modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 12:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
498 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 12:28:16
card
stringlengths
11
1.01M
mradermacher/Guardian-Samantha-7b-slerp-GGUF
mradermacher
2024-05-06T05:36:25Z
6
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "llamas-community/LlamaGuard-7b", "ParthasarathyShanmugam/llama-2-7b-samantha", "en", "base_model:brichett/Guardian-Samantha-7b-slerp", "base_model:quantized:brichett/Guardian-Samantha-7b-slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-29T17:39:09Z
--- base_model: brichett/Guardian-Samantha-7b-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - llamas-community/LlamaGuard-7b - ParthasarathyShanmugam/llama-2-7b-samantha --- ## About static quants of https://huggingface.co/brichett/Guardian-Samantha-7b-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.IQ3_S.gguf) | IQ3_S | 3.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q3_K_S.gguf) | Q3_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.IQ4_XS.gguf) | IQ4_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q4_0.gguf) | Q4_0 | 4.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.IQ4_NL.gguf) | IQ4_NL | 4.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q4_K_S.gguf) | Q4_K_S | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q4_K_M.gguf) | Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q5_K_S.gguf) | Q5_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q5_K_M.gguf) | Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q6_K.gguf) | Q6_K | 5.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Guardian-Samantha-7b-slerp-GGUF/resolve/main/Guardian-Samantha-7b-slerp.Q8_0.gguf) | Q8_0 | 7.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/llamoe-8x1b-hermes-GGUF
mradermacher
2024-05-06T05:36:05Z
15
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-29T18:12:35Z
--- base_model: N8Programs/llamoe-8x1b-hermes language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About static quants of https://huggingface.co/N8Programs/llamoe-8x1b-hermes <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.IQ3_XS.gguf) | IQ3_XS | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.IQ3_M.gguf) | IQ3_M | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q3_K_M.gguf) | Q3_K_M | 3.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q3_K_L.gguf) | Q3_K_L | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q4_0.gguf) | Q4_0 | 3.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.IQ4_NL.gguf) | IQ4_NL | 3.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q4_K_S.gguf) | Q4_K_S | 3.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q4_K_M.gguf) | Q4_K_M | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q5_K_S.gguf) | Q5_K_S | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q5_K_M.gguf) | Q5_K_M | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q6_K.gguf) | Q6_K | 5.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-hermes-GGUF/resolve/main/llamoe-8x1b-hermes.Q8_0.gguf) | Q8_0 | 7.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/llamoe-8x1b-GGUF
mradermacher
2024-05-06T05:36:02Z
22
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-29T18:44:17Z
--- base_model: N8Programs/llamoe-8x1b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About static quants of https://huggingface.co/N8Programs/llamoe-8x1b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q2_K.gguf) | Q2_K | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.IQ3_XS.gguf) | IQ3_XS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.IQ3_S.gguf) | IQ3_S | 3.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q3_K_S.gguf) | Q3_K_S | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.IQ3_M.gguf) | IQ3_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q3_K_L.gguf) | Q3_K_L | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.IQ4_XS.gguf) | IQ4_XS | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q4_0.gguf) | Q4_0 | 4.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.IQ4_NL.gguf) | IQ4_NL | 4.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q5_K_S.gguf) | Q5_K_S | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llamoe-8x1b-GGUF/resolve/main/llamoe-8x1b.Q8_0.gguf) | Q8_0 | 7.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Wespeaker/wespeaker-voxceleb-ecapa-tdnn512
Wespeaker
2024-05-06T05:35:55Z
5
0
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2024-05-06T05:10:38Z
--- license: apache-2.0 ---
mradermacher/roleplay-mis_wes-GGUF
mradermacher
2024-05-06T05:35:50Z
225
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "HuggingFaceH4/mistral-7b-grok", "senseable/WestLake-7B-v2", "en", "base_model:ajay141/roleplay-mis_wes", "base_model:quantized:ajay141/roleplay-mis_wes", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-29T20:03:16Z
--- base_model: ajay141/roleplay-mis_wes language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - HuggingFaceH4/mistral-7b-grok - senseable/WestLake-7B-v2 --- ## About static quants of https://huggingface.co/ajay141/roleplay-mis_wes <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/roleplay-mis_wes-GGUF/resolve/main/roleplay-mis_wes.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Customer-Support-Clown-Extended-GGUF
mradermacher
2024-05-06T05:35:47Z
134
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "arcee-ai/Clown-DPO-Extended", "mistralai/Mistral-7B-v0.1+predibase/customer_support", "en", "base_model:arcee-ai/Customer-Support-Clown-Extended", "base_model:quantized:arcee-ai/Customer-Support-Clown-Extended", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-29T20:11:49Z
--- base_model: arcee-ai/Customer-Support-Clown-Extended language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - arcee-ai/Clown-DPO-Extended - mistralai/Mistral-7B-v0.1+predibase/customer_support --- ## About static quants of https://huggingface.co/arcee-ai/Customer-Support-Clown-Extended <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Customer-Support-Clown-Extended-GGUF/resolve/main/Customer-Support-Clown-Extended.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/QueenLiz-120B-GGUF
mradermacher
2024-05-06T05:35:44Z
18
0
transformers
[ "transformers", "gguf", "en", "base_model:Noodlz/QueenLiz-120B", "base_model:quantized:Noodlz/QueenLiz-120B", "endpoints_compatible", "region:us" ]
null
2024-03-29T21:13:38Z
--- base_model: Noodlz/QueenLiz-120B language: - en library_name: transformers quantized_by: mradermacher --- ## About static quants of https://huggingface.co/Noodlz/QueenLiz-120B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/QueenLiz-120B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q2_K.gguf) | Q2_K | 44.6 | | | [GGUF](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ3_XS.gguf) | IQ3_XS | 49.6 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q3_K_S.gguf.part2of2) | Q3_K_S | 52.2 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ3_S.gguf.part2of2) | IQ3_S | 52.4 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ3_M.gguf.part2of2) | IQ3_M | 54.2 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q3_K_M.gguf.part2of2) | Q3_K_M | 58.2 | lower quality | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q3_K_L.gguf.part2of2) | Q3_K_L | 63.4 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ4_XS.gguf.part2of2) | IQ4_XS | 65.2 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q4_0.gguf.part2of2) | Q4_0 | 68.2 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q4_K_S.gguf.part2of2) | Q4_K_S | 68.7 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ4_NL.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.IQ4_NL.gguf.part2of2) | IQ4_NL | 68.8 | prefer IQ4_XS | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q4_K_M.gguf.part2of2) | Q4_K_M | 72.6 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q5_K_S.gguf.part2of2) | Q5_K_S | 83.2 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q5_K_M.gguf.part2of2) | Q5_K_M | 85.4 | | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q6_K.gguf.part3of3) | Q6_K | 99.1 | very good quality | | [PART 1](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/QueenLiz-120B-GGUF/resolve/main/QueenLiz-120B.Q8_0.gguf.part3of3) | Q8_0 | 128.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/shqiponja-59b-v1-i1-GGUF
mradermacher
2024-05-06T05:35:13Z
3
0
transformers
[ "transformers", "gguf", "mergekit", "frankenstein", "merge", "en", "base_model:nisten/shqiponja-59b-v1", "base_model:quantized:nisten/shqiponja-59b-v1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-29T23:04:42Z
--- base_model: nisten/shqiponja-59b-v1 language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - mergekit - frankenstein - merge --- ## About weighted/imatrix quants of https://huggingface.co/nisten/shqiponja-59b-v1 **only the first 40k tokens of my 160k token training data is used as the model overflowed (likely a problem with the model weights)** <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/shqiponja-59b-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 13.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 14.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 16.5 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 20.8 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q2_K.gguf) | i1-Q2_K | 22.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 23.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 24.9 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 26.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 26.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 29.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 31.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 32.2 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q4_0.gguf) | i1-Q4_0 | 34.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 34.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 36.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 41.2 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 42.3 | | | [GGUF](https://huggingface.co/mradermacher/shqiponja-59b-v1-i1-GGUF/resolve/main/shqiponja-59b-v1.i1-Q6_K.gguf) | i1-Q6_K | 49.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
brdemorin/Llama3_7b-custom_v2
brdemorin
2024-05-06T05:35:13Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-06T05:34:46Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** brdemorin - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/NeuralGanesha-7b-GGUF
mradermacher
2024-05-06T05:35:10Z
102
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Kukedlc/SomeModelsMerge-7b", "Kukedlc/MyModelsMerge-7b", "en", "base_model:Kukedlc/NeuralGanesha-7b", "base_model:quantized:Kukedlc/NeuralGanesha-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-29T23:18:08Z
--- base_model: Kukedlc/NeuralGanesha-7b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Kukedlc/SomeModelsMerge-7b - Kukedlc/MyModelsMerge-7b --- ## About static quants of https://huggingface.co/Kukedlc/NeuralGanesha-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralGanesha-7b-GGUF/resolve/main/NeuralGanesha-7b.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Rhea-72b-v0.5-GGUF
mradermacher
2024-05-06T05:35:07Z
32
3
transformers
[ "transformers", "gguf", "en", "base_model:davidkim205/Rhea-72b-v0.5", "base_model:quantized:davidkim205/Rhea-72b-v0.5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-29T23:30:00Z
--- base_model: davidkim205/Rhea-72b-v0.5 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About static quants of https://huggingface.co/davidkim205/Rhea-72b-v0.5 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q2_K.gguf) | Q2_K | 31.1 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.IQ3_XS.gguf) | IQ3_XS | 34.0 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.IQ3_S.gguf) | IQ3_S | 35.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q3_K_S.gguf) | Q3_K_S | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.IQ3_M.gguf) | IQ3_M | 37.3 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q3_K_M.gguf) | Q3_K_M | 39.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q3_K_L.gguf) | Q3_K_L | 42.6 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.IQ4_XS.gguf) | IQ4_XS | 43.2 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q4_0.gguf) | Q4_0 | 45.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.IQ4_NL.gguf) | IQ4_NL | 45.3 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q4_K_S.gguf) | Q4_K_S | 45.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q4_K_M.gguf) | Q4_K_M | 47.8 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q5_K_S.gguf.part2of2) | Q5_K_S | 53.9 | | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q5_K_M.gguf.part2of2) | Q5_K_M | 55.4 | | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q6_K.gguf.part2of2) | Q6_K | 63.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.Q8_0.gguf.part2of2) | Q8_0 | 80.6 | fast, best quality | | [P1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.SOURCE.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.SOURCE.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.SOURCE.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.SOURCE.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.SOURCE.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF/resolve/main/Rhea-72b-v0.5.SOURCE.gguf.part6of6) | SOURCE | 289.3 | source gguf, only provided when it was hard to come by | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
baaaaaaaam/v6
baaaaaaaam
2024-05-06T05:35:06Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-06T03:19:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/NeuralMaths-Experiment-7b-GGUF
mradermacher
2024-05-06T05:34:52Z
92
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "WizardLM/WizardMath-7B-V1.1", "mlabonne/NeuralDaredevil-7B", "Kukedlc/Neural4gsm8k", "Eric111/Mayo", "Kukedlc/NeuralSirKrishna-7b", "en", "base_model:Kukedlc/NeuralMaths-Experiment-7b", "base_model:quantized:Kukedlc/NeuralMaths-Experiment-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-30T02:04:55Z
--- base_model: Kukedlc/NeuralMaths-Experiment-7b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - WizardLM/WizardMath-7B-V1.1 - mlabonne/NeuralDaredevil-7B - Kukedlc/Neural4gsm8k - Eric111/Mayo - Kukedlc/NeuralSirKrishna-7b --- ## About static quants of https://huggingface.co/Kukedlc/NeuralMaths-Experiment-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralMaths-Experiment-7b-GGUF/resolve/main/NeuralMaths-Experiment-7b.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NeuraRP-7B-slerp-GGUF
mradermacher
2024-05-06T05:34:16Z
4
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "mlabonne/NeuralHermes-2.5-Mistral-7B", "ChaoticNeutrals/BuRP_7B", "en", "base_model:stevez80/NeuraRP-7B-slerp", "base_model:quantized:stevez80/NeuraRP-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-30T07:04:45Z
--- base_model: stevez80/NeuraRP-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - mlabonne/NeuralHermes-2.5-Mistral-7B - ChaoticNeutrals/BuRP_7B --- ## About static quants of https://huggingface.co/stevez80/NeuraRP-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuraRP-7B-slerp-GGUF/resolve/main/NeuraRP-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF
mradermacher
2024-05-06T05:33:55Z
195
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "samir-fama/SamirGPT-v1", "mlabonne/NeuralHermes-2.5-Mistral-7B", "KoboldAI/Mistral-7B-Erebus-v3", "en", "base_model:stevez80/ErebusNeuralSamir-7B-dare-ties", "base_model:quantized:stevez80/ErebusNeuralSamir-7B-dare-ties", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-30T08:36:39Z
--- base_model: stevez80/ErebusNeuralSamir-7B-dare-ties language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - samir-fama/SamirGPT-v1 - mlabonne/NeuralHermes-2.5-Mistral-7B - KoboldAI/Mistral-7B-Erebus-v3 --- ## About static quants of https://huggingface.co/stevez80/ErebusNeuralSamir-7B-dare-ties <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ErebusNeuralSamir-7B-dare-ties-GGUF/resolve/main/ErebusNeuralSamir-7B-dare-ties.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/StarFuse-7B-DARE-GGUF
mradermacher
2024-05-06T05:33:51Z
39
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "en", "base_model:hfghfghg/StarFuse-7B-DARE", "base_model:quantized:hfghfghg/StarFuse-7B-DARE", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-30T10:06:48Z
--- base_model: hfghfghg/StarFuse-7B-DARE language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit --- ## About static quants of https://huggingface.co/hfghfghg/StarFuse-7B-DARE <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/StarFuse-7B-DARE-GGUF/resolve/main/StarFuse-7B-DARE.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
xinping/Mixtral-8x7B-instruction-v0.1_zh-GGUF
xinping
2024-05-06T05:33:37Z
1
0
adapter-transformers
[ "adapter-transformers", "gguf", "zh", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-26T08:33:12Z
--- license: apache-2.0 language: - zh - en library_name: adapter-transformers --- 安装llama.cpp 保存gguf文件路径:../Mixtral-8x7B-instruction-zh_V0.1.Q4_K_S.gguf linux系统下的测试: 进入安装的llama.cpp根目录下, 在命令行界面CLI下执行: CUDA_VISIBLE_DEVICES=0 ./main -m ../Mixtral-8x7B-instruction-zh_V0.1.Q4_K_S.gguf -n 2048 -p "今年是2024年,大后年是哪年?"
