modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 12:29:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 12:27:55
card
stringlengths
11
1.01M
mradermacher/Top-Western-Maid-7B-GGUF
mradermacher
2024-11-03T04:49:10Z
13
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:saishf/Top-Western-Maid-7B", "base_model:quantized:saishf/Top-Western-Maid-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-02T22:32:54Z
--- base_model: saishf/Top-Western-Maid-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/saishf/Top-Western-Maid-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Top-Western-Maid-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Top-Western-Maid-7B-GGUF/resolve/main/Top-Western-Maid-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf
RichardErkhov
2024-11-03T04:46:44Z
9
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-11-02T18:48:01Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) WizardLM-Math-70B-v0.1 - GGUF - Model creator: https://huggingface.co/MaziyarPanahi/ - Original model: https://huggingface.co/MaziyarPanahi/WizardLM-Math-70B-v0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [WizardLM-Math-70B-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q2_K.gguf) | Q2_K | 23.71GB | | [WizardLM-Math-70B-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.IQ3_XS.gguf) | IQ3_XS | 26.37GB | | [WizardLM-Math-70B-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.IQ3_S.gguf) | IQ3_S | 27.86GB | | [WizardLM-Math-70B-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q3_K_S.gguf) | Q3_K_S | 27.86GB | | [WizardLM-Math-70B-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.IQ3_M.gguf) | IQ3_M | 28.82GB | | [WizardLM-Math-70B-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q3_K.gguf) | Q3_K | 30.99GB | | [WizardLM-Math-70B-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q3_K_M.gguf) | Q3_K_M | 30.99GB | | [WizardLM-Math-70B-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q3_K_L.gguf) | Q3_K_L | 33.67GB | | [WizardLM-Math-70B-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.IQ4_XS.gguf) | IQ4_XS | 34.64GB | | [WizardLM-Math-70B-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q4_0.gguf) | Q4_0 | 36.2GB | | [WizardLM-Math-70B-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.IQ4_NL.gguf) | IQ4_NL | 36.55GB | | [WizardLM-Math-70B-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/blob/main/WizardLM-Math-70B-v0.1.Q4_K_S.gguf) | Q4_K_S | 36.55GB | | [WizardLM-Math-70B-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q4_K | 38.58GB | | [WizardLM-Math-70B-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q4_K_M | 38.58GB | | [WizardLM-Math-70B-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q4_1 | 40.2GB | | [WizardLM-Math-70B-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q5_0 | 44.2GB | | [WizardLM-Math-70B-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q5_K_S | 44.2GB | | [WizardLM-Math-70B-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q5_K | 45.41GB | | [WizardLM-Math-70B-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q5_K_M | 45.41GB | | [WizardLM-Math-70B-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q5_1 | 48.2GB | | [WizardLM-Math-70B-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q6_K | 52.7GB | | [WizardLM-Math-70B-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/MaziyarPanahi_-_WizardLM-Math-70B-v0.1-gguf/tree/main/) | Q8_0 | 68.26GB | Original model description: --- license: agpl-3.0 tags: - merge - wizardlm - mique pipeline_tag: text-generation model-index: - name: WizardLM-Math-70B-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 69.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.07 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.44 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-v0.1 name: Open LLM Leaderboard --- ## Examples There are three killers in a room. Someone enters the room and kills one of them. Nobody leaves the room. How many killers are left in the room? Explain your reasoning step by step. ``` Step 1: Identify the initial situation There are three killers in a room, which we can label as A, B, and C. Step 2: Describe the event Someone (let's call this person D) enters the room and kills one of the killers. For the sake of simplicity, let's say that Killer A is killed. Step 3: Analyze the new situation After the event, there are now two killers left in the room: B and C. The person who entered the room, D, is also still present. However, since D did not leave the room after killing A, it means that D is also a killer. Therefore, there are actually three killers in the room: B, C, and D. Final Answer: After the event, there are three killers left in the room: B, C, and D. ``` Mark is faster than Mary , Mary is faster than Joe. Is Joe faster than Mark? Let's think step by step ``` Step 1: Understand the given information We know that Mark is faster than Mary, and Mary is faster than Joe. This means that Mark is the fastest among the three, followed by Mary, and then Joe. Step 2: Analyze the question The question asks if Joe is faster than Mark. Based on the given information, we can conclude that Joe is not faster than Mark. In fact, Mark is faster than Joe. Final Answer: No, Joe is not faster than Mark. ``` If I lay 2 wet shirts out in the sun flat on the ground to dry and it takes 5 hours until they are dry, how long would it take to dry 4 shirts of the same type that way simultanously? ``` The time taken for a shirt to dry depends on several factors such as the material of the shirt, the humidity, temperature, wind speed, etc. However, if we assume that all four shirts have similar properties and the weather conditions remain constant, then you can expect the drying time to be proportional to the number of shirts. In other words, if two shirts take 5 hours to dry, then four shirts will likely take twice as long, or 10 hours. This is because there is more fabric to dry, which means it will absorb more water from the air, thus taking longer to reach equilibrium with the surrounding environment. However, this is just an estimate, and the actual drying time may vary depending on the specific circumstances. ``` Wrