modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 00:41:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
496 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 00:41:32
card
stringlengths
11
1.01M
khederwaaOne/wav2vec2-large-xls-r-300m-turkish-colab
khederwaaOne
2024-05-04T21:49:32Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-04T21:49:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EthanRhys/Big-the-Cat-Kyle-Hebert
EthanRhys
2024-05-04T21:48:03Z
0
0
null
[ "license:openrail++", "region:us" ]
null
2024-05-04T21:47:07Z
--- license: openrail++ ---
mikhail-panzo/ceb_b32_le4_s12000
mikhail-panzo
2024-05-04T21:43:57Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-05-04T12:49:42Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: ceb_b32_le4_s12000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ceb_b32_le4_s12000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:-----:|:---------------:| | 0.4691 | 9.9010 | 500 | 0.4229 | | 0.4352 | 19.8020 | 1000 | 0.4041 | | 0.424 | 29.7030 | 1500 | 0.4032 | | 0.4091 | 39.6040 | 2000 | 0.4037 | | 0.4117 | 49.5050 | 2500 | 0.4078 | | 0.3884 | 59.4059 | 3000 | 0.4005 | | 0.3826 | 69.3069 | 3500 | 0.4024 | | 0.3766 | 79.2079 | 4000 | 0.4015 | | 0.3712 | 89.1089 | 4500 | 0.4025 | | 0.3571 | 99.0099 | 5000 | 0.4016 | | 0.3671 | 108.9109 | 5500 | 0.4021 | | 0.361 | 118.8119 | 6000 | 0.4025 | | 0.3581 | 128.7129 | 6500 | 0.3989 | | 0.3476 | 138.6139 | 7000 | 0.4029 | | 0.3391 | 148.5149 | 7500 | 0.4026 | | 0.3372 | 158.4158 | 8000 | 0.4037 | | 0.3345 | 168.3168 | 8500 | 0.4045 | | 0.3329 | 178.2178 | 9000 | 0.4067 | | 0.331 | 188.1188 | 9500 | 0.4042 | | 0.3366 | 198.0198 | 10000 | 0.4051 | | 0.3276 | 207.9208 | 10500 | 0.4035 | | 0.3297 | 217.8218 | 11000 | 0.4037 | | 0.3298 | 227.7228 | 11500 | 0.4031 | | 0.3241 | 237.6238 | 12000 | 0.4051 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
yuiseki/Mistral-7B-v0.1-fr-wikipedia-v0.1
yuiseki
2024-05-04T21:41:12Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T21:37:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eelb07/Q_G_adapter_1ep-v2
eelb07
2024-05-04T21:37:59Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:OrionStarAI/Orion-14B-Chat", "base_model:adapter:OrionStarAI/Orion-14B-Chat", "region:us" ]
null
2024-05-04T21:30:36Z
--- library_name: peft base_model: OrionStarAI/Orion-14B-Chat --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
mikhail-panzo/zlm_b32_le5_s12000
mikhail-panzo
2024-05-04T21:35:39Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-04-28T16:29:57Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: zlm_b32_le5_s12000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zlm_b32_le5_s12000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.7211 | 0.2094 | 500 | 0.6148 | | 0.6059 | 0.4188 | 1000 | 0.5140 | | 0.5347 | 0.6283 | 1500 | 0.4725 | | 0.4888 | 0.8377 | 2000 | 0.4612 | | 0.4923 | 1.0471 | 2500 | 0.4283 | | 0.466 | 1.2565 | 3000 | 0.4163 | | 0.4535 | 1.4660 | 3500 | 0.4090 | | 0.4442 | 1.6754 | 4000 | 0.4009 | | 0.4423 | 1.8848 | 4500 | 0.3955 | | 0.4539 | 2.0942 | 5000 | 0.3916 | | 0.4416 | 2.3037 | 5500 | 0.3870 | | 0.4306 | 2.5131 | 6000 | 0.3856 | | 0.4242 | 2.7225 | 6500 | 0.3819 | | 0.426 | 2.9319 | 7000 | 0.3814 | | 0.4105 | 3.1414 | 7500 | 0.3787 | | 0.4077 | 3.3508 | 8000 | 0.3750 | | 0.4106 | 3.5602 | 8500 | 0.3748 | | 0.4228 | 3.7696 | 9000 | 0.3728 | | 0.4101 | 3.9791 | 9500 | 0.3719 | | 0.4209 | 4.1885 | 10000 | 0.3707 | | 0.4091 | 4.3979 | 10500 | 0.3712 | | 0.4061 | 4.6073 | 11000 | 0.3715 | | 0.4169 | 4.8168 | 11500 | 0.3700 | | 0.4088 | 5.0262 | 12000 | 0.3707 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
javismiles/Orpo-gpt2-large
javismiles
2024-05-04T21:35:01Z
113
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T21:32:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Timpasc/t5-base-article
Timpasc
2024-05-04T21:33:49Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-04-22T18:34:27Z
--- license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-article results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-article This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2739 - Rouge1: 40.1639 - Rouge2: 22.9997 - Rougel: 35.3592 - Rougelsum: 37.9353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.3759 | 1.0 | 3760 | 1.2739 | 40.1639 | 22.9997 | 35.3592 | 37.9353 | ### Framework versions - Transformers 4.40.1 - Pytorch 1.13.1+cu117 - Datasets 2.19.0 - Tokenizers 0.19.1
JayhC/Llama-3-Soliloquy-Max-70B-v1-3bpw-h6-exl2
JayhC
2024-05-04T21:31:54Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "exl2", "region:us" ]
text-generation
2024-05-04T21:19:09Z
--- license: llama3 language: - en --- <br/><br/> 3bpw/h6 exl2 quantization of [openlynn/Llama-3-Soliloquy-Max-70B-v1](https://huggingface.co/openlynn/Llama-3-Soliloquy-Max-70B-v1) using default exllamav2 calibration dataset. --- **ORIGINAL CARD:** # LYNN - AI for Roleplay <img src="./reallynn.png" alt="it's lynn!" width="340"/> # Soliloquy-L3 Soliloquy-L3 is a fast, highly capable roleplaying model designed for immersive, dynamic experiences. Trained on over 250 million tokens of roleplaying data, Soliloquy-L3 has a vast knowledge base, rich literary expression, and support for up to 32k context length. ## Model Info | Context Length | Parameter | Prompt Template | isErp | | --- | --- | --- | --- | | 32k(32768) | 70B | Llama 3 Chat | Partly | ## Prompt Template Use can you following jinja2 template. Which is identical to chat_template in [tokenizer_config](./tokenizer_config.json). ``` {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %} ``` ## Llama 3 Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) ## Join our Discord [**Join LYNN Discord**](https://discord.gg/xuZVqUyG4Y)
OwOpeepeepoopoo/herewegoagaint2
OwOpeepeepoopoo
2024-05-04T21:29:37Z
3
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T18:17:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/stabilityai_-_stable-code-3b-8bits
RichardErkhov
2024-05-04T21:24:34Z
78
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:2307.09288", "arxiv:2104.09864", "arxiv:2204.06745", "arxiv:2305.06161", "arxiv:2310.10631", "arxiv:2309.12284", "arxiv:1910.02054", "autotrain_compatible", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T21:21:29Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) stable-code-3b - bnb 8bits - Model creator: https://huggingface.co/stabilityai/ - Original model: https://huggingface.co/stabilityai/stable-code-3b/ Original model description: --- license: other datasets: - tiiuae/falcon-refinedweb - bigcode/the-stack-github-issues - bigcode/commitpackft - bigcode/starcoderdata - EleutherAI/proof-pile-2 - meta-math/MetaMathQA language: - en tags: - causal-lm - code metrics: - code_eval library_name: transformers model-index: - name: stabilityai/stable-code-3b results: - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 32.4 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 30.9 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 32.1 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 32.1 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 24.2 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 23.0 verified: false --- # `stable-code-3b` Please note: For commercial use, please refer to https://stability.ai/membership. ## Model Description `stable-code-3b` is a 2.7B billion parameter decoder-only language model pre-trained on 1.3 trillion tokens of diverse textual and code datasets. `stable-code-3b` is trained on 18 programming languages (selected based on the 2023 StackOverflow Developer Survey) and demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main). ![spiderchart](stable_code_3b_spiderchart.svg) | Model | Size | Python | C++ | Javascript | Java | PHP | Rust | |------------------|------|--------|------|------------|------|------|------| | **Stable Code** | 3B | 32.4% | 30.9%| 32.1% | 32.1%| 24.2%| 23.0%| | CodeLLama | 7B | 30.0% | 28.2%| 32.5% | 31.1%| 25.7%| 26.3%| | Deepseek Coder | 1.3B | 28.6% | 29.2%| 28.7% | 29.0%| 23.6%| 18.5%| | Wizard Coder | 3B | 31.6% | 25.6%| 26.2% | 25.8%| 25.3%| 20.4%| | StarCoder | 3B | 21.6% | 19.8%| 21.5% | 20.5%| 19.0%| 16.9%| | Replit Code V1.5 | 3B | 23.0% | 25.9%| 26.2% | 23.6%| 23.2%| 21.5%| | Deci Coder | 1B | 19.1% | 6.8% | 18.4% | 16.7%| 2.1% | 1.7% | **Key Features** * Fill in Middle Capability (FIM) * Supports Long Context, trained with Sequences upto 16,384 ## Usage Get started generating text with `stable-code-3b` by using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stable-code-3b", torch_dtype="auto", ) model.cuda() inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` ### Run with Fill in Middle (FIM) ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stable-code-3b", torch_dtype="auto", attn_implementation="flash_attention_2", ) model.cuda() inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix> else:\n return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ### Run with Flash Attention 2 ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "stabilityai/stable-code-3b", trust_remote_code=True, torch_dtype="auto", + attn_implementation="flash_attention_2", ) model.cuda() inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `stable-code-3b` models are auto-regressive language models based on the transformer decoder architecture. * **Language(s)**: English, Code * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: Stability AI Non-Commercial Research Community License. * **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership * **Contact**: For questions and comments about the model, please email `[email protected]` ### Model Architecture The model is a decoder-only transformer similar to the LLaMA ([Touvron et al., 2023](https://arxiv.org/abs/2307.09288)) architecture with the following modifications: | Parameters | Hidden Size | Layers | Heads | Sequence Length | |----------------|-------------|--------|-------|-----------------| | 2,796,431,360 | 2560 | 32 | 32 | 16384 | * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). * **Tokenizer**: We use a modified version of the GPTNeoX Tokenizer.[`NeoX`](https://github.com/EleutherAI/gpt-neox). We add special tokens to train for Fill in the Middle (FIM) capabilities like `<FIM_PREFIX>` and `<FIM_SUFFIX>` along with other special tokens. ## Training ### Training Dataset The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), along with [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) and [Github Issues](https://huggingface.co/datasets/bigcode/the-stack-github-issues) (BigCode., 2023), and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)). We further supplement our training with data from mathematical domains ([Azerbayev, Zhangir, et al., 2023](https://arxiv.org/abs/2310.10631) and, [Yu, Longhui, et al., 2023](https://arxiv.org/abs/2309.12284)). Top 18 programming languages trained on: - C - CPP - Java - JavaScript - CSS - Go - HTML - Ruby - Rust - Markdown - Shell - Php - Sql - R - Typescript - Python - Jupyter-Clean - RestructuredText ### Training Procedure The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW. ### Training Infrastructure * **Hardware**: `stable-code-3b` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances). * **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf)) ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership. ### Limitations and Bias ​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. ## How to Cite ```bibtex @misc{stable-code-3b, url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)}, title={Stable Code 3B}, author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and Cooper, Nathan} } ```
yiting/PerspectiveVision-CLIP-PL
yiting
2024-05-04T21:23:22Z
49
0
transformers
[ "transformers", "pytorch", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-04T14:10:58Z
--- license: apache-2.0 ---
RichardErkhov/stabilityai_-_stable-code-3b-4bits
RichardErkhov
2024-05-04T21:21:15Z
77
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:2307.09288", "arxiv:2104.09864", "arxiv:2204.06745", "arxiv:2305.06161", "arxiv:2310.10631", "arxiv:2309.12284", "arxiv:1910.02054", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T21:19:03Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) stable-code-3b - bnb 4bits - Model creator: https://huggingface.co/stabilityai/ - Original model: https://huggingface.co/stabilityai/stable-code-3b/ Original model description: --- license: other datasets: - tiiuae/falcon-refinedweb - bigcode/the-stack-github-issues - bigcode/commitpackft - bigcode/starcoderdata - EleutherAI/proof-pile-2 - meta-math/MetaMathQA language: - en tags: - causal-lm - code metrics: - code_eval library_name: transformers model-index: - name: stabilityai/stable-code-3b results: - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 32.4 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 30.9 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 32.1 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 32.1 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 24.2 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 23.0 verified: false --- # `stable-code-3b` Please note: For commercial use, please refer to https://stability.ai/membership. ## Model Description `stable-code-3b` is a 2.7B billion parameter decoder-only language model pre-trained on 1.3 trillion tokens of diverse textual and code datasets. `stable-code-3b` is trained on 18 programming languages (selected based on the 2023 StackOverflow Developer Survey) and demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main). ![spiderchart](stable_code_3b_spiderchart.svg) | Model | Size | Python | C++ | Javascript | Java | PHP | Rust | |------------------|------|--------|------|------------|------|------|------| | **Stable Code** | 3B | 32.4% | 30.9%| 32.1% | 32.1%| 24.2%| 23.0%| | CodeLLama | 7B | 30.0% | 28.2%| 32.5% | 31.1%| 25.7%| 26.3%| | Deepseek Coder | 1.3B | 28.6% | 29.2%| 28.7% | 29.0%| 23.6%| 18.5%| | Wizard Coder | 3B | 31.6% | 25.6%| 26.2% | 25.8%| 25.3%| 20.4%| | StarCoder | 3B | 21.6% | 19.8%| 21.5% | 20.5%| 19.0%| 16.9%| | Replit Code V1.5 | 3B | 23.0% | 25.9%| 26.2% | 23.6%| 23.2%| 21.5%| | Deci Coder | 1B | 19.1% | 6.8% | 18.4% | 16.7%| 2.1% | 1.7% | **Key Features** * Fill in Middle Capability (FIM) * Supports Long Context, trained with Sequences upto 16,384 ## Usage Get started generating text with `stable-code-3b` by using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stable-code-3b", torch_dtype="auto", ) model.cuda() inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` ### Run with Fill in Middle (FIM) ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stable-code-3b", torch_dtype="auto", attn_implementation="flash_attention_2", ) model.cuda() inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix> else:\n return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ### Run with Flash Attention 2 ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "stabilityai/stable-code-3b", trust_remote_code=True, torch_dtype="auto", + attn_implementation="flash_attention_2", ) model.cuda() inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `stable-code-3b` models are auto-regressive language models based on the transformer decoder architecture. * **Language(s)**: English, Code * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: Stability AI Non-Commercial Research Community License. * **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership * **Contact**: For questions and comments about the model, please email `[email protected]` ### Model Architecture The model is a decoder-only transformer similar to the LLaMA ([Touvron et al., 2023](https://arxiv.org/abs/2307.09288)) architecture with the following modifications: | Parameters | Hidden Size | Layers | Heads | Sequence Length | |----------------|-------------|--------|-------|-----------------| | 2,796,431,360 | 2560 | 32 | 32 | 16384 | * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). * **Tokenizer**: We use a modified version of the GPTNeoX Tokenizer.[`NeoX`](https://github.com/EleutherAI/gpt-neox). We add special tokens to train for Fill in the Middle (FIM) capabilities like `<FIM_PREFIX>` and `<FIM_SUFFIX>` along with other special tokens. ## Training ### Training Dataset The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), along with [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) and [Github Issues](https://huggingface.co/datasets/bigcode/the-stack-github-issues) (BigCode., 2023), and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)). We further supplement our training with data from mathematical domains ([Azerbayev, Zhangir, et al., 2023](https://arxiv.org/abs/2310.10631) and, [Yu, Longhui, et al., 2023](https://arxiv.org/abs/2309.12284)). Top 18 programming languages trained on: - C - CPP - Java - JavaScript - CSS - Go - HTML - Ruby - Rust - Markdown - Shell - Php - Sql - R - Typescript - Python - Jupyter-Clean - RestructuredText ### Training Procedure The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW. ### Training Infrastructure * **Hardware**: `stable-code-3b` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances). * **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf)) ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership. ### Limitations and Bias ​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. ## How to Cite ```bibtex @misc{stable-code-3b, url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)}, title={Stable Code 3B}, author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and Cooper, Nathan} } ```
ergosumdre/IsaiahRashad-chatbot
ergosumdre
2024-05-04T21:20:54Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-04T21:20:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DuanR/emphaticdialogue_mistral7b
DuanR
2024-05-04T21:19:52Z
9
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T21:15:47Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aenovikov/ppo-LunarLander-v2
aenovikov
2024-05-04T21:06:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-04T21:05:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.48 +/- 22.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dtorber/BioNLP-intro-disc-tech-decoder-PLOS
dtorber
2024-05-04T20:54:55Z
19
0
transformers
[ "transformers", "safetensors", "led", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-04-19T20:39:01Z
--- tags: - summarization - generated_from_trainer model-index: - name: BioNLP-intro-disc-tech-decoder-PLOS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioNLP-intro-disc-tech-decoder-PLOS This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.3739167643078955e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.2
dbalasub/test-demo-t5-qa
dbalasub
2024-05-04T20:39:42Z
107
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-04T20:33:39Z
--- library_name: transformers license: mit --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf
RichardErkhov
2024-05-04T20:39:37Z
65
0
null