mradermacher/Neural-4-Wino-7b-GGUF
mradermacher
2024-05-06T05:33:19Z
368
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Kukedlc/NeuralFusion-7b-Dare-Ties", "paulml/OmniBeagleSquaredMBX-v3-7B-v2", "macadeliccc/MBX-7B-v3-DPO", "Kukedlc/Fasciculus-Arcuatus-7B-slerp", "liminerity/Neurotic-Jomainotrik-7b-slerp", "en", "base_model:Kukedlc/Neural-4-Wino-7b", "base_model:quantized:Kukedlc/Neural-4-Wino-7b", "endpoints_compatible", "region:us" ]
null
2024-03-30T13:08:10Z
--- base_model: Kukedlc/Neural-4-Wino-7b language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Kukedlc/NeuralFusion-7b-Dare-Ties - paulml/OmniBeagleSquaredMBX-v3-7B-v2 - macadeliccc/MBX-7B-v3-DPO - Kukedlc/Fasciculus-Arcuatus-7B-slerp - liminerity/Neurotic-Jomainotrik-7b-slerp --- ## About static quants of https://huggingface.co/Kukedlc/Neural-4-Wino-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.IQ4_NL.gguf) | IQ4_NL | 4.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Neural-4-Wino-7b-GGUF/resolve/main/Neural-4-Wino-7b.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
DavidClark314/ppo-LunarLander-v2
DavidClark314
2024-05-06T05:33:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-06T04:56:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.55 +/- 14.71 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mradermacher/Rhea-72b-v0.5-i1-GGUF
mradermacher
2024-05-06T05:33:16Z
62
4
transformers
[ "transformers", "gguf", "en", "base_model:davidkim205/Rhea-72b-v0.5", "base_model:quantized:davidkim205/Rhea-72b-v0.5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-30T13:33:40Z
--- base_model: davidkim205/Rhea-72b-v0.5 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About weighted/imatrix quants of https://huggingface.co/davidkim205/Rhea-72b-v0.5 **the imatrix was calculated on a reduced 40k token set (the "quarter" set) as the full token set caused overflows in the model (likely a model bug)** <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ1_S.gguf) | i1-IQ1_S | 20.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ1_M.gguf) | i1-IQ1_M | 21.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 24.0 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ2_XS.gguf) | i1-IQ2_XS | 26.0 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ2_S.gguf) | i1-IQ2_S | 27.6 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q2_K.gguf) | i1-Q2_K | 31.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ3_XS.gguf) | i1-IQ3_XS | 34.0 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ3_S.gguf) | i1-IQ3_S | 35.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q3_K_S.gguf) | i1-Q3_K_S | 35.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ3_M.gguf) | i1-IQ3_M | 37.3 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q3_K_M.gguf) | i1-Q3_K_M | 39.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q3_K_L.gguf) | i1-Q3_K_L | 42.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ4_XS.gguf) | i1-IQ4_XS | 42.8 | | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-IQ4_NL.gguf) | i1-IQ4_NL | 45.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q4_0.gguf) | i1-Q4_0 | 45.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q4_K_S.gguf) | i1-Q4_K_S | 45.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.8 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 53.9 | | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 55.4 | | | [PART 1](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Rhea-72b-v0.5-i1-GGUF/resolve/main/Rhea-72b-v0.5.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 63.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mixtral_AI_Cyber_4.0-GGUF
mradermacher
2024-05-06T05:32:00Z
18
0
transformers
[ "transformers", "gguf", "biology", "chemistry", "medical", "en", "base_model:LeroyDyer/Mixtral_AI_Cyber_4.0", "base_model:quantized:LeroyDyer/Mixtral_AI_Cyber_4.0", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-31T00:09:59Z
--- base_model: LeroyDyer/Mixtral_AI_Cyber_4.0 language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - biology - chemistry - medical --- ## About static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_Cyber_4.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_4.0-GGUF/resolve/main/Mixtral_AI_Cyber_4.0.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Saily_220B-GGUF
mradermacher
2024-05-06T05:31:50Z
0
0
transformers
[ "transformers", "en", "dataset:tiiuae/falcon-refinedweb", "dataset:EleutherAI/pile", "dataset:meta-math/MetaMathQA", "base_model:deepnight-research/Saily_220B", "base_model:finetune:deepnight-research/Saily_220B", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-03-31T02:09:11Z
--- base_model: deepnight-research/Saily_220B datasets: - tiiuae/falcon-refinedweb - EleutherAI/pile - meta-math/MetaMathQA language: - en library_name: transformers license: llama2 no_imatrix: 'GGML_ASSERT: llama.cpp/ggml.c:16553: i != GGML_HASHTABLE_FULL' quantized_by: mradermacher --- ## About static quants of https://huggingface.co/deepnight-research/Saily_220B <!-- provided-files --> ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q2_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q2_K.gguf.part2of2) | Q2_K | 76.9 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ3_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ3_XS.gguf.part2of2) | IQ3_XS | 85.5 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_S.gguf.part2of2) | Q3_K_S | 90.1 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ3_S.gguf.part2of2) | IQ3_S | 90.4 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ3_M.gguf.part2of2) | IQ3_M | 93.5 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_M.gguf.part3of3) | Q3_K_M | 100.6 | lower quality | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_L.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_L.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q3_K_L.gguf.part3of3) | Q3_K_L | 109.5 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ4_XS.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ4_XS.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.IQ4_XS.gguf.part3of3) | IQ4_XS | 112.7 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_0.gguf.part3of3) | Q4_0 | 117.7 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_K_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_K_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_K_S.gguf.part3of3) | Q4_K_S | 118.6 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_K_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_K_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q4_K_M.gguf.part3of3) | Q4_K_M | 125.3 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_S.gguf.part3of3) | Q5_K_S | 143.8 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q5_K_M.gguf.part4of4) | Q5_K_M | 147.7 | | | [PART 1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q6_K.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q6_K.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q6_K.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q6_K.gguf.part4of4) | Q6_K | 171.4 | very good quality | | [P1](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q8_0.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q8_0.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q8_0.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q8_0.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Saily_220B-GGUF/resolve/main/Saily_220B.Q8_0.gguf.part5of5) | Q8_0 | 221.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NeuralKuke-4-All-7b-GGUF
mradermacher
2024-05-06T05:31:24Z
177
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Kukedlc/Neural-4-ARC-7b", "Kukedlc/Neural-4-Wino-7b", "Kukedlc/NeuralSirKrishna-7b", "Kukedlc/Neural-4-QA-7b", "Kukedlc/Neural-4-Maths-7b", "en", "base_model:Kukedlc/NeuralKuke-4-All-7b", "base_model:quantized:Kukedlc/NeuralKuke-4-All-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-31T04:15:37Z
--- base_model: Kukedlc/NeuralKuke-4-All-7b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Kukedlc/Neural-4-ARC-7b - Kukedlc/Neural-4-Wino-7b - Kukedlc/NeuralSirKrishna-7b - Kukedlc/Neural-4-QA-7b - Kukedlc/Neural-4-Maths-7b --- ## About static quants of https://huggingface.co/Kukedlc/NeuralKuke-4-All-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralKuke-4-All-7b-GGUF/resolve/main/NeuralKuke-4-All-7b.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF
mradermacher
2024-05-06T05:31:17Z
25
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "music", "Cyber-Series", "en", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-31T04:46:29Z
--- base_model: LeroyDyer/Mixtral_AI_Cyber_3.1_SFT datasets: - WhiteRabbitNeo/WRN-Chapter-1 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - music - Cyber-Series --- ## About static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_Cyber_3.1_SFT <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_3.1_SFT-GGUF/resolve/main/Mixtral_AI_Cyber_3.1_SFT.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MultiverseEx26-7B-slerp-GGUF
mradermacher
2024-05-06T05:31:08Z
2
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "yam-peleg/Experiment26-7B", "MTSAIR/multi_verse_model", "en", "base_model:allknowingroger/MultiverseEx26-7B-slerp", "base_model:quantized:allknowingroger/MultiverseEx26-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-31T05:37:00Z
--- base_model: allknowingroger/MultiverseEx26-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - yam-peleg/Experiment26-7B - MTSAIR/multi_verse_model --- ## About static quants of https://huggingface.co/allknowingroger/MultiverseEx26-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MultiverseEx26-7B-slerp-GGUF/resolve/main/MultiverseEx26-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Neurallaymons-7B-slerp-GGUF
mradermacher
2024-05-06T05:31:05Z
36
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Kukedlc/Neural-4-Maths-7b", "ABX-AI/Starfinite-Laymons-7B", "en", "base_model:allknowingroger/Neurallaymons-7B-slerp", "base_model:quantized:allknowingroger/Neurallaymons-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-31T07:01:46Z
--- base_model: allknowingroger/Neurallaymons-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Kukedlc/Neural-4-Maths-7b - ABX-AI/Starfinite-Laymons-7B --- ## About static quants of https://huggingface.co/allknowingroger/Neurallaymons-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Neurallaymons-7B-slerp-GGUF/resolve/main/Neurallaymons-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/GodziLLa-30B-GGUF
mradermacher
2024-05-06T05:30:35Z
119
0
transformers
[ "transformers", "gguf", "merge", "mix", "cot", "en", "base_model:MayaPH/GodziLLa-30B", "base_model:quantized:MayaPH/GodziLLa-30B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-03-31T12:51:30Z
--- base_model: MayaPH/GodziLLa-30B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mix - cot --- ## About static quants of https://huggingface.co/MayaPH/GodziLLa-30B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.IQ3_XS.gguf) | IQ3_XS | 13.7 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.IQ3_S.gguf) | IQ3_S | 14.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q3_K_S.gguf) | Q3_K_S | 14.4 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.IQ3_M.gguf) | IQ3_M | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q3_K_M.gguf) | Q3_K_M | 16.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q3_K_L.gguf) | Q3_K_L | 17.6 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.IQ4_XS.gguf) | IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q4_0.gguf) | Q4_0 | 18.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q4_K_S.gguf) | Q4_K_S | 18.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-GGUF/resolve/main/GodziLLa-30B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/BigLiberated-20B-V2-GGUF
mradermacher
2024-05-06T05:29:57Z
4
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/BigLiberated-20B-V2", "base_model:quantized:win10/BigLiberated-20B-V2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-31T15:47:35Z
--- base_model: win10/BigLiberated-20B-V2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About static quants of https://huggingface.co/win10/BigLiberated-20B-V2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q2_K.gguf) | Q2_K | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.IQ3_XS.gguf) | IQ3_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.IQ3_S.gguf) | IQ3_S | 10.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q3_K_S.gguf) | Q3_K_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.IQ3_M.gguf) | IQ3_M | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q3_K_M.gguf) | Q3_K_M | 11.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q3_K_L.gguf) | Q3_K_L | 12.1 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.IQ4_XS.gguf) | IQ4_XS | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q4_0.gguf) | Q4_0 | 12.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q4_K_S.gguf) | Q4_K_S | 13.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q4_K_M.gguf) | Q4_K_M | 14.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q5_K_S.gguf) | Q5_K_S | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q5_K_M.gguf) | Q5_K_M | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q6_K.gguf) | Q6_K | 18.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BigLiberated-20B-V2-GGUF/resolve/main/BigLiberated-20B-V2.Q8_0.gguf) | Q8_0 | 22.3 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NeuralAlgo-7B-slerp-GGUF
mradermacher
2024-05-06T05:29:52Z
69
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "AurelPx/Percival_01-7b-slerp", "yam-peleg/Experiment26-7B", "en", "base_model:Kukedlc/NeuralAlgo-7B-slerp", "base_model:quantized:Kukedlc/NeuralAlgo-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-31T15:53:31Z
--- base_model: Kukedlc/NeuralAlgo-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - AurelPx/Percival_01-7b-slerp - yam-peleg/Experiment26-7B --- ## About static quants of https://huggingface.co/Kukedlc/NeuralAlgo-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q4_0.gguf) | Q4_0 | 4.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralAlgo-7B-slerp-GGUF/resolve/main/NeuralAlgo-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Melusine_103b-GGUF
mradermacher
2024-05-06T05:29:32Z
95
1
transformers
[ "transformers", "gguf", "rp", "erp", "chat", "miqu", "en", "base_model:MarsupialAI/Melusine_103b", "base_model:quantized:MarsupialAI/Melusine_103b", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-31T16:13:39Z
