1Ru6xGf9xcuGtJTtkKEFfZ552AFAwCYEJmN5mSBfdTBMpznD15GgVfNCuRj6qSJje8%7EXys3hoKQERbg63mEBkubjA%7EKD5Dgbu3rkYUGdRSoDg__&Key-Pair-Id=K24J24Z295AEI9
Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v6-cpt
Lunzima
2025-02-26T02:43:13Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "chat", "conversational", "en", "zh", "dataset:allenai/llama-3.1-tulu-3-70b-preference-mixture", "dataset:allenai/llama-3.1-tulu-3-405b-preference-mixture", "dataset:lmarena-ai/arena-human-preference-100k", "base_model:Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v6", "base_model:finetune:Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v6", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T01:41:25Z
--- base_model: Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v6 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft - chat license: apache-2.0 language: - en - zh datasets: - allenai/llama-3.1-tulu-3-70b-preference-mixture - allenai/llama-3.1-tulu-3-405b-preference-mixture - lmarena-ai/arena-human-preference-100k --- # Uploaded model - **Developed by:** Lunzima - **License:** apache-2.0 - **Finetuned from model :** Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v6 This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
fage13141/fage
fage13141
2025-02-26T02:42:14Z
0
0
null
[ "safetensors", "deepseek", "lora", "chinese", "roleplay", "chat", "zh", "en", "dataset:fage13141/zhenhuanti", "arxiv:2106.09685", "base_model:deepseek-ai/deepseek-llm-7b-chat", "base_model:adapter:deepseek-ai/deepseek-llm-7b-chat", "license:apache-2.0", "region:us" ]
null
2025-02-26T02:02:46Z
--- language: - zh - en tags: - deepseek - lora - chinese - roleplay - chat license: apache-2.0 datasets: - fage13141/zhenhuanti base_model: deepseek-ai/deepseek-llm-7b-chat model-index: - name: DeepSeek-7B-Chat-LoRA-ZhenHuanTi results: [] --- # DeepSeek-7B-Chat LoRA ๅพฎ่ฐƒๆจกๅž‹ ่ฟ™ๆ˜ฏไธ€ไธชๅŸบไบŽ DeepSeek-7B-Chat ไฝฟ็”จ LoRA ๆŠ€ๆœฏๅพฎ่ฐƒ็”„ๅฌ›ไฝ“็š„ๆจกๅž‹ใ€‚ ## ๆจกๅž‹ไฟกๆฏ - ๅŸบ็ก€ๆจกๅž‹: deepseek-ai/deepseek-llm-7b-chat - ่ฎญ็ปƒๆ–นๆณ•: LoRA - ๆฃ€ๆŸฅ็‚น: checkpoint-600 - ไธŠไผ ๆ—ถ้—ด: 2025-02-26 02:37:02 ## ็Žฏๅขƒ่ฆๆฑ‚ ### Python ็‰ˆๆœฌ - Python 3.8 ๆˆ–ๆ›ด้ซ˜็‰ˆๆœฌ ### ๅฟ…้œ€ไพ่ต– ```bash pip install torch>=2.0.0 pip install transformers>=4.35.2 pip install peft>=0.7.0 pip install accelerate>=0.25.0 pip install safetensors>=0.4.1 ``` ### GPU ่ฆๆฑ‚ - NVIDIA GPU with CUDA support - ่‡ณๅฐ‘ 16GB ๆ˜พๅญ˜๏ผˆๆŽจ็†ๆ—ถ๏ผ‰ - ๆŽจ่ไฝฟ็”จ 24GB ๆˆ–ๆ›ดๅคงๆ˜พๅญ˜็š„ GPU ## ไฝฟ็”จๆ–นๆณ• ### 1. ๅฎ‰่ฃ…ไพ่ต– ```bash # ๅฎ‰่ฃ…ๅŸบๆœฌไพ่ต– pip install torch transformers peft accelerate safetensors # ๆˆ–่€…ๆŒ‡ๅฎš็‰ˆๆœฌๅฎ‰่ฃ… pip install torch>=2.0.0 pip install transformers>=4.35.2 pip install peft>=0.7.0 pip install accelerate>=0.25.0 pip install safetensors>=0.4.1 ``` ### 2. ๅŠ ่ฝฝๆจกๅž‹ ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch # ๅŠ ่ฝฝๅŸบ็ก€ๆจกๅž‹ base_model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-llm-7b-chat", trust_remote_code=True, torch_dtype=torch.half, device_map="auto" ) # ๅŠ ่ฝฝ tokenizer tokenizer = AutoTokenizer.from_pretrained( "deepseek-ai/deepseek-llm-7b-chat", use_fast=False, trust_remote_code=True ) # ๅŠ ่ฝฝ LoRA ๆƒ้‡ model = PeftModel.from_pretrained( base_model, "fage13141/fage", torch_dtype=torch.half, device_map="auto" ) # ไฝฟ็”จ็คบไพ‹ prompt = "ไฝ ็š„ๆ็คบ่ฏ" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### 3. ็”Ÿๆˆๅ‚ๆ•ฐ่ฏดๆ˜Ž ๅœจ `generate` ๅ‡ฝๆ•ฐไธญ๏ผŒไฝ ๅฏไปฅ่ฐƒๆ•ดไปฅไธ‹ๅ‚ๆ•ฐๆฅๆŽงๅˆถ็”Ÿๆˆๆ•ˆๆžœ๏ผš - max_new_tokens: ็”Ÿๆˆ็š„ๆœ€ๅคงtokenๆ•ฐ - temperature: ๆธฉๅบฆๅ‚ๆ•ฐ๏ผŒๆŽงๅˆถ้šๆœบๆ€ง๏ผˆ0.0-1.0๏ผ‰ - top_p: ๆŽงๅˆถ้‡‡ๆ ท็š„ๆฆ‚็އ้˜ˆๅ€ผ - repetition_penalty: ้‡ๅคๆƒฉ็ฝšๅ‚ๆ•ฐ ็คบไพ‹๏ผš ```python outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, top_p=0.9, repetition_penalty=1.1 ) ``` ## ๅธธ่ง้—ฎ้ข˜ 1. ๆ˜พๅญ˜ไธ่ถณ - ๅฐ่ฏ•ๅ‡ๅฐ batch_size - ไฝฟ็”จ 8-bit ้‡ๅŒ–: `load_in_8bit=True` - ไฝฟ็”จ CPU ๅŠ ่ฝฝ: `device_map="cpu"` 2. ๆจกๅž‹ๅŠ ่ฝฝๅคฑ่ดฅ - ็กฎไฟๅทฒๅฎ‰่ฃ…ๆ‰€ๆœ‰ๅฟ…้œ€ไพ่ต– - ๆฃ€ๆŸฅ GPU ๆ˜พๅญ˜ๆ˜ฏๅฆ่ถณๅคŸ - ็กฎไฟ็ฝ‘็ปœ่ฟžๆŽฅๆญฃๅธธ ## ๅผ•็”จๅ’Œ่‡ด่ฐข - ๅŸบ็ก€ๆจกๅž‹: [DeepSeek-7B-Chat](https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat) - LoRA ๆ–นๆณ•: [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) ```
mradermacher/Lexora-Lite-3B-GGUF
mradermacher
2025-02-26T02:38:50Z
275
1
transformers
[ "transformers", "gguf", "en", "dataset:DeepMount00/Sonnet-3.5-ITA-INSTRUCTION", "dataset:DeepMount00/Sonnet-3.5-ITA-DPO", "base_model:DeepMount00/Lexora-Lite-3B_v2", "base_model:quantized:DeepMount00/Lexora-Lite-3B_v2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-20T02:33:21Z
--- base_model: DeepMount00/Lexora-Lite-3B_v2 datasets: - DeepMount00/Sonnet-3.5-ITA-INSTRUCTION - DeepMount00/Sonnet-3.5-ITA-DPO language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/DeepMount00/Lexora-Lite-3B_v2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.IQ3_XS.gguf) | IQ3_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.IQ3_S.gguf) | IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.IQ3_M.gguf) | IQ3_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Lexora-Lite-3B-GGUF/resolve/main/Lexora-Lite-3B.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Asiria/Russian-SFT-DRO-TG-One-T-pro-it-1.0
Asiria
2025-02-26T02:38:29Z
0
0
transformers
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-26T02:38:27Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tuantmdev/8ed55958-4f79-41c8-a2cf-fc94c7fe0ec4
tuantmdev
2025-02-26T02:37:54Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/codellama-7b", "base_model:adapter:unsloth/codellama-7b", "license:apache-2.0", "region:us" ]
null
2025-02-26T01:34:09Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: 8ed55958-4f79-41c8-a2cf-fc94c7fe0ec4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/codellama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed7f40531cda0438_train_data.json ds_type: json format: custom path: /workspace/input_data/ed7f40531cda0438_train_data.json type: field_input: span_labels field_instruction: source_text field_output: target_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: true hub_model_id: tuantmdev/8ed55958-4f79-41c8-a2cf-fc94c7fe0ec4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1e-4 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 40 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 400 micro_batch_size: 2 mlflow_experiment_name: /tmp/ed7f40531cda0438_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 save_strategy: steps sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1cdd58f-625d-49ad-a5b8-a912b4559816 wandb_project: Gradients-On-Demand wandb_run: unknown wandb_runid: b1cdd58f-625d-49ad-a5b8-a912b4559816 warmup_steps: 80 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8ed55958-4f79-41c8-a2cf-fc94c7fe0ec4 This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 80 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0040 | 50 | nan | | 0.0 | 0.0081 | 100 | nan | | 0.4787 | 0.0121 | 150 | nan | | 0.0 | 0.0161 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
quydau/flan-t5-large-clickbait-zeroshot
quydau
2025-02-26T02:35:57Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text2text-generation
2025-02-26T02:32:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jonwondo/lilLM_300M_param_9_5B_tok
jonwondo
2025-02-26T02:35:15Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-02-26T02:30:45Z
--- license: mit --- A model trained using lilLM: https://github.com/CohleM/lilLM The model is ~300M parameters and trained on 9.5B tokens from OpenWebText: https://huggingface.co/datasets/Skylion007/openwebtext
Kei5uke/phi4
Kei5uke
2025-02-26T02:35:09Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/phi-4-bnb-4bit", "base_model:quantized:unsloth/phi-4-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T02:16:12Z
--- base_model: unsloth/phi-4-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Kei5uke - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-4-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nguyenhh3305/model
nguyenhh3305
2025-02-26T02:34:53Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T02:32:05Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** nguyenhh3305 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
semantichealth/msllama-3.2-counter-rewarded
semantichealth
2025-02-26T02:32:12Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T02:30:17Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bowilleatyou/450d2ff4-f6fb-4bfd-89f2-4aaaf949d120
bowilleatyou
2025-02-26T02:30:40Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-25T20:04:46Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
WildBoar-LM/wildboar-6B-0.3epoch
WildBoar-LM
2025-02-26T02:23:11Z
0
0
transformers
[ "transformers", "safetensors", "wildboar", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-02-26T02:19:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jonjew/NihongaStardust
Jonjew
2025-02-26T02:23:02Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-02-26T02:18:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- a dinhng style painting , a celestial warrior glowing with translucent golden armor adorned with intricate flowers, standing under a mystical starry sky with deep contrasts and an ethereal moonlit glow, <lora:nihonga-stardust_v32-000070:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1988507142' output: url: images/03283-2025-01-30-1988507142.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: a dinhng style painting license: unknown --- # Nihonga Stardust <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1134528&#x2F;nihonga-stardust?modelVersionId&#x3D;1353967 Trigger a dinhng style painting Lora Strength: A strength between 0.4 and 1.0 is recommended. Higher strengths will add to the ethereal nature of generations, while lower strengths will increase coherence and give the subject a more solid appearance. Toning down the strength to between 0.6 to 0.8 is similar to Version 2.5, but with better color saturation. Tradition Meets Celestial Elegance Nihonga Stardust (ๆ—ฅๆœฌ็”ป ใ‚นใ‚ฟใƒผใƒ€ใ‚นใƒˆ) is a LoRA that reimagines the timeless beauty of Nihonga (ๆ—ฅๆœฌ็”ป), a traditional Japanese painting style, through a modern, celestial lens. Nihonga (literally meaning Japanese painting) is distinguished by its use of traditional Japanese techniques, materials, and aesthetics. Inspired by nature, the seasons, and classical Japanese literature, it emphasizes simplicity, harmony, and balance, often exploring motifs such as landscapes, flowers, animals, and more abstractions like emotion. Nihonga Stardust elevates these principles, blending the grounded elegance of Japanese tradition with ethereal, starlit brilliance. The first published version of this LoRA is deeply influenced by the works of Noriyuki Kobayashi, a contemporary Nihonga painter whose signature style intertwines delicate golden lines into intricate, woven patterns that celebrate the interconnectedness and vitality of all living things. Kobayashiโ€™s mastery of translucent layers and shimmering details inspired the creation of this model, which imbues its outputs with glowing, intricate compositions full of life and energy. The inclusion of &quot;Stardust&quot; in the name reflects this luminous quality โ€” a celebration of both the brilliance of earthly forms and the infinite vastness of the cosmos. Art generated with Nihonga Stardust evokes the timelessness of traditional Japanese aesthetics, including wabi-sabi (finding beauty in imperfection) and mono no aware (an awareness of the ephemeral nature of existence). Its luminous compositions allow you to create serene scenes under glowing moons, radiant birds perched in ethereal starry skies, or fantastical landscapes that seamlessly blend tradition with fantasy. This LoRA serves as both an homage to the Nihonga tradition and an exploration of its possibilities in a new, dreamlike context. Usage Version 3.2 has a much stronger, predictable style with heavily saturated colors and high contrast being light and dark lines. To use the most recent version of the LoRA, use the following settings: Trigger word: dinhng, as in &quot;a dinhng style painting&quot; The LoRA was trained with the following tokens. Using them will enhance the intended style -- without adding some, the style may not trigger: translucent, luminous, atmosphere, ethereal, sky, delicate, mystical, starry, intricate, flowers, moon, night, glowing, golden, serene Usage notes: The LoRA will create a wide range of imagery but is ideal for images with natural themes, such as landscapes, animals, plants, etc. Lora Strength: A strength between 0.4 and 1.0 is recommended. Higher strengths will add to the ethereal nature of generations, while lower strengths will increase coherence and give the subject a more solid appearance. Toning down the strength to between 0.6 to 0.8 is similar to Version 2.5, but with better color saturation. For truly amazing images, combine this LoRA with Best of Flux. It adds incredible detail and deeper, richer colors while keeping the effects of the Nihonga Style. ## Trigger words You should use `a dinhng style painting` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/NihongaStardust/tree/main) them in the Files & versions tab.