[ "gguf", "arxiv:2305.18290", "arxiv:2306.05685", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-04T20:13:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) stablelm-zephyr-3b - GGUF - Model creator: https://huggingface.co/stabilityai/ - Original model: https://huggingface.co/stabilityai/stablelm-zephyr-3b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [stablelm-zephyr-3b.Q2_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q2_K.gguf) | Q2_K | 1.01GB | | [stablelm-zephyr-3b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_XS.gguf) | IQ3_XS | 1.11GB | | [stablelm-zephyr-3b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_S.gguf) | IQ3_S | 1.17GB | | [stablelm-zephyr-3b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_S.gguf) | Q3_K_S | 1.17GB | | [stablelm-zephyr-3b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_M.gguf) | IQ3_M | 1.23GB | | [stablelm-zephyr-3b.Q3_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K.gguf) | Q3_K | 1.3GB | | [stablelm-zephyr-3b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_M.gguf) | Q3_K_M | 1.3GB | | [stablelm-zephyr-3b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_L.gguf) | Q3_K_L | 1.4GB | | [stablelm-zephyr-3b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ4_XS.gguf) | IQ4_XS | 1.43GB | | [stablelm-zephyr-3b.Q4_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_0.gguf) | Q4_0 | 1.5GB | | [stablelm-zephyr-3b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ4_NL.gguf) | IQ4_NL | 1.51GB | | [stablelm-zephyr-3b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K_S.gguf) | Q4_K_S | 1.51GB | | [stablelm-zephyr-3b.Q4_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K.gguf) | Q4_K | 1.59GB | | [stablelm-zephyr-3b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K_M.gguf) | Q4_K_M | 1.59GB | | [stablelm-zephyr-3b.Q4_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_1.gguf) | Q4_1 | 1.65GB | | [stablelm-zephyr-3b.Q5_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_0.gguf) | Q5_0 | 1.81GB | | [stablelm-zephyr-3b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K_S.gguf) | Q5_K_S | 1.81GB | | [stablelm-zephyr-3b.Q5_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K.gguf) | Q5_K | 1.86GB | | [stablelm-zephyr-3b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K_M.gguf) | Q5_K_M | 1.86GB | | [stablelm-zephyr-3b.Q5_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_1.gguf) | Q5_1 | 1.96GB | | [stablelm-zephyr-3b.Q6_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q6_K.gguf) | Q6_K | 2.14GB | Original model description: --- language: - en license: other tags: - causal-lm datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized - meta-math/MetaMathQA - WizardLM/WizardLM_evol_instruct_V2_196k - Intel/orca_dpo_pairs extra_gated_fields: Name: text Email: text Country: text Organization or Affiliation: text I ALLOW Stability AI to email me about new model releases: checkbox model-index: - name: stablelm-zephyr-3b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 46.08 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 74.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 46.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 46.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 65.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 42.15 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard --- # `StableLM Zephyr 3B` Please note: For commercial use, please refer to https://stability.ai/membership. ## Model Description `StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on [MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/) ## Usage `StableLM Zephyr 3B` uses the following instruction format: ``` <|user|> List 3 synonyms for the word "tiny"<|endoftext|> <|assistant|> 1. Dwarf 2. Little 3. Petite<|endoftext|> ``` This format is also available through the tokenizer's `apply_chat_template` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b') model = AutoModelForCausalLM.from_pretrained( 'stabilityai/stablelm-zephyr-3b', device_map="auto" ) prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}] inputs = tokenizer.apply_chat_template( prompt, add_generation_prompt=True, return_tensors='pt' ) tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.8, do_sample=True ) print(tokenizer.decode(tokens[0], skip_special_tokens=False)) ``` You can also see how to run a performance optimized version of this model [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) using [OpenVINO](https://docs.openvino.ai/2023.2/home.html) from Intel. ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture. * **Language(s)**: English * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git) * **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE). * **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership * **Contact**: For questions and comments about the model, please email `[email protected]` ### Training Dataset The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): 1. SFT Datasets - HuggingFaceH4/ultrachat_200k - meta-math/MetaMathQA - WizardLM/WizardLM_evol_instruct_V2_196k - Open-Orca/SlimOrca 2. Preference Datasets: - HuggingFaceH4/ultrafeedback_binarized - Intel/orca_dpo_pairs ## Performance ### MT-Bench and Alpaca Bench <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/> | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 | | StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 | | Capybara v1.9 | 3B | dSFT | 5.94 | - | | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instruct v0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| ## Other benchmarks: | Task | Value | |-----------------------|---------------------------| | ARC (25-shot) | 47.0 | | HellaSwag (10-shot) | 74.2 | | MMLU (5-shot) | 46.3 | | TruthfulQA (0-shot) | 46.5 | | Winogrande (5-shot) | 65.5 | | GSM8K (5-shot) | 42.3 | | BigBench (Avg) | 35.26 | | AGI Benchmark (Avg) | 33.23 | ### Training Infrastructure * **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes. * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training. ## Commitment to Ethical AI In line with our responsibility towards ethical AI development, `StableLM Zephyr 3B` is released with a focus on ensuring safety, reliability, and appropriateness in its applications. To this end, we have evaluated `StableLM Zephyr 3B` on 488 malicious prompts and used standard protocols to assess the harmfulness of its outputs. Compared to Zephyr-7b-β, `StableLM Zephyr 3B` reduces the number of harmful outputs as assessed by GPT-4 by 55. Additionally, we performed an internal red teaming event targeting the following abuse areas: * **Self-Harm Methods**: (Suicide Methods, Encouragement of Self-Harm, Methods and encouragement of Eating Disorders) * **Misinformation**: (Health, Conspiracy Theories, Social Unrest/Conflict, Political Misinformation, & Climate change) * **Hate Speech**: (Race, Stereotypes, Immigrants, Gender, Personally Identifiable Information such as Social security numbers, Full names, ID numbers, Email addresses, and telephone numbers) We have incorporated the findings of our malicious prompts evaluation and red teaming event into our release. Users are encouraged to fine-tune and evaluate the model to suit their specific needs, considering the potential biases and limitations found in `StableLM Zephyr 3B` and inherent in other LLM models. ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership. ### Limitations and Bias ​ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses. Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-zephyr-3b) | Metric |Value| |---------------------------------|----:| |Avg. |53.43| |AI2 Reasoning Challenge (25-Shot)|46.08| |HellaSwag (10-Shot) |74.16| |MMLU (5-Shot) |46.17| |TruthfulQA (0-shot) |46.49| |Winogrande (5-shot) |65.51| |GSM8k (5-shot) |42.15|
RichardErkhov/stabilityai_-_stablelm-zephyr-3b-4bits
RichardErkhov
2024-05-04T20:10:25Z
77
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:2305.18290", "arxiv:2306.05685", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T20:08:55Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) stablelm-zephyr-3b - bnb 4bits - Model creator: https://huggingface.co/stabilityai/ - Original model: https://huggingface.co/stabilityai/stablelm-zephyr-3b/ Original model description: --- language: - en license: other tags: - causal-lm datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized - meta-math/MetaMathQA - WizardLM/WizardLM_evol_instruct_V2_196k - Intel/orca_dpo_pairs extra_gated_fields: Name: text Email: text Country: text Organization or Affiliation: text I ALLOW Stability AI to email me about new model releases: checkbox model-index: - name: stablelm-zephyr-3b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 46.08 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 74.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 46.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 46.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 65.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 42.15 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b name: Open LLM Leaderboard --- # `StableLM Zephyr 3B` Please note: For commercial use, please refer to https://stability.ai/membership. ## Model Description `StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on [MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/) ## Usage `StableLM Zephyr 3B` uses the following instruction format: ``` <|user|> List 3 synonyms for the word "tiny"<|endoftext|> <|assistant|> 1. Dwarf 2. Little 3. Petite<|endoftext|> ``` This format is also available through the tokenizer's `apply_chat_template` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b') model = AutoModelForCausalLM.from_pretrained( 'stabilityai/stablelm-zephyr-3b', device_map="auto" ) prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}] inputs = tokenizer.apply_chat_template( prompt, add_generation_prompt=True, return_tensors='pt' ) tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.8, do_sample=True ) print(tokenizer.decode(tokens[0], skip_special_tokens=False)) ``` You can also see how to run a performance optimized version of this model [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) using [OpenVINO](https://docs.openvino.ai/2023.2/home.html) from Intel. ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture. * **Language(s)**: English * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git) * **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE). * **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership * **Contact**: For questions and comments about the model, please email `[email protected]` ### Training Dataset The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): 1. SFT Datasets - HuggingFaceH4/ultrachat_200k - meta-math/MetaMathQA - WizardLM/WizardLM_evol_instruct_V2_196k - Open-Orca/SlimOrca 2. Preference Datasets: - HuggingFaceH4/ultrafeedback_binarized - Intel/orca_dpo_pairs ## Performance ### MT-Bench and Alpaca Bench <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/> | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 | | StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 | | Capybara v1.9 | 3B | dSFT | 5.94 | - | | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instruct v0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| ## Other benchmarks: | Task | Value | |-----------------------|---------------------------| | ARC (25-shot) | 47.0 | | HellaSwag (10-shot) | 74.2 | | MMLU (5-shot) | 46.3 | | TruthfulQA (0-shot) | 46.5 | | Winogrande (5-shot) | 65.5 | | GSM8K (5-shot) | 42.3 | | BigBench (Avg) | 35.26 | | AGI Benchmark (Avg) | 33.23 | ### Training Infrastructure * **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes. * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training. ## Commitment to Ethical AI In line with our responsibility towards ethical AI development, `StableLM Zephyr 3B` is released with a focus on ensuring safety, reliability, and appropriateness in its applications. To this end, we have evaluated `StableLM Zephyr 3B` on 488 malicious prompts and used standard protocols to assess the harmfulness of its outputs. Compared to Zephyr-7b-β, `StableLM Zephyr 3B` reduces the number of harmful outputs as assessed by GPT-4 by 55. Additionally, we performed an internal red teaming event targeting the following abuse areas: * **Self-Harm Methods**: (Suicide Methods, Encouragement of Self-Harm, Methods and encouragement of Eating Disorders) * **Misinformation**: (Health, Conspiracy Theories, Social Unrest/Conflict, Political Misinformation, & Climate change) * **Hate Speech**: (Race, Stereotypes, Immigrants, Gender, Personally Identifiable Information such as Social security numbers, Full names, ID numbers, Email addresses, and telephone numbers) We have incorporated the findings of our malicious prompts evaluation and red teaming event into our release. Users are encouraged to fine-tune and evaluate the model to suit their specific needs, considering the potential biases and limitations found in `StableLM Zephyr 3B` and inherent in other LLM models. ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership. ### Limitations and Bias ​ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses. Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-zephyr-3b) | Metric |Value| |---------------------------------|----:| |Avg. |53.43| |AI2 Reasoning Challenge (25-Shot)|46.08| |HellaSwag (10-Shot) |74.16| |MMLU (5-Shot) |46.17| |TruthfulQA (0-shot) |46.49| |Winogrande (5-shot) |65.51| |GSM8k (5-shot) |42.15|
solidrust/Llama-3-11.5B-Instruct-V2-AWQ
solidrust
2024-05-04T20:09:50Z
0
0
null
[ "region:us" ]
null
2024-05-04T20:09:48Z
--- inference: false --- # Replete-AI/Llama-3-11.5B-Instruct-V2 AWQ ** PROCESSING .... ETA 30mins ** - Model creator: [Replete-AI](https://huggingface.co/Replete-AI) - Original model: [Llama-3-11.5B-Instruct-V2](https://huggingface.co/Replete-AI/Llama-3-11.5B-Instruct-V2) ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
DoubelT/mt5-small-finetuned-amazon-en-es
DoubelT
2024-05-04T20:01:53Z
2
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-04-16T19:53:02Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_keras_callback model-index: - name: DoubelT/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DoubelT/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0032 - Validation Loss: 0.0002 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 89496, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3246 | 0.1471 | 0 | | 0.0799 | 0.0075 | 1 | | 0.0190 | 0.0004 | 2 | | 0.0094 | 0.0004 | 3 | | 0.0060 | 0.0003 | 4 | | 0.0045 | 0.0003 | 5 | | 0.0036 | 0.0002 | 6 | | 0.0032 | 0.0002 | 7 | ### Framework versions - Transformers 4.40.1 - TensorFlow 2.16.1 - Datasets 2.19.0 - Tokenizers 0.19.1
afzalaftab/whisper_finetuned
afzalaftab
2024-05-04T19:56:38Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-04T19:55:22Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Finetuned - Afzal Aftab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 33.285363582493865 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Afzal Aftab This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4270 - Wer: 33.2854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0882 | 2.44 | 1000 | 0.2909 | 35.1773 | | 0.0196 | 4.89 | 2000 | 0.3459 | 33.9584 | | 0.0015 | 7.33 | 3000 | 0.4043 | 33.1118 | | 0.0004 | 9.78 | 4000 | 0.4270 | 33.2854 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.1.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
megajajo/phi-1_5-finetuned
megajajo
2024-05-04T19:50:04Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "region:us" ]
null
2024-05-03T20:49:37Z
--- library_name: peft base_model: microsoft/phi-1_5 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
Masterjp123/P1
Masterjp123
2024-05-04T19:45:26Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:NousResearch/Hermes-2-Pro-Llama-3-8B", "base_model:merge:NousResearch/Hermes-2-Pro-Llama-3-8B", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:merge:NousResearch/Meta-Llama-3-8B", "base_model:Weyaxi/Einstein-v6.1-Llama3-8B", "base_model:merge:Weyaxi/Einstein-v6.1-Llama3-8B", "base_model:asiansoul/Versatile-Llama-3-8B-1m", "base_model:merge:asiansoul/Versatile-Llama-3-8B-1m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T04:44:45Z
--- base_model: - NousResearch/Hermes-2-Pro-Llama-3-8B - Weyaxi/Einstein-v6.1-Llama3-8B - NousResearch/Meta-Llama-3-8B - asiansoul/Versatile-Llama-3-8B-1m library_name: transformers tags: - mergekit - merge --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) as a base. ### Models Merged The following models were included in the merge: * [NousResearch/Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) * [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B) * [asiansoul/Versatile-Llama-3-8B-1m](https://huggingface.co/asiansoul/Versatile-Llama-3-8B-1m) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: NousResearch/Meta-Llama-3-8B dtype: bfloat16 merge_method: dare_ties parameters: int8_mask: 1.0 slices: - sources: - layer_range: [0, 32] model: Weyaxi/Einstein-v6.1-Llama3-8B parameters: density: 0.1 weight: 1.0 - layer_range: [0, 32] model: asiansoul/Versatile-Llama-3-8B-1m parameters: density: 0.2 weight: 0.35 - layer_range: [0, 32] model: NousResearch/Hermes-2-Pro-Llama-3-8B parameters: density: 0.5 weight: 0.23 - layer_range: [0, 32] model: NousResearch/Meta-Llama-3-8B ```
xemale5606/Chatllam
xemale5606
2024-05-04T19:38:10Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-04T19:38:10Z
--- license: apache-2.0 ---
pdx97/a2c-PandaReachDense-v3_New
pdx97
2024-05-04T19:27:13Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-04T19:12:07Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.22 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jorgefg03/roberta-base-bne-autext2024
jorgefg03
2024-05-04T19:27:11Z
106
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T18:32:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MohammadOthman/megatron-gpt2-classification
MohammadOthman
2024-05-04T19:16:32Z
105
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "distributed-training", "megatron", "accelerate", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T18:00:30Z
--- license: mit language: - en pipeline_tag: text-classification tags: - gpt2 - distributed-training - megatron - accelerate --- # Megatron-GPT2-Classification ## Description The `megatron-gpt2-classification` model is a language model trained using Megatron and Accelerate frameworks. It has been fine-tuned for classification tasks and benefits from distributed training across 4 GPUs (RTX 4070). ## Key Features - Trained with **Megatron** and **Accelerate**. - Distributed training on **4 GPUs (RTX 4070)**. - Fine-tuned for classification tasks.
EuphoriaReccords/JINBTS
EuphoriaReccords
2024-05-04T19:07:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-05-04T14:24:39Z
--- license: creativeml-openrail-m ---
DeepaPeri/xlm-roberta-large-en-15
DeepaPeri
2024-05-04T19:05:21Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-04T15:35:08Z
--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-large-en-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-en-15 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8635 - F1: 0.0986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6633 | 1.0 | 2000 | 0.4470 | 0.6619 | | 0.4004 | 2.0 | 4000 | 0.4114 | 0.7385 | | 0.3302 | 3.0 | 6000 | 0.3452 | 0.7693 | | 0.6865 | 4.0 | 8000 | 1.4687 | 0.1242 | | 1.5637 | 5.0 | 10000 | 1.7529 | 0.0 | | 1.5523 | 6.0 | 12000 | 1.8619 | 0.0986 | | 1.5439 | 7.0 | 14000 | 1.7808 | 0.0986 | | 1.5551 | 8.0 | 16000 | 1.7549 | 0.0986 | | 1.5403 | 9.0 | 18000 | 1.8007 | 0.0986 | | 1.5366 | 10.0 | 20000 | 1.8351 | 0.0986 | | 1.5324 | 11.0 | 22000 | 1.8882 | 0.0986 | | 1.5291 | 12.0 | 24000 | 1.8566 | 0.0986 | | 1.5285 | 13.0 | 26000 | 1.8071 | 0.0986 | | 1.5273 | 14.0 | 28000 | 1.8546 | 0.0986 | | 1.5518 | 15.0 | 30000 | 1.6967 | 0.0 | | 1.5424 | 16.0 | 32000 | 1.8714 | 0.0965 | | 1.5356 | 17.0 | 34000 | 1.8270 | 0.0986 | | 1.5324 | 18.0 | 36000 | 1.8352 | 0.0986 | | 1.5286 | 19.0 | 38000 | 1.8234 | 0.0986 | | 1.5318 | 20.0 | 40000 | 1.8017 | 0.0986 | | 1.5285 | 21.0 | 42000 | 1.9042 | 0.0986 | | 1.528 | 22.0 | 44000 | 1.8549 | 0.0986 | | 1.5269 | 23.0 | 46000 | 1.8606 | 0.0986 | | 1.525 | 24.0 | 48000 | 1.8404 | 0.0986 | | 1.5243 | 25.0 | 50000 | 1.8635 | 0.0986 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
Zardos/Kant-Test-0.1-Mistral-7B
Zardos
2024-05-04T18:50:36Z
1,399
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "arxiv:2310.06825", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T09:19:39Z
--- language: - en license: apache-2.0 pipeline_tag: text-generation model-index: - name: Kant-Test-0.1-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.37 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.84 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.38 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.62 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B name: Open LLM Leaderboard --- # Model Yaml The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested. For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). ## Model Architecture Mistral-7B-v0.1 is a transformer model, with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: ``` KeyError: 'mistral' ``` - Or: ``` NotImplementedError: Cannot copy out of meta tensor; no data! ``` Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer. ## Notice Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Zardos__Kant-Test-0.1-Mistral-7B) | Metric |Value| |---------------------------------|----:| |Avg. |62.42| |AI2 Reasoning Challenge (25-Shot)|62.37| |HellaSwag (10-Shot) |82.84| |MMLU (5-Shot) |63.38| |TruthfulQA (0-shot) |49.62| |Winogrande (5-shot) |78.30| |GSM8k (5-shot) |37.98|
numen-tech/dictalm2.0-instruct-w3a16g40sym
numen-tech
2024-05-04T18:49:01Z
0
0
null
[ "arxiv:2308.13137", "license:apache-2.0", "region:us" ]
null
2024-05-04T18:44:04Z
--- license: apache-2.0 --- 3-bit [OmniQuant](https://arxiv.org/abs/2308.13137) quantized version of [dictalm2.0-instruct](https://huggingface.co/dicta-il/dictalm2.0-instruct).