--- base_model: MarsupialAI/Melusine_103b language: - en library_name: transformers quantized_by: mradermacher tags: - rp - erp - chat - miqu --- ## About static quants of https://huggingface.co/MarsupialAI/Melusine_103b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Melusine_103b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q2_K.gguf) | Q2_K | 38.3 | | | [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.IQ3_XS.gguf) | IQ3_XS | 42.6 | | | [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_S.gguf) | Q3_K_S | 44.9 | | | [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.IQ3_S.gguf) | IQ3_S | 45.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.IQ3_M.gguf) | IQ3_M | 46.5 | | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_M.gguf.part2of2) | Q3_K_M | 50.0 | lower quality | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_L.gguf.part2of2) | Q3_K_L | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.IQ4_XS.gguf.part2of2) | IQ4_XS | 56.0 | | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_0.gguf.part2of2) | Q4_0 | 58.5 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_S.gguf.part2of2) | Q4_K_S | 59.0 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_M.gguf.part2of2) | Q4_K_M | 62.3 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q5_K_S.gguf.part2of2) | Q5_K_S | 71.4 | | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q5_K_M.gguf.part2of2) | Q5_K_M | 73.3 | | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q6_K.gguf.part2of2) | Q6_K | 85.1 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q8_0.gguf.part3of3) | Q8_0 | 110.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/rubra-13b-h-GGUF
mradermacher
2024-05-06T05:28:20Z
4
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-31T19:58:01Z
--- base_model: sanjay920/rubra-13b-h language: - en library_name: transformers quantized_by: mradermacher --- ## About static quants of https://huggingface.co/sanjay920/rubra-13b-h <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.IQ3_XS.gguf) | IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q3_K_S.gguf) | Q3_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.IQ3_S.gguf) | IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.IQ3_M.gguf) | IQ3_M | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q3_K_M.gguf) | Q3_K_M | 6.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q3_K_L.gguf) | Q3_K_L | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.IQ4_XS.gguf) | IQ4_XS | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q4_K_S.gguf) | Q4_K_S | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q4_K_M.gguf) | Q4_K_M | 7.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q5_K_S.gguf) | Q5_K_S | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q5_K_M.gguf) | Q5_K_M | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q6_K.gguf) | Q6_K | 10.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/rubra-13b-h-GGUF/resolve/main/rubra-13b-h.Q8_0.gguf) | Q8_0 | 13.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/KitchenSink_103b-GGUF
mradermacher
2024-05-06T05:27:53Z
74
1
transformers
[ "transformers", "gguf", "rp", "erp", "chat", "storywriting", "en", "base_model:MarsupialAI/KitchenSink_103b", "base_model:quantized:MarsupialAI/KitchenSink_103b", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-03-31T23:00:20Z
--- base_model: MarsupialAI/KitchenSink_103b language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - rp - erp - chat - storywriting --- ## About static quants of https://huggingface.co/MarsupialAI/KitchenSink_103b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/KitchenSink_103b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q2_K.gguf) | Q2_K | 38.3 | | | [GGUF](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.IQ3_XS.gguf) | IQ3_XS | 42.6 | | | [GGUF](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q3_K_S.gguf) | Q3_K_S | 44.9 | | | [GGUF](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.IQ3_S.gguf) | IQ3_S | 45.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.IQ3_M.gguf) | IQ3_M | 46.5 | | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q3_K_M.gguf.part2of2) | Q3_K_M | 50.0 | lower quality | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q3_K_L.gguf.part2of2) | Q3_K_L | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.IQ4_XS.gguf.part2of2) | IQ4_XS | 56.0 | | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q4_K_S.gguf.part2of2) | Q4_K_S | 59.0 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q4_K_M.gguf.part2of2) | Q4_K_M | 62.3 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q5_K_S.gguf.part2of2) | Q5_K_S | 71.4 | | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q5_K_M.gguf.part2of2) | Q5_K_M | 73.3 | | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q6_K.gguf.part2of2) | Q6_K | 85.1 | very good quality | | [PART 1](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/KitchenSink_103b-GGUF/resolve/main/KitchenSink_103b.Q8_0.gguf.part3of3) | Q8_0 | 110.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MistralMath-7B-v0.1-GGUF
mradermacher
2024-05-06T05:27:16Z
22
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "WizardLM/WizardMath-7B-V1.1", "meta-math/MetaMath-Mistral-7B", "en", "base_model:nachoaristimuno/MistralMath-7B-v0.1", "base_model:quantized:nachoaristimuno/MistralMath-7B-v0.1", "endpoints_compatible", "region:us" ]
null
2024-04-01T03:34:59Z
--- base_model: nachoaristimuno/MistralMath-7B-v0.1 language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - WizardLM/WizardMath-7B-V1.1 - meta-math/MetaMath-Mistral-7B --- ## About static quants of https://huggingface.co/nachoaristimuno/MistralMath-7B-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MistralMath-7B-v0.1-GGUF/resolve/main/MistralMath-7B-v0.1.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Helen-v1_7B-GGUF
mradermacher
2024-05-06T05:27:11Z
24
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "mistral", "roleplay", "en", "base_model:Virt-io/Helen-v1_7B", "base_model:quantized:Virt-io/Helen-v1_7B", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-01T04:59:07Z
--- base_model: Virt-io/Helen-v1_7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - mistral - roleplay --- ## About static quants of https://huggingface.co/Virt-io/Helen-v1_7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Helen-v1_7B-GGUF/resolve/main/Helen-v1_7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/lemonade-rebase-32k-7B-GGUF
mradermacher
2024-05-06T05:27:08Z
34
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:grimjim/lemonade-rebase-32k-7B", "base_model:quantized:grimjim/lemonade-rebase-32k-7B", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-01T05:09:10Z
--- base_model: grimjim/lemonade-rebase-32k-7B language: - en library_name: transformers license: cc-by-4.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About static quants of https://huggingface.co/grimjim/lemonade-rebase-32k-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/lemonade-rebase-32k-7B-GGUF/resolve/main/lemonade-rebase-32k-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/athena-120b-GGUF
mradermacher
2024-05-06T05:26:29Z
10
0
transformers
[ "transformers", "gguf", "merge", "en", "base_model:ibivibiv/athena-120b", "base_model:quantized:ibivibiv/athena-120b", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-04-01T05:58:00Z
--- base_model: ibivibiv/athena-120b language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - merge --- ## About static quants of https://huggingface.co/ibivibiv/athena-120b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/athena-120b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q2_K.gguf) | Q2_K | 45.1 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ3_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ3_XS.gguf.part2of2) | IQ3_XS | 50.1 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q3_K_S.gguf.part2of2) | Q3_K_S | 52.7 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ3_S.gguf.part2of2) | IQ3_S | 52.9 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ3_M.gguf.part2of2) | IQ3_M | 54.7 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q3_K_M.gguf.part2of2) | Q3_K_M | 58.8 | lower quality | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q3_K_L.gguf.part2of2) | Q3_K_L | 63.9 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.IQ4_XS.gguf.part2of2) | IQ4_XS | 65.7 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q4_K_S.gguf.part2of2) | Q4_K_S | 69.2 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q4_K_M.gguf.part2of2) | Q4_K_M | 73.1 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q5_K_S.gguf.part2of2) | Q5_K_S | 83.7 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q5_K_M.gguf.part2of2) | Q5_K_M | 86.0 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q6_K.gguf.part3of3) | Q6_K | 99.6 | very good quality | | [PART 1](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/athena-120b-GGUF/resolve/main/athena-120b.Q8_0.gguf.part3of3) | Q8_0 | 128.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/LadybirdGonzo-7B-slerp-GGUF
mradermacher
2024-05-06T05:26:25Z
5
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Badgids/Gonzo-Chat-7B", "bobofrut/ladybird-base-7B-v8", "en", "base_model:allknowingroger/LadybirdGonzo-7B-slerp", "base_model:quantized:allknowingroger/LadybirdGonzo-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-01T06:22:40Z
--- base_model: allknowingroger/LadybirdGonzo-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Badgids/Gonzo-Chat-7B - bobofrut/ladybird-base-7B-v8 --- ## About static quants of https://huggingface.co/allknowingroger/LadybirdGonzo-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LadybirdGonzo-7B-slerp-GGUF/resolve/main/LadybirdGonzo-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Merak-7B-v4-GGUF
mradermacher
2024-05-06T05:26:06Z
50
0
transformers
[ "transformers", "gguf", "id", "en", "dataset:wikipedia", "dataset:Ichsan2895/OASST_Top1_Indonesian", "dataset:Ichsan2895/alpaca-gpt4-indonesian", "base_model:Ichsan2895/Merak-7B-v4", "base_model:quantized:Ichsan2895/Merak-7B-v4", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-01T06:35:32Z
--- base_model: Ichsan2895/Merak-7B-v4 datasets: - wikipedia - Ichsan2895/OASST_Top1_Indonesian - Ichsan2895/alpaca-gpt4-indonesian language: - id - en library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher --- ## About static quants of https://huggingface.co/Ichsan2895/Merak-7B-v4 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q2_K.gguf) | Q2_K | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.IQ3_XS.gguf) | IQ3_XS | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q3_K_S.gguf) | Q3_K_S | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.IQ3_S.gguf) | IQ3_S | 3.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.IQ3_M.gguf) | IQ3_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q3_K_M.gguf) | Q3_K_M | 4.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q3_K_L.gguf) | Q3_K_L | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.IQ4_XS.gguf) | IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q4_K_S.gguf) | Q4_K_S | 4.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q4_K_M.gguf) | Q4_K_M | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q5_K_M.gguf) | Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q6_K.gguf) | Q6_K | 6.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Merak-7B-v4-GGUF/resolve/main/Merak-7B-v4.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MasherAI-v6-7B-GGUF
mradermacher
2024-05-06T05:25:55Z
4
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "sft", "en", "base_model:mahiatlinux/MasherAI-v6-7B", "base_model:quantized:mahiatlinux/MasherAI-v6-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-01T08:00:28Z
--- base_model: mahiatlinux/MasherAI-v6-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- ## About static quants of https://huggingface.co/mahiatlinux/MasherAI-v6-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MasherAI-v6-7B-GGUF/resolve/main/MasherAI-v6-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
tsavage68/chat_550_STEPS_01beta_1e6_rate_CDPOSFT
tsavage68
2024-05-06T05:25:40Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:tsavage68/chat_600STEPS_1e8rate_SFT", "base_model:finetune:tsavage68/chat_600STEPS_1e8rate_SFT", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-06T05:14:30Z
--- base_model: tsavage68/chat_600STEPS_1e8rate_SFT tags: - trl - dpo - generated_from_trainer model-index: - name: chat_550_STEPS_01beta_1e6_rate_CDPOSFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chat_550_STEPS_01beta_1e6_rate_CDPOSFT This model is a fine-tuned version of [tsavage68/chat_600STEPS_1e8rate_SFT](https://huggingface.co/tsavage68/chat_600STEPS_1e8rate_SFT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6716 - Rewards/chosen: -0.1192 - Rewards/rejected: -0.1802 - Rewards/accuracies: 0.5253 - Rewards/margins: 0.0610 - Logps/rejected: -20.6044 - Logps/chosen: -17.9469 - Logits/rejected: -0.6222 - Logits/chosen: -0.6220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 550 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6925 | 0.0977 | 50 | 0.6917 | 0.0117 | 0.0085 | 0.4659 | 0.0031 | -18.7166 | -16.6380 | -0.6015 | -0.6013 | | 0.6776 | 0.1953 | 100 | 0.6812 | -0.0371 | -0.0646 | 0.5253 | 0.0275 | -19.4479 | -17.1259 | -0.6242 | -0.6241 | | 0.6927 | 0.2930 | 150 | 0.6819 | -0.0802 | -0.1112 | 0.5011 | 0.0310 | -19.9140 | -17.5569 | -0.6222 | -0.6220 | | 0.6928 | 0.3906 | 200 | 0.6776 | -0.1032 | -0.1444 | 0.5033 | 0.0412 | -20.2463 | -17.7865 | -0.6050 | -0.6048 | | 0.6937 | 0.4883 | 250 | 0.6762 | -0.0643 | -0.1121 | 0.5121 | 0.0478 | -19.9228 | -17.3977 | -0.6013 | -0.6011 | | 0.6758 | 0.5859 | 300 | 0.6717 | -0.1055 | -0.1663 | 0.5231 | 0.0608 | -20.4645 | -17.8094 | -0.6301 | -0.6299 | | 0.6696 | 0.6836 | 350 | 0.6724 | -0.1144 | -0.1731 | 0.5275 | 0.0587 | -20.5330 | -17.8991 | -0.6162 | -0.6160 | | 0.6587 | 0.7812 | 400 | 0.6711 | -0.1221 | -0.1842 | 0.5297 | 0.0621 | -20.6441 | -17.9756 | -0.6249 | -0.6247 | | 0.6755 | 0.8789 | 450 | 0.6713 | -0.1178 | -0.1794 | 0.5341 | 0.0616 | -20.5960 | -17.9326 | -0.6214 | -0.6212 | | 0.6637 | 0.9766 | 500 | 0.6712 | -0.1188 | -0.1808 | 0.5253 | 0.0620 | -20.6100 | -17.9427 | -0.6222 | -0.6220 | | 0.5575 | 1.0742 | 550 | 0.6716 | -0.1192 | -0.1802 | 0.5253 | 0.0610 | -20.6044 | -17.9469 | -0.6222 | -0.6220 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.0.0+cu117 - Datasets 2.19.0 - Tokenizers 0.19.1
mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF
mradermacher
2024-05-06T05:25:33Z
23
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-01T09:23:52Z
--- base_model: LeroyDyer/Mixtral_AI_CyberBrain_SFT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl --- ## About static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_CyberBrain_SFT <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberBrain_SFT-GGUF/resolve/main/Mixtral_AI_CyberBrain_SFT.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/saily-13b-v0-GGUF
mradermacher
2024-05-06T05:24:55Z
90
0
transformers
[ "transformers", "gguf", "7B", "Saily", "DEEPNIGHT", "Llama", "Llama2", "en", "base_model:deepnight-research/saily-13b-v0", "base_model:quantized:deepnight-research/saily-13b-v0", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-01T13:39:23Z
--- base_model: deepnight-research/saily-13b-v0 language: - en library_name: transformers license: other quantized_by: mradermacher tags: - 7B - Saily - DEEPNIGHT - Llama - Llama2 --- ## About static quants of https://huggingface.co/deepnight-research/saily-13b-v0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q2_K.gguf) | Q2_K | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.IQ3_XS.gguf) | IQ3_XS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.IQ3_S.gguf) | IQ3_S | 6.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q3_K_S.gguf) | Q3_K_S | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.IQ3_M.gguf) | IQ3_M | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q3_K_M.gguf) | Q3_K_M | 6.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q3_K_L.gguf) | Q3_K_L | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.IQ4_XS.gguf) | IQ4_XS | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q4_K_S.gguf) | Q4_K_S | 7.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q4_K_M.gguf) | Q4_K_M | 8.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q5_K_S.gguf) | Q5_K_S | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q5_K_M.gguf) | Q5_K_M | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q6_K.gguf) | Q6_K | 11.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/saily-13b-v0-GGUF/resolve/main/saily-13b-v0.Q8_0.gguf) | Q8_0 | 14.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Yeet_51b_200k-GGUF
mradermacher
2024-05-06T05:24:43Z
106
0
transformers
[ "transformers", "gguf", "en", "base_model:MarsupialAI/Yeet_51b_200k", "base_model:quantized:MarsupialAI/Yeet_51b_200k", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-01T16:03:18Z
--- base_model: MarsupialAI/Yeet_51b_200k language: - en library_name: transformers license: other license_name: yi-other quantized_by: mradermacher --- ## About static quants of https://huggingface.co/MarsupialAI/Yeet_51b_200k <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q2_K.gguf) | Q2_K | 19.6 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.IQ3_XS.gguf) | IQ3_XS | 21.7 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q3_K_S.gguf) | Q3_K_S | 22.8 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.IQ3_S.gguf) | IQ3_S | 22.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.IQ3_M.gguf) | IQ3_M | 23.7 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q3_K_M.gguf) | Q3_K_M | 25.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q3_K_L.gguf) | Q3_K_L | 27.6 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.IQ4_XS.gguf) | IQ4_XS | 28.3 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q4_K_S.gguf) | Q4_K_S | 29.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q4_K_M.gguf) | Q4_K_M | 31.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q5_K_S.gguf) | Q5_K_S | 35.9 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q5_K_M.gguf) | Q5_K_M | 36.8 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q6_K.gguf) | Q6_K | 42.6 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF/resolve/main/Yeet_51b_200k.Q8_0.gguf.part2of2) | Q8_0 | 54.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/penchant-7B-GGUF
mradermacher
2024-05-06T05:24:39Z
5
0
transformers
[ "transformers", "gguf", "en", "base_model:afoland/penchant-7B", "base_model:quantized:afoland/penchant-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-01T16:09:20Z
--- base_model: afoland/penchant-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About static quants of https://huggingface.co/afoland/penchant-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/penchant-7B-GGUF/resolve/main/penchant-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/TimeMax-20B-GGUF
mradermacher
2024-05-06T05:24:37Z
2
0
transformers
[ "transformers", "gguf", "en", "base_model:R136a1/TimeMax-20B", "base_model:quantized:R136a1/TimeMax-20B", "endpoints_compatible", "region:us" ]
null
2024-04-01T16:14:35Z
--- base_model: R136a1/TimeMax-20B language: - en library_name: transformers quantized_by: mradermacher --- ## About static quants of https://huggingface.co/R136a1/TimeMax-20B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q2_K.gguf) | Q2_K | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.IQ3_XS.gguf) | IQ3_XS | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.IQ3_S.gguf) | IQ3_S | 9.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q3_K_S.gguf) | Q3_K_S | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.IQ3_M.gguf) | IQ3_M | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q3_K_M.gguf) | Q3_K_M | 10.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q3_K_L.gguf) | Q3_K_L | 10.9 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.IQ4_XS.gguf) | IQ4_XS | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q4_K_S.gguf) | Q4_K_S | 11.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q4_K_M.gguf) | Q4_K_M | 12.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q5_K_S.gguf) | Q5_K_S | 14.1 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q5_K_M.gguf) | Q5_K_M | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q6_K.gguf) | Q6_K | 16.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-GGUF/resolve/main/TimeMax-20B.Q8_0.gguf) | Q8_0 | 21.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/GodziLLa-30B-i1-GGUF
mradermacher
2024-05-06T05:24:23Z
108
1
transformers
[ "transformers", "gguf", "merge", "mix", "cot", "en", "base_model:MayaPH/GodziLLa-30B", "base_model:quantized:MayaPH/GodziLLa-30B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-01T19:31:22Z
--- base_model: MayaPH/GodziLLa-30B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mix - cot --- ## About weighted/imatrix quants of https://huggingface.co/MayaPH/GodziLLa-30B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/GodziLLa-30B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ1_S.gguf) | i1-IQ1_S | 7.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.8 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.6 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.7 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ3_S.gguf) | i1-IQ3_S | 14.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ3_M.gguf) | i1-IQ3_M | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.7 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/GodziLLa-30B-i1-GGUF/resolve/main/GodziLLa-30B.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/TimeMax-20B-i1-GGUF
mradermacher
2024-05-06T05:24:20Z
6
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "text-generation", "en", "base_model:R136a1/TimeMax-20B", "base_model:quantized:R136a1/TimeMax-20B", "endpoints_compatible", "region:us" ]
text-generation
2024-04-01T20:10:41Z
--- base_model: R136a1/TimeMax-20B language: - en library_name: transformers pipeline_tag: text-generation quantized_by: mradermacher tags: - mergekit - merge --- ## About weighted/imatrix quants of https://huggingface.co/R136a1/TimeMax-20B **Only 50k tokens from my standard set have been used, as more caused an overflow. This is likely a problem with the model itself.** <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/TimeMax-20B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ1_S.gguf) | i1-IQ1_S | 4.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ1_M.gguf) | i1-IQ1_M | 5.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ2_S.gguf) | i1-IQ2_S | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ2_M.gguf) | i1-IQ2_M | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q2_K.gguf) | i1-Q2_K | 7.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 7.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ3_S.gguf) | i1-IQ3_S | 9.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ3_M.gguf) | i1-IQ3_M | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 10.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q4_0.gguf) | i1-Q4_0 | 11.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 11.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 14.1 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/TimeMax-20B-i1-GGUF/resolve/main/TimeMax-20B.i1-Q6_K.gguf) | i1-Q6_K | 16.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Stork-7B-slerp-GGUF
mradermacher
2024-05-06T05:24:18Z
6
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "bofenghuang/vigostral-7b-chat", "jpacifico/French-Alpaca-7B-Instruct-beta", "fr", "base_model:ntnq/Stork-7B-slerp", "base_model:quantized:ntnq/Stork-7B-slerp", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-01T20:27:02Z
--- base_model: ntnq/Stork-7B-slerp language: - fr library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - bofenghuang/vigostral-7b-chat - jpacifico/French-Alpaca-7B-Instruct-beta --- ## About static quants of https://huggingface.co/ntnq/Stork-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Stork-7B-slerp-GGUF/resolve/main/Stork-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Zebrafish-dare-7B-GGUF
mradermacher
2024-05-06T05:24:07Z
17
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:mlabonne/Zebrafish-dare-7B", "base_model:quantized:mlabonne/Zebrafish-dare-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-01T23:15:33Z
--- base_model: mlabonne/Zebrafish-dare-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About static quants of https://huggingface.co/mlabonne/Zebrafish-dare-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-dare-7B-GGUF/resolve/main/Zebrafish-dare-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Zebrafish-linear-7B-GGUF
mradermacher
2024-05-06T05:24:05Z
13
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:mlabonne/Zebrafish-linear-7B", "base_model:quantized:mlabonne/Zebrafish-linear-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-02T00:44:08Z
--- base_model: mlabonne/Zebrafish-linear-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About static quants of https://huggingface.co/mlabonne/Zebrafish-linear-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Zebrafish-linear-7B-GGUF/resolve/main/Zebrafish-linear-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MonarchPipe-7B-slerp-GGUF
mradermacher
2024-05-06T05:23:52Z
25
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1227", "mlabonne/AlphaMonarch-7B", "en", "base_model:ichigoberry/MonarchPipe-7B-slerp", "base_model:quantized:ichigoberry/MonarchPipe-7B-slerp", "license:cc-by-nc-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-02T02:11:17Z
--- base_model: ichigoberry/MonarchPipe-7B-slerp language: - en library_name: transformers license: cc-by-nc-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1227 - mlabonne/AlphaMonarch-7B --- ## About static quants of https://huggingface.co/ichigoberry/MonarchPipe-7B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MonarchPipe-7B-slerp-GGUF/resolve/main/MonarchPipe-7B-slerp.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Wespeaker/wespeaker-voxceleb-gemini-DFresnet114-LM
Wespeaker
2024-05-06T05:23:46Z
4
0
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2024-05-06T05:14:05Z
--- license: apache-2.0 ---
mradermacher/NeuralStock-7B-v2-GGUF
mradermacher
2024-05-06T05:23:35Z
1
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:Kukedlc/NeuralStock-7B-v2", "base_model:quantized:Kukedlc/NeuralStock-7B-v2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-02T04:58:23Z
--- base_model: Kukedlc/NeuralStock-7B-v2 language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About static quants of https://huggingface.co/Kukedlc/NeuralStock-7B-v2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralStock-7B-v2-GGUF/resolve/main/NeuralStock-7B-v2.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/UNAversal-8x7B-v1beta-GGUF
mradermacher
2024-05-06T05:23:33Z
69
0
transformers
[ "transformers", "gguf", "UNA", "juanako", "mixtral", "MoE", "en", "base_model:fblgit/UNAversal-8x7B-v1beta", "base_model:quantized:fblgit/UNAversal-8x7B-v1beta", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-02T05:11:23Z
--- base_model: fblgit/UNAversal-8x7B-v1beta language: - en library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher tags: - UNA - juanako - mixtral - MoE --- ## About static quants of https://huggingface.co/fblgit/UNAversal-8x7B-v1beta <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q2_K.gguf) | Q2_K | 17.6 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.IQ3_XS.gguf) | IQ3_XS | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.IQ3_S.gguf) | IQ3_S | 20.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q3_K_S.gguf) | Q3_K_S | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.IQ3_M.gguf) | IQ3_M | 21.7 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q3_K_M.gguf) | Q3_K_M | 22.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q3_K_L.gguf) | Q3_K_L | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.IQ4_XS.gguf) | IQ4_XS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q4_K_S.gguf) | Q4_K_S | 27.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q4_K_M.gguf) | Q4_K_M | 28.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q5_K_S.gguf) | Q5_K_S | 32.5 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q5_K_M.gguf) | Q5_K_M | 33.5 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q6_K.gguf) | Q6_K | 38.6 | very good quality | | [PART 1](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF/resolve/main/UNAversal-8x7B-v1beta.Q8_0.gguf.part2of2) | Q8_0 | 49.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/SatoshiNv5-GGUF
mradermacher
2024-05-06T05:23:28Z
55
0
transformers
[ "transformers", "gguf", "finance", "legal", "biology", "art", "en", "base_model:chrischain/SatoshiNv5", "base_model:quantized:chrischain/SatoshiNv5", "license:cc-by-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-02T06:23:06Z
--- base_model: chrischain/SatoshiNv5 language: - en library_name: transformers license: cc-by-2.0 quantized_by: mradermacher tags: - finance - legal - biology - art --- ## About static quants of https://huggingface.co/chrischain/SatoshiNv5 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SatoshiNv5-GGUF/resolve/main/SatoshiNv5.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/bagel-dpo-20b-v04-GGUF
mradermacher
2024-05-06T05:23:25Z
206
2
transformers
[ "transformers", "gguf", "en", "dataset:ai2_arc", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:camel-ai/biology", "dataset:camel-ai/chemistry", "dataset:camel-ai/math", "dataset:camel-ai/physics", "dataset:jondurbin/contextual-dpo-v0.1", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/py-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:lmsys/lmsys-chat-1m", "dataset:ParisNeo/lollms_aware_dataset", "dataset:TIGER-Lab/MathInstruct", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:kingbri/PIPPA-shareGPT", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:ropes", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:b-mc2/sql-create-context", "dataset:squad_v2", "dataset:mattpscott/airoboros-summarization", "dataset:migtissera/Synthia-v1.3", "dataset:unalignment/toxic-dpo-v0.2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:winogrande", "base_model:jondurbin/bagel-dpo-20b-v04", "base_model:quantized:jondurbin/bagel-dpo-20b-v04", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-02T06:31:44Z
--- base_model: jondurbin/bagel-dpo-20b-v04 datasets: - ai2_arc - allenai/ultrafeedback_binarized_cleaned - argilla/distilabel-intel-orca-dpo-pairs - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - bluemoon-fandom-1-1-rp-cleaned - boolq - camel-ai/biology - camel-ai/chemistry - camel-ai/math - camel-ai/physics - jondurbin/contextual-dpo-v0.1 - jondurbin/gutenberg-dpo-v0.1 - jondurbin/py-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - WizardLM/WizardLM_evol_instruct_70k - glaiveai/glaive-function-calling-v2 - jondurbin/gutenberg-dpo-v0.1 - grimulkan/LimaRP-augmented - lmsys/lmsys-chat-1m - ParisNeo/lollms_aware_dataset - TIGER-Lab/MathInstruct - Muennighoff/natural-instructions - openbookqa - kingbri/PIPPA-shareGPT - piqa - Vezora/Tested-22k-Python-Alpaca - ropes - cakiki/rosetta-code - Open-Orca/SlimOrca - b-mc2/sql-create-context - squad_v2 - mattpscott/airoboros-summarization - migtissera/Synthia-v1.3 - unalignment/toxic-dpo-v0.2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - winogrande language: - en library_name: transformers license: other license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license license_name: internlm2-20b quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jondurbin/bagel-dpo-20b-v04 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q2_K.gguf) | Q2_K | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ3_XS.gguf) | IQ3_XS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q3_K_S.gguf) | Q3_K_S | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ3_S.gguf) | IQ3_S | 9.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ3_M.gguf) | IQ3_M | 9.9 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q3_K_M.gguf) | Q3_K_M | 10.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q3_K_L.gguf) | Q3_K_L | 11.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ4_XS.gguf) | IQ4_XS | 11.6 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q4_K_S.gguf) | Q4_K_S | 12.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q4_K_M.gguf) | Q4_K_M | 12.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q5_K_S.gguf) | Q5_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q5_K_M.gguf) | Q5_K_M | 14.8 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q6_K.gguf) | Q6_K | 17.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q8_0.gguf) | Q8_0 | 21.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.SOURCE.gguf) | SOURCE | 39.8 | source gguf, only provided when it was hard to come by | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Yeet_51b_200k-i1-GGUF
mradermacher
2024-05-06T05:23:14Z
30
0
transformers
[ "transformers", "gguf", "en", "base_model:MarsupialAI/Yeet_51b_200k", "base_model:quantized:MarsupialAI/Yeet_51b_200k", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-02T09:58:07Z
--- base_model: MarsupialAI/Yeet_51b_200k language: - en library_name: transformers license: other license_name: yi-other no_imatrix: 'IQ3_XXS GGML_ASSERT: llama.cpp/ggml-quants.c:11239: grid_index >= 0' quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/MarsupialAI/Yeet_51b_200k **No more quants forthcoming, as llama.cpp crashes.** <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q2_K.gguf) | i1-Q2_K | 19.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q3_K_S.gguf) | i1-Q3_K_S | 22.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q3_K_M.gguf) | i1-Q3_K_M | 25.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q3_K_L.gguf) | i1-Q3_K_L | 27.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q4_0.gguf) | i1-Q4_0 | 29.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q4_K_S.gguf) | i1-Q4_K_S | 29.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q4_K_M.gguf) | i1-Q4_K_M | 31.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q5_K_S.gguf) | i1-Q5_K_S | 35.9 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q5_K_M.gguf) | i1-Q5_K_M | 36.8 | | | [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q6_K.gguf) | i1-Q6_K | 42.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NeuralSirKrishna-7b-DPO-GGUF
mradermacher
2024-05-06T05:23:09Z
4
0
transformers
[ "transformers", "gguf", "en", "base_model:Kukedlc/NeuralSirKrishna-7b-DPO", "base_model:quantized:Kukedlc/NeuralSirKrishna-7b-DPO", "endpoints_compatible", "region:us" ]
null
2024-04-02T10:50:14Z
--- base_model: Kukedlc/NeuralSirKrishna-7b-DPO language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Kukedlc/NeuralSirKrishna-7b-DPO <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralSirKrishna-7b-DPO-GGUF/resolve/main/NeuralSirKrishna-7b-DPO.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/bagel-dpo-34b-v0.5-GGUF
mradermacher
2024-05-06T05:23:03Z
80
8
transformers
[ "transformers", "gguf", "en", "dataset:ai2_arc", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:camel-ai/biology", "dataset:camel-ai/chemistry", "dataset:camel-ai/math", "dataset:camel-ai/physics", "dataset:jondurbin/contextual-dpo-v0.1", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/py-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:lmsys/lmsys-chat-1m", "dataset:ParisNeo/lollms_aware_dataset", "dataset:TIGER-Lab/MathInstruct", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:kingbri/PIPPA-shareGPT", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:ropes", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:b-mc2/sql-create-context", "dataset:squad_v2", "dataset:mattpscott/airoboros-summarization", "dataset:migtissera/Synthia-v1.3", "dataset:unalignment/toxic-dpo-v0.2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:winogrande", "base_model:jondurbin/bagel-dpo-34b-v0.5", "base_model:quantized:jondurbin/bagel-dpo-34b-v0.5", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-02T12:20:42Z
--- base_model: jondurbin/bagel-dpo-34b-v0.5 datasets: - ai2_arc - allenai/ultrafeedback_binarized_cleaned - argilla/distilabel-intel-orca-dpo-pairs - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - bluemoon-fandom-1-1-rp-cleaned - boolq - camel-ai/biology - camel-ai/chemistry - camel-ai/math - camel-ai/physics - jondurbin/contextual-dpo-v0.1 - jondurbin/gutenberg-dpo-v0.1 - jondurbin/py-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - WizardLM/WizardLM_evol_instruct_70k - glaiveai/glaive-function-calling-v2 - jondurbin/gutenberg-dpo-v0.1 - grimulkan/LimaRP-augmented - lmsys/lmsys-chat-1m - ParisNeo/lollms_aware_dataset - TIGER-Lab/MathInstruct - Muennighoff/natural-instructions - openbookqa - kingbri/PIPPA-shareGPT - piqa - Vezora/Tested-22k-Python-Alpaca - ropes - cakiki/rosetta-code - Open-Orca/SlimOrca - b-mc2/sql-create-context - squad_v2 - mattpscott/airoboros-summarization - migtissera/Synthia-v1.3 - unalignment/toxic-dpo-v0.2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - winogrande language: - en library_name: transformers license: other license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE license_name: yi-license quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jondurbin/bagel-dpo-34b-v0.5 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q2_K.gguf) | Q2_K | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.IQ3_XS.gguf) | IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q3_K_S.gguf) | Q3_K_S | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.IQ3_S.gguf) | IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.IQ3_M.gguf) | IQ3_M | 16.2 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q3_K_M.gguf) | Q3_K_M | 17.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q3_K_L.gguf) | Q3_K_L | 18.8 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.IQ4_XS.gguf) | IQ4_XS | 19.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q4_K_S.gguf) | Q4_K_S | 20.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q4_K_M.gguf) | Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q5_K_S.gguf) | Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q5_K_M.gguf) | Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q6_K.gguf) | Q6_K | 28.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.5-GGUF/resolve/main/bagel-dpo-34b-v0.5.Q8_0.gguf) | Q8_0 | 37.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/bagel-34b-v0.5-GGUF
mradermacher
2024-05-06T05:22:41Z
3
0
transformers
[ "transformers", "gguf", "en", "dataset:ai2_arc", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:camel-ai/biology", "dataset:camel-ai/chemistry", "dataset:camel-ai/math", "dataset:camel-ai/physics", "dataset:jondurbin/contextual-dpo-v0.1", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/py-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:lmsys/lmsys-chat-1m", "dataset:ParisNeo/lollms_aware_dataset", "dataset:TIGER-Lab/MathInstruct", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:kingbri/PIPPA-shareGPT", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:ropes", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:b-mc2/sql-create-context", "dataset:squad_v2", "dataset:mattpscott/airoboros-summarization", "dataset:migtissera/Synthia-v1.3", "dataset:unalignment/toxic-dpo-v0.2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:winogrande", "base_model:jondurbin/bagel-34b-v0.5", "base_model:quantized:jondurbin/bagel-34b-v0.5", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-02T14:45:55Z
--- base_model: jondurbin/bagel-34b-v0.5 datasets: - ai2_arc - allenai/ultrafeedback_binarized_cleaned - argilla/distilabel-intel-orca-dpo-pairs - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - bluemoon-fandom-1-1-rp-cleaned - boolq - camel-ai/biology - camel-ai/chemistry - camel-ai/math - camel-ai/physics - jondurbin/contextual-dpo-v0.1 - jondurbin/gutenberg-dpo-v0.1 - jondurbin/py-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - WizardLM/WizardLM_evol_instruct_70k - glaiveai/glaive-function-calling-v2 - jondurbin/gutenberg-dpo-v0.1 - grimulkan/LimaRP-augmented - lmsys/lmsys-chat-1m - ParisNeo/lollms_aware_dataset - TIGER-Lab/MathInstruct - Muennighoff/natural-instructions - openbookqa - kingbri/PIPPA-shareGPT - piqa - Vezora/Tested-22k-Python-Alpaca - ropes - cakiki/rosetta-code - Open-Orca/SlimOrca - b-mc2/sql-create-context - squad_v2 - mattpscott/airoboros-summarization - migtissera/Synthia-v1.3 - unalignment/toxic-dpo-v0.2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - winogrande language: - en library_name: transformers license: other license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE license_name: yi-license quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jondurbin/bagel-34b-v0.5 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/bagel-34b-v0.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q2_K.gguf) | Q2_K | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.IQ3_XS.gguf) | IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q3_K_S.gguf) | Q3_K_S | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.IQ3_S.gguf) | IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.IQ3_M.gguf) | IQ3_M | 16.2 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q3_K_M.gguf) | Q3_K_M | 17.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q3_K_L.gguf) | Q3_K_L | 18.8 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.IQ4_XS.gguf) | IQ4_XS | 19.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q4_K_S.gguf) | Q4_K_S | 20.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q4_K_M.gguf) | Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q5_K_S.gguf) | Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q5_K_M.gguf) | Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q6_K.gguf) | Q6_K | 28.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/bagel-34b-v0.5-GGUF/resolve/main/bagel-34b-v0.5.Q8_0.gguf) | Q8_0 | 37.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nuebaek/komt_mistral_mss_user_111_max_steps_80
nuebaek
2024-05-06T05:22:39Z
76
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-06T05:19:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/TripleMerge-7B-Ties-GGUF
mradermacher
2024-05-06T05:22:37Z
29
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "allknowingroger/MultiverseEx26-7B-slerp", "allknowingroger/limyClown-7B-slerp", "allknowingroger/LeeMerge-7B-slerp", "en", "base_model:allknowingroger/TripleMerge-7B-Ties", "base_model:quantized:allknowingroger/TripleMerge-7B-Ties", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-02T16:30:30Z
--- base_model: allknowingroger/TripleMerge-7B-Ties language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - allknowingroger/MultiverseEx26-7B-slerp - allknowingroger/limyClown-7B-slerp - allknowingroger/LeeMerge-7B-slerp --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/allknowingroger/TripleMerge-7B-Ties <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TripleMerge-7B-Ties-GGUF/resolve/main/TripleMerge-7B-Ties.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
kristina-shemet/Fine-Tuned_Mistral-Instruct-V2_06-05
kristina-shemet
2024-05-06T05:22:22Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-05-06T05:22:02Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
mradermacher/DevPearl-2x7B-GGUF
mradermacher
2024-05-06T05:22:20Z
127
1
transformers
[ "transformers", "gguf", "moe", "merge", "mergekit", "lazymergekit", "deepseek-ai/deepseek-coder-6.7b-instruct", "defog/sqlcoder-7b-2", "Python", "Javascript", "sql", "en", "base_model:louisbrulenaudet/DevPearl-2x7B", "base_model:quantized:louisbrulenaudet/DevPearl-2x7B", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-02T18:03:56Z
--- base_model: louisbrulenaudet/DevPearl-2x7B language: - en library_name: transformers license: cc-by-sa-4.0 quantized_by: mradermacher tags: - moe - merge - mergekit - lazymergekit - deepseek-ai/deepseek-coder-6.7b-instruct - defog/sqlcoder-7b-2 - Python - Javascript - sql --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/louisbrulenaudet/DevPearl-2x7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q2_K.gguf) | Q2_K | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.IQ3_XS.gguf) | IQ3_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.IQ3_S.gguf) | IQ3_S | 5.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q3_K_S.gguf) | Q3_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.IQ3_M.gguf) | IQ3_M | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q3_K_M.gguf) | Q3_K_M | 5.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q3_K_L.gguf) | Q3_K_L | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.IQ4_XS.gguf) | IQ4_XS | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q4_K_S.gguf) | Q4_K_S | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q4_K_M.gguf) | Q4_K_M | 7.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q5_K_S.gguf) | Q5_K_S | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q5_K_M.gguf) | Q5_K_M | 8.1 | | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q6_K.gguf) | Q6_K | 9.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DevPearl-2x7B-GGUF/resolve/main/DevPearl-2x7B.Q8_0.gguf) | Q8_0 | 12.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/airoboros-34b-3.3-GGUF
mradermacher
2024-05-06T05:21:59Z
60
0
transformers
[ "transformers", "gguf", "en", "dataset:jondurbin/airoboros-3.2", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:mattpscott/airoboros-summarization", "dataset:unalignment/toxic-dpo-v0.2", "base_model:jondurbin/airoboros-34b-3.3", "base_model:quantized:jondurbin/airoboros-34b-3.3", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-02T23:45:26Z