advit/grad_diff_1e-05_2710_90
advit
2025-02-26T02:22:35Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:22:32Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
advit/grad_diff_1e-05_235_90
advit
2025-02-26T02:22:26Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:22:22Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
advit/grad_diff_1e-05_2568_90
advit
2025-02-26T02:22:21Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:22:18Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
advit/grad_diff_1e-05_2507_120
advit
2025-02-26T02:22:17Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:22:14Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
advit/grad_diff_1e-05_3912_120
advit
2025-02-26T02:22:13Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:22:09Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
nungliansum/mms-tts-cfm
nungliansum
2025-02-26T02:22:08Z
0
0
transformers
[ "transformers", "safetensors", "vits", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-26T02:20:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
advit/grad_diff_1e-05_3413_60
advit
2025-02-26T02:21:54Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:21:47Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
SAndrewMurphy/LouJay
SAndrewMurphy
2025-02-26T02:21:51Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2025-02-26T02:21:15Z
--- license: bsd-3-clause ---
advit/grad_diff_1e-05_1159_60
advit
2025-02-26T02:21:46Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:21:42Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
LINYICHEN09/task-4-google-gemma-2b
LINYICHEN09
2025-02-26T02:21:37Z
1,491
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2b", "base_model:adapter:google/gemma-2b", "region:us" ]
null
2025-02-06T09:08:56Z
--- base_model: google/gemma-2b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
advit/grad_diff_1e-05_1077_120
advit
2025-02-26T02:21:36Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-26T02:21:34Z
--- base_model: models/tofu_ft_llama2-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
straykittycat/b8
straykittycat
2025-02-26T02:21:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T02:16:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kuongan/CS221-xlm-roberta-base-orm-noaug-finetuned-orm-tapt
Kuongan
2025-02-26T02:19:19Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:Kuongan/xlm-roberta-base-orm-noaug", "base_model:finetune:Kuongan/xlm-roberta-base-orm-noaug", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-26T02:10:00Z
--- library_name: transformers license: mit base_model: Kuongan/xlm-roberta-base-orm-noaug tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-xlm-roberta-base-orm-noaug-finetuned-orm-tapt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS221-xlm-roberta-base-orm-noaug-finetuned-orm-tapt This model is a fine-tuned version of [Kuongan/xlm-roberta-base-orm-noaug](https://huggingface.co/Kuongan/xlm-roberta-base-orm-noaug) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1390 - F1: 0.6484 - Roc Auc: 0.7975 - Accuracy: 0.7777 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1488 | 1.0 | 144 | 0.1282 | 0.6019 | 0.7611 | 0.7768 | | 0.149 | 2.0 | 288 | 0.1222 | 0.6447 | 0.7869 | 0.8038 | | 0.1253 | 3.0 | 432 | 0.1391 | 0.5918 | 0.7669 | 0.7559 | | 0.135 | 4.0 | 576 | 0.1390 | 0.6484 | 0.7975 | 0.7777 | | 0.1245 | 5.0 | 720 | 0.1524 | 0.6398 | 0.8035 | 0.7507 | | 0.1309 | 6.0 | 864 | 0.1465 | 0.6385 | 0.7858 | 0.7681 | | 0.0773 | 7.0 | 1008 | 0.1445 | 0.6336 | 0.7944 | 0.7759 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
LINYICHEN09/task-4-Qwen-Qwen1.5-0.5B
LINYICHEN09
2025-02-26T02:17:17Z
1,593
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "region:us" ]
null
2025-02-06T09:04:21Z
--- base_model: Qwen/Qwen1.5-0.5B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
secmlr/Sky-T1-Filtered_VD-QWQ-Clean-8k_DeepSeek-R1-Distill-Qwen-7B_full_sft_1e-5
secmlr
2025-02-26T02:16:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-25T17:35:54Z
--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B tags: - llama-factory - full - generated_from_trainer model-index: - name: Sky-T1-Filtered_VD-QWQ-Clean-8k_DeepSeek-R1-Distill-Qwen-7B_full_sft_1e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sky-T1-Filtered_VD-QWQ-Clean-8k_DeepSeek-R1-Distill-Qwen-7B_full_sft_1e-5 This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the Sky-T1-Filtered and the VD-QWQ-Clean-8k datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 12 - total_train_batch_size: 48 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0
Avacyn/Llama-3.1-8B-RHPI-v1-GGUF
Avacyn
2025-02-26T02:11:35Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T02:11:35Z
--- license: apache-2.0 ---
Jonjew/EtherealDreambrushv1_7
Jonjew
2025-02-26T02:10:41Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-02-26T02:06:06Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- A stunning female figure stands confidently in an ethereal, enchanted setting, adorned in a flowing, alluring gown that emphasizes her curves with a deep neckline and intricate lace detailing. The gown is a shimmering white, embellished with silver accents that catch the light, giving her an otherworldly glow. She has long, flowing silver hair, loosely cascading over her shoulders, and wears delicate floral accessories that add a touch of romance. To her side, a majestic, mythical dragon with glistening white scales and piercing blue eyes curls protectively around her, its presence both powerful and graceful. The background features ornate, ancient architecture, softly illuminated by ambient sunlight filtering through mystical wisps of fog. Delicate petals float around them, enhancing the dreamlike atmosphere. The lighting is soft yet dramatic, highlighting the connection between the woman and the dragon. The composition is centered on the figure, with a slight focus on the dragon's head, creating a balanced dynamic between the two. The emotion conveyed is one of strength and serene beauty, evoking a sense of enchantment and intrigue., dikrymd, <lora:Kaoru-Yamada_v17-000054:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 530858837' output: url: images/02267-2025-01-27-530858837.png - text: >- A fortune teller gazing at a deck of tarot cards spread across a velvet-draped table, her eyes filled with mystery, candles flickering softly around her, an aura of mystique and curiosity, fantasy art style with warm tones, close-up shot, frontal angle., dikrymd, <lora:Kaoru-Yamada_v17-000054:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 308264317' output: url: images/02108-2025-01-27-308264317.png - text: >- A confident woman in a golden gown standing on the balcony of an opulent ballroom, city lights sparkling in the distance, her hair styled elegantly, holding a glass of champagne, exuding sophistication and charm, oil painting style with rich textures and warm lighting, medium shot, slight above perspective., dikrymd, <lora:Kaoru-Yamada_v17-000054:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 405353690' output: url: images/02313-2025-01-27-405353690.png - text: >- female figure in a dramatic gothic setting, long flowing silver hair, striking red eyes, ornate black and red costume with intricate lace details, corset-style top with gold embellishments, dark stockings with floral patterns, holding a tall staff topped with skulls, backdrop of towering dark gothic arches, soft eerie green lighting illuminating the scene, intense and mysterious expression, framing that emphasizes the height of the figure, an atmosphere of dark fantasy and elegance, intricate jewelry accents, flowing ribbons and fabric adding a sense of movement., dikrymd, <lora:Kaoru-Yamada_v17-000054:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1285789747' output: url: images/02066-2025-01-27-1285789747.png - text: "A striking female figure with long, flowing black hair stands in profile, exuding an aura of strength and mystique. She wears a dark, intricately detailed dress adorned with blue and black feathers, resembling elaborate wings that extend from her back, creating a dynamic silhouette. Her arms are covered in vibrant tattoos featuring intricate designs, with her right arm partially visible, showcasing the detailed artwork. The background features a blend of soft, muted colors and abstract patterns in turquoise and beige, adding depth and contrast to the composition. The lighting is soft yet dramatic, casting gentle shadows across her face and emphasizing her features, such as her sharp jawline and piercing gaze. The overall atmosphere is both ethereal and powerful, with elements of urban art, subtly integrated text, and textures that enhance the artworkรข\x80\x99s complexity., dikrymd, <lora:Kaoru-Yamada_v17-000054:1>" parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1933955616' output: url: images/02092-2025-01-27-1933955616.png - text: >- a Elf girl with dark hair styled up, adorned with ornate hairpieces and accessories. Her eyes are closed, and her expression is serene. She is wearing a sleeveless, multicolored outfit showing intricate designs, exposing an elaborate tattoo that depicts a fierce dragon with swirling blue and green elements including intricate details like fire and wisps of smoke, that extends across her upper back. The background features an abstract orange background with decorative elements resembling script or symbols on either side. horror., dikrymd, <lora:Kaoru-Yamada_v17-000054:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 708851416' output: url: images/02177-2025-01-27-708851416.png - text: "warrior standing in profile, long flowing dark red hair, intricate armor with metallic and ornate details, tattered red cape flowing behind, holding a katana, background of a traditional Asian temple with sharp rooftops and dim lighting, swirling red mist surrounding the figure, dark and moody atmosphere, overcast sky with dramatic clouds, shadows emphasizing the figureรข\x80\x99s silhouette, intense gaze turned slightly towards the viewer, a sense of power and mystery, stone ground with scattered debris, low angle shot enhancing the figure's height and presence, warm flickering light from lanterns in the temple illuminating the scene subtly, evoke feelings of strength and determination., dikrymd, <lora:Kaoru-Yamada_v17-000054:1>" parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 4254128179' output: url: images/02091-2025-01-27-4254128179.png - text: >- dikrymd, <lora:Kaoru-Yamada_v17-000054:1> , A fortune teller seated at a round table in a mysterious tent, gazing into a crystal ball, her elaborate jewelry and flowing scarves catching the soft glow of candlelight, an atmosphere of mystique and curiosity, fantasy art style, close-up shot, frontal angle. parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1969344655' output: url: images/01967-2025-01-26-1969344655.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: dikrymd license: unknown --- # Ethereal Dreambrush v1.7 <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;1189752&#x2F;ethereal-dreambrush Trigger dikrymd Strength 0.8 - 1.2 with 1 working for most Ethereal Dreambrush is a captivating LoRA that bridges the realms of painterly elegance and impressionist mystique, drawing inspiration from the evocative works of Kaoru Yamada and the timeless strokes of artists like Van Gogh. This model captures the dreamlike quality of swirling brushstrokes, luminous textures, and the soft interplay of light and shadow that transform any canvas into a reverie. Designed to evoke a sense of wonder and imagination, Ethereal Dreambrush brings together delicate, impressionistic details and bold painterly expression, offering a harmonious balance between realism and abstraction. Its artwork feels alive, as though each stroke carries a whisper of emotion, inviting the viewer into a serene yet vivid dreamscape. Usage To use the most recent version of the LoRA, use the following settings: Trigger word: dikrymd, as in &quot;dikrymd style&quot; or &quot;a dikrymd painting&quot; Other tokens that work well: Anything works, though it does fantastic night scenes with the sky prominently displayed. Lora Strength: A strength between 0.8 and 1.2 is recommended. 1.0 seems perfect for most generations. ## Trigger words You should use `dikrymd` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/EtherealDreambrushv1_7/tree/main) them in the Files & versions tab.