jorgefg03/RoBasquERTa-autext2024
jorgefg03
2024-05-04T18:44:49Z
116
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T18:28:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kukedlc/Smart-LLama-3-8b-Python-v2-4bit
Kukedlc
2024-05-04T18:43:45Z
78
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:Kukedlc/LLama-3-8b-Python", "base_model:quantized:Kukedlc/LLama-3-8b-Python", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T18:41:15Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: Kukedlc/LLama-3-8b-Python --- # Uploaded model - **Developed by:** Kukedlc - **License:** apache-2.0 - **Finetuned from model :** Kukedlc/LLama-3-8b-Python This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf
RichardErkhov
2024-05-04T18:40:44Z
22
0
null
[ "gguf", "arxiv:2308.12950", "endpoints_compatible", "region:us" ]
null
2024-05-04T11:09:06Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CodeLlama-34b-hf - GGUF - Model creator: https://huggingface.co/codellama/ - Original model: https://huggingface.co/codellama/CodeLlama-34b-hf/ | Name | Quant method | Size | | ---- | ---- | ---- | | [CodeLlama-34b-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q2_K.gguf) | Q2_K | 11.65GB | | [CodeLlama-34b-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ3_XS.gguf) | IQ3_XS | 12.93GB | | [CodeLlama-34b-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ3_S.gguf) | IQ3_S | 13.65GB | | [CodeLlama-34b-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K_S.gguf) | Q3_K_S | 13.6GB | | [CodeLlama-34b-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ3_M.gguf) | IQ3_M | 14.18GB | | [CodeLlama-34b-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K.gguf) | Q3_K | 15.19GB | | [CodeLlama-34b-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K_M.gguf) | Q3_K_M | 15.19GB | | [CodeLlama-34b-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K_L.gguf) | Q3_K_L | 16.55GB | | [CodeLlama-34b-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ4_XS.gguf) | IQ4_XS | 16.99GB | | [CodeLlama-34b-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_0.gguf) | Q4_0 | 17.74GB | | [CodeLlama-34b-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ4_NL.gguf) | IQ4_NL | 17.92GB | | [CodeLlama-34b-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_K_S.gguf) | Q4_K_S | 17.87GB | | [CodeLlama-34b-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_K.gguf) | Q4_K | 18.83GB | | [CodeLlama-34b-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_K_M.gguf) | Q4_K_M | 18.83GB | | [CodeLlama-34b-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_1.gguf) | Q4_1 | 19.69GB | | [CodeLlama-34b-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_0.gguf) | Q5_0 | 21.64GB | | [CodeLlama-34b-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_K_S.gguf) | Q5_K_S | 21.64GB | | [CodeLlama-34b-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_K.gguf) | Q5_K | 22.2GB | | [CodeLlama-34b-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_K_M.gguf) | Q5_K_M | 22.2GB | | [CodeLlama-34b-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_1.gguf) | Q5_1 | 23.59GB | | [CodeLlama-34b-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q6_K.gguf) | Q6_K | 25.78GB | Original model description: --- language: - code pipeline_tag: text-generation tags: - llama-2 license: llama2 --- # **Code Llama** Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 34B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom. > [!NOTE] > This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-34b-hf). | | Base Model | Python | Instruct | | --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- | | 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) | | 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | | 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) | | 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) | ## Model Use To use this model, please make sure to install transformers: ```bash pip install transformers.git accelerate ``` Model capabilities: - [x] Code completion. - [ ] Infilling. - [ ] Instructions / chat. - [ ] Python specialist. ```python from transformers import AutoTokenizer import transformers import torch model = "codellama/CodeLlama-34b-hf" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( 'import socket\n\ndef ping_exponential_backoff(host: str):', do_sample=True, top_k=10, temperature=0.1, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Model Details *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs). **Model Developers** Meta **Variations** Code Llama comes in three model sizes, and three variants: * Code Llama: base models designed for general code synthesis and understanding * Code Llama - Python: designed specifically for Python * Code Llama - Instruct: for instruction following and safer deployment All variants are available in sizes of 7B, 13B and 34B parameters. **This repository contains the base version of the 34B parameters model.** **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture. **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950). ## Intended Use **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications. **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants. ## Hardware and Software **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster. **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program. ## Training Data All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details). ## Evaluation Results See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper. ## Ethical Considerations and Limitations Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
Kukedlc/Smart-LLama-3-8b-Python-v2
Kukedlc
2024-05-04T18:33:52Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:Kukedlc/LLama-3-8b-Python", "base_model:finetune:Kukedlc/LLama-3-8b-Python", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-04T18:33:41Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: Kukedlc/LLama-3-8b-Python --- # Uploaded model - **Developed by:** Kukedlc - **License:** apache-2.0 - **Finetuned from model :** Kukedlc/LLama-3-8b-Python This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AlignmentResearch/robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-0
AlignmentResearch
2024-05-04T18:31:32Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:finetune:EleutherAI/pythia-1b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T18:30:01Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: EleutherAI/pythia-1b model-index: - name: robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-0 This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
dabagyan/roberta-sarcasm-model
dabagyan
2024-05-04T18:31:19Z
180
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T01:50:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DJ491/Jeffrey_Jey
DJ491
2024-05-04T18:21:18Z
0
0
null
[ "license:cc-by-nc-2.0", "region:us" ]
null
2024-05-04T18:19:34Z
--- license: cc-by-nc-2.0 ---
AIAT/Optimizer-sealion2pandas
AIAT
2024-05-04T18:17:59Z
8
0
transformers
[ "transformers", "safetensors", "mpt", "text-generation", "custom_code", "th", "en", "dataset:AIAT/Optimizer-datasetfinal", "base_model:aisingapore/sea-lion-7b-instruct", "base_model:finetune:aisingapore/sea-lion-7b-instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-03T06:36:44Z
--- language: - th - en license: mit base_model: aisingapore/sea-lion-7b-instruct datasets: - AIAT/Optimizer-datasetfinal pipeline_tag: text-generation --- ## Sea-lion2pandas fine-tuned from [sea-lion-7b-instruct](aisingapore/sea-lion-7b-instruct) with question-pandas expression pairs. ## How to use: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import pandas as pd tokenizer = AutoTokenizer.from_pretrained("AIAT/Optimizer-sealion2pandas", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("AIAT/Optimizer-sealion2pandas", trust_remote_code=True) df = pd.read_csv("Your csv..") prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n" prompt = """\ You are working with a pandas dataframe in Python. The name of the dataframe is `df`. This is the result of `print(df.head())`: {df_str} Follow these instructions: 1. Convert the query to executable Python code using Pandas. 2. The final line of code should be a Python expression that can be called with the `eval()` function. 3. The code should represent a solution to the query. 4. PRINT ONLY THE EXPRESSION. 5. Do not quote the expression. Query: {query_str} """ def create_prompt(query_str, df): text = prompt.format(df_str=str(df.head()), query_str=query_str) text = prompt_template.format(human_prompt=text) return text full_prompt = create_prompt("Find test ?", df) tokens = tokenizer(full_prompt, return_tensors="pt") output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` # sponser ![image/png](https://media.discordapp.net/attachments/1226897965927497818/1235842881520930857/image.png?ex=6635d7df&is=6634865f&hm=be4eb57b51de9f52f0817a88fdd2461b5312d0a013bd022630b2a8dde717976f&=&format=webp&quality=lossless&width=687&height=402)
xxx777xxxASD/L3-ChaoticSoliloquy-v1.5-4x8B-GGUF
xxx777xxxASD
2024-05-04T18:16:30Z
14
3
null
[ "gguf", "moe", "en", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-02T22:39:34Z
--- license: llama3 tags: - moe language: - en --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f5e51289c121cb864ba464/90Ks_eXrI6ONn-fHM1Oe5.png) > [!IMPORTANT] > More GGUFs are here [GGUF](https://huggingface.co/mradermacher/L3-ChaoticSoliloquy-v1.5-4x8B-GGUF) / [Imat!GGUF](https://huggingface.co/mradermacher/L3-ChaoticSoliloquy-v1.5-4x8B-i1-GGUF) Some GGUF quants of [xxx777xxxASD/L3-ChaoticSoliloquy-v1.5-4x8B](https://huggingface.co/xxx777xxxASD/L3-ChaoticSoliloquy-v1.5-4x8B)
LongDHo/finetuned-gemma-2b
LongDHo
2024-05-04T18:15:35Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-03T17:55:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/kanishka_-_smolm-autoreg-bpe-seed_496-4bits
RichardErkhov
2024-05-04T18:09:38Z
75
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T18:09:29Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) smolm-autoreg-bpe-seed_496 - bnb 4bits - Model creator: https://huggingface.co/kanishka/ - Original model: https://huggingface.co/kanishka/smolm-autoreg-bpe-seed_496/ Original model description: --- tags: - generated_from_trainer metrics: - accuracy model-index: - name: smolm-autoreg-bpe-seed_496 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-seed_496 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4752 - Accuracy: 0.4995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 16 - eval_batch_size: 128 - seed: 496 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 24000 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.0603 | 1.0 | 2928 | 3.0255 | 0.4367 | | 2.7088 | 2.0 | 5856 | 2.7873 | 0.4580 | | 2.586 | 3.0 | 8784 | 2.6956 | 0.4688 | | 2.5037 | 4.0 | 11712 | 2.6362 | 0.4772 | | 2.466 | 5.0 | 14640 | 2.6123 | 0.4787 | | 2.4203 | 6.0 | 17568 | 2.5878 | 0.4828 | | 2.3871 | 7.0 | 20496 | 2.5691 | 0.4855 | | 2.367 | 8.0 | 23424 | 2.5567 | 0.4880 | | 2.2871 | 9.0 | 26352 | 2.5026 | 0.4941 | | 2.1368 | 10.0 | 29280 | 2.4752 | 0.4995 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf
RichardErkhov
2024-05-04T18:08:58Z
10
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-05-04T16:49:51Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Bielik-7B-v0.1 - GGUF - Model creator: https://huggingface.co/speakleash/ - Original model: https://huggingface.co/speakleash/Bielik-7B-v0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Bielik-7B-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q2_K.gguf) | Q2_K | 2.53GB | | [Bielik-7B-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [Bielik-7B-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ3_S.gguf) | IQ3_S | 2.96GB | | [Bielik-7B-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [Bielik-7B-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ3_M.gguf) | IQ3_M | 3.06GB | | [Bielik-7B-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K.gguf) | Q3_K | 3.28GB | | [Bielik-7B-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [Bielik-7B-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [Bielik-7B-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [Bielik-7B-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_0.gguf) | Q4_0 | 3.83GB | | [Bielik-7B-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [Bielik-7B-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [Bielik-7B-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_K.gguf) | Q4_K | 4.07GB | | [Bielik-7B-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [Bielik-7B-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_1.gguf) | Q4_1 | 4.24GB | | [Bielik-7B-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_0.gguf) | Q5_0 | 4.65GB | | [Bielik-7B-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [Bielik-7B-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_K.gguf) | Q5_K | 4.78GB | | [Bielik-7B-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [Bielik-7B-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_1.gguf) | Q5_1 | 5.07GB | | [Bielik-7B-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q6_K.gguf) | Q6_K | 5.53GB | Original model description: --- license: apache-2.0 language: - pl library_name: transformers tags: - continuously_pretrained inference: parameters: temperature: 0.7 --- <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/speakleash_cyfronet.png"> </p> # Bielik-7B-v0.1 The Bielik-7B-v0.1 is a generative text model featuring 7 billion parameters, meticulously evolved from its predecessor, the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), through processing of over 70 billion tokens. Forementioned model stands as a testament to the unique collaboration between the open-science/open-souce project SpeakLeash and the High Performance Computing (HPC) center: ACK Cyfronet AGH. Developed and trained on Polish text corpora, which has been cherry-picked and processed by the SpeakLeash team, this endeavor leverages Polish large-scale computing infrastructure, specifically within the PLGrid environment, and more precisely, the HPC centers: ACK Cyfronet AGH. The creation and training of the Bielik-7B-v0.1 was propelled by the support of computational grant number PLG/2024/016951, conducted on the Helios supercomputer, enabling the use of cutting-edge technology and computational resources essential for large-scale machine learning processes. As a result, the model exhibits an exceptional ability to understand and process the Polish language, providing accurate responses and performing a variety of linguistic tasks with high precision. ## Model Bielik-7B-v0.1 has been trained with the use of an original open source framework called [ALLaMo](https://github.com/chrisociepa/allamo) implemented by [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/). This framework allows users to train language models with architecture similar to LLaMA and Mistral in fast and efficient way. The model training was conducted on the Helios Supercomputer at the ACK Cyfronet AGH, utilizing 256 NVidia GH200 cards while achieving a throughput exceeding 9200 tokens/gpu/second. The training dataset was composed of Polish texts collected and made available through the [SpeakLeash](https://speakleash.org/) project. We used over 36 billion tokens for two epochs of training. ### Model description: * **Developed by:** [SpeakLeash](https://speakleash.org/) * **Language:** Polish * **Model type:** causal decoder-only * **Adopted from:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * **License:** Apache 2.0 (commercial use allowed) * **Model ref:** speakleash:debfc8635c781358e8db833a333887a5 ### Quality evaluation A XGBoost classification model was prepared and created to evaluate the quality of texts in native Polish language. It is based on 93 features, such as the ratio of out-of-vocabulary words to all words (OOVs), the number of nouns, verbs, average sentence length etc. The model outputs the category of a given document (either HIGH, MEDIUM or LOW) along with the probability. This approach allows implementation of dedicated pipeline to choose documents, from which we've used entries with HIGH quality index and probability exceeding 90%. This filtration and appropriate selection of texts enable the provision of a condensed and high-quality database of texts in Polish for training purposes. ## Training * Framework: [ALLaMo](https://github.com/chrisociepa/allamo) * Visualizations: [W&B](https://wandb.ai) <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_loss.png"> </p> <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_ppl.png"> </p> <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_acc.png"> </p> ### Training hyperparameters: | **Hyperparameter** | **Value** | |-----------------------------|------------------| | Context length | 4096 | | Micro Batch Size | 4 | | Batch Size | 4194304 | | Learning Rate (cosine) | 3e-05 -> 2e-05 | | Warmup Iterations | 2000 | | All Iterations | 17350 | | Optimizer | AdamW | | β1, β2 | 0.9, 0.95 | | Adam_eps | 1e−8 | | Weight Decay | 0.1 | | Grad Clip | 1.0 | | Precision | bfloat16 (mixed) | ### Quickstart This model can be easily loaded using the AutoModelForCausalLM functionality. ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "speakleash/Bielik-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` In order to reduce the memory usage, you can use smaller precision (`bfloat16`). ```python import torch model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) ``` And then you can use Hugging Face Pipelines to generate text: ```python import transformers text = "Najważniejszym celem człowieka na ziemi jest" pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer) sequences = pipeline(max_new_tokens=100, do_sample=True, top_k=50, eos_token_id=tokenizer.eos_token_id, text_inputs=text) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` Generated output: > Najważniejszym celem człowieka na ziemi jest życie w pokoju, harmonii i miłości. Dla każdego z nas bardzo ważne jest, aby otaczać się kochanymi osobami. ## Evaluation Models have been evaluated on [Open PL LLM Leaderboard](https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard) 5-shot. The benchmark evaluates models in NLP tasks like sentiment analysis, categorization, text classification but does not test chatting skills. Here are presented: - Average - average score among all tasks normalized by baseline scores - Reranking - reranking task, commonly used in RAG - Reader (Generator) - open book question answering task, commonly used in RAG - Perplexity (lower is better) - as a bonus, does not correlate with other scores and should not be used for model comparison As of April 3, 2024, the following table showcases the current scores of pretrained and continuously pretrained models according to the Open PL LLM Leaderboard, evaluated in a 5-shot setting: | | Average | RAG Reranking | RAG Reader | Perplexity | |--------------------------------------------------------------------------------------|----------:|--------------:|-----------:|-----------:| | **7B parameters models:** | | | | | | Baseline (majority class) | 0.00 | 53.36 | - | - | | OPI-PG/Qra-7b | 11.13 | 54.40 | 75.25 | 203.36 | | meta-llama/Llama-2-7b-hf | 12.73 | 54.02 | 77.92 | 850.45 | | internlm/internlm2-base-7b | 20.68 | 52.39 | 69.85 | 3110.92 | | [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1) | 29.38 | **62.13** | **88.39** | 123.31 | | mistralai/Mistral-7B-v0.1 | 30.67 | 60.35 | 85.39 | 857.32 | | internlm/internlm2-7b | 33.03 | 69.39 | 73.63 | 5498.23 | | alpindale/Mistral-7B-v0.2-hf | 33.05 | 60.23 | 85.21 | 932.60 | | speakleash/mistral-apt3-7B/spi-e0_hf (experimental) | **35.50** | **62.14** | 87.48 | 132.78 | | | | | | | | **Models with different sizes:** | | | | | | sdadas/polish-gpt2-xl (1.7B) | -23.22 | 48.07 | 3.04 | 160.95 | | Azurro/APT3-1B-Base (1B) | -8.23 | 51.49 | 18.94 | 249.90 | | OPI-PG/Qra-1b (1B) | -5.44 | 47.65 | 38.51 | 398.96 | | internlm/internlm2-1_8b (1.8B) | -2.78 | 49.37 | 31.88 | 60296.30 | | OPI-PG/Qra-13b (13B) | 29.03 | 53.28 | 83.03 | 168.66 | | upstage/SOLAR-10.7B-v1.0 (10.7B) | 38.12 | 75.81 | 86.39 | 641.05 | | | | | | | | **Polish instruction fine-tuned models:** | | | | | | szymonrucinski/Curie-7B-v1 | 26.72 | 55.58 | 85.19 | 389.17 | | Voicelab/trurl-2-7b | 18.85 | 60.67 | 77.19 | 1098.88 | | [Bielik-7B-Instruct-v0.1](https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1) | 39.28 | 61.89 | 86.00 | 277.92 | As you can see, Bielik-7B-v0.1 does not have the best Average score, but it has some clear advantages, e.g. the best score in the RAG Reader task. The results in the above table were obtained without utilizing instruction templates for instructional models, instead treating them like base models. This approach could skew the results, as instructional models are optimized with specific instructions in mind. ## Limitations and Biases Bielik-7B-v0.1 is not intended for deployment without fine-tuning. It should not be used for human-facing interactions without further guardrails and user consent. Bielik-7B-v0.1 can produce factually incorrect output, and should not be relied on to produce factually accurate data. Bielik-7B-v0.1 was trained on various public datasets. While great efforts have been taken to clear the training data, it is possible that this model can generate lewd, false, biased or otherwise offensive outputs. ## License The model is licensed under Apache 2.0, which allows for commercial use. ## Citation Please cite this model using the following format: ``` @misc{Bielik7Bv01, title = {Introducing Bielik-7B-v0.1: Polish Language Model}, author = {Ociepa, Krzysztof and Flis, Łukasz and Wróbel, Krzysztof and Gwoździej, Adrian and {SpeakLeash Team} and {Cyfronet Team}}, year = {2024}, url = {https://huggingface.co/speakleash/Bielik-7B-v0.1}, note = {Accessed: 2024-04-01}, % change this date urldate = {2024-04-01} % change this date } ``` ## Responsible for training the model * [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, data preparation, process optimization and oversight of training * [Łukasz Flis](https://www.linkedin.com/in/lukasz-flis-0a39631/)<sup>Cyfronet AGH</sup> - coordinating and supervising the training * [Adrian Gwoździej](https://www.linkedin.com/in/adrgwo/)<sup>SpeakLeash</sup> - data cleaning and quality * [Krzysztof Wróbel](https://www.linkedin.com/in/wrobelkrzysztof/)<sup>SpeakLeash</sup> - benchmarks The model could not have been created without the commitment and work of the entire SpeakLeash team, whose contribution is invaluable. Thanks to the hard work of many individuals, it was possible to gather a large amount of content in Polish and establish collaboration between the open-science SpeakLeash project and the HPC center: ACK Cyfronet AGH. Individuals who contributed to the creation of the model through their commitment to the open-science SpeakLeash project: [Sebastian Kondracki](https://www.linkedin.com/in/sebastian-kondracki/), [Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/), [Grzegorz Urbanowicz](https://www.linkedin.com/in/grzegorz-urbanowicz-05823469/), [Szymon Baczyński](https://www.linkedin.com/in/szymon-baczynski/), [Paweł Kiszczak](https://www.linkedin.com/in/paveu-kiszczak/), [Igor Ciuciura](https://www.linkedin.com/in/igor-ciuciura-1763b52a6/), [Paweł Cyrta](https://www.linkedin.com/in/cyrta), [Jacek Chwiła](https://www.linkedin.com/in/jacek-chwila/), [Jan Maria Kowalski](https://www.linkedin.com/in/janmariakowalski/), [Karol Jezierski](https://www.linkedin.com/in/karol-jezierski/), [Kamil Nonckiewicz](https://www.linkedin.com/in/kamil-nonckiewicz/), [Izabela Babis](https://www.linkedin.com/in/izabela-babis-2274b8105/), [Nina Babis](https://www.linkedin.com/in/nina-babis-00055a140/), [Waldemar Boszko](https://www.linkedin.com/in/waldemarboszko), [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/), [Piotr Rybak](https://www.linkedin.com/in/piotrrybak/) and many other wonderful researchers and enthusiasts of the AI world. Members of the ACK Cyfronet AGH team providing valuable support and expertise: [Szymon Mazurek](https://www.linkedin.com/in/sz-mazurek-ai/). ## Contact Us If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/3G9DVM39).