--- base_model: jondurbin/airoboros-34b-3.3 datasets: - jondurbin/airoboros-3.2 - bluemoon-fandom-1-1-rp-cleaned - boolq - jondurbin/gutenberg-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - glaiveai/glaive-function-calling-v2 - grimulkan/LimaRP-augmented - piqa - Vezora/Tested-22k-Python-Alpaca - mattpscott/airoboros-summarization - unalignment/toxic-dpo-v0.2 language: - en library_name: transformers license: other license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE license_name: yi-license quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jondurbin/airoboros-34b-3.3 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/airoboros-34b-3.3-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q2_K.gguf) | Q2_K | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.IQ3_XS.gguf) | IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q3_K_S.gguf) | Q3_K_S | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.IQ3_S.gguf) | IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.IQ3_M.gguf) | IQ3_M | 16.2 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q3_K_M.gguf) | Q3_K_M | 17.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q3_K_L.gguf) | Q3_K_L | 18.8 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.IQ4_XS.gguf) | IQ4_XS | 19.3 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q4_K_S.gguf) | Q4_K_S | 20.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q4_K_M.gguf) | Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q5_K_S.gguf) | Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q5_K_M.gguf) | Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q6_K.gguf) | Q6_K | 28.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q8_0.gguf) | Q8_0 | 37.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/bagel-dpo-20b-v04-i1-GGUF
mradermacher
2024-05-06T05:21:57Z
81
1
transformers
[ "transformers", "gguf", "en", "dataset:ai2_arc", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:camel-ai/biology", "dataset:camel-ai/chemistry", "dataset:camel-ai/math", "dataset:camel-ai/physics", "dataset:jondurbin/contextual-dpo-v0.1", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/py-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:lmsys/lmsys-chat-1m", "dataset:ParisNeo/lollms_aware_dataset", "dataset:TIGER-Lab/MathInstruct", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:kingbri/PIPPA-shareGPT", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:ropes", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:b-mc2/sql-create-context", "dataset:squad_v2", "dataset:mattpscott/airoboros-summarization", "dataset:migtissera/Synthia-v1.3", "dataset:unalignment/toxic-dpo-v0.2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:winogrande", "base_model:jondurbin/bagel-dpo-20b-v04", "base_model:quantized:jondurbin/bagel-dpo-20b-v04", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-02T23:46:09Z
--- base_model: jondurbin/bagel-dpo-20b-v04 datasets: - ai2_arc - allenai/ultrafeedback_binarized_cleaned - argilla/distilabel-intel-orca-dpo-pairs - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - bluemoon-fandom-1-1-rp-cleaned - boolq - camel-ai/biology - camel-ai/chemistry - camel-ai/math - camel-ai/physics - jondurbin/contextual-dpo-v0.1 - jondurbin/gutenberg-dpo-v0.1 - jondurbin/py-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - WizardLM/WizardLM_evol_instruct_70k - glaiveai/glaive-function-calling-v2 - jondurbin/gutenberg-dpo-v0.1 - grimulkan/LimaRP-augmented - lmsys/lmsys-chat-1m - ParisNeo/lollms_aware_dataset - TIGER-Lab/MathInstruct - Muennighoff/natural-instructions - openbookqa - kingbri/PIPPA-shareGPT - piqa - Vezora/Tested-22k-Python-Alpaca - ropes - cakiki/rosetta-code - Open-Orca/SlimOrca - b-mc2/sql-create-context - squad_v2 - mattpscott/airoboros-summarization - migtissera/Synthia-v1.3 - unalignment/toxic-dpo-v0.2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - winogrande language: - en library_name: transformers license: other license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license license_name: internlm2-20b quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/jondurbin/bagel-dpo-20b-v04 **This uses only 95k tokens of my standard set, as the model overflowed with more.** <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ1_S.gguf) | i1-IQ1_S | 5.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ1_M.gguf) | i1-IQ1_M | 5.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.4 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ2_S.gguf) | i1-IQ2_S | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ2_M.gguf) | i1-IQ2_M | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q2_K.gguf) | i1-Q2_K | 8.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 8.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ3_XS.gguf) | i1-IQ3_XS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ3_S.gguf) | i1-IQ3_S | 9.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ3_M.gguf) | i1-IQ3_M | 9.9 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q3_K_L.gguf) | i1-Q3_K_L | 11.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-IQ4_XS.gguf) | i1-IQ4_XS | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q4_0.gguf) | i1-Q4_0 | 12.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q4_K_S.gguf) | i1-Q4_K_S | 12.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q5_K_S.gguf) | i1-Q5_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q5_K_M.gguf) | i1-Q5_K_M | 14.8 | | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q6_K.gguf) | i1-Q6_K | 17.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF
mradermacher
2024-05-06T05:21:54Z
17
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Joseph717171/Mistral-12.25B-Instruct-v0.2", "base_model:quantized:Joseph717171/Mistral-12.25B-Instruct-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T00:13:46Z
--- base_model: Joseph717171/Mistral-12.25B-Instruct-v0.2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Joseph717171/Mistral-12.25B-Instruct-v0.2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.IQ3_XS.gguf) | IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.IQ3_S.gguf) | IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.IQ3_M.gguf) | IQ3_M | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 6.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.IQ4_XS.gguf) | IQ4_XS | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 7.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q6_K.gguf) | Q6_K | 10.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-12.25B-Instruct-v0.2-GGUF/resolve/main/Mistral-12.25B-Instruct-v0.2.Q8_0.gguf) | Q8_0 | 13.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Irene-RP-v4-7B-GGUF
mradermacher
2024-05-06T05:21:45Z
35
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "roleplay", "mistral", "en", "base_model:Virt-io/Irene-RP-v4-7B", "base_model:quantized:Virt-io/Irene-RP-v4-7B", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T00:56:57Z
--- base_model: Virt-io/Irene-RP-v4-7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - roleplay - mistral --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Virt-io/Irene-RP-v4-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Irene-RP-v4-7B-GGUF/resolve/main/Irene-RP-v4-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Pearl-34B-ties-GGUF
mradermacher
2024-05-06T05:21:42Z
19
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "jondurbin/bagel-dpo-34b-v0.2", "abacusai/MetaMath-Bagel-DPO-34B", "en", "base_model:louisbrulenaudet/Pearl-34B-ties", "base_model:quantized:louisbrulenaudet/Pearl-34B-ties", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T01:27:03Z
--- base_model: louisbrulenaudet/Pearl-34B-ties language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - jondurbin/bagel-dpo-34b-v0.2 - abacusai/MetaMath-Bagel-DPO-34B --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/louisbrulenaudet/Pearl-34B-ties <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q2_K.gguf) | Q2_K | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.IQ3_XS.gguf) | IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q3_K_S.gguf) | Q3_K_S | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.IQ3_S.gguf) | IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.IQ3_M.gguf) | IQ3_M | 16.2 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q3_K_M.gguf) | Q3_K_M | 17.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q3_K_L.gguf) | Q3_K_L | 18.8 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.IQ4_XS.gguf) | IQ4_XS | 19.3 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q4_K_S.gguf) | Q4_K_S | 20.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q4_K_M.gguf) | Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q5_K_S.gguf) | Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q5_K_M.gguf) | Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q6_K.gguf) | Q6_K | 28.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF/resolve/main/Pearl-34B-ties.Q8_0.gguf) | Q8_0 | 37.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/OverBloom-7b-GGUF
mradermacher
2024-05-06T05:21:29Z
4
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T03:57:02Z
--- base_model: nobita3921/OverBloom-7b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/nobita3921/OverBloom-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.IQ3_XS.gguf) | IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.IQ3_S.gguf) | IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.IQ3_M.gguf) | IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q5_K_M.gguf) | Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OverBloom-7b-GGUF/resolve/main/OverBloom-7b.Q8_0.gguf) | Q8_0 | 8.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Pearl-34B-ties-i1-GGUF
mradermacher
2024-05-06T05:21:26Z
39
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "jondurbin/bagel-dpo-34b-v0.2", "abacusai/MetaMath-Bagel-DPO-34B", "en", "base_model:louisbrulenaudet/Pearl-34B-ties", "base_model:quantized:louisbrulenaudet/Pearl-34B-ties", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T04:15:00Z
--- base_model: louisbrulenaudet/Pearl-34B-ties language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - jondurbin/bagel-dpo-34b-v0.2 - abacusai/MetaMath-Bagel-DPO-34B --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/louisbrulenaudet/Pearl-34B-ties <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ1_S.gguf) | i1-IQ1_S | 8.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ1_M.gguf) | i1-IQ1_M | 8.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ2_XS.gguf) | i1-IQ2_XS | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ2_S.gguf) | i1-IQ2_S | 11.6 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ2_M.gguf) | i1-IQ2_M | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q2_K.gguf) | i1-Q2_K | 13.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 14.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ3_S.gguf) | i1-IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ3_M.gguf) | i1-IQ3_M | 16.2 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ4_XS.gguf) | i1-IQ4_XS | 19.1 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q4_0.gguf) | i1-Q4_0 | 20.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q4_K_M.gguf) | i1-Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q5_K_S.gguf) | i1-Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q6_K.gguf) | i1-Q6_K | 28.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/neural-chat-7b-v3-GGUF
mradermacher
2024-05-06T05:21:16Z
29
0
transformers
[ "transformers", "gguf", "LLMs", "mistral", "Intel", "en", "dataset:Open-Orca/SlimOrca", "base_model:Intel/neural-chat-7b-v3", "base_model:quantized:Intel/neural-chat-7b-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-03T07:43:53Z
--- base_model: Intel/neural-chat-7b-v3 datasets: - Open-Orca/SlimOrca language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - LLMs - mistral - Intel --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Intel/neural-chat-7b-v3 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-GGUF/resolve/main/neural-chat-7b-v3.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/LlaMixtral-MoE-16B-chat-GGUF
mradermacher
2024-05-06T05:21:12Z
5
0
transformers
[ "transformers", "gguf", "en", "base_model:AstraLLMs/LlaMixtral-MoE-16B-chat", "base_model:quantized:AstraLLMs/LlaMixtral-MoE-16B-chat", "endpoints_compatible", "region:us" ]
null
2024-04-03T08:23:36Z
--- base_model: AstraLLMs/LlaMixtral-MoE-16B-chat language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/AstraLLMs/LlaMixtral-MoE-16B-chat <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q2_K.gguf) | Q2_K | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.IQ3_XS.gguf) | IQ3_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q3_K_S.gguf) | Q3_K_S | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.IQ3_S.gguf) | IQ3_S | 7.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.IQ3_M.gguf) | IQ3_M | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q3_K_M.gguf) | Q3_K_M | 7.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q3_K_L.gguf) | Q3_K_L | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.IQ4_XS.gguf) | IQ4_XS | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q4_K_S.gguf) | Q4_K_S | 9.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q4_K_M.gguf) | Q4_K_M | 9.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q5_K_S.gguf) | Q5_K_S | 11.2 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q5_K_M.gguf) | Q5_K_M | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q6_K.gguf) | Q6_K | 13.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LlaMixtral-MoE-16B-chat-GGUF/resolve/main/LlaMixtral-MoE-16B-chat.Q8_0.gguf) | Q8_0 | 17.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MultiVerse_70B-i1-GGUF
mradermacher
2024-05-06T05:21:09Z
35
0
transformers
[ "transformers", "gguf", "en", "base_model:MTSAIR/MultiVerse_70B", "base_model:quantized:MTSAIR/MultiVerse_70B", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-03T08:54:49Z
--- base_model: MTSAIR/MultiVerse_70B language: - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE license_name: qwen quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/MTSAIR/MultiVerse_70B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MultiVerse_70B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ1_S.gguf) | i1-IQ1_S | 18.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ1_M.gguf) | i1-IQ1_M | 19.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 23.5 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ2_S.gguf) | i1-IQ2_S | 25.1 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ2_M.gguf) | i1-IQ2_M | 26.9 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q2_K.gguf) | i1-Q2_K | 28.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 29.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 31.5 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ3_S.gguf) | i1-IQ3_S | 33.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 33.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ3_M.gguf) | i1-IQ3_M | 34.8 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 36.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 40.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 40.4 | | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q4_0.gguf) | i1-Q4_0 | 42.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 42.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 45.3 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 52.9 | | | [PART 1](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/MultiVerse_70B-i1-GGUF/resolve/main/MultiVerse_70B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 60.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Synatra-7B-v0.3-RP-GGUF
mradermacher
2024-05-06T05:21:06Z
17
1
transformers
[ "transformers", "gguf", "ko", "base_model:maywell/Synatra-7B-v0.3-RP", "base_model:quantized:maywell/Synatra-7B-v0.3-RP", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T09:51:38Z