Sulav/Qwen2.5-Coder-3B-Instruct-DT-lora
Sulav
2025-02-26T02:09:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen2.5-Coder-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T02:08:08Z
--- base_model: unsloth/Qwen2.5-Coder-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Sulav - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pozoviy/sae_EleutherAI_pythia-70m_resid_post_2_size_8192_batchtopk_lora_merged
pozoviy
2025-02-26T02:07:54Z
72
0
transformers
[ "transformers", "safetensors", "sae", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-01-29T14:42:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kaizen9/SEQ_phi_400_spun_159
kaizen9
2025-02-26T02:05:29Z
106
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-02T07:46:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abaddon182/34c5662d-594a-4255-850e-7df5fc3b7ec2
abaddon182
2025-02-26T02:03:27Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-02-25T21:24:41Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: 34c5662d-594a-4255-850e-7df5fc3b7ec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: true chat_template: llama3 dataloader_num_workers: 24 dataset_prepared_path: null datasets: - data_files: - ef9e1d78596cd182_train_data.json ds_type: json format: custom path: /workspace/input_data/ef9e1d78596cd182_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: abaddon182/34c5662d-594a-4255-850e-7df5fc3b7ec2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2000 micro_batch_size: 4 mlflow_experiment_name: /tmp/ef9e1d78596cd182_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 12f950a6-55b7-4f9f-97bd-fd31a61a9ebf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 12f950a6-55b7-4f9f-97bd-fd31a61a9ebf warmup_steps: 100 weight_decay: 0.1 xformers_attention: null ``` </details><br> # 34c5662d-594a-4255-850e-7df5fc3b7ec2 This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.9640 | | 1.2464 | 0.0077 | 200 | 1.2777 | | 1.245 | 0.0154 | 400 | 1.2724 | | 1.2227 | 0.0231 | 600 | 1.2045 | | 1.1995 | 0.0308 | 800 | 1.1826 | | 1.1947 | 0.0385 | 1000 | 1.1561 | | 1.1879 | 0.0462 | 1200 | 1.1407 | | 1.1837 | 0.0539 | 1400 | 1.1241 | | 1.0986 | 0.0616 | 1600 | 1.1122 | | 1.0991 | 0.0693 | 1800 | 1.1096 | | 1.0585 | 0.0770 | 2000 | 1.1066 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Kuongan/xlm-roberta-base-ptbr-noaug
Kuongan
2025-02-26T02:02:28Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-26T01:47:43Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-ptbr-noaug results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-ptbr-noaug This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3273 - F1: 0.3798 - Roc Auc: 0.6496 - Accuracy: 0.53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4782 | 1.0 | 70 | 0.3782 | 0.0 | 0.5 | 0.23 | | 0.3652 | 2.0 | 140 | 0.3592 | 0.0199 | 0.5048 | 0.24 | | 0.325 | 3.0 | 210 | 0.3345 | 0.1927 | 0.5670 | 0.43 | | 0.2995 | 4.0 | 280 | 0.3234 | 0.1661 | 0.5618 | 0.43 | | 0.2697 | 5.0 | 350 | 0.3074 | 0.2687 | 0.5991 | 0.49 | | 0.2196 | 6.0 | 420 | 0.3044 | 0.2813 | 0.6045 | 0.5 | | 0.2299 | 7.0 | 490 | 0.3074 | 0.3031 | 0.6174 | 0.515 | | 0.2013 | 8.0 | 560 | 0.3144 | 0.2920 | 0.6095 | 0.515 | | 0.186 | 9.0 | 630 | 0.3126 | 0.3074 | 0.6243 | 0.51 | | 0.1621 | 10.0 | 700 | 0.3282 | 0.3033 | 0.6221 | 0.49 | | 0.154 | 11.0 | 770 | 0.3140 | 0.3494 | 0.6374 | 0.535 | | 0.1304 | 12.0 | 840 | 0.3262 | 0.3422 | 0.6406 | 0.505 | | 0.1308 | 13.0 | 910 | 0.3207 | 0.3510 | 0.6353 | 0.52 | | 0.1204 | 14.0 | 980 | 0.3253 | 0.3476 | 0.6394 | 0.525 | | 0.1073 | 15.0 | 1050 | 0.3200 | 0.3707 | 0.6456 | 0.505 | | 0.1145 | 16.0 | 1120 | 0.3290 | 0.3582 | 0.6401 | 0.51 | | 0.1073 | 17.0 | 1190 | 0.3242 | 0.3758 | 0.6481 | 0.525 | | 0.1022 | 18.0 | 1260 | 0.3273 | 0.3798 | 0.6496 | 0.53 | | 0.0987 | 19.0 | 1330 | 0.3271 | 0.3759 | 0.6476 | 0.52 | | 0.0982 | 20.0 | 1400 | 0.3270 | 0.3776 | 0.6490 | 0.52 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
farzincgart/h_zirak2
farzincgart
2025-02-26T02:00:55Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T01:35:30Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: H_zirak2 --- # H_Zirak2 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `H_zirak2` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('farzincgart/h_zirak2', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
straykittycat/b7
straykittycat
2025-02-26T01:59:26Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T01:56:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
frankzye/gmock
frankzye
2025-02-26T01:59:22Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-02-18T08:21:27Z
--- license: mit --- run html file ```bash python -m http.server 8000 ``` run server ```bash python src/main.py ```
DreadPoor/Lydia_of_Whiterun-8B-LINEAR
DreadPoor
2025-02-26T01:55:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:BoltMonkey/DreadMix", "base_model:merge:BoltMonkey/DreadMix", "base_model:DreadPoor/BaeZel-8B-LINEAR", "base_model:merge:DreadPoor/BaeZel-8B-LINEAR", "base_model:DreadPoor/Decayed-8B-LINEAR", "base_model:merge:DreadPoor/Decayed-8B-LINEAR", "base_model:DreadPoor/Yafune-8B-Model_Stock", "base_model:merge:DreadPoor/Yafune-8B-Model_Stock", "base_model:SentientAGI/Dobby-Mini-Unhinged-Llama-3.1-8B", "base_model:merge:SentientAGI/Dobby-Mini-Unhinged-Llama-3.1-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T01:34:48Z