MaziyarPanahi/Llama-3-8B-Instruct-v0.5
MaziyarPanahi
2024-05-04T18:08:22Z
11
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "axolotl", "finetune", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "base_model:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2", "base_model:finetune:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-01T09:44:42Z
--- base_model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2 library_name: transformers tags: - axolotl - finetune - facebook - meta - pytorch - llama - llama-3 language: - en pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi model_name: Llama-3-8B-Instruct-v0.5 quantized_by: MaziyarPanahi --- <img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Llama-3-8B-Instruct-v0.5 This model was developed based on `MaziyarPanahi/Llama-3-8B-Instruct-DPO` series. # Quantized GGUF All GGUF models are available here: [MaziyarPanahi/Llama-3-8B-Instruct-v0.5-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.5-GGUF) # Prompt Template This model uses `ChatML` prompt template: ``` <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-v0.5` as the model name in Hugging Face's transformers library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline import torch model_id = "MaziyarPanahi/Llama-3-8B-Instruct-v0.5" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) # Then you can use the pipeline to generate text. messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>") # just in case, won't hurt ] outputs = pipeline( prompt, max_new_tokens=512, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ```
Nettem-Gayathri/Summary-model
Nettem-Gayathri
2024-05-04T18:08:08Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-04T18:08:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/Llama-3-8B-Instruct-v0.2
MaziyarPanahi
2024-05-04T18:06:50Z
16
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "axolotl", "finetune", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "base_model:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2", "base_model:finetune:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-01T08:50:18Z
--- base_model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2 library_name: transformers tags: - axolotl - finetune - facebook - meta - pytorch - llama - llama-3 language: - en pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi model_name: Llama-3-8B-Instruct-v0.2 quantized_by: MaziyarPanahi --- <img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Llama-3-8B-Instruct-v0.2 This model was developed based on `MaziyarPanahi/Llama-3-8B-Instruct-DPO` series. # Quantized GGUF All GGUF models are available here: [MaziyarPanahi/Llama-3-8B-Instruct-v0.2-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.2-GGUF) # Prompt Template This model uses `ChatML` prompt template: ``` <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-v0.2` as the model name in Hugging Face's transformers library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline import torch model_id = "MaziyarPanahi/Llama-3-8B-Instruct-v0.2" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) # Then you can use the pipeline to generate text. messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=512, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ```
StefanMGreen/FitLamma.X1
StefanMGreen
2024-05-04T18:05:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-04T16:53:55Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** StefanMGreen - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MaziyarPanahi/Llama-3-8B-Instruct-v0.1
MaziyarPanahi
2024-05-04T18:04:37Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "axolotl", "finetune", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "base_model:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2", "base_model:finetune:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-01T08:42:47Z
--- base_model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2 library_name: transformers tags: - axolotl - finetune - facebook - meta - pytorch - llama - llama-3 language: - en pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi model_name: Llama-3-8B-Instruct-v0.1 quantized_by: MaziyarPanahi --- <img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Llama-3-8B-Instruct-v0.1 This model was developed based on `MaziyarPanahi/Llama-3-8B-Instruct-DPO` series. # Quantized GGUF All GGUF models are available here: [MaziyarPanahi/Llama-3-8B-Instruct-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.1-GGUF) # Prompt Template This model uses `ChatML` prompt template: ``` <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-v0.1` as the model name in Hugging Face's transformers library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline import torch model_id = "MaziyarPanahi/Llama-3-8B-Instruct-v0.1" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) # Then you can use the pipeline to generate text. messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=512, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ```
muzammil-eds/Meta-Llama-3-8B-Resumes-Extraction-v2
muzammil-eds
2024-05-04T18:04:14Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-04T18:04:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
YASHWIN-2025/mistral_b_finance_finetuned_test
YASHWIN-2025
2024-05-04T18:00:58Z
0
0
transformers
[ "transformers", "safetensors", "trl", "sft", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-04T18:00:49Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jorgefg03/roberta-base-ca-autext2024
jorgefg03
2024-05-04T18:00:34Z
106
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T16:14:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/stabilityai_-_StableBeluga-7B-4bits
RichardErkhov
2024-05-04T17:43:26Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:2307.09288", "arxiv:2306.02707", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T17:36:22Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) StableBeluga-7B - bnb 4bits - Model creator: https://huggingface.co/stabilityai/ - Original model: https://huggingface.co/stabilityai/StableBeluga-7B/ Original model description: --- datasets: - conceptofmind/cot_submix_original - conceptofmind/flan2021_submix_original - conceptofmind/t0_submix_original - conceptofmind/niv2_submix_original language: - en pipeline_tag: text-generation --- # Stable Beluga 7B Use [Stable Chat (Research Preview)](https://chat.stability.ai/chat) to test Stability AI's best language models for free ## Model Description `Stable Beluga 7B` is a Llama2 7B model finetuned on an Orca style Dataset ## Usage Start chatting with `Stable Beluga 7B` using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga-7B", use_fast=False) model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga-7B", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") system_prompt = "### System:\nYou are StableBeluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n" message = "Write me a poem please" prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` Stable Beluga 7B should be used with this prompt format: ``` ### System: This is a system prompt, please behave and help the user. ### User: Your prompt here ### Assistant: The output of Stable Beluga 7B ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: Stable Beluga 7B is an auto-regressive language model fine-tuned on Llama2 7B. * **Language(s)**: English * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers) * **License**: Fine-tuned checkpoints (`Stable Beluga 7B`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga-7B/blob/main/LICENSE.txt) * **Contact**: For questions and comments about the model, please email `[email protected]` ### Training Dataset ` Stable Beluga 7B` is trained on our internal Orca-style dataset ### Training Procedure Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters: | Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas | |-------------------|------------|---------------|-------------------|---------|--------------|-------------| | Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) | | Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) | ## Ethical Considerations and Limitations Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model. ## Citations ```bibtext @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom}, year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtext @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
chribark/segformer-b3-finetuned-UAVid
chribark
2024-05-04T17:35:01Z
201
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/segformer-b3-finetuned-ade-512-512", "base_model:finetune:nvidia/segformer-b3-finetuned-ade-512-512", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-05-03T08:18:47Z
--- license: other base_model: nvidia/segformer-b3-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b3-finetuned-UAVid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b3-finetuned-UAVid This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2115 - Mean Iou: 0.6365 - Mean Accuracy: 0.7005 - Overall Accuracy: 0.9263 - Accuracy Wall: nan - Accuracy Building: 0.9535 - Accuracy Sky: nan - Accuracy Floor: nan - Accuracy Tree: 0.9415 - Accuracy Ceiling: nan - Accuracy Road: 0.8948 - Accuracy Bed : nan - Accuracy Windowpane: nan - Accuracy Grass: nan - Accuracy Cabinet: nan - Accuracy Sidewalk: nan - Accuracy Person: 0.0038 - Accuracy Earth: nan - Accuracy Door: nan - Accuracy Table: nan - Accuracy Mountain: nan - Accuracy Plant: nan - Accuracy Curtain: nan - Accuracy Chair: nan - Accuracy Car: 0.7086 - Accuracy Water: nan - Accuracy Painting: nan - Accuracy Sofa: nan - Accuracy Shelf: nan - Accuracy House: nan - Accuracy Sea: nan - Accuracy Mirror: nan - Accuracy Rug: nan - Accuracy Field: nan - Accuracy Armchair: nan - Accuracy Seat: nan - Accuracy Fence: nan - Accuracy Desk: nan - Accuracy Rock: nan - Accuracy Wardrobe: nan - Accuracy Lamp: nan - Accuracy Bathtub: nan - Accuracy Railing: nan - Accuracy Cushion: nan - Accuracy Base: nan - Accuracy Box: nan - Accuracy Column: nan - Accuracy Signboard: nan - Accuracy Chest of drawers: nan - Accuracy Counter: nan - Accuracy Sand: nan - Accuracy Sink: nan - Accuracy Skyscraper: nan - Accuracy Fireplace: nan - Accuracy Refrigerator: nan - Accuracy Grandstand: nan - Accuracy Path: nan - Accuracy Stairs: nan - Accuracy Runway: nan - Accuracy Case: nan - Accuracy Pool table: nan - Accuracy Pillow: nan - Accuracy Screen door: nan - Accuracy Stairway: nan - Accuracy River: nan - Accuracy Bridge: nan - Accuracy Bookcase: nan - Accuracy Blind: nan - Accuracy Coffee table: nan - Accuracy Toilet: nan - Accuracy Flower: nan - Accuracy Book: nan - Accuracy Hill: nan - Accuracy Bench: nan - Accuracy Countertop: nan - Accuracy Stove: nan - Accuracy Palm: nan - Accuracy Kitchen island: nan - Accuracy Computer: nan - Accuracy Swivel chair: nan - Accuracy Boat: nan - Accuracy Bar: nan - Accuracy Arcade machine: nan - Accuracy Hovel: nan - Accuracy Bus: nan - Accuracy Towel: nan - Accuracy Light: nan - Accuracy Truck: nan - Accuracy Tower: nan - Accuracy Chandelier: nan - Accuracy Awning: nan - Accuracy Streetlight: nan - Accuracy Booth: nan - Accuracy Television receiver: nan - Accuracy Airplane: nan - Accuracy Dirt track: nan - Accuracy Apparel: nan - Accuracy Pole: nan - Accuracy Land: nan - Accuracy Bannister: nan - Accuracy Escalator: nan - Accuracy Ottoman: nan - Accuracy Bottle: nan - Accuracy Buffet: nan - Accuracy Poster: nan - Accuracy Stage: nan - Accuracy Van: nan - Accuracy Ship: nan - Accuracy Fountain: nan - Accuracy Conveyer belt: nan - Accuracy Canopy: nan - Accuracy Washer: nan - Accuracy Plaything: nan - Accuracy Swimming pool: nan - Accuracy Stool: nan - Accuracy Barrel: nan - Accuracy Basket: nan - Accuracy Waterfall: nan - Accuracy Tent: nan - Accuracy Bag: nan - Accuracy Minibike: nan - Accuracy Cradle: nan - Accuracy Oven: nan - Accuracy Ball: nan - Accuracy Food: nan - Accuracy Step: nan - Accuracy Tank: nan - Accuracy Trade name: nan - Accuracy Microwave: nan - Accuracy Pot: nan - Accuracy Animal: nan - Accuracy Bicycle: nan - Accuracy Lake: nan - Accuracy Dishwasher: nan - Accuracy Screen: nan - Accuracy Blanket: nan - Accuracy Sculpture: nan - Accuracy Hood: nan - Accuracy Sconce: nan - Accuracy Vase: nan - Accuracy Traffic light: nan - Accuracy Tray: nan - Accuracy Ashcan: nan - Accuracy Fan: nan - Accuracy Pier: nan - Accuracy Crt screen: nan - Accuracy Plate: nan - Accuracy Monitor: nan - Accuracy Bulletin board: nan - Accuracy Shower: nan - Accuracy Radiator: nan - Accuracy Glass: nan - Accuracy Clock: nan - Accuracy Flag: nan - Iou Wall: nan - Iou Building: 0.9105 - Iou Sky: nan - Iou Floor: nan - Iou Tree: 0.8818 - Iou Ceiling: nan - Iou Road: 0.8152 - Iou Bed : nan - Iou Windowpane: nan - Iou Grass: nan - Iou Cabinet: nan - Iou Sidewalk: nan - Iou Person: 0.0038 - Iou Earth: nan - Iou Door: nan - Iou Table: nan - Iou Mountain: nan - Iou Plant: nan - Iou Curtain: nan - Iou Chair: nan - Iou Car: 0.5711 - Iou Water: nan - Iou Painting: nan - Iou Sofa: nan - Iou Shelf: nan - Iou House: nan - Iou Sea: nan - Iou Mirror: nan - Iou Rug: nan - Iou Field: nan - Iou Armchair: nan - Iou Seat: nan - Iou Fence: nan - Iou Desk: nan - Iou Rock: nan - Iou Wardrobe: nan - Iou Lamp: nan - Iou Bathtub: nan - Iou Railing: nan - Iou Cushion: nan - Iou Base: nan - Iou Box: nan - Iou Column: nan - Iou Signboard: nan - Iou Chest of drawers: nan - Iou Counter: nan - Iou Sand: nan - Iou Sink: nan - Iou Skyscraper: nan - Iou Fireplace: nan - Iou Refrigerator: nan - Iou Grandstand: nan - Iou Path: nan - Iou Stairs: nan - Iou Runway: nan - Iou Case: nan - Iou Pool table: nan - Iou Pillow: nan - Iou Screen door: nan - Iou Stairway: nan - Iou River: nan - Iou Bridge: nan - Iou Bookcase: nan - Iou Blind: nan - Iou Coffee table: nan - Iou Toilet: nan - Iou Flower: nan - Iou Book: nan - Iou Hill: nan - Iou Bench: nan - Iou Countertop: nan - Iou Stove: nan - Iou Palm: nan - Iou Kitchen island: nan - Iou Computer: nan - Iou Swivel chair: nan - Iou Boat: nan - Iou Bar: nan - Iou Arcade machine: nan - Iou Hovel: nan - Iou Bus: nan - Iou Towel: nan - Iou Light: nan - Iou Truck: nan - Iou Tower: nan - Iou Chandelier: nan - Iou Awning: nan - Iou Streetlight: nan - Iou Booth: nan - Iou Television receiver: nan - Iou Airplane: nan - Iou Dirt track: nan - Iou Apparel: nan - Iou Pole: nan - Iou Land: nan - Iou Bannister: nan - Iou Escalator: nan - Iou Ottoman: nan - Iou Bottle: nan - Iou Buffet: nan - Iou Poster: nan - Iou Stage: nan - Iou Van: nan - Iou Ship: nan - Iou Fountain: nan - Iou Conveyer belt: nan - Iou Canopy: nan - Iou Washer: nan - Iou Plaything: nan - Iou Swimming pool: nan - Iou Stool: nan - Iou Barrel: nan - Iou Basket: nan - Iou Waterfall: nan - Iou Tent: nan - Iou Bag: nan - Iou Minibike: nan - Iou Cradle: nan - Iou Oven: nan - Iou Ball: nan - Iou Food: nan - Iou Step: nan - Iou Tank: nan - Iou Trade name: nan - Iou Microwave: nan - Iou Pot: nan - Iou Animal: nan - Iou Bicycle: nan - Iou Lake: nan - Iou Dishwasher: nan - Iou Screen: nan - Iou Blanket: nan - Iou Sculpture: nan - Iou Hood: nan - Iou Sconce: nan - Iou Vase: nan - Iou Traffic light: nan - Iou Tray: nan - Iou Ashcan: nan - Iou Fan: nan - Iou Pier: nan - Iou Crt screen: nan - Iou Plate: nan - Iou Monitor: nan - Iou Bulletin board: nan - Iou Shower: nan - Iou Radiator: nan - Iou Glass: nan - Iou Clock: nan - Iou Flag: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Wall | Accuracy Building | Accuracy Sky | Accuracy Floor | Accuracy Tree | Accuracy Ceiling | Accuracy Road | Accuracy Bed | Accuracy Windowpane | Accuracy Grass | Accuracy Cabinet | Accuracy Sidewalk | Accuracy Person | Accuracy Earth | Accuracy Door | Accuracy Table | Accuracy Mountain | Accuracy Plant | Accuracy Curtain | Accuracy Chair | Accuracy Car | Accuracy Water | Accuracy Painting | Accuracy Sofa | Accuracy Shelf | Accuracy House | Accuracy Sea | Accuracy Mirror | Accuracy Rug | Accuracy Field | Accuracy Armchair | Accuracy Seat | Accuracy Fence | Accuracy Desk | Accuracy Rock | Accuracy Wardrobe | Accuracy Lamp | Accuracy Bathtub | Accuracy Railing | Accuracy Cushion | Accuracy Base | Accuracy Box | Accuracy Column | Accuracy Signboard | Accuracy Chest of drawers | Accuracy Counter | Accuracy Sand | Accuracy Sink | Accuracy Skyscraper | Accuracy Fireplace | Accuracy Refrigerator | Accuracy Grandstand | Accuracy Path | Accuracy Stairs | Accuracy Runway | Accuracy Case | Accuracy Pool table | Accuracy Pillow | Accuracy Screen door | Accuracy Stairway | Accuracy River | Accuracy Bridge | Accuracy Bookcase | Accuracy Blind | Accuracy Coffee table | Accuracy Toilet | Accuracy Flower | Accuracy Book | Accuracy Hill | Accuracy Bench | Accuracy Countertop | Accuracy Stove | Accuracy Palm | Accuracy Kitchen island | Accuracy Computer | Accuracy Swivel chair | Accuracy Boat | Accuracy Bar | Accuracy Arcade machine | Accuracy Hovel | Accuracy Bus | Accuracy Towel | Accuracy Light | Accuracy Truck | Accuracy Tower | Accuracy Chandelier | Accuracy Awning | Accuracy Streetlight | Accuracy Booth | Accuracy Television receiver | Accuracy Airplane | Accuracy Dirt track | Accuracy Apparel | Accuracy Pole | Accuracy Land | Accuracy Bannister | Accuracy Escalator | Accuracy Ottoman | Accuracy Bottle | Accuracy Buffet | Accuracy Poster | Accuracy Stage | Accuracy Van | Accuracy Ship | Accuracy Fountain | Accuracy Conveyer belt | Accuracy Canopy | Accuracy Washer | Accuracy Plaything | Accuracy Swimming pool | Accuracy Stool | Accuracy Barrel | Accuracy Basket | Accuracy Waterfall | Accuracy Tent | Accuracy Bag | Accuracy Minibike | Accuracy Cradle | Accuracy Oven | Accuracy Ball | Accuracy Food | Accuracy Step | Accuracy Tank | Accuracy Trade name | Accuracy Microwave | Accuracy Pot | Accuracy Animal | Accuracy Bicycle | Accuracy Lake | Accuracy Dishwasher | Accuracy Screen | Accuracy Blanket | Accuracy Sculpture | Accuracy Hood | Accuracy Sconce | Accuracy Vase | Accuracy Traffic light | Accuracy Tray | Accuracy Ashcan | Accuracy Fan | Accuracy Pier | Accuracy Crt screen | Accuracy Plate | Accuracy Monitor | Accuracy Bulletin board | Accuracy Shower | Accuracy Radiator | Accuracy Glass | Accuracy Clock | Accuracy Flag | Iou Wall | Iou Building | Iou Sky | Iou Floor | Iou Tree | Iou Ceiling | Iou Road | Iou Bed | Iou Windowpane | Iou Grass | Iou Cabinet | Iou Sidewalk | Iou Person | Iou Earth | Iou Door | Iou Table | Iou Mountain | Iou Plant | Iou Curtain | Iou Chair | Iou Car | Iou Water | Iou Painting | Iou Sofa | Iou Shelf | Iou House | Iou Sea | Iou Mirror | Iou Rug | Iou Field | Iou Armchair | Iou Seat | Iou Fence | Iou Desk | Iou Rock | Iou Wardrobe | Iou Lamp | Iou Bathtub | Iou Railing | Iou Cushion | Iou Base | Iou Box | Iou Column | Iou Signboard | Iou Chest of drawers | Iou Counter | Iou Sand | Iou Sink | Iou Skyscraper | Iou Fireplace | Iou Refrigerator | Iou Grandstand | Iou Path | Iou Stairs | Iou Runway | Iou Case | Iou Pool table | Iou Pillow | Iou Screen door | Iou Stairway | Iou River | Iou Bridge | Iou Bookcase | Iou Blind | Iou Coffee table | Iou Toilet | Iou Flower | Iou Book | Iou Hill | Iou Bench | Iou Countertop | Iou Stove | Iou Palm | Iou Kitchen island | Iou Computer | Iou Swivel chair | Iou Boat | Iou Bar | Iou Arcade machine | Iou Hovel | Iou Bus | Iou Towel | Iou Light | Iou Truck | Iou Tower | Iou Chandelier | Iou Awning | Iou Streetlight | Iou Booth | Iou Television receiver | Iou Airplane | Iou Dirt track | Iou Apparel | Iou Pole | Iou Land | Iou Bannister | Iou Escalator | Iou Ottoman | Iou Bottle | Iou Buffet | Iou Poster | Iou Stage | Iou Van | Iou Ship | Iou Fountain | Iou Conveyer belt | Iou Canopy | Iou Washer | Iou Plaything | Iou Swimming pool | Iou Stool | Iou Barrel | Iou Basket | Iou Waterfall | Iou Tent | Iou Bag | Iou Minibike | Iou Cradle | Iou Oven | Iou Ball | Iou Food | Iou Step | Iou Tank | Iou Trade name | Iou Microwave | Iou Pot | Iou Animal | Iou Bicycle | Iou Lake | Iou Dishwasher | Iou Screen | Iou Blanket | Iou Sculpture | Iou Hood | Iou Sconce | Iou Vase | Iou Traffic light | Iou Tray | Iou Ashcan | Iou Fan | Iou Pier | Iou Crt screen | Iou Plate | Iou Monitor | Iou Bulletin board | Iou Shower | Iou Radiator | Iou Glass | Iou Clock | Iou Flag | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:-----------------:|:------------:|:--------------:|:-------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------:|:---------------:|:--------------:|:-------------:|:--------------:|:-----------------:|:--------------:|:----------------:|:--------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:--------------:|:------------:|:---------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-----------------:|:-------------:|:----------------:|:----------------:|:----------------:|:-------------:|:------------:|:---------------:|:------------------:|:-------------------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:---------------------:|:-------------------:|:-------------:|:---------------:|:---------------:|:-------------:|:-------------------:|:---------------:|:--------------------:|:-----------------:|:--------------:|:---------------:|:-----------------:|:--------------:|:---------------------:|:---------------:|:---------------:|:-------------:|:-------------:|:--------------:|:-------------------:|:--------------:|:-------------:|:-----------------------:|:-----------------:|:---------------------:|:-------------:|:------------:|:-----------------------:|:--------------:|:------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-------------------:|:---------------:|:--------------------:|:--------------:|:----------------------------:|:-----------------:|:-------------------:|:----------------:|:-------------:|:-------------:|:------------------:|:------------------:|:----------------:|:---------------:|:---------------:|:---------------:|:--------------:|:------------:|:-------------:|:-----------------:|:----------------------:|:---------------:|:---------------:|:------------------:|:----------------------:|:--------------:|:---------------:|:---------------:|:------------------:|:-------------:|:------------:|:-----------------:|:---------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:------------:|:---------------:|:----------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:----------------------:|:-------------:|:---------------:|:------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------------:|:---------------:|:-----------------:|:--------------:|:--------------:|:-------------:|:--------:|:------------:|:-------:|:---------:|:--------:|:-----------:|:--------:|:--------:|:--------------:|:---------:|:-----------:|:------------:|:----------:|:---------:|:--------:|:---------:|:------------:|:---------:|:-----------:|:---------:|:-------:|:---------:|:------------:|:--------:|:---------:|:---------:|:-------:|:----------:|:-------:|:---------:|:------------:|:--------:|:---------:|:--------:|:--------:|:------------:|:--------:|:-----------:|:-----------:|:-----------:|:--------:|:-------:|:----------:|:-------------:|:--------------------:|:-----------:|:--------:|:--------:|:--------------:|:-------------:|:----------------:|:--------------:|:--------:|:----------:|:----------:|:--------:|:--------------:|:----------:|:---------------:|:------------:|:---------:|:----------:|:------------:|:---------:|:----------------:|:----------:|:----------:|:--------:|:--------:|:---------:|:--------------:|:---------:|:--------:|:------------------:|:------------:|:----------------:|:--------:|:-------:|:------------------:|:---------:|:-------:|:---------:|:---------:|:---------:|:---------:|:--------------:|:----------:|:---------------:|:---------:|:-----------------------:|:------------:|:--------------:|:-----------:|:--------:|:--------:|:-------------:|:-------------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:-------:|:--------:|:------------:|:-----------------:|:----------:|:----------:|:-------------:|:-----------------:|:---------:|:----------:|:----------:|:-------------:|:--------:|:-------:|:------------:|:----------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------------:|:-------------:|:-------:|:----------:|:-----------:|:--------:|:--------------:|:----------:|:-----------:|:-------------:|:--------:|:----------:|:--------:|:-----------------:|:--------:|:----------:|:-------:|:--------:|:--------------:|:---------:|:-----------:|:------------------:|:----------:|:------------:|:---------:|:---------:|:--------:| | 1.6727 | 0.25 | 20 | 0.7288 | 0.0610 | 0.5942 | 0.8568 | nan | 0.8982 | nan | nan | 0.9055 | nan | 0.7829 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.3843 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8278 | 0.0 | 0.0 | 0.7955 | 0.0 | 0.6743 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2635 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.8408 | 0.5 | 40 | 0.5517 | 0.1077 | 0.5647 | 0.8553 | nan | 0.8733 | nan | nan | 0.8477 | nan | 0.8880 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.2144 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8235 | 0.0 | 0.0 | 0.7880 | nan | 0.6803 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.1864 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.6627 | 0.75 | 60 | 0.5441 | 0.1379 | 0.5611 | 0.8600 | nan | 0.8180 | nan | nan | 0.9523 | nan | 0.8221 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.2130 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7973 | 0.0 | nan | 0.8032 | nan | 0.6947 | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.1868 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.5375 | 1.0 | 80 | 0.3639 | 0.2082 | 0.6031 | 0.8892 | nan | 0.9561 | nan | nan | 0.9220 | nan | 0.8168 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.3205 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8589 | 0.0 | nan | 0.8312 | nan | 0.7386 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.2781 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.6152 | 1.25 | 100 | 0.3272 | 0.3115 | 0.6320 | 0.8924 | nan | 0.9481 | nan | nan | 0.8939 | nan | 0.8640 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4542 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8665 | 0.0 | nan | 0.8310 | nan | 0.7502 | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.3561 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.3287 | 1.5 | 120 | 0.3285 | 0.4038 | 0.6368 | 0.8931 | nan | 0.9512 | nan | nan | 0.9560 | nan | 0.7799 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.4966 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8704 | 0.0 | nan | 0.8349 | nan | 0.7359 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.3854 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.3504 | 1.75 | 140 | 0.2870 | 0.3619 | 0.6522 | 0.9008 | nan | 0.9315 | nan | nan | 0.9032 | nan | 0.8916 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.5349 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8827 | 0.0 | 0.0 | 0.8443 | nan | 0.7637 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4047 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.3755 | 2.0 | 160 | 0.2640 | 0.4847 | 0.6449 | 0.9053 | nan | 0.9369 | nan | nan | 0.9154 | nan | 0.8888 | nan | nan | nan | nan | nan | 0.0065 | nan | nan | nan | nan | nan | nan | nan | 0.4771 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8872 | 0.0 | nan | 0.8499 | nan | 0.7739 | nan | nan | nan | nan | nan | 0.0061 | nan | nan | nan | nan | nan | nan | nan | 0.3910 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.4509 | 2.25 | 180 | 0.2537 | 0.4893 | 0.6500 | 0.9066 | nan | 0.9367 | nan | nan | 0.9533 | nan | 0.8417 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.5183 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8875 | 0.0 | nan | 0.8538 | nan | 0.7701 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4242 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2465 | 2.5 | 200 | 0.2546 | 0.4916 | 0.6554 | 0.9078 | nan | 0.9481 | nan | nan | 0.9322 | nan | 0.8607 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.5362 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8821 | 0.0 | nan | 0.8594 | nan | 0.7751 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4332 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2378 | 2.75 | 220 | 0.2560 | 0.4976 | 0.6709 | 0.9092 | nan | 0.9344 | nan | nan | 0.9299 | nan | 0.8774 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.6129 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8900 | 0.0 | nan | 0.8583 | nan | 0.7794 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4579 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.3245 | 3.0 | 240 | 0.2574 | 0.4764 | 0.6270 | 0.9066 | nan | 0.9565 | nan | nan | 0.8915 | nan | 0.9111 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.3755 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8923 | 0.0 | nan | 0.8501 | nan | 0.7773 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.3383 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2053 | 3.25 | 260 | 0.2437 | 0.5042 | 0.6795 | 0.9120 | nan | 0.9617 | nan | nan | 0.9269 | nan | 0.8619 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6445 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8881 | 0.0 | nan | 0.8638 | nan | 0.7847 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.4859 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2223 | 3.5 | 280 | 0.2430 | 0.5079 | 0.6889 | 0.9135 | nan | 0.9408 | nan | nan | 0.9464 | nan | 0.8594 | nan | nan | nan | nan | nan | 0.0084 | nan | nan | nan | nan | nan | nan | nan | 0.6897 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8943 | 0.0 | nan | 0.8661 | nan | 0.7858 | nan | nan | nan | nan | nan | 0.0081 | nan | nan | nan | nan | nan | nan | nan | 0.4932 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2291 | 3.75 | 300 | 0.2328 | 0.5073 | 0.6747 | 0.9152 | nan | 0.9415 | nan | nan | 0.9299 | nan | 0.8905 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.6079 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8940 | 0.0 | nan | 0.8681 | nan | 0.7924 | nan | nan | nan | nan | nan | 0.0037 | nan | nan | nan | nan | nan | nan | nan | 0.4856 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.3919 | 4.0 | 320 | 0.2346 | 0.5115 | 0.6894 | 0.9159 | nan | 0.9497 | nan | nan | 0.9484 | nan | 0.8558 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6905 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8979 | 0.0 | nan | 0.8685 | nan | 0.7898 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5101 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1595 | 4.25 | 340 | 0.2241 | 0.5131 | 0.6903 | 0.9172 | nan | 0.9494 | nan | nan | 0.9390 | nan | 0.8730 | nan | nan | nan | nan | nan | 0.0009 | nan | nan | nan | nan | nan | nan | nan | 0.6893 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8984 | 0.0 | nan | 0.8709 | nan | 0.7944 | nan | nan | nan | nan | nan | 0.0009 | nan | nan | nan | nan | nan | nan | nan | 0.5142 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2397 | 4.5 | 360 | 0.2301 | 0.6103 | 0.6711 | 0.9173 | nan | 0.9435 | nan | nan | 0.9346 | nan | 0.8910 | nan | nan | nan | nan | nan | 0.0024 | nan | nan | nan | nan | nan | nan | nan | 0.5842 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9003 | nan | nan | 0.8686 | nan | 0.7967 | nan | nan | nan | nan | nan | 0.0023 | nan | nan | nan | nan | nan | nan | nan | 0.4835 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.248 | 4.75 | 380 | 0.2289 | 0.5150 | 0.6901 | 0.9169 | nan | 0.9404 | nan | nan | 0.9316 | nan | 0.8907 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.6826 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8995 | 0.0 | nan | 0.8698 | nan | 0.7936 | nan | nan | nan | nan | nan | 0.0050 | nan | nan | nan | nan | nan | nan | nan | 0.5220 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1986 | 5.0 | 400 | 0.2282 | 0.6163 | 0.6799 | 0.9182 | nan | 0.9525 | nan | nan | 0.9507 | nan | 0.8615 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.6317 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9000 | nan | nan | 0.8707 | nan | 0.7958 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.5116 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1553 | 5.25 | 420 | 0.2216 | 0.6194 | 0.6891 | 0.9188 | nan | 0.9551 | nan | nan | 0.9297 | nan | 0.8858 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.6721 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9006 | nan | nan | 0.8714 | nan | 0.7995 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.5228 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1767 | 5.5 | 440 | 0.2197 | 0.6188 | 0.6839 | 0.9192 | nan | 0.9517 | nan | nan | 0.9484 | nan | 0.8674 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6495 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9006 | nan | nan | 0.8728 | nan | 0.7979 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5204 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2381 | 5.75 | 460 | 0.2221 | 0.6219 | 0.6951 | 0.9192 | nan | 0.9579 | nan | nan | 0.9377 | nan | 0.8722 | nan | nan | nan | nan | nan | 0.0049 | nan | nan | nan | nan | nan | nan | nan | 0.7027 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8994 | nan | nan | 0.8737 | nan | 0.7988 | nan | nan | nan | nan | nan | 0.0047 | nan | nan | nan | nan | nan | nan | nan | 0.5328 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1749 | 6.0 | 480 | 0.2223 | 0.6233 | 0.6944 | 0.9204 | nan | 0.9533 | nan | nan | 0.9436 | nan | 0.8733 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.6983 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9029 | nan | nan | 0.8741 | nan | 0.8016 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.5345 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1881 | 6.25 | 500 | 0.2224 | 0.6229 | 0.6910 | 0.9205 | nan | 0.9485 | nan | nan | 0.9415 | nan | 0.8818 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6808 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9023 | nan | nan | 0.8744 | nan | 0.8023 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5330 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1535 | 6.5 | 520 | 0.2170 | 0.6250 | 0.6987 | 0.9202 | nan | 0.9510 | nan | nan | 0.9304 | nan | 0.8907 | nan | nan | nan | nan | nan | 0.0022 | nan | nan | nan | nan | nan | nan | nan | 0.7192 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9041 | nan | nan | 0.8726 | nan | 0.8020 | nan | nan | nan | nan | nan | 0.0022 | nan | nan | nan | nan | nan | nan | nan | 0.5440 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2497 | 6.75 | 540 | 0.2191 | 0.6229 | 0.6859 | 0.9207 | nan | 0.9562 | nan | nan | 0.9251 | nan | 0.8984 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.6464 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9032 | nan | nan | 0.8726 | nan | 0.8047 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.5305 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2103 | 7.0 | 560 | 0.2211 | 0.6263 | 0.6958 | 0.9213 | nan | 0.9616 | nan | nan | 0.9447 | nan | 0.8663 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.7013 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9022 | nan | nan | 0.8759 | nan | 0.8027 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5455 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1699 | 7.25 | 580 | 0.2170 | 0.6272 | 0.6969 | 0.9217 | nan | 0.9610 | nan | nan | 0.9289 | nan | 0.8890 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.7013 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9036 | nan | nan | 0.8756 | nan | 0.8057 | nan | nan | nan | nan | nan | 0.0042 | nan | nan | nan | nan | nan | nan | nan | 0.5469 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1875 | 7.5 | 600 | 0.2174 | 0.6255 | 0.6917 | 0.9226 | nan | 0.9594 | nan | nan | 0.9349 | nan | 0.8874 | nan | nan | nan | nan | nan | 0.0018 | nan | nan | nan | nan | nan | nan | nan | 0.6751 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9050 | nan | nan | 0.8770 | nan | 0.8081 | nan | nan | nan | nan | nan | 0.0017 | nan | nan | nan | nan | nan | nan | nan | 0.5357 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.174 | 7.75 | 620 | 0.2159 | 0.6282 | 0.6946 | 0.9229 | nan | 0.9566 | nan | nan | 0.9351 | nan | 0.8901 | nan | nan | nan | nan | nan | 0.0024 | nan | nan | nan | nan | nan | nan | nan | 0.6890 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9064 | nan | nan | 0.8764 | nan | 0.8087 | nan | nan | nan | nan | nan | 0.0023 | nan | nan | nan | nan | nan | nan | nan | 0.5473 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1752 | 8.0 | 640 | 0.2141 | 0.6294 | 0.6991 | 0.9229 | nan | 0.9547 | nan | nan | 0.9389 | nan | 0.8854 | nan | nan | nan | nan | nan | 0.0034 | nan | nan | nan | nan | nan | nan | nan | 0.7133 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9056 | nan | nan | 0.8775 | nan | 0.8078 | nan | nan | nan | nan | nan | 0.0033 | nan | nan | nan | nan | nan | nan | nan | 0.5526 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1544 | 8.25 | 660 | 0.2146 | 0.6281 | 0.6928 | 0.9233 | nan | 0.9487 | nan | nan | 0.9393 | nan | 0.8944 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6793 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9067 | nan | nan | 0.8780 | nan | 0.8092 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5443 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1715 | 8.5 | 680 | 0.2161 | 0.6299 | 0.7027 | 0.9229 | nan | 0.9608 | nan | nan | 0.9281 | nan | 0.8925 | nan | nan | nan | nan | nan | 0.0024 | nan | nan | nan | nan | nan | nan | nan | 0.7296 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9062 | nan | nan | 0.8768 | nan | 0.8086 | nan | nan | nan | nan | nan | 0.0023 | nan | nan | nan | nan | nan | nan | nan | 0.5556 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1833 | 8.75 | 700 | 0.2145 | 0.6305 | 0.6997 | 0.9238 | nan | 0.9541 | nan | nan | 0.9418 | nan | 0.8851 | nan | nan | nan | nan | nan | 0.0021 | nan | nan | nan | nan | nan | nan | nan | 0.7154 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9073 | nan | nan | 0.8784 | nan | 0.8098 | nan | nan | nan | nan | nan | 0.0020 | nan | nan | nan | nan | nan | nan | nan | 0.5552 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.184 | 9.0 | 720 | 0.2122 | 0.6303 | 0.6929 | 0.9243 | nan | 0.9536 | nan | nan | 0.9429 | nan | 0.8882 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6770 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9074 | nan | nan | 0.8794 | nan | 0.8108 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5512 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1257 | 9.25 | 740 | 0.2145 | 0.6313 | 0.6958 | 0.9242 | nan | 0.9520 | nan | nan | 0.9372 | nan | 0.8961 | nan | nan | nan | nan | nan | 0.0044 | nan | nan | nan | nan | nan | nan | nan | 0.6890 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9087 | nan | nan | 0.8783 | nan | 0.8111 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.5541 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1228 | 9.5 | 760 | 0.2119 | 0.6321 | 0.6990 | 0.9244 | nan | 0.9547 | nan | nan | 0.9401 | nan | 0.8895 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.7071 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9083 | nan | nan | 0.8794 | nan | 0.8111 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.5579 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.171 | 9.75 | 780 | 0.2158 | 0.6322 | 0.7007 | 0.9241 | nan | 0.9569 | nan | nan | 0.9336 | nan | 0.8941 | nan | nan | nan | nan | nan | 0.0031 | nan | nan | nan | nan | nan | nan | nan | 0.7159 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9081 | nan | nan | 0.8785 | nan | 0.8109 | nan | nan | nan | nan | nan | 0.0030 | nan | nan | nan | nan | nan | nan | nan | 0.5606 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1556 | 10.0 | 800 | 0.2132 | 0.6324 | 0.6987 | 0.9246 | nan | 0.9573 | nan | nan | 0.9365 | nan | 0.8920 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.7046 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9083 | nan | nan | 0.8793 | nan | 0.8115 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.5600 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.155 | 10.25 | 820 | 0.2106 | 0.6347 | 0.7076 | 0.9249 | nan | 0.9557 | nan | nan | 0.9423 | nan | 0.8846 | nan | nan | nan | nan | nan | 0.0059 | nan | nan | nan | nan | nan | nan | nan | 0.7494 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9096 | nan | nan | 0.8800 | nan | 0.8118 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.5664 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2074 | 10.5 | 840 | 0.2118 | 0.6329 | 0.6972 | 0.9250 | nan | 0.9544 | nan | nan | 0.9453 | nan | 0.8854 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.6958 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9092 | nan | nan | 0.8803 | nan | 0.8114 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5584 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1932 | 10.75 | 860 | 0.2132 | 0.6328 | 0.6958 | 0.9249 | nan | 0.9587 | nan | nan | 0.9330 | nan | 0.8977 | nan | nan | nan | nan | nan | 0.0062 | nan | nan | nan | nan | nan | nan | nan | 0.6836 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9095 | nan | nan | 0.8791 | nan | 0.8128 | nan | nan | nan | nan | nan | 0.0060 | nan | nan | nan | nan | nan | nan | nan | 0.5567 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.143 | 11.0 | 880 | 0.2139 | 0.6355 | 0.7062 | 0.9252 | nan | 0.9561 | nan | nan | 0.9436 | nan | 0.8839 | nan | nan | nan | nan | nan | 0.0077 | nan | nan | nan | nan | nan | nan | nan | 0.7400 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9098 | nan | nan | 0.8801 | nan | 0.8123 | nan | nan | nan | nan | nan | 0.0074 | nan | nan | nan | nan | nan | nan | nan | 0.5680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1663 | 11.25 | 900 | 0.2097 | 0.6331 | 0.6953 | 0.9254 | nan | 0.9549 | nan | nan | 0.9351 | nan | 0.9005 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.6822 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9098 | nan | nan | 0.8801 | nan | 0.8141 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.5577 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0955 | 11.5 | 920 | 0.2099 | 0.6350 | 0.7011 | 0.9254 | nan | 0.9533 | nan | nan | 0.9384 | nan | 0.8956 | nan | nan | nan | nan | nan | 0.0044 | nan | nan | nan | nan | nan | nan | nan | 0.7139 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9103 | nan | nan | 0.8802 | nan | 0.8130 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.5670 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.2205 | 11.75 | 940 | 0.2131 | 0.6351 | 0.7024 | 0.9254 | nan | 0.9552 | nan | nan | 0.9419 | nan | 0.8888 | nan | nan | nan | nan | nan | 0.0049 | nan | nan | nan | nan | nan | nan | nan | 0.7214 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9095 | nan | nan | 0.8806 | nan | 0.8127 | nan | nan | nan | nan | nan | 0.0048 | nan | nan | nan | nan | nan | nan | nan | 0.5681 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1432 | 12.0 | 960 | 0.2128 | 0.6353 | 0.7008 | 0.9256 | nan | 0.9560 | nan | nan | 0.9379 | nan | 0.8946 | nan | nan | nan | nan | nan | 0.0041 | nan | nan | nan | nan | nan | nan | nan | 0.7114 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9097 | nan | nan | 0.8809 | nan | 0.8136 | nan | nan | nan | nan | nan | 0.0040 | nan | nan | nan | nan | nan | nan | nan | 0.5683 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.171 | 12.25 | 980 | 0.2118 | 0.6357 | 0.7018 | 0.9254 | nan | 0.9547 | nan | nan | 0.9351 | nan | 0.8988 | nan | nan | nan | nan | nan | 0.0062 | nan | nan | nan | nan | nan | nan | nan | 0.7142 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9094 | nan | nan | 0.8807 | nan | 0.8135 | nan | nan | nan | nan | nan | 0.0060 | nan | nan | nan | nan | nan | nan | nan | 0.5687 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.139 | 12.5 | 1000 | 0.2145 | 0.6354 | 0.6986 | 0.9258 | nan | 0.9530 | nan | nan | 0.9436 | nan | 0.8917 | nan | nan | nan | nan | nan | 0.0062 | nan | nan | nan | nan | nan | nan | nan | 0.6983 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9096 | nan | nan | 0.8815 | nan | 0.8140 | nan | nan | nan | nan | nan | 0.0060 | nan | nan | nan | nan | nan | nan | nan | 0.5657 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1362 | 12.75 | 1020 | 0.2122 | 0.6356 | 0.6997 | 0.9256 | nan | 0.9582 | nan | nan | 0.9356 | nan | 0.8960 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.7030 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9091 | nan | nan | 0.8809 | nan | 0.8140 | nan | nan | nan | nan | nan | 0.0056 | nan | nan | nan | nan | nan | nan | nan | 0.5682 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.147 | 13.0 | 1040 | 0.2150 | 0.6358 | 0.7003 | 0.9258 | nan | 0.9543 | nan | nan | 0.9433 | nan | 0.8902 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.7085 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9097 | nan | nan | 0.8816 | nan | 0.8137 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5690 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1416 | 13.25 | 1060 | 0.2128 | 0.6357 | 0.6995 | 0.9260 | nan | 0.9545 | nan | nan | 0.9397 | nan | 0.8956 | nan | nan | nan | nan | nan | 0.0046 | nan | nan | nan | nan | nan | nan | nan | 0.7032 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9099 | nan | nan | 0.8817 | nan | 0.8146 | nan | nan | nan | nan | nan | 0.0045 | nan | nan | nan | nan | nan | nan | nan | 0.5680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1933 | 13.5 | 1080 | 0.2112 | 0.6363 | 0.7020 | 0.9261 | nan | 0.9557 | nan | nan | 0.9413 | nan | 0.8917 | nan | nan | nan | nan | nan | 0.0047 | nan | nan | nan | nan | nan | nan | nan | 0.7163 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9098 | nan | nan | 0.8820 | nan | 0.8145 | nan | nan | nan | nan | nan | 0.0046 | nan | nan | nan | nan | nan | nan | nan | 0.5707 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1715 | 13.75 | 1100 | 0.2130 | 0.6360 | 0.6991 | 0.9261 | nan | 0.9561 | nan | nan | 0.9403 | nan | 0.8939 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.6997 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9103 | nan | nan | 0.8815 | nan | 0.8147 | nan | nan | nan | nan | nan | 0.0056 | nan | nan | nan | nan | nan | nan | nan | 0.5680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1995 | 14.0 | 1120 | 0.2129 | 0.6364 | 0.6999 | 0.9263 | nan | 0.9572 | nan | nan | 0.9393 | nan | 0.8943 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.7029 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9102 | nan | nan | 0.8817 | nan | 0.8153 | nan | nan | nan | nan | nan | 0.0056 | nan | nan | nan | nan | nan | nan | nan | 0.5690 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1944 | 14.25 | 1140 | 0.2154 | 0.6362 | 0.6985 | 0.9262 | nan | 0.9560 | nan | nan | 0.9408 | nan | 0.8936 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.6970 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9104 | nan | nan | 0.8814 | nan | 0.8149 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5689 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1709 | 14.5 | 1160 | 0.2109 | 0.6352 | 0.6956 | 0.9263 | nan | 0.9527 | nan | nan | 0.9423 | nan | 0.8961 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.6841 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9106 | nan | nan | 0.8817 | nan | 0.8153 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.5655 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1848 | 14.75 | 1180 | 0.2122 | 0.6366 | 0.7006 | 0.9263 | nan | 0.9534 | nan | nan | 0.9430 | nan | 0.8928 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.7093 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9107 | nan | nan | 0.8817 | nan | 0.8150 | nan | nan | nan | nan | nan | 0.0042 | nan | nan | nan | nan | nan | nan | nan | 0.5714 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1487 | 15.0 | 1200 | 0.2115 | 0.6365 | 0.7005 | 0.9263 | nan | 0.9535 | nan | nan | 0.9415 | nan | 0.8948 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.7086 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9105 | nan | nan | 0.8818 | nan | 0.8152 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.5711 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
nehalahmedshaikh/model
nehalahmedshaikh
2024-05-04T17:34:43Z
2
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T17:26:53Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/mistral-7b-bnb-4bit --- # Uploaded model - **Developed by:** nehalahmedshaikh - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Rub11037/results_packing
Rub11037
2024-05-04T17:24:20Z
2
0
adapter-transformers
[ "adapter-transformers", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "text2text-generation", "base_model:SanjiWatsuki/zephyrnt-3.8b", "base_model:adapter:SanjiWatsuki/zephyrnt-3.8b", "license:apache-2.0", "region:us" ]
text2text-generation
2024-05-04T15:43:14Z
--- tags: - trl - sft - generated_from_trainer base_model: SanjiWatsuki/zephyrnt-3.8b model-index: - name: results_packing results: [] pipeline_tag: text2text-generation license: apache-2.0 library_name: adapter-transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [SanjiWatsuki/zephyrnt-3.8b](https://huggingface.co/SanjiWatsuki/zephyrnt-3.8b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1345 | 2.3256 | 50 | 1.3787 | | 1.1455 | 4.6512 | 100 | 0.9395 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
OwOpeepeepoopoo/herewegoagain31
OwOpeepeepoopoo
2024-05-04T17:23:57Z
89
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T17:22:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlignmentResearch/robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-1
AlignmentResearch
2024-05-04T17:21:03Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:finetune:EleutherAI/pythia-1b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T17:19:36Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: EleutherAI/pythia-1b model-index: - name: robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-1 This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
UphamProjects/STT-Gated_TCN-12M
UphamProjects
2024-05-04T17:20:38Z
71
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
2024-05-02T19:25:24Z
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using ****: - Repo: [More Information Needed] - Docs: [More Information Needed]
numen-tech/Hermes-2-Pro-Llama-3-8B-w3a16g40sym
numen-tech
2024-05-04T17:19:19Z
0
0
null
[ "arxiv:2308.13137", "license:apache-2.0", "region:us" ]
null
2024-05-04T16:55:39Z
--- license: apache-2.0 --- 3-bit [OmniQuant](https://arxiv.org/abs/2308.13137) quantized version of [Hermes 2 Pro - Llama-3 8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B).