--- base_model: maywell/Synatra-7B-v0.3-RP language: - ko library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/maywell/Synatra-7B-v0.3-RP <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Synatra-7B-v0.3-RP-GGUF/resolve/main/Synatra-7B-v0.3-RP.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/neural-chat-7b-v3-1-GGUF
mradermacher
2024-05-06T05:20:58Z
90
0
transformers
[ "transformers", "gguf", "LLMs", "mistral", "Intel", "en", "dataset:Open-Orca/SlimOrca", "base_model:Intel/neural-chat-7b-v3-1", "base_model:quantized:Intel/neural-chat-7b-v3-1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-03T12:09:19Z
--- base_model: Intel/neural-chat-7b-v3-1 datasets: - Open-Orca/SlimOrca language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - LLMs - mistral - Intel --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Intel/neural-chat-7b-v3-1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/neural-chat-7b-v3-1-GGUF/resolve/main/neural-chat-7b-v3-1.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/pandafish-7b-GGUF
mradermacher
2024-05-06T05:20:56Z
9
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:ichigoberry/pandafish-7b", "base_model:quantized:ichigoberry/pandafish-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-03T12:13:43Z
--- base_model: ichigoberry/pandafish-7b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ichigoberry/pandafish-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/pandafish-7b-GGUF/resolve/main/pandafish-7b.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Eurus-7b-sft-GGUF
mradermacher
2024-05-06T05:20:27Z
130
0
transformers
[ "transformers", "gguf", "reasoning", "en", "dataset:openbmb/UltraInteract", "dataset:stingning/ultrachat", "dataset:openchat/openchat_sharegpt4_dataset", "dataset:Open-Orca/OpenOrca", "base_model:pharaouk/Eurus-7b-sft", "base_model:quantized:pharaouk/Eurus-7b-sft", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T16:05:16Z
--- base_model: pharaouk/Eurus-7b-sft datasets: - openbmb/UltraInteract - stingning/ultrachat - openchat/openchat_sharegpt4_dataset - Open-Orca/OpenOrca language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - reasoning --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/pharaouk/Eurus-7b-sft <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Eurus-7b-sft-GGUF/resolve/main/Eurus-7b-sft.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Fireplace-34b-GGUF
mradermacher
2024-05-06T05:20:22Z
63
0
transformers
[ "transformers", "gguf", "fireplace", "function-calling", "code", "code-instruct", "conversational", "text-generation-inference", "valiant", "valiant-labs", "smaug", "yi", "yi-34b", "llama", "llama-2", "llama-2-chat", "34b", "en", "base_model:ValiantLabs/Fireplace-34b", "base_model:quantized:ValiantLabs/Fireplace-34b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-03T17:29:23Z
--- base_model: ValiantLabs/Fireplace-34b language: - en library_name: transformers license: other license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE license_name: yi-license model_type: llama quantized_by: mradermacher tags: - fireplace - function-calling - code - code-instruct - conversational - text-generation-inference - valiant - valiant-labs - smaug - yi - yi-34b - llama - llama-2 - llama-2-chat - 34b --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ValiantLabs/Fireplace-34b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q2_K.gguf) | Q2_K | 14.4 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.IQ3_XS.gguf) | IQ3_XS | 15.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q3_K_S.gguf) | Q3_K_S | 16.5 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.IQ3_S.gguf) | IQ3_S | 16.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.IQ3_M.gguf) | IQ3_M | 17.1 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q3_K_M.gguf) | Q3_K_M | 18.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q3_K_L.gguf) | Q3_K_L | 19.7 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.IQ4_XS.gguf) | IQ4_XS | 20.2 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q4_K_S.gguf) | Q4_K_S | 21.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q4_K_M.gguf) | Q4_K_M | 22.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q5_K_S.gguf) | Q5_K_S | 25.3 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q5_K_M.gguf) | Q5_K_M | 25.9 | | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q6_K.gguf) | Q6_K | 29.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Fireplace-34b-GGUF/resolve/main/Fireplace-34b.Q8_0.gguf) | Q8_0 | 38.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/KittyNyanster-v1-GGUF
mradermacher
2024-05-06T05:20:17Z
191
2
transformers
[ "transformers", "gguf", "roleplay", "chat", "mistral", "en", "base_model:arlineka/KittyNyanster-v1", "base_model:quantized:arlineka/KittyNyanster-v1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-03T18:30:14Z
--- base_model: arlineka/KittyNyanster-v1 language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - roleplay - chat - mistral --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/arlineka/KittyNyanster-v1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KittyNyanster-v1-GGUF/resolve/main/KittyNyanster-v1.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF
mradermacher
2024-05-06T05:20:15Z
1
0
transformers
[ "transformers", "gguf", "ko", "base_model:rrw-x2/KoSOLAR-10.7B-DPO-v1.0", "base_model:quantized:rrw-x2/KoSOLAR-10.7B-DPO-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T18:43:39Z
--- base_model: rrw-x2/KoSOLAR-10.7B-DPO-v1.0 language: - ko library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q2_K.gguf) | Q2_K | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.IQ3_XS.gguf) | IQ3_XS | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q3_K_S.gguf) | Q3_K_S | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.IQ3_S.gguf) | IQ3_S | 5.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.IQ3_M.gguf) | IQ3_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q3_K_M.gguf) | Q3_K_M | 5.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q3_K_L.gguf) | Q3_K_L | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.IQ4_XS.gguf) | IQ4_XS | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q4_K_S.gguf) | Q4_K_S | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q4_K_M.gguf) | Q4_K_M | 7.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q5_K_S.gguf) | Q5_K_S | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q5_K_M.gguf) | Q5_K_M | 8.1 | | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q6_K.gguf) | Q6_K | 9.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KoSOLAR-10.7B-DPO-v1.0-GGUF/resolve/main/KoSOLAR-10.7B-DPO-v1.0.Q8_0.gguf) | Q8_0 | 11.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/mistral-7b-medical-assistance-GGUF
mradermacher
2024-05-06T05:20:12Z
17
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "sft", "en", "base_model:Hdhsjfjdsj/mistral-7b-medical-assistance", "base_model:quantized:Hdhsjfjdsj/mistral-7b-medical-assistance", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-03T18:55:27Z
--- base_model: Hdhsjfjdsj/mistral-7b-medical-assistance language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Hdhsjfjdsj/mistral-7b-medical-assistance <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-medical-assistance-GGUF/resolve/main/mistral-7b-medical-assistance.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/pandafish-dt-7b-GGUF
mradermacher
2024-05-06T05:20:10Z
64
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "CultriX/MergeCeption-7B-v3", "en", "base_model:ichigoberry/pandafish-dt-7b", "base_model:quantized:ichigoberry/pandafish-dt-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-03T19:03:45Z
--- base_model: ichigoberry/pandafish-dt-7b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - CultriX/MergeCeption-7B-v3 --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ichigoberry/pandafish-dt-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/pandafish-dt-7b-GGUF/resolve/main/pandafish-dt-7b.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/KunoichiVerse-7B-GGUF
mradermacher
2024-05-06T05:19:51Z
28
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:Ppoyaa/KunoichiVerse-7B", "base_model:quantized:Ppoyaa/KunoichiVerse-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T21:48:59Z
--- base_model: Ppoyaa/KunoichiVerse-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Ppoyaa/KunoichiVerse-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KunoichiVerse-7B-GGUF/resolve/main/KunoichiVerse-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/bagel-20b-v04-GGUF
mradermacher
2024-05-06T05:19:46Z
65
1
transformers
[ "transformers", "gguf", "en", "dataset:ai2_arc", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:camel-ai/biology", "dataset:camel-ai/chemistry", "dataset:camel-ai/math", "dataset:camel-ai/physics", "dataset:jondurbin/contextual-dpo-v0.1", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/py-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:lmsys/lmsys-chat-1m", "dataset:ParisNeo/lollms_aware_dataset", "dataset:TIGER-Lab/MathInstruct", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:kingbri/PIPPA-shareGPT", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:ropes", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:b-mc2/sql-create-context", "dataset:squad_v2", "dataset:mattpscott/airoboros-summarization", "dataset:migtissera/Synthia-v1.3", "dataset:unalignment/toxic-dpo-v0.2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:winogrande", "base_model:jondurbin/bagel-20b-v04", "base_model:quantized:jondurbin/bagel-20b-v04", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T22:08:35Z
--- base_model: jondurbin/bagel-20b-v04 datasets: - ai2_arc - allenai/ultrafeedback_binarized_cleaned - argilla/distilabel-intel-orca-dpo-pairs - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - bluemoon-fandom-1-1-rp-cleaned - boolq - camel-ai/biology - camel-ai/chemistry - camel-ai/math - camel-ai/physics - jondurbin/contextual-dpo-v0.1 - jondurbin/gutenberg-dpo-v0.1 - jondurbin/py-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - WizardLM/WizardLM_evol_instruct_70k - glaiveai/glaive-function-calling-v2 - jondurbin/gutenberg-dpo-v0.1 - grimulkan/LimaRP-augmented - lmsys/lmsys-chat-1m - ParisNeo/lollms_aware_dataset - TIGER-Lab/MathInstruct - Muennighoff/natural-instructions - openbookqa - kingbri/PIPPA-shareGPT - piqa - Vezora/Tested-22k-Python-Alpaca - ropes - cakiki/rosetta-code - Open-Orca/SlimOrca - b-mc2/sql-create-context - squad_v2 - mattpscott/airoboros-summarization - migtissera/Synthia-v1.3 - unalignment/toxic-dpo-v0.2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - winogrande language: - en library_name: transformers license: other license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license license_name: internlm2-20b quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jondurbin/bagel-20b-v04 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q2_K.gguf) | Q2_K | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.IQ3_XS.gguf) | IQ3_XS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q3_K_S.gguf) | Q3_K_S | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.IQ3_S.gguf) | IQ3_S | 9.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.IQ3_M.gguf) | IQ3_M | 9.9 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q3_K_M.gguf) | Q3_K_M | 10.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q3_K_L.gguf) | Q3_K_L | 11.3 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.IQ4_XS.gguf) | IQ4_XS | 11.6 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q4_K_S.gguf) | Q4_K_S | 12.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q4_K_M.gguf) | Q4_K_M | 12.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q5_K_S.gguf) | Q5_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q5_K_M.gguf) | Q5_K_M | 14.8 | | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q6_K.gguf) | Q6_K | 17.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/bagel-20b-v04-GGUF/resolve/main/bagel-20b-v04.Q8_0.gguf) | Q8_0 | 21.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mixtral_AI_CyberLAW-GGUF
mradermacher
2024-05-06T05:19:43Z
108
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "Cyber-Series", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-03T22:34:07Z
--- base_model: LeroyDyer/Mixtral_AI_CyberLAW language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - Cyber-Series --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_CyberLAW <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberLAW-GGUF/resolve/main/Mixtral_AI_CyberLAW.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/StarMonarch-7B-GGUF
mradermacher
2024-05-06T05:19:34Z
71
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:Ppoyaa/StarMonarch-7B", "base_model:quantized:Ppoyaa/StarMonarch-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-04T00:13:47Z
--- base_model: Ppoyaa/StarMonarch-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Ppoyaa/StarMonarch-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/StarMonarch-7B-GGUF/resolve/main/StarMonarch-7B.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Llama-3-70B-Instruct-norefusal-GGUF
mradermacher
2024-05-06T05:19:27Z
29
2
transformers
[ "transformers", "gguf", "en", "base_model:theo77186/Llama-3-70B-Instruct-norefusal", "base_model:quantized:theo77186/Llama-3-70B-Instruct-norefusal", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-05T19:41:12Z
--- base_model: theo77186/Llama-3-70B-Instruct-norefusal language: - en library_name: transformers license: llama3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hfhfix --> <!-- ### vocab_type: --> static quants of https://huggingface.co/theo77186/Llama-3-70B-Instruct-norefusal <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.IQ3_XS.gguf) | IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.IQ3_M.gguf) | IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-norefusal-GGUF/resolve/main/Llama-3-70B-Instruct-norefusal.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/dragonwar-7b-s1-GGUF
mradermacher
2024-05-06T05:18:44Z
11
0
transformers
[ "transformers", "gguf", "unsloth", "book", "en", "base_model:maldv/dragonwar-7b-s1", "base_model:quantized:maldv/dragonwar-7b-s1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-04T05:42:53Z
--- base_model: maldv/dragonwar-7b-s1 language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - unsloth - book --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/maldv/dragonwar-7b-s1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/dragonwar-7b-s1-GGUF/resolve/main/dragonwar-7b-s1.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/IsenHumourAI-GGUF
mradermacher
2024-05-06T05:18:38Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "sft", "en", "base_model:jberni29/IsenHumourAI", "base_model:quantized:jberni29/IsenHumourAI", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-04T06:46:50Z
--- base_model: jberni29/IsenHumourAI language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jberni29/IsenHumourAI <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/IsenHumourAI-GGUF/resolve/main/IsenHumourAI.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/talosian-7b-GGUF