--- base_model: - DreadPoor/Decayed-8B-LINEAR - BoltMonkey/DreadMix - SentientAGI/Dobby-Mini-Unhinged-Llama-3.1-8B - DreadPoor/BaeZel-8B-LINEAR - DreadPoor/Yafune-8B-Model_Stock library_name: transformers tags: - mergekit - merge --- # merge ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632149f88c0da827c72dccde/TeWxurtlSsr2yUsE-N1Ap.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [DreadPoor/Decayed-8B-LINEAR](https://huggingface.co/DreadPoor/Decayed-8B-LINEAR) * [BoltMonkey/DreadMix](https://huggingface.co/BoltMonkey/DreadMix) * [SentientAGI/Dobby-Mini-Unhinged-Llama-3.1-8B](https://huggingface.co/SentientAGI/Dobby-Mini-Unhinged-Llama-3.1-8B) * [DreadPoor/BaeZel-8B-LINEAR](https://huggingface.co/DreadPoor/BaeZel-8B-LINEAR) * [DreadPoor/Yafune-8B-Model_Stock](https://huggingface.co/DreadPoor/Yafune-8B-Model_Stock) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: DreadPoor/BaeZel-8B-LINEAR parameters: weight: 1.0 - model: DreadPoor/Yafune-8B-Model_Stock parameters: weight: 1.0 - model: DreadPoor/Decayed-8B-LINEAR parameters: weight: 1.0 - model: BoltMonkey/DreadMix parameters: weight: 1.0 - model: SentientAGI/Dobby-Mini-Unhinged-Llama-3.1-8B parameters: weight: 1.0 merge_method: linear normalize: false int8_mask: true dtype: bfloat16 ```
jorge-mpz/lora_model
jorge-mpz
2025-02-26T01:54:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-26T01:54:03Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jorge-mpz - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
irishprancer/efc96081-8c8a-4c79-af96-a9fd13626e38
irishprancer
2025-02-26T01:53:26Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-25T21:58:40Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Akashiurahara/Llamma-3.2-1B-Anthropic-HHRLHF-RolePlay-Uncensored
Akashiurahara
2025-02-26T01:53:13Z
29
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "uncensored", "roleplay", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-25T00:57:23Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf - uncensored - roleplay license: apache-2.0 language: - en --- # โš ๏ธ WARNING: 18+ Content โ€“ Intended for Mature Audiences Only This language model is designed for unrestricted roleplaying and is intended for users aged 18 and older. It may generate content that is explicit, dark, or otherwise unsuitable for minors. By using this model, you acknowledge that: You are at least 18 years old. You understand that the model does not enforce ethical, moral, or legal boundaries in its responses. You take full responsibility for your interactions and use of generated content. If you are under 18 or are uncomfortable with unrestricted content, do not use this model. # Uploaded model - **Developed by:** Akashiurahara - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
locuslab/ift_then_gsm-smollm2-1.7b-score0_mix_rephrased_from_beginning-600B
locuslab
2025-02-26T01:48:52Z
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
2025-02-26T01:45:45Z
--- version: main family: smollm2-1.7b model_name: -score0_mix_rephrased_from_beginning-600B license: mit tags: - model - transformer - smollm2 --- # SmolLM2 -score0_mix_rephrased_from_beginning-600B (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/-score0_mix_rephrased_from_beginning-600B", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/-score0_mix_rephrased_from_beginning-600B", revision="final") ``` Replace `"final"` with the desired revision.
JayHyeon/Qwen_0.5-VDPO_5e-6-1ep_10vpo_const
JayHyeon
2025-02-26T01:46:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:trl-lib/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep", "base_model:finetune:JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-25T23:41:53Z
--- base_model: JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep datasets: trl-lib/ultrafeedback_binarized library_name: transformers model_name: Qwen_0.5-VDPO_5e-6-1ep_10vpo_const tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Qwen_0.5-VDPO_5e-6-1ep_10vpo_const This model is a fine-tuned version of [JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep](https://huggingface.co/JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JayHyeon/Qwen_0.5-VDPO_5e-6-1ep_10vpo_const", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/1f360a6d) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
locuslab/ift_then_gsm-smollm2-1.7b-meta-llama-Llama-3.2-1B-lr2e-05-gbs16600B
locuslab
2025-02-26T01:45:45Z
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
2025-02-26T01:42:58Z
--- version: main family: smollm2-1.7b model_name: -meta-llama-Llama-3.2-1B-lr2e-05-gbs16600B license: mit tags: - model - transformer - smollm2 --- # SmolLM2 -meta-llama-Llama-3.2-1B-lr2e-05-gbs16600B (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/-meta-llama-Llama-3.2-1B-lr2e-05-gbs16600B", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/-meta-llama-Llama-3.2-1B-lr2e-05-gbs16600B", revision="final") ``` Replace `"final"` with the desired revision.
underactuated/mistral_sft_test5
underactuated
2025-02-26T01:44:09Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-24T01:13:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
claytorres/truemodel
claytorres
2025-02-26T01:43:48Z
0
0
null
[ "license:other", "region:us" ]
null
2025-02-26T00:56:07Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
locuslab/ift_then_gsm-smollm2-1.7b-all_raw_folders_metadata-600B
locuslab
2025-02-26T01:42:56Z
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
2025-02-26T01:39:54Z
--- version: main family: smollm2-1.7b model_name: -all_raw_folders_metadata-600B license: mit tags: - model - transformer - smollm2 --- # SmolLM2 -all_raw_folders_metadata-600B (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/-all_raw_folders_metadata-600B", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/-all_raw_folders_metadata-600B", revision="final") ``` Replace `"final"` with the desired revision.