IndigoDuDu/Taxi-v3
IndigoDuDu
2024-05-04T17:13:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-04T17:13:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="IndigoDuDu/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
suryaanthony/q-FrozenLake-v1-4x4-noSlippery
suryaanthony
2024-05-04T17:13:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-04T17:13:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="suryaanthony/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bartowski/Llama-3-8B-Instruct-Coder-exl2
bartowski
2024-05-04T17:12:31Z
0
2
transformers
[ "transformers", "text-generation-inference", "unsloth", "llama", "trl", "sft", "text-generation", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T17:12:31Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-Instruct-bnb-4bit quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of Llama-3-8B-Instruct-Coder Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.20">turboderp's ExLlamaV2 v0.0.20</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/rombodawg/Codellama-3-8B-Finetuned-Instruct ## Prompt format ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Available sizes | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Coder-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Coder-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Coder-exl2/tree/5_0) | 5.0 | 6.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Coder-exl2/tree/4_25) | 4.25 | 6.0 | 7.0 GB | 7.4 GB | 8.4 GB | 10.5 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Coder-exl2/tree/3_5) | 3.5 | 6.0 | 6.4 GB | 6.8 GB | 7.8 GB | 9.9 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Llama-3-8B-Instruct-Coder-exl2 Llama-3-8B-Instruct-Coder-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download a specific branch, use the `--revision` parameter. For example, to download the 6.5 bpw branch: Linux: ```shell huggingface-cli download bartowski/Llama-3-8B-Instruct-Coder-exl2 --revision 6_5 --local-dir Llama-3-8B-Instruct-Coder-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell huggingface-cli download bartowski/Llama-3-8B-Instruct-Coder-exl2 --revision 6_5 --local-dir Llama-3-8B-Instruct-Coder-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
LorMolf/LogicLlama2-chat-direct
LorMolf
2024-05-04T17:10:03Z
41
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T16:58:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mikhail-panzo/fil_b32_le4_s8000
mikhail-panzo
2024-05-04T16:55:42Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-05-04T12:50:11Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: fil_b32_le4_s8000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fil_b32_le4_s8000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 0.498 | 10.9890 | 500 | 0.4393 | | 0.448 | 21.9780 | 1000 | 0.4195 | | 0.4411 | 32.9670 | 1500 | 0.4205 | | 0.4347 | 43.9560 | 2000 | 0.4253 | | 0.4173 | 54.9451 | 2500 | 0.4151 | | 0.4012 | 65.9341 | 3000 | 0.4118 | | 0.4023 | 76.9231 | 3500 | 0.4092 | | 0.3873 | 87.9121 | 4000 | 0.4116 | | 0.381 | 98.9011 | 4500 | 0.4089 | | 0.3804 | 109.8901 | 5000 | 0.4093 | | 0.3724 | 120.8791 | 5500 | 0.4066 | | 0.3665 | 131.8681 | 6000 | 0.4092 | | 0.3635 | 142.8571 | 6500 | 0.4099 | | 0.3562 | 153.8462 | 7000 | 0.4075 | | 0.3581 | 164.8352 | 7500 | 0.4097 | | 0.3461 | 175.8242 | 8000 | 0.4087 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
TechxGenus/codegemma-1.1-7b-it-AWQ
TechxGenus
2024-05-04T16:50:29Z
78
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-05-04T04:11:52Z
--- library_name: transformers extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: >- To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license pipeline_tag: text-generation widget: - text: > <start_of_turn>user Write a Python function to calculate the nth fibonacci number.<end_of_turn> <start_of_turn>model inference: parameters: max_new_tokens: 200 license: gemma license_link: https://ai.google.dev/gemma/terms --- AWQ quantized version of codegemma-1.1-7b-it model. --- # CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | ### Sample Usage This model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: [CodeGemma 7B](https://huggingface.co/google/codegemma-7b), or [CodeGemma 2B](https://huggingface.co/google/codegemma-2b). #### For Code Generation ```python from transformers import GemmaTokenizer, AutoModelForCausalLM tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-1.1-7b-it") model = AutoModelForCausalLM.from_pretrained("google/codegemma-1.1-7b-it") input_text = "Write me a Python function to calculate the nth fibonacci number." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/codegemma-1.1-7b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language ## Model Data Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). ## Evaluation Information Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b) | [7B](https://huggingface.co/google/codegemma-7b) | [7B-IT](https://huggingface.co/google/codegemma-7b-it) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 #### Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png) ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details. ## Model Usage & Limitations These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
TechxGenus/codegemma-1.1-2b-GPTQ
TechxGenus
2024-05-04T16:49:51Z
76
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-04T04:11:46Z
--- library_name: transformers extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: >- To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma license_link: https://ai.google.dev/gemma/terms --- GPTQ quantized version of codegemma-1.1-2b model. --- # CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | ### Sample Usage #### For Code Completion Code completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input: - `<|fim_prefix|>` precedes the context before the completion we want to run. - `<|fim_suffix|>` precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model. - `<|fim_middle|>` is the prompt that invites the model to run the generation. In addition to these, there's also `<|file_separator|>`, which is used to provide multi-file contexts. Please, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example: ```python from transformers import GemmaTokenizer, AutoModelForCausalLM model_id = "google/codegemma-1.1-2b" tokenizer = GemmaTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) prompt = '''\ <|fim_prefix|>import datetime def calculate_age(birth_year): """Calculates a person's age based on their birth year.""" current_year = datetime.date.today().year <|fim_suffix|> return age<|fim_middle|>\ ''' inputs = tokenizer(prompt, return_tensors="pt").to(model.device) prompt_len = inputs["input_ids"].shape[-1] outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0][prompt_len:])) ``` This may return something like the following: ``` age = current_year - birth_year<|file_separator|>test_calculate_age.py <|fim_suffix|> assert calculate_age(1990) == 33 assert calculate_age(1980) == 43 assert calculate_age(1970) == 53 assert calculate_age(1960) == 63 assert calculate_age(1950) == 73 ``` Note the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the `generate` function, like this: ```python FIM_PREFIX = '<|fim_prefix|>' FIM_SUFFIX = '<|fim_suffix|>' FIM_MIDDLE = '<|fim_middle|>' FIM_FILE_SEPARATOR = '<|file_separator|>' terminators = tokenizer.convert_tokens_to_ids([FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_FILE_SEPARATOR]) terminators += [tokenizer.eos_token_id] outputs = model.generate( **inputs, max_new_tokens=100, eos_token_id=terminators, ) ``` In this case, generation stops as soon as the first delimiter is found in the response: ``` age = current_year - birth_year<|file_separator|> ``` #### For Code Generation ```python from transformers import GemmaTokenizer, AutoModelForCausalLM tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-1.1-2b") model = AutoModelForCausalLM.from_pretrained("google/codegemma-1.1-2b") input_text = "Write me a Python function to calculate the nth fibonacci number." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language ## Model Data Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). ## Evaluation Information Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b) | [7B](https://huggingface.co/google/codegemma-7b) | [7B-IT](https://huggingface.co/google/codegemma-7b-it) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 #### Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png) ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details. ## Model Usage & Limitations These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
TechxGenus/codegemma-1.1-2b-AWQ
TechxGenus
2024-05-04T16:49:18Z
79
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-05-04T04:11:03Z
--- library_name: transformers extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: >- To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma license_link: https://ai.google.dev/gemma/terms --- AWQ quantized version of codegemma-1.1-2b model. --- # CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | ### Sample Usage #### For Code Completion Code completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input: - `<|fim_prefix|>` precedes the context before the completion we want to run. - `<|fim_suffix|>` precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model. - `<|fim_middle|>` is the prompt that invites the model to run the generation. In addition to these, there's also `<|file_separator|>`, which is used to provide multi-file contexts. Please, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example: ```python from transformers import GemmaTokenizer, AutoModelForCausalLM model_id = "google/codegemma-1.1-2b" tokenizer = GemmaTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) prompt = '''\ <|fim_prefix|>import datetime def calculate_age(birth_year): """Calculates a person's age based on their birth year.""" current_year = datetime.date.today().year <|fim_suffix|> return age<|fim_middle|>\ ''' inputs = tokenizer(prompt, return_tensors="pt").to(model.device) prompt_len = inputs["input_ids"].shape[-1] outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0][prompt_len:])) ``` This may return something like the following: ``` age = current_year - birth_year<|file_separator|>test_calculate_age.py <|fim_suffix|> assert calculate_age(1990) == 33 assert calculate_age(1980) == 43 assert calculate_age(1970) == 53 assert calculate_age(1960) == 63 assert calculate_age(1950) == 73 ``` Note the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the `generate` function, like this: ```python FIM_PREFIX = '<|fim_prefix|>' FIM_SUFFIX = '<|fim_suffix|>' FIM_MIDDLE = '<|fim_middle|>' FIM_FILE_SEPARATOR = '<|file_separator|>' terminators = tokenizer.convert_tokens_to_ids([FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_FILE_SEPARATOR]) terminators += [tokenizer.eos_token_id] outputs = model.generate( **inputs, max_new_tokens=100, eos_token_id=terminators, ) ``` In this case, generation stops as soon as the first delimiter is found in the response: ``` age = current_year - birth_year<|file_separator|> ``` #### For Code Generation ```python from transformers import GemmaTokenizer, AutoModelForCausalLM tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-1.1-2b") model = AutoModelForCausalLM.from_pretrained("google/codegemma-1.1-2b") input_text = "Write me a Python function to calculate the nth fibonacci number." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language ## Model Data Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). ## Evaluation Information Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b) | [7B](https://huggingface.co/google/codegemma-7b) | [7B-IT](https://huggingface.co/google/codegemma-7b-it) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 #### Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png) ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details. ## Model Usage & Limitations These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
RichardErkhov/speakleash_-_Bielik-7B-v0.1-4bits
RichardErkhov
2024-05-04T16:41:04Z
75
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T16:36:54Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Bielik-7B-v0.1 - bnb 4bits - Model creator: https://huggingface.co/speakleash/ - Original model: https://huggingface.co/speakleash/Bielik-7B-v0.1/ Original model description: --- license: apache-2.0 language: - pl library_name: transformers tags: - continuously_pretrained inference: parameters: temperature: 0.7 --- <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/speakleash_cyfronet.png"> </p> # Bielik-7B-v0.1 The Bielik-7B-v0.1 is a generative text model featuring 7 billion parameters, meticulously evolved from its predecessor, the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), through processing of over 70 billion tokens. Forementioned model stands as a testament to the unique collaboration between the open-science/open-souce project SpeakLeash and the High Performance Computing (HPC) center: ACK Cyfronet AGH. Developed and trained on Polish text corpora, which has been cherry-picked and processed by the SpeakLeash team, this endeavor leverages Polish large-scale computing infrastructure, specifically within the PLGrid environment, and more precisely, the HPC centers: ACK Cyfronet AGH. The creation and training of the Bielik-7B-v0.1 was propelled by the support of computational grant number PLG/2024/016951, conducted on the Helios supercomputer, enabling the use of cutting-edge technology and computational resources essential for large-scale machine learning processes. As a result, the model exhibits an exceptional ability to understand and process the Polish language, providing accurate responses and performing a variety of linguistic tasks with high precision. ## Model Bielik-7B-v0.1 has been trained with the use of an original open source framework called [ALLaMo](https://github.com/chrisociepa/allamo) implemented by [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/). This framework allows users to train language models with architecture similar to LLaMA and Mistral in fast and efficient way. The model training was conducted on the Helios Supercomputer at the ACK Cyfronet AGH, utilizing 256 NVidia GH200 cards while achieving a throughput exceeding 9200 tokens/gpu/second. The training dataset was composed of Polish texts collected and made available through the [SpeakLeash](https://speakleash.org/) project. We used over 36 billion tokens for two epochs of training. ### Model description: * **Developed by:** [SpeakLeash](https://speakleash.org/) * **Language:** Polish * **Model type:** causal decoder-only * **Adopted from:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * **License:** Apache 2.0 (commercial use allowed) * **Model ref:** speakleash:debfc8635c781358e8db833a333887a5 ### Quality evaluation A XGBoost classification model was prepared and created to evaluate the quality of texts in native Polish language. It is based on 93 features, such as the ratio of out-of-vocabulary words to all words (OOVs), the number of nouns, verbs, average sentence length etc. The model outputs the category of a given document (either HIGH, MEDIUM or LOW) along with the probability. This approach allows implementation of dedicated pipeline to choose documents, from which we've used entries with HIGH quality index and probability exceeding 90%. This filtration and appropriate selection of texts enable the provision of a condensed and high-quality database of texts in Polish for training purposes. ## Training * Framework: [ALLaMo](https://github.com/chrisociepa/allamo) * Visualizations: [W&B](https://wandb.ai) <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_loss.png"> </p> <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_ppl.png"> </p> <p align="center"> <img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_acc.png"> </p> ### Training hyperparameters: | **Hyperparameter** | **Value** | |-----------------------------|------------------| | Context length | 4096 | | Micro Batch Size | 4 | | Batch Size | 4194304 | | Learning Rate (cosine) | 3e-05 -> 2e-05 | | Warmup Iterations | 2000 | | All Iterations | 17350 | | Optimizer | AdamW | | β1, β2 | 0.9, 0.95 | | Adam_eps | 1e−8 | | Weight Decay | 0.1 | | Grad Clip | 1.0 | | Precision | bfloat16 (mixed) | ### Quickstart This model can be easily loaded using the AutoModelForCausalLM functionality. ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "speakleash/Bielik-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` In order to reduce the memory usage, you can use smaller precision (`bfloat16`). ```python import torch model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) ``` And then you can use Hugging Face Pipelines to generate text: ```python import transformers text = "Najważniejszym celem człowieka na ziemi jest" pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer) sequences = pipeline(max_new_tokens=100, do_sample=True, top_k=50, eos_token_id=tokenizer.eos_token_id, text_inputs=text) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` Generated output: > Najważniejszym celem człowieka na ziemi jest życie w pokoju, harmonii i miłości. Dla każdego z nas bardzo ważne jest, aby otaczać się kochanymi osobami. ## Evaluation Models have been evaluated on [Open PL LLM Leaderboard](https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard) 5-shot. The benchmark evaluates models in NLP tasks like sentiment analysis, categorization, text classification but does not test chatting skills. Here are presented: - Average - average score among all tasks normalized by baseline scores - Reranking - reranking task, commonly used in RAG - Reader (Generator) - open book question answering task, commonly used in RAG - Perplexity (lower is better) - as a bonus, does not correlate with other scores and should not be used for model comparison As of April 3, 2024, the following table showcases the current scores of pretrained and continuously pretrained models according to the Open PL LLM Leaderboard, evaluated in a 5-shot setting: | | Average | RAG Reranking | RAG Reader | Perplexity | |--------------------------------------------------------------------------------------|----------:|--------------:|-----------:|-----------:| | **7B parameters models:** | | | | | | Baseline (majority class) | 0.00 | 53.36 | - | - | | OPI-PG/Qra-7b | 11.13 | 54.40 | 75.25 | 203.36 | | meta-llama/Llama-2-7b-hf | 12.73 | 54.02 | 77.92 | 850.45 | | internlm/internlm2-base-7b | 20.68 | 52.39 | 69.85 | 3110.92 | | [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1) | 29.38 | **62.13** | **88.39** | 123.31 | | mistralai/Mistral-7B-v0.1 | 30.67 | 60.35 | 85.39 | 857.32 | | internlm/internlm2-7b | 33.03 | 69.39 | 73.63 | 5498.23 | | alpindale/Mistral-7B-v0.2-hf | 33.05 | 60.23 | 85.21 | 932.60 | | speakleash/mistral-apt3-7B/spi-e0_hf (experimental) | **35.50** | **62.14** | 87.48 | 132.78 | | | | | | | | **Models with different sizes:** | | | | | | sdadas/polish-gpt2-xl (1.7B) | -23.22 | 48.07 | 3.04 | 160.95 | | Azurro/APT3-1B-Base (1B) | -8.23 | 51.49 | 18.94 | 249.90 | | OPI-PG/Qra-1b (1B) | -5.44 | 47.65 | 38.51 | 398.96 | | internlm/internlm2-1_8b (1.8B) | -2.78 | 49.37 | 31.88 | 60296.30 | | OPI-PG/Qra-13b (13B) | 29.03 | 53.28 | 83.03 | 168.66 | | upstage/SOLAR-10.7B-v1.0 (10.7B) | 38.12 | 75.81 | 86.39 | 641.05 | | | | | | | | **Polish instruction fine-tuned models:** | | | | | | szymonrucinski/Curie-7B-v1 | 26.72 | 55.58 | 85.19 | 389.17 | | Voicelab/trurl-2-7b | 18.85 | 60.67 | 77.19 | 1098.88 | | [Bielik-7B-Instruct-v0.1](https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1) | 39.28 | 61.89 | 86.00 | 277.92 | As you can see, Bielik-7B-v0.1 does not have the best Average score, but it has some clear advantages, e.g. the best score in the RAG Reader task. The results in the above table were obtained without utilizing instruction templates for instructional models, instead treating them like base models. This approach could skew the results, as instructional models are optimized with specific instructions in mind. ## Limitations and Biases Bielik-7B-v0.1 is not intended for deployment without fine-tuning. It should not be used for human-facing interactions without further guardrails and user consent. Bielik-7B-v0.1 can produce factually incorrect output, and should not be relied on to produce factually accurate data. Bielik-7B-v0.1 was trained on various public datasets. While great efforts have been taken to clear the training data, it is possible that this model can generate lewd, false, biased or otherwise offensive outputs. ## License The model is licensed under Apache 2.0, which allows for commercial use. ## Citation Please cite this model using the following format: ``` @misc{Bielik7Bv01, title = {Introducing Bielik-7B-v0.1: Polish Language Model}, author = {Ociepa, Krzysztof and Flis, Łukasz and Wróbel, Krzysztof and Gwoździej, Adrian and {SpeakLeash Team} and {Cyfronet Team}}, year = {2024}, url = {https://huggingface.co/speakleash/Bielik-7B-v0.1}, note = {Accessed: 2024-04-01}, % change this date urldate = {2024-04-01} % change this date } ``` ## Responsible for training the model * [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, data preparation, process optimization and oversight of training * [Łukasz Flis](https://www.linkedin.com/in/lukasz-flis-0a39631/)<sup>Cyfronet AGH</sup> - coordinating and supervising the training * [Adrian Gwoździej](https://www.linkedin.com/in/adrgwo/)<sup>SpeakLeash</sup> - data cleaning and quality * [Krzysztof Wróbel](https://www.linkedin.com/in/wrobelkrzysztof/)<sup>SpeakLeash</sup> - benchmarks The model could not have been created without the commitment and work of the entire SpeakLeash team, whose contribution is invaluable. Thanks to the hard work of many individuals, it was possible to gather a large amount of content in Polish and establish collaboration between the open-science SpeakLeash project and the HPC center: ACK Cyfronet AGH. Individuals who contributed to the creation of the model through their commitment to the open-science SpeakLeash project: [Sebastian Kondracki](https://www.linkedin.com/in/sebastian-kondracki/), [Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/), [Grzegorz Urbanowicz](https://www.linkedin.com/in/grzegorz-urbanowicz-05823469/), [Szymon Baczyński](https://www.linkedin.com/in/szymon-baczynski/), [Paweł Kiszczak](https://www.linkedin.com/in/paveu-kiszczak/), [Igor Ciuciura](https://www.linkedin.com/in/igor-ciuciura-1763b52a6/), [Paweł Cyrta](https://www.linkedin.com/in/cyrta), [Jacek Chwiła](https://www.linkedin.com/in/jacek-chwila/), [Jan Maria Kowalski](https://www.linkedin.com/in/janmariakowalski/), [Karol Jezierski](https://www.linkedin.com/in/karol-jezierski/), [Kamil Nonckiewicz](https://www.linkedin.com/in/kamil-nonckiewicz/), [Izabela Babis](https://www.linkedin.com/in/izabela-babis-2274b8105/), [Nina Babis](https://www.linkedin.com/in/nina-babis-00055a140/), [Waldemar Boszko](https://www.linkedin.com/in/waldemarboszko), [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/), [Piotr Rybak](https://www.linkedin.com/in/piotrrybak/) and many other wonderful researchers and enthusiasts of the AI world. Members of the ACK Cyfronet AGH team providing valuable support and expertise: [Szymon Mazurek](https://www.linkedin.com/in/sz-mazurek-ai/). ## Contact Us If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/3G9DVM39).