mradermacher
2024-05-06T05:18:30Z
162
3
transformers
[ "transformers", "gguf", "en", "base_model:jspr/talosian-7b", "base_model:quantized:jspr/talosian-7b", "endpoints_compatible", "region:us" ]
null
2024-04-04T07:46:01Z
--- base_model: jspr/talosian-7b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jspr/talosian-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q2_K.gguf) | Q2_K | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.IQ3_XS.gguf) | IQ3_XS | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q3_K_S.gguf) | Q3_K_S | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.IQ3_S.gguf) | IQ3_S | 3.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.IQ3_M.gguf) | IQ3_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q3_K_M.gguf) | Q3_K_M | 4.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q3_K_L.gguf) | Q3_K_L | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.IQ4_XS.gguf) | IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q4_K_S.gguf) | Q4_K_S | 4.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q4_K_M.gguf) | Q4_K_M | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q5_K_M.gguf) | Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q6_K.gguf) | Q6_K | 6.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/talosian-7b-GGUF/resolve/main/talosian-7b.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MistarlingMaid-2x7B-base-GGUF
mradermacher
2024-05-06T05:18:27Z
74
0
transformers
[ "transformers", "gguf", "en", "base_model:dawn17/MistarlingMaid-2x7B-base", "base_model:quantized:dawn17/MistarlingMaid-2x7B-base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-04T08:20:09Z
--- base_model: dawn17/MistarlingMaid-2x7B-base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/dawn17/MistarlingMaid-2x7B-base <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.IQ3_XS.gguf) | IQ3_XS | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.IQ3_S.gguf) | IQ3_S | 5.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.IQ3_M.gguf) | IQ3_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q3_K_M.gguf) | Q3_K_M | 6.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.IQ4_XS.gguf) | IQ4_XS | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q4_K_S.gguf) | Q4_K_S | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q5_K_M.gguf) | Q5_K_M | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MistarlingMaid-2x7B-base-GGUF/resolve/main/MistarlingMaid-2x7B-base.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF
mradermacher
2024-05-06T05:18:21Z
40
1
transformers
[ "transformers", "gguf", "en", "base_model:Undi95/MythoMax-L2-Kimiko-v2-13b", "base_model:quantized:Undi95/MythoMax-L2-Kimiko-v2-13b", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-04T09:08:24Z
--- base_model: Undi95/MythoMax-L2-Kimiko-v2-13b language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Undi95/MythoMax-L2-Kimiko-v2-13b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q2_K.gguf) | Q2_K | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.IQ3_XS.gguf) | IQ3_XS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.IQ3_S.gguf) | IQ3_S | 6.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q3_K_S.gguf) | Q3_K_S | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.IQ3_M.gguf) | IQ3_M | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q3_K_M.gguf) | Q3_K_M | 6.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q3_K_L.gguf) | Q3_K_L | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.IQ4_XS.gguf) | IQ4_XS | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q4_K_S.gguf) | Q4_K_S | 7.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q4_K_M.gguf) | Q4_K_M | 8.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q5_K_S.gguf) | Q5_K_S | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q5_K_M.gguf) | Q5_K_M | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q6_K.gguf) | Q6_K | 11.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MythoMax-L2-Kimiko-v2-13b-GGUF/resolve/main/MythoMax-L2-Kimiko-v2-13b.Q8_0.gguf) | Q8_0 | 14.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/UNAversal-8x7B-v1beta-i1-GGUF
mradermacher
2024-05-06T05:18:09Z
61
1
transformers
[ "transformers", "gguf", "UNA", "juanako", "mixtral", "MoE", "en", "base_model:fblgit/UNAversal-8x7B-v1beta", "base_model:quantized:fblgit/UNAversal-8x7B-v1beta", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-04T09:42:55Z
--- base_model: fblgit/UNAversal-8x7B-v1beta language: - en library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher tags: - UNA - juanako - mixtral - MoE --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/fblgit/UNAversal-8x7B-v1beta <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ1_S.gguf) | i1-IQ1_S | 10.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ1_M.gguf) | i1-IQ1_M | 11.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 12.8 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ2_XS.gguf) | i1-IQ2_XS | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ2_S.gguf) | i1-IQ2_S | 14.4 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ2_M.gguf) | i1-IQ2_M | 15.8 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q2_K.gguf) | i1-Q2_K | 17.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 18.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ3_XS.gguf) | i1-IQ3_XS | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ3_S.gguf) | i1-IQ3_S | 20.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q3_K_S.gguf) | i1-Q3_K_S | 20.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ3_M.gguf) | i1-IQ3_M | 21.7 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q3_K_M.gguf) | i1-Q3_K_M | 22.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q3_K_L.gguf) | i1-Q3_K_L | 24.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-IQ4_XS.gguf) | i1-IQ4_XS | 25.3 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q4_0.gguf) | i1-Q4_0 | 26.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q4_K_S.gguf) | i1-Q4_K_S | 27.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q4_K_M.gguf) | i1-Q4_K_M | 28.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q5_K_S.gguf) | i1-Q5_K_S | 32.5 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q5_K_M.gguf) | i1-Q5_K_M | 33.5 | | | [GGUF](https://huggingface.co/mradermacher/UNAversal-8x7B-v1beta-i1-GGUF/resolve/main/UNAversal-8x7B-v1beta.i1-Q6_K.gguf) | i1-Q6_K | 38.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF
mradermacher
2024-05-06T05:18:04Z
37
2
transformers
[ "transformers", "gguf", "mergekit", "megamerge", "code", "Cyber-Series", "en", "dataset:Open-Orca/OpenOrca", "dataset:cognitivecomputations/dolphin", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:gate369/Alpaca-Star", "dataset:gate369/alpaca-star-ascii", "base_model:LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0", "base_model:quantized:LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-04T10:11:11Z
--- base_model: LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0 datasets: - Open-Orca/OpenOrca - cognitivecomputations/dolphin - WhiteRabbitNeo/WRN-Chapter-2 - WhiteRabbitNeo/WRN-Chapter-1 - gate369/Alpaca-Star - gate369/alpaca-star-ascii language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - mergekit - megamerge - code - Cyber-Series --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.IQ3_XS.gguf) | IQ3_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.IQ3_S.gguf) | IQ3_S | 3.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.IQ3_M.gguf) | IQ3_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Cyber_Matrix_2_0-GGUF/resolve/main/Mixtral_AI_Cyber_Matrix_2_0.Q8_0.gguf) | Q8_0 | 7.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF
mradermacher
2024-05-06T05:17:59Z
1
0
transformers
[ "transformers", "gguf", "en", "base_model:ddh0/Mistral-10.7B-Instruct-v0.2", "base_model:quantized:ddh0/Mistral-10.7B-Instruct-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-04-04T12:08:09Z
--- base_model: ddh0/Mistral-10.7B-Instruct-v0.2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ddh0/Mistral-10.7B-Instruct-v0.2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q2_K.gguf) | Q2_K | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.IQ3_XS.gguf) | IQ3_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.IQ3_S.gguf) | IQ3_S | 4.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.IQ3_M.gguf) | IQ3_M | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 5.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.IQ4_XS.gguf) | IQ4_XS | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 6.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 6.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q6_K.gguf) | Q6_K | 9.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-10.7B-Instruct-v0.2-GGUF/resolve/main/Mistral-10.7B-Instruct-v0.2.Q8_0.gguf) | Q8_0 | 11.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/megatron_2.1_MoE_2x7B-GGUF
mradermacher
2024-05-06T05:17:51Z
1
0
transformers
[ "transformers", "gguf", "moe", "merge", "en", "base_model:Eurdem/megatron_2.1_MoE_2x7B", "base_model:quantized:Eurdem/megatron_2.1_MoE_2x7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-04T12:13:09Z
--- base_model: Eurdem/megatron_2.1_MoE_2x7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - moe - merge --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Eurdem/megatron_2.1_MoE_2x7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.IQ3_XS.gguf) | IQ3_XS | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.IQ3_S.gguf) | IQ3_S | 5.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.IQ3_M.gguf) | IQ3_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q3_K_M.gguf) | Q3_K_M | 6.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.IQ4_XS.gguf) | IQ4_XS | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q4_K_S.gguf) | Q4_K_S | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q5_K_M.gguf) | Q5_K_M | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/megatron_2.1_MoE_2x7B-GGUF/resolve/main/megatron_2.1_MoE_2x7B.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/athena-120b-i1-GGUF
mradermacher
2024-05-06T05:17:47Z
15
0
transformers
[ "transformers", "gguf", "merge", "en", "base_model:ibivibiv/athena-120b", "base_model:quantized:ibivibiv/athena-120b", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-04-04T12:24:29Z
--- base_model: ibivibiv/athena-120b language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - merge --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/ibivibiv/athena-120b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/athena-120b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ1_S.gguf) | i1-IQ1_S | 26.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ1_M.gguf) | i1-IQ1_M | 28.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 32.8 | | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 36.3 | | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ2_S.gguf) | i1-IQ2_S | 38.1 | | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ2_M.gguf) | i1-IQ2_M | 41.4 | | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q2_K.gguf) | i1-Q2_K | 45.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 47.1 | lower quality | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_XS.gguf.part2of2) | i1-IQ3_XS | 50.1 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q3_K_S.gguf.part2of2) | i1-Q3_K_S | 52.7 | IQ3_XS probably better | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_S.gguf.part2of2) | i1-IQ3_S | 52.9 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ3_M.gguf.part2of2) | i1-IQ3_M | 54.7 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 58.8 | IQ3_S probably better | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q3_K_L.gguf.part2of2) | i1-Q3_K_L | 63.9 | IQ3_M probably better | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-IQ4_XS.gguf.part2of2) | i1-IQ4_XS | 65.1 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q4_0.gguf.part2of2) | i1-Q4_0 | 68.9 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q4_K_S.gguf.part2of2) | i1-Q4_K_S | 69.2 | optimal size/speed/quality | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 73.1 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 83.7 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 86.0 | | | [PART 1](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/athena-120b-i1-GGUF/resolve/main/athena-120b.i1-Q6_K.gguf.part3of3) | i1-Q6_K | 99.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/CatNyanster-34b-i1-GGUF
mradermacher
2024-05-06T05:17:35Z
4
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us" ]
null
2024-04-04T15:33:46Z
--- base_model: arlineka/CatNyanster-34b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/arlineka/CatNyanster-34b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/CatNyanster-34b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ1_S.gguf) | i1-IQ1_S | 8.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ1_M.gguf) | i1-IQ1_M | 8.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ2_S.gguf) | i1-IQ2_S | 11.6 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ2_M.gguf) | i1-IQ2_M | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q2_K.gguf) | i1-Q2_K | 13.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 14.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ3_S.gguf) | i1-IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ3_M.gguf) | i1-IQ3_M | 16.2 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 19.1 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q4_0.gguf) | i1-Q4_0 | 20.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/CatNyanster-34b-i1-GGUF/resolve/main/CatNyanster-34b.i1-Q6_K.gguf) | i1-Q6_K | 28.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Mermaid_11.5B-GGUF
mradermacher
2024-05-06T05:17:13Z
19
0
transformers
[ "transformers", "gguf", "en", "base_model:TroyDoesAI/Mermaid_11.5B", "base_model:quantized:TroyDoesAI/Mermaid_11.5B", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-04T19:16:21Z
--- base_model: TroyDoesAI/Mermaid_11.5B language: - en library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/TroyDoesAI/Mermaid_11.5B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q2_K.gguf) | Q2_K | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.IQ3_XS.gguf) | IQ3_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q3_K_S.gguf) | Q3_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.IQ3_S.gguf) | IQ3_S | 5.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.IQ3_M.gguf) | IQ3_M | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q3_K_M.gguf) | Q3_K_M | 6.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q3_K_L.gguf) | Q3_K_L | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.IQ4_XS.gguf) | IQ4_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q4_K_S.gguf) | Q4_K_S | 7.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q4_K_M.gguf) | Q4_K_M | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q5_K_S.gguf) | Q5_K_S | 8.4 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q5_K_M.gguf) | Q5_K_M | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q6_K.gguf) | Q6_K | 9.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mermaid_11.5B-GGUF/resolve/main/Mermaid_11.5B.Q8_0.gguf) | Q8_0 | 12.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->