irishprancer/864d9c15-b9a9-4415-a9a9-dc0d5a14402e
irishprancer
2025-02-26T01:40:24Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-25T23:31:43Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Snzx/TOK
Snzx
2025-02-26T01:39:26Z
0
0
null
[ "license:other", "region:us" ]
null
2025-02-26T00:49:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
mlfoundations-dev/qwen2-5_sci_qa_exps__pdfs_1186__verified_r1
mlfoundations-dev
2025-02-26T01:38:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-25T08:53:54Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen2-5_sci_qa_exps__pdfs_1186__verified_r1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2-5_sci_qa_exps__pdfs_1186__verified_r1 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/sci_qa_exps__pdfs_1186__verified_r1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
Romain-XV/59801ce1-be9b-43ba-bd72-ba6e1f30e296
Romain-XV
2025-02-26T01:36:57Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-02-25T21:24:53Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: 59801ce1-be9b-43ba-bd72-ba6e1f30e296 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ef9e1d78596cd182_train_data.json ds_type: json format: custom path: /workspace/input_data/ef9e1d78596cd182_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/59801ce1-be9b-43ba-bd72-ba6e1f30e296 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1632 micro_batch_size: 2 mlflow_experiment_name: /tmp/ef9e1d78596cd182_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.011431863805347369 wandb_entity: null wandb_mode: online wandb_name: 12f950a6-55b7-4f9f-97bd-fd31a61a9ebf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 12f950a6-55b7-4f9f-97bd-fd31a61a9ebf warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 59801ce1-be9b-43ba-bd72-ba6e1f30e296 This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1632 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6993 | 0.0000 | 1 | 2.9206 | | 1.2387 | 0.0028 | 150 | 1.3226 | | 1.1271 | 0.0056 | 300 | 1.3526 | | 1.3113 | 0.0083 | 450 | 1.3159 | | 1.176 | 0.0111 | 600 | 1.3089 | | 1.4896 | 0.0139 | 750 | 1.2816 | | 1.3963 | 0.0167 | 900 | 1.2490 | | 1.3397 | 0.0194 | 1050 | 1.2123 | | 1.164 | 0.0222 | 1200 | 1.1860 | | 1.527 | 0.0250 | 1350 | 1.1673 | | 1.3895 | 0.0278 | 1500 | 1.1585 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Salsa-Anindya-guru-SD-Jember-TV/VIRAL.Salsa-Anindya-guru.Viral.Video.Full.Original.Video.Social.Media.X
Salsa-Anindya-guru-SD-Jember-TV
2025-02-26T01:36:36Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:34:48Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
straykittycat/b6
straykittycat
2025-02-26T01:35:57Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T01:32:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jgayed/llama70b40080
jgayed
2025-02-26T01:35:40Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "dataset:jgayed/etstrain", "base_model:unsloth/Llama-3.3-70B-Instruct", "base_model:finetune:unsloth/Llama-3.3-70B-Instruct", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T00:44:33Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: unsloth/Llama-3.3-70B-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - jgayed/etstrain --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
Whitecat12/jon
Whitecat12
2025-02-26T01:35:09Z
0
0
null
[ "license:cc-by-sa-4.0", "region:us" ]
null
2025-02-26T01:35:09Z
--- license: cc-by-sa-4.0 ---
Deekila-Sherpa-TV/wATCH.viral.video.original
Deekila-Sherpa-TV
2025-02-26T01:27:44Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:26:46Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
Kei5uke/codellama
Kei5uke
2025-02-26T01:27:28Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/codellama-7b-bnb-4bit", "base_model:quantized:unsloth/codellama-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-26T01:18:34Z
--- base_model: unsloth/codellama-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Kei5uke - **License:** apache-2.0 - **Finetuned from model :** unsloth/codellama-7b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Fudan-FUXI/IPO-5B-v1.0
Fudan-FUXI
2025-02-26T01:26:37Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T01:26:37Z
--- license: apache-2.0 ---
lesso02/a51ac69c-d769-406a-89fe-a7d26fc26353
lesso02
2025-02-26T01:24:13Z
0
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-02-26T00:42:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: a51ac69c-d769-406a-89fe-a7d26fc26353 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2e4b4f09c9ae8b90_train_data.json ds_type: json format: custom path: /workspace/input_data/2e4b4f09c9ae8b90_train_data.json type: field_input: content field_instruction: instruction field_output: new_contents format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso02/a51ac69c-d769-406a-89fe-a7d26fc26353 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000202 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/2e4b4f09c9ae8b90_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 20 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a3c5ad4e-0086-4c2f-b5d5-c05271f38d4e wandb_project: 02a wandb_run: your_name wandb_runid: a3c5ad4e-0086-4c2f-b5d5-c05271f38d4e warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a51ac69c-d769-406a-89fe-a7d26fc26353 This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000202 - train_batch_size: 4 - eval_batch_size: 4 - seed: 20 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 0.3643 | | 0.0185 | 0.0189 | 50 | 0.1032 | | 0.0229 | 0.0378 | 100 | 0.0782 | | 0.0145 | 0.0566 | 150 | 0.0677 | | 0.0305 | 0.0755 | 200 | 0.0614 | | 0.0047 | 0.0944 | 250 | 0.0572 | | 0.0084 | 0.1133 | 300 | 0.0518 | | 0.0085 | 0.1322 | 350 | 0.0497 | | 0.0022 | 0.1510 | 400 | 0.0495 | | 0.0037 | 0.1699 | 450 | 0.0477 | | 0.0016 | 0.1888 | 500 | 0.0478 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
straykittycat/b5
straykittycat
2025-02-26T01:23:49Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T01:19:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alinerodrigues/wav2vec2-large-xlsr-coraa-exp-16
alinerodrigues
2025-02-26T01:22:30Z
0
0
null
[ "pytorch", "wav2vec2", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2025-02-25T17:46:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-coraa-exp-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-coraa-exp-16 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0160 - Wer: 1.0 - Cer: 0.9619 - Per: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 38.847 | 1.0 | 14 | 48.0649 | 1.0002 | 3.1169 | 1.0002 | | 38.847 | 2.0 | 28 | 47.9396 | 1.0002 | 3.1191 | 1.0002 | | 38.847 | 3.0 | 42 | 47.7446 | 1.0004 | 3.0938 | 1.0004 | | 38.847 | 4.0 | 56 | 47.3282 | 1.0006 | 3.0227 | 1.0006 | | 38.847 | 5.0 | 70 | 46.4748 | 1.0004 | 2.4135 | 1.0004 | | 38.847 | 6.0 | 84 | 44.8749 | 1.0 | 1.4413 | 1.0 | | 38.847 | 7.0 | 98 | 42.6022 | 1.0 | 0.9460 | 1.0 | | 37.4633 | 8.0 | 112 | 39.6558 | 1.0 | 0.8978 | 1.0 | | 37.4633 | 9.0 | 126 | 35.7305 | 1.0 | 0.9338 | 1.0 | | 37.4633 | 10.0 | 140 | 30.8796 | 1.0 | 0.9501 | 1.0 | | 37.4633 | 11.0 | 154 | 26.3341 | 1.0 | 0.9510 | 1.0 | | 37.4633 | 12.0 | 168 | 23.4116 | 1.0 | 0.9510 | 1.0 | | 37.4633 | 13.0 | 182 | 21.1265 | 1.0 | 0.9510 | 1.0 | | 37.4633 | 14.0 | 196 | 19.4607 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 15.0 | 210 | 18.0357 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 16.0 | 224 | 16.9469 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 17.0 | 238 | 16.1513 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 18.0 | 252 | 15.5951 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 19.0 | 266 | 15.0803 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 20.0 | 280 | 14.8270 | 1.0 | 0.9510 | 1.0 | | 24.5313 | 21.0 | 294 | 14.4665 | 1.0 | 0.9510 | 1.0 | | 14.1395 | 22.0 | 308 | 14.3680 | 1.0 | 0.9510 | 1.0 | | 14.1395 | 23.0 | 322 | 14.1886 | 1.0 | 0.9510 | 1.0 | | 14.1395 | 24.0 | 336 | 14.0514 | 1.0 | 0.9510 | 1.0 | | 14.1395 | 25.0 | 350 | 14.0722 | 1.0 | 0.9510 | 1.0 | | 14.1395 | 26.0 | 364 | 13.8134 | 1.0 | 0.9511 | 1.0 | | 14.1395 | 27.0 | 378 | 13.6935 | 1.0 | 0.9522 | 1.0 | | 14.1395 | 28.0 | 392 | 13.3832 | 1.0 | 0.9594 | 1.0 | | 12.0999 | 29.0 | 406 | 12.9235 | 1.0 | 0.9567 | 1.0 | | 12.0999 | 30.0 | 420 | 12.5604 | 1.0 | 0.9516 | 1.0 | | 12.0999 | 31.0 | 434 | 10.6877 | 1.0 | 0.9469 | 1.0 | | 12.0999 | 32.0 | 448 | 9.3758 | 1.0 | 0.9565 | 1.0 | | 12.0999 | 33.0 | 462 | 5.0729 | 1.0 | 0.9619 | 1.0 | | 12.0999 | 34.0 | 476 | 4.0927 | 1.0 | 0.9619 | 1.0 | | 12.0999 | 35.0 | 490 | 3.8576 | 1.0 | 0.9619 | 1.0 | | 7.922 | 36.0 | 504 | 3.7497 | 1.0 | 0.9619 | 1.0 | | 7.922 | 37.0 | 518 | 3.6650 | 1.0 | 0.9619 | 1.0 | | 7.922 | 38.0 | 532 | 3.5863 | 1.0 | 0.9619 | 1.0 | | 7.922 | 39.0 | 546 | 3.5280 | 1.0 | 0.9619 | 1.0 | | 7.922 | 40.0 | 560 | 3.4813 | 1.0 | 0.9619 | 1.0 | | 7.922 | 41.0 | 574 | 3.4481 | 1.0 | 0.9619 | 1.0 | | 7.922 | 42.0 | 588 | 3.4184 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 43.0 | 602 | 3.3964 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 44.0 | 616 | 3.3748 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 45.0 | 630 | 3.3545 