ThuyNT/CS505_COQE_viT5_train_InstructionN4_OPASL_v1
ThuyNT
2024-05-04T16:40:40Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "base_model:finetune:VietAI/vit5-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-04T13:06:51Z
--- license: mit base_model: VietAI/vit5-large tags: - generated_from_trainer model-index: - name: CS505_COQE_viT5_train_InstructionN4_OPASL_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_train_InstructionN4_OPASL_v1 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
digiplay/Hodgepodge_v2.1
digiplay
2024-05-04T16:40:04Z
301
3
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-23T10:06:27Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/35403/hodgepodge Sample image I made : ![411bc4ba-80cc-4dd5-b785-4bc321f21f6a.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/vQJYZpjM23LEoiNW_NTS0.jpeg)
IainRatherThanIan/Meta-Llama-3-8B-SFT-dpo-mix-7k
IainRatherThanIan
2024-05-04T16:38:14Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:adapter:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "region:us" ]
null
2024-05-04T13:54:40Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
darkoo59/xlm-roberta-base-finetuned-darko-tripadvisor
darkoo59
2024-05-04T16:30:32Z
116
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-29T10:56:01Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-darko-tripadvisor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-darko-tripadvisor This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0897 - Mae: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 1.5492 | 1.0 | 100 | 1.3120 | 0.74 | | 1.1744 | 2.0 | 200 | 1.0897 | 0.575 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
mariahovhannisyan/Llama2_Immigration_Chat_4bit
mariahovhannisyan
2024-05-04T16:25:02Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "dpo", "conversational", "en", "base_model:unsloth/llama-2-7b-chat-bnb-4bit", "base_model:quantized:unsloth/llama-2-7b-chat-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T16:21:08Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - dpo base_model: unsloth/llama-2-7b-chat-bnb-4bit --- # Uploaded model - **Developed by:** mariahovhannisyan - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-2-7b-chat-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Regain/OST-to-PST-Converter
Regain
2024-05-04T16:23:10Z
0
0
null
[ "region:us" ]
null
2024-05-04T16:19:10Z
Regain OST to PST Converter emerges as the go-to solution for users seeking to convert OST files into PST format, compatible with a range of email clients. Offering a seamless experience, this software facilitates the conversion of single or multiple OST files into PST with utmost data accuracy. Its intuitive interface streamlines the conversion process, ensuring users of all proficiency levels can navigate it effortlessly. Furthermore, the tool's capability to maintain the folder hierarchy preserves the organizational structure of the original data throughout the conversion, delivering a smooth and reliable transition from OST to PST format. Read More: https://www.regainsoftware.com/ost-to-pst-converter.html
duydatnguyen/vi-poem-gpt-neo
duydatnguyen
2024-05-04T16:22:07Z
24
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "generated_from_trainer", "base_model:NlpHUST/gpt-neo-vi-small", "base_model:finetune:NlpHUST/gpt-neo-vi-small", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T08:20:47Z
--- base_model: NlpHUST/gpt-neo-vi-small tags: - generated_from_trainer model-index: - name: vi_gpt_poem_ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi_gpt_poem_ This model is a fine-tuned version of [NlpHUST/gpt-neo-vi-small](https://huggingface.co/NlpHUST/gpt-neo-vi-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:-----:|:---------------:| | 6.8634 | 3.9683 | 500 | 6.1900 | | 4.7999 | 7.9365 | 1000 | 3.4039 | | 2.7473 | 11.9048 | 1500 | 2.5766 | | 2.2513 | 15.8730 | 2000 | 2.2051 | | 1.9426 | 19.8413 | 2500 | 1.9113 | | 1.7059 | 23.8095 | 3000 | 1.6723 | | 1.5333 | 27.7778 | 3500 | 1.5196 | | 1.3996 | 31.7460 | 4000 | 1.4060 | | 1.3066 | 35.7143 | 4500 | 1.3193 | | 1.228 | 39.6825 | 5000 | 1.2513 | | 1.1642 | 43.6508 | 5500 | 1.2000 | | 1.1191 | 47.6190 | 6000 | 1.1607 | | 1.0825 | 51.5873 | 6500 | 1.1295 | | 1.0483 | 55.5556 | 7000 | 1.1036 | | 1.0203 | 59.5238 | 7500 | 1.0818 | | 0.9967 | 63.4921 | 8000 | 1.0631 | | 0.9745 | 67.4603 | 8500 | 1.0471 | | 0.9552 | 71.4286 | 9000 | 1.0332 | | 0.9362 | 75.3968 | 9500 | 1.0208 | | 0.9165 | 79.3651 | 10000 | 1.0098 | | 0.8977 | 83.3333 | 10500 | 1.0002 | | 0.8846 | 87.3016 | 11000 | 0.9915 | | 0.8641 | 91.2698 | 11500 | 0.9838 | | 0.8478 | 95.2381 | 12000 | 0.9779 | | 0.8286 | 99.2063 | 12500 | 0.9721 | | 0.811 | 103.1746 | 13000 | 0.9677 | | 0.7916 | 107.1429 | 13500 | 0.9644 | | 0.7721 | 111.1111 | 14000 | 0.9625 | | 0.7513 | 115.0794 | 14500 | 0.9616 | | 0.7292 | 119.0476 | 15000 | 0.9617 | | 0.7066 | 123.0159 | 15500 | 0.9622 | | 0.683 | 126.9841 | 16000 | 0.9639 | | 0.6582 | 130.9524 | 16500 | 0.9661 | | 0.632 | 134.9206 | 17000 | 0.9690 | | 0.6047 | 138.8889 | 17500 | 0.9727 | | 0.5769 | 142.8571 | 18000 | 0.9763 | | 0.548 | 146.8254 | 18500 | 0.9802 | | 0.5169 | 150.7937 | 19000 | 0.9844 | | 0.4863 | 154.7619 | 19500 | 0.9887 | | 0.4536 | 158.7302 | 20000 | 0.9936 | | 0.4223 | 162.6984 | 20500 | 0.9975 | | 0.3891 | 166.6667 | 21000 | 1.0022 | | 0.3571 | 170.6349 | 21500 | 1.0071 | | 0.3256 | 174.6032 | 22000 | 1.0118 | | 0.2946 | 178.5714 | 22500 | 1.0164 | | 0.2642 | 182.5397 | 23000 | 1.0221 | | 0.2345 | 186.5079 | 23500 | 1.0271 | | 0.2069 | 190.4762 | 24000 | 1.0331 | | 0.1806 | 194.4444 | 24500 | 1.0393 | | 0.1565 | 198.4127 | 25000 | 1.0462 | | 0.1351 | 202.3810 | 25500 | 1.0527 | | 0.1153 | 206.3492 | 26000 | 1.0605 | | 0.0984 | 210.3175 | 26500 | 1.0679 | | 0.0842 | 214.2857 | 27000 | 1.0758 | | 0.0721 | 218.2540 | 27500 | 1.0827 | | 0.0627 | 222.2222 | 28000 | 1.0906 | | 0.0555 | 226.1905 | 28500 | 1.0978 | | 0.0495 | 230.1587 | 29000 | 1.1043 | | 0.045 | 234.1270 | 29500 | 1.1107 | | 0.0412 | 238.0952 | 30000 | 1.1166 | | 0.0382 | 242.0635 | 30500 | 1.1228 | | 0.0356 | 246.0317 | 31000 | 1.1275 | | 0.0335 | 250.0 | 31500 | 1.1334 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.19.1
RichardErkhov/TinyLlama_-_TinyLlama-1.1B-Chat-v0.3-4bits
RichardErkhov
2024-05-04T16:14:45Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T16:13:44Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) TinyLlama-1.1B-Chat-v0.3 - bnb 4bits - Model creator: https://huggingface.co/TinyLlama/ - Original model: https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3/ Original model description: --- license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - OpenAssistant/oasst_top1_2023-08-25 language: - en --- <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is the chat model finetuned on top of [PY007/TinyLlama-1.1B-intermediate-step-480k-1T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T). The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25) following the [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format. #### How to use You will need the transformers>=4.31 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ``` from transformers import AutoTokenizer import transformers import torch model = "PY007/TinyLlama-1.1B-Chat-v0.3" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) CHAT_EOS_TOKEN_ID = 32002 prompt = "How to get in a good university?" formatted_prompt = ( f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" ) sequences = pipeline( formatted_prompt, do_sample=True, top_k=50, top_p = 0.9, num_return_sequences=1, repetition_penalty=1.1, max_new_tokens=1024, eos_token_id=CHAT_EOS_TOKEN_ID, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ```
A-Magdy/codellamaqlora
A-Magdy
2024-05-04T16:11:18Z
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T15:57:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xriminact/phi-3-meeting-insights
xriminact
2024-05-04T16:07:50Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-04T16:07:45Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** xriminact - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
GeorgeImmanuel/autonomous_taxi_ride
GeorgeImmanuel
2024-05-04T16:06:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-03T16:16:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: autonomous_taxi_ride results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 14.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="GeorgeImmanuel/autonomous_taxi_ride", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MeowUp/healjai-sent
MeowUp
2024-05-04T16:05:53Z
103
0
transformers
[ "transformers", "safetensors", "camembert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-05-04T14:21:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vwxyzjn/rloo_zephyr_vllm_k4_seed1
vwxyzjn
2024-05-04T16:04:26Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T16:03:32Z
--- tags: - generated_from_trainer model-index: - name: rloo_zephyr_vllm_k4_seed1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rloo_zephyr_vllm_k4_seed1 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 1 - distributed_type: multi-GPU - num_devices: 7 - gradient_accumulation_steps: 32 - total_train_batch_size: 224 - total_eval_batch_size: 56 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
AhmedTarek/ppo-SnowballTarget
AhmedTarek
2024-05-04T16:02:38Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-05-04T16:02:36Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AhmedTarek/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RichardErkhov/Jiqing_-_tiny_random_llama2-gguf
RichardErkhov
2024-05-04T15:59:19Z
12
0
null
[ "gguf", "region:us" ]
null
2024-05-04T15:58:38Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tiny_random_llama2 - GGUF - Model creator: https://huggingface.co/Jiqing/ - Original model: https://huggingface.co/Jiqing/tiny_random_llama2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [tiny_random_llama2.Q2_K.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q2_K.gguf) | Q2_K | 0.0GB | | [tiny_random_llama2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.IQ3_XS.gguf) | IQ3_XS | 0.0GB | | [tiny_random_llama2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.IQ3_S.gguf) | IQ3_S | 0.0GB | | [tiny_random_llama2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q3_K_S.gguf) | Q3_K_S | 0.0GB | | [tiny_random_llama2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.IQ3_M.gguf) | IQ3_M | 0.0GB | | [tiny_random_llama2.Q3_K.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q3_K.gguf) | Q3_K | 0.0GB | | [tiny_random_llama2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q3_K_M.gguf) | Q3_K_M | 0.0GB | | [tiny_random_llama2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q3_K_L.gguf) | Q3_K_L | 0.0GB | | [tiny_random_llama2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.IQ4_XS.gguf) | IQ4_XS | 0.0GB | | [tiny_random_llama2.Q4_0.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q4_0.gguf) | Q4_0 | 0.0GB | | [tiny_random_llama2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.IQ4_NL.gguf) | IQ4_NL | 0.0GB | | [tiny_random_llama2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q4_K_S.gguf) | Q4_K_S | 0.0GB | | [tiny_random_llama2.Q4_K.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q4_K.gguf) | Q4_K | 0.0GB | | [tiny_random_llama2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q4_K_M.gguf) | Q4_K_M | 0.0GB | | [tiny_random_llama2.Q4_1.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q4_1.gguf) | Q4_1 | 0.0GB | | [tiny_random_llama2.Q5_0.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q5_0.gguf) | Q5_0 | 0.0GB | | [tiny_random_llama2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q5_K_S.gguf) | Q5_K_S | 0.0GB | | [tiny_random_llama2.Q5_K.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q5_K.gguf) | Q5_K | 0.0GB | | [tiny_random_llama2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q5_K_M.gguf) | Q5_K_M | 0.0GB | | [tiny_random_llama2.Q5_1.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q5_1.gguf) | Q5_1 | 0.0GB | | [tiny_random_llama2.Q6_K.gguf](https://huggingface.co/RichardErkhov/Jiqing_-_tiny_random_llama2-gguf/blob/main/tiny_random_llama2.Q6_K.gguf) | Q6_K | 0.0GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Tiny random llama2 for CI test
tbunreal/ppo-Huggy
tbunreal
2024-05-04T15:57:23Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-05-04T15:53:35Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: tbunreal/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RichardErkhov/kanishka_-_smolm-autoreg-bpe-seed_8128-8bits
RichardErkhov
2024-05-04T15:54:28Z
75
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-04T15:54:17Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) smolm-autoreg-bpe-seed_8128 - bnb 8bits - Model creator: https://huggingface.co/kanishka/ - Original model: https://huggingface.co/kanishka/smolm-autoreg-bpe-seed_8128/ Original model description: --- tags: - generated_from_trainer metrics: - accuracy model-index: - name: smolm-autoreg-bpe-seed_8128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-seed_8128 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4757 - Accuracy: 0.4994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 16 - eval_batch_size: 128 - seed: 8128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 24000 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.0573 | 1.0 | 2928 | 3.0221 | 0.4374 | | 2.7148 | 2.0 | 5856 | 2.7910 | 0.4589 | | 2.5912 | 3.0 | 8784 | 2.6989 | 0.4683 | | 2.5153 | 4.0 | 11712 | 2.6402 | 0.4762 | | 2.4585 | 5.0 | 14640 | 2.6094 | 0.4799 | | 2.4202 | 6.0 | 17568 | 2.5849 | 0.4829 | | 2.395 | 7.0 | 20496 | 2.5703 | 0.4845 | | 2.363 | 8.0 | 23424 | 2.5577 | 0.4859 | | 2.2878 | 9.0 | 26352 | 2.5095 | 0.4940 | | 2.1407 | 10.0 | 29280 | 2.4757 | 0.4994 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
HeydarS/flant5_sm_popQA_peft_v62
HeydarS
2024-05-04T15:50:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-04T15:50:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Schadic/dqn-SpaceInvadersNoFrameskip-v4
Schadic
2024-05-04T15:45:04Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-04T15:44:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 557.00 +/- 172.92 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FitTechMike -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FitTechMike -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FitTechMike ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
johannoriel/medphi_model
johannoriel
2024-05-04T15:43:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:finetune:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-04T15:43:12Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit --- # Uploaded model - **Developed by:** johannoriel - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vtiyyal1/bert_ae_detection
vtiyyal1
2024-05-04T15:43:02Z
165
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-04T15:01:23Z
--- license: apache-2.0 ---
Kukedlc/LLama-3-8b-Python
Kukedlc
2024-05-04T15:41:10Z
25
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T15:34:56Z
--- license: other --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/KNU2JjsNRXyprTdtU4kWx.png)
h-alice/memma-1-2b-cmb-seq2seq-hf
h-alice
2024-05-04T15:40:35Z
108
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T14:51:35Z
--- license: apache-2.0 widget: - text: 雷恩,你為什麼還要拿七星刀 example_title: 雷恩的七星刀 inference: parameters: do_sample: true top_k: 60 top_p: 0.9 temperature: 0.3 max_length: 50 ---
stachel/alastorrus
stachel
2024-05-04T15:30:57Z
0
0
null
[ "alastor", "russian", "sienduk", "stachelbeeren", "ru", "region:us" ]
null
2024-05-04T15:27:42Z
--- language: - ru tags: - alastor - russian - sienduk - stachelbeeren ---
herisan/llama-3-8b_mental_health_counseling_conversations
herisan
2024-05-04T15:25:09Z
8
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-01T15:11:44Z
!pip -q install git+https://github.com/huggingface/transformers # need to install from github !pip -q install bitsandbytes accelerate xformers einops import os import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline model_name = "herisan/llama-3-8b_mental_health_counseling_conversations" # use the commented out parts for running in 4bit bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, quantization_config=bnb_config, # low_cpu_mem_usage=True ) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.bos_token_id = 1 stop_token_ids = [0] pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, use_cache=True, device_map="auto", max_length=2046, do_sample=True, top_k=5, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) messages = [ { "role": "system", "content": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.", }, {"role": "user", "content": "I'm going through some things with my feelings and myself. I barely sleep and I do nothing but think about how I'm worthless and how I shouldn't be here. I've never tried or contemplated suicide. I've always wanted to fix my issues, but I never get around to it. How can I change my feeling of being worthless to everyone?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=2046, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, truncation=True) print(outputs[0]["generated_text"])
EldritchHorror/HodgePodge
EldritchHorror
2024-05-04T15:21:31Z
0
0
null
[ "merge", "mergekit", "lazymergekit", "microsoft/Phi-3-mini-128k-instruct", "gradientai/Llama-3-8B-Instruct-Gradient-1048k", "ise-uiuc/Magicoder-DS-6.7B", "base_model:gradientai/Llama-3-8B-Instruct-Gradient-1048k", "base_model:merge:gradientai/Llama-3-8B-Instruct-Gradient-1048k", "base_model:ise-uiuc/Magicoder-DS-6.7B", "base_model:merge:ise-uiuc/Magicoder-DS-6.7B", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:merge:microsoft/Phi-3-mini-128k-instruct", "region:us" ]
null
2024-05-04T15:21:31Z
--- tags: - merge - mergekit - lazymergekit - microsoft/Phi-3-mini-128k-instruct - gradientai/Llama-3-8B-Instruct-Gradient-1048k - ise-uiuc/Magicoder-DS-6.7B base_model: - microsoft/Phi-3-mini-128k-instruct - gradientai/Llama-3-8B-Instruct-Gradient-1048k - ise-uiuc/Magicoder-DS-6.7B --- # HodgePodge HodgePodge is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) * [gradientai/Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) * [ise-uiuc/Magicoder-DS-6.7B](https://huggingface.co/ise-uiuc/Magicoder-DS-6.7B) ## 🧩 Configuration ```yaml slices: - sources: - model: microsoft/Phi-3-mini-128k-instruct layer_range: [0, 32] - model: gradientai/Llama-3-8B-Instruct-Gradient-1048k layer_range: [0, 32] - model: ise-uiuc/Magicoder-DS-6.7B layer_range: [0, 32] merge_method: modelstock base_model: microsoft/Phi-3-mini-128k-instruct parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fuzzymonstereatinganapple/HodgePodge" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
chinmayn/Falcon-sharded
chinmayn
2024-05-04T15:20:20Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:adapter:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2024-05-04T15:20:03Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: ybelkada/falcon-7b-sharded-bf16 model-index: - name: Falcon-sharded results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Falcon-sharded This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
heisenberg3376/speecht5_finetuned_voxpopuli_nl
heisenberg3376
2024-05-04T15:18:53Z
85
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "text-to-speech", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2024-05-04T04:37:13Z
--- license: mit base_model: microsoft/speecht5_tts datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] tags: - text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5184 | 6.2451 | 1000 | 0.4817 | | 0.5033 | 12.4902 | 2000 | 0.4675 | | 0.4932 | 18.7354 | 3000 | 0.4633 | | 0.4871 | 24.9805 | 4000 | 0.4625 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
jasonsun/lora_model
jasonsun
2024-05-04T15:18:12Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-04T15:18:03Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** jasonsun - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
north/llama2-verify
north
2024-05-04T15:11:55Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T08:41:57Z
--- license: apache-2.0 ---