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 46.0 | 644 | 3.3354 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 47.0 | 658 | 3.3090 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 48.0 | 672 | 3.2789 | 1.0 | 0.9619 | 1.0 | | 3.5155 | 49.0 | 686 | 3.2441 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 50.0 | 700 | 3.2153 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 51.0 | 714 | 3.1921 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 52.0 | 728 | 3.1863 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 53.0 | 742 | 3.1605 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 54.0 | 756 | 3.1517 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 55.0 | 770 | 3.1389 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 56.0 | 784 | 3.1274 | 1.0 | 0.9619 | 1.0 | | 3.2278 | 57.0 | 798 | 3.1237 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 58.0 | 812 | 3.1115 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 59.0 | 826 | 3.1051 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 60.0 | 840 | 3.1055 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 61.0 | 854 | 3.0982 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 62.0 | 868 | 3.0933 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 63.0 | 882 | 3.0871 | 1.0 | 0.9619 | 1.0 | | 3.0881 | 64.0 | 896 | 3.0788 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 65.0 | 910 | 3.0835 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 66.0 | 924 | 3.0786 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 67.0 | 938 | 3.0781 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 68.0 | 952 | 3.0761 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 69.0 | 966 | 3.0663 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 70.0 | 980 | 3.0629 | 1.0 | 0.9619 | 1.0 | | 3.0331 | 71.0 | 994 | 3.0661 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 72.0 | 1008 | 3.0600 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 73.0 | 1022 | 3.0559 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 74.0 | 1036 | 3.0517 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 75.0 | 1050 | 3.0524 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 76.0 | 1064 | 3.0506 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 77.0 | 1078 | 3.0451 | 1.0 | 0.9619 | 1.0 | | 2.9941 | 78.0 | 1092 | 3.0485 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 79.0 | 1106 | 3.0472 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 80.0 | 1120 | 3.0464 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 81.0 | 1134 | 3.0458 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 82.0 | 1148 | 3.0386 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 83.0 | 1162 | 3.0376 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 84.0 | 1176 | 3.0365 | 1.0 | 0.9619 | 1.0 | | 2.9748 | 85.0 | 1190 | 3.0414 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 86.0 | 1204 | 3.0400 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 87.0 | 1218 | 3.0327 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 88.0 | 1232 | 3.0354 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 89.0 | 1246 | 3.0313 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 90.0 | 1260 | 3.0344 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 91.0 | 1274 | 3.0385 | 1.0 | 0.9619 | 1.0 | | 2.9573 | 92.0 | 1288 | 3.0343 | 1.0 | 0.9619 | 1.0 | | 2.957 | 93.0 | 1302 | 3.0365 | 1.0 | 0.9619 | 1.0 | | 2.957 | 94.0 | 1316 | 3.0292 | 1.0 | 0.9619 | 1.0 | | 2.957 | 95.0 | 1330 | 3.0238 | 1.0 | 0.9619 | 1.0 | | 2.957 | 96.0 | 1344 | 3.0332 | 1.0 | 0.9619 | 1.0 | | 2.957 | 97.0 | 1358 | 3.0295 | 1.0 | 0.9619 | 1.0 | | 2.957 | 98.0 | 1372 | 3.0305 | 1.0 | 0.9619 | 1.0 | | 2.957 | 99.0 | 1386 | 3.0284 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 100.0 | 1400 | 3.0302 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 101.0 | 1414 | 3.0284 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 102.0 | 1428 | 3.0302 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 103.0 | 1442 | 3.0312 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 104.0 | 1456 | 3.0255 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 105.0 | 1470 | 3.0309 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 106.0 | 1484 | 3.0268 | 1.0 | 0.9619 | 1.0 | | 2.9439 | 107.0 | 1498 | 3.0318 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 108.0 | 1512 | 3.0244 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 109.0 | 1526 | 3.0307 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 110.0 | 1540 | 3.0229 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 111.0 | 1554 | 3.0231 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 112.0 | 1568 | 3.0288 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 113.0 | 1582 | 3.0191 | 1.0 | 0.9619 | 1.0 | | 2.9382 | 114.0 | 1596 | 3.0276 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 115.0 | 1610 | 3.0226 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 116.0 | 1624 | 3.0271 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 117.0 | 1638 | 3.0220 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 118.0 | 1652 | 3.0240 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 119.0 | 1666 | 3.0305 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 120.0 | 1680 | 3.0160 | 1.0 | 0.9619 | 1.0 | | 2.9379 | 121.0 | 1694 | 3.0231 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 122.0 | 1708 | 3.0200 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 123.0 | 1722 | 3.0191 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 124.0 | 1736 | 3.0240 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 125.0 | 1750 | 3.0204 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 126.0 | 1764 | 3.0222 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 127.0 | 1778 | 3.0249 | 1.0 | 0.9619 | 1.0 | | 2.9353 | 128.0 | 1792 | 3.0212 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 129.0 | 1806 | 3.0228 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 130.0 | 1820 | 3.0219 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 131.0 | 1834 | 3.0206 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 132.0 | 1848 | 3.0238 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 133.0 | 1862 | 3.0212 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 134.0 | 1876 | 3.0241 | 1.0 | 0.9619 | 1.0 | | 2.9377 | 135.0 | 1890 | 3.0248 | 1.0 | 0.9619 | 1.0 | | 2.929 | 136.0 | 1904 | 3.0250 | 1.0 | 0.9619 | 1.0 | | 2.929 | 137.0 | 1918 | 3.0218 | 1.0 | 0.9619 | 1.0 | | 2.929 | 138.0 | 1932 | 3.0230 | 1.0 | 0.9619 | 1.0 | | 2.929 | 139.0 | 1946 | 3.0240 | 1.0 | 0.9619 | 1.0 | | 2.929 | 140.0 | 1960 | 3.0226 | 1.0 | 0.9619 | 1.0 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.13.3
Paladiso/e1d252da-5b85-4f26-8c9b-37678b94c053
Paladiso
2025-02-26T01:20:18Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/codellama-7b", "base_model:adapter:unsloth/codellama-7b", "license:apache-2.0", "region:us" ]
null
2025-02-26T00:59:39Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: e1d252da-5b85-4f26-8c9b-37678b94c053 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codellama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed7f40531cda0438_train_data.json ds_type: json format: custom path: /workspace/input_data/ed7f40531cda0438_train_data.json type: field_input: span_labels field_instruction: source_text field_output: target_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Paladiso/e1d252da-5b85-4f26-8c9b-37678b94c053 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ed7f40531cda0438_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1cdd58f-625d-49ad-a5b8-a912b4559816 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1cdd58f-625d-49ad-a5b8-a912b4559816 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e1d252da-5b85-4f26-8c9b-37678b94c053 This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 3 | nan | | 0.0 | 0.0002 | 6 | nan | | 0.0 | 0.0004 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Bilzain-aip-Viral/FUL.Bilzain-aip.Viral.Video.On.Social.Media.X
Bilzain-aip-Viral
2025-02-26T01:17:12Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:17:07Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
Izzy-tg-Videos/VIRAL.Izzy-tg.Viral.Video.Full.Original.Video.Social.Media.X
Izzy-tg-Videos
2025-02-26T01:15:59Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:15:54Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
samoline/a3c5138f-61ae-4b91-bef5-02d2cb6a35da
samoline
2025-02-26T01:13:33Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-02-26T01:11:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: a3c5138f-61ae-4b91-bef5-02d2cb6a35da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1fc464fd17ca1d74_train_data.json ds_type: json format: custom path: /workspace/input_data/1fc464fd17ca1d74_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/a3c5138f-61ae-4b91-bef5-02d2cb6a35da hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/1fc464fd17ca1d74_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 11f68075-29cb-43e7-88d2-acf4597875b1 wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 11f68075-29cb-43e7-88d2-acf4597875b1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a3c5138f-61ae-4b91-bef5-02d2cb6a35da This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0002 | 2 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/gpt2-large-medical-i1-GGUF
mradermacher
2025-02-26T01:13:12Z
0
0
transformers
[ "transformers", "gguf", "medical", "en", "dataset:BI55/MedText", "dataset:pubmed_qa", "base_model:Locutusque/gpt2-large-medical", "base_model:quantized:Locutusque/gpt2-large-medical", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-02-26T00:59:32Z
--- base_model: Locutusque/gpt2-large-medical datasets: - BI55/MedText - pubmed_qa language: - en library_name: transformers quantized_by: mradermacher tags: - medical --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Locutusque/gpt2-large-medical <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/gpt2-large-medical-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ1_S.gguf) | i1-IQ1_S | 0.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ1_M.gguf) | i1-IQ1_M | 0.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ2_S.gguf) | i1-IQ2_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ2_M.gguf) | i1-IQ2_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q2_K.gguf) | i1-Q2_K | 0.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ3_S.gguf) | i1-IQ3_S | 0.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ3_M.gguf) | i1-IQ3_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q4_0.gguf) | i1-Q4_0 | 0.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q4_1.gguf) | i1-Q4_1 | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-large-medical-i1-GGUF/resolve/main/gpt2-large-medical.i1-Q6_K.gguf) | i1-Q6_K | 0.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
lesso05/c8666d96-8168-4ff8-a55a-0b6019f4fce9
lesso05
2025-02-26T01:11:04Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "license:mit", "region:us" ]
null
2025-02-25T19:08:10Z
--- library_name: peft license: mit base_model: HuggingFaceH4/zephyr-7b-beta tags: - axolotl - generated_from_trainer model-index: - name: c8666d96-8168-4ff8-a55a-0b6019f4fce9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: HuggingFaceH4/zephyr-7b-beta bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a2394e962a5418d3_train_data.json ds_type: json format: custom path: /workspace/input_data/a2394e962a5418d3_train_data.json type: field_instruction: desciption field_output: caption format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso05/c8666d96-8168-4ff8-a55a-0b6019f4fce9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000205 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/a2394e962a5418d3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 50 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b03ec26f-3bc2-4dae-93eb-4701cde748d5 wandb_project: 05a wandb_run: your_name wandb_runid: b03ec26f-3bc2-4dae-93eb-4701cde748d5 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c8666d96-8168-4ff8-a55a-0b6019f4fce9 This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000205 - train_batch_size: 4 - eval_batch_size: 4 - seed: 50 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.1224 | | 2.4588 | 0.0006 | 50 | 1.2840 | | 2.378 | 0.0013 | 100 | 1.1566 | | 2.2563 | 0.0019 | 150 | 1.1669 | | 2.3133 | 0.0026 | 200 | 1.0996 | | 2.2691 | 0.0032 | 250 | 1.0579 | | 2.1556 | 0.0038 | 300 | 1.0221 | | 1.9584 | 0.0045 | 350 | 0.9776 | | 2.0103 | 0.0051 | 400 | 0.9617 | | 1.8906 | 0.0057 | 450 | 0.9390 | | 1.8978 | 0.0064 | 500 | 0.9350 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
El-Patron-Viral-Video-Link/El-Patron-Viral-Video-Link
El-Patron-Viral-Video-Link
2025-02-26T01:11:01Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:10:55Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
straykittycat/b4
straykittycat
2025-02-26T01:10:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T01:06:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
locuslab/mix_ift_v4-smollm2-1.7b-all_raw_folders_metadata-600B
locuslab
2025-02-26T01:10:38Z
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
2025-02-26T00:49:55Z
--- version: main family: smollm2-1.7b model_name: -all_raw_folders_metadata-600B license: mit tags: - model - transformer - smollm2 --- # SmolLM2 -all_raw_folders_metadata-600B (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/-all_raw_folders_metadata-600B", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/-all_raw_folders_metadata-600B", revision="final") ``` Replace `"final"` with the desired revision.
kbrinsly7/mt5-sinhala-news-finetunedV2
kbrinsly7
2025-02-26T01:10:15Z
0
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-02-26T01:08:32Z
--- library_name: transformers tags: - generated_from_keras_callback model-index: - name: mt5-sinhala-news-finetunedV2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-sinhala-news-finetunedV2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.48.3 - TensorFlow 2.18.0 - Datasets 3.3.2 - Tokenizers 0.21.0
Imsha-Rehman-Leaks-x-Video/Imsha.Rehman.Leaked.Video.Link.here
Imsha-Rehman-Leaks-x-Video
2025-02-26T01:08:50Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:08:44Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
One-Girl-15-Hands-TV/wATCH.One-Girl-15-Hands.viral.video.original
One-Girl-15-Hands-TV
2025-02-26T01:07:58Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:07:08Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
locuslab/mix_ift_v4-smollm2-1.7b-score0_mix_rephrased_from_beginning_metadata-600B
locuslab
2025-02-26T01:07:27Z
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
2025-02-26T00:49:54Z
--- version: main family: smollm2-1.7b model_name: -score0_mix_rephrased_from_beginning_metadata-600B license: mit tags: - model - transformer - smollm2 --- # SmolLM2 -score0_mix_rephrased_from_beginning_metadata-600B (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/-score0_mix_rephrased_from_beginning_metadata-600B", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/-score0_mix_rephrased_from_beginning_metadata-600B", revision="final") ``` Replace `"final"` with the desired revision.
muriloluz/Qwen-2.5-7B-MATHNOVLLM-RL
muriloluz
2025-02-26T01:07:19Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-25T19:31:30Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-MATHNOVLLM-RL tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-MATHNOVLLM-RL This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="muriloluz/Qwen-2.5-7B-MATHNOVLLM-RL", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/muriloluz-ufg/huggingface/runs/pcgkwq4k) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.50.0.dev0 - Pytorch: 2.5.1 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tscstudios/sjz01jydzmxqy6tu76mqgyobqjf2_93efacd4-83cf-435e-a1e7-a91dd450dd2d
tscstudios
2025-02-26T01:05:20Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T01:05:18Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Sjz01Jydzmxqy6Tu76Mqgyobqjf2_93Efacd4 83Cf 435E A1E7 A91Dd450Dd2D <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tscstudios/sjz01jydzmxqy6tu76mqgyobqjf2_93efacd4-83cf-435e-a1e7-a91dd450dd2d', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
bulan-sutena-1-menit-14-detik-videos/wATCH.viral.video.original
bulan-sutena-1-menit-14-detik-videos
2025-02-26T01:05:19Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:03:40Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF
mradermacher
2025-02-26T01:04:53Z
0
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Nexesenex/Llama_3.1_8b_DobHerWild_R1_v1.1", "base_model:quantized:Nexesenex/Llama_3.1_8b_DobHerWild_R1_v1.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-25T23:54:15Z
--- base_model: Nexesenex/Llama_3.1_8b_DobHerWild_R1_v1.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nexesenex/Llama_3.1_8b_DobHerWild_R1_v1.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerWild_R1_v1.1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerWild_R1_v1.1.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
SJDX/whisper-medium-241214
SJDX
2025-02-26T01:03:03Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-02-26T00:58:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lily-Phillips-101-Challenge-Video-Viral/Lily.Phillips.101.Challenge.Video
Lily-Phillips-101-Challenge-Video-Viral
2025-02-26T01:02:13Z
0
0
null
[ "region:us" ]
null
2025-02-26T01:02:07Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)](https://lekedvideo.xyz/watch/) [๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://lekedvideo.xyz/watch/)
locuslab/mix_ift_v4-smollm2-1.7b-score0_mix_rephrased_from_beginning-600B
locuslab
2025-02-26T01:01:06Z
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
2025-02-26T00:49:53Z
--- version: main family: smollm2-1.7b model_name: -score0_mix_rephrased_from_beginning-600B license: mit tags: - model - transformer - smollm2 --- # SmolLM2 -score0_mix_rephrased_from_beginning-600B (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/-score0_mix_rephrased_from_beginning-600B", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/-score0_mix_rephrased_from_beginning-600B", revision="final") ``` Replace `"final"` with the desired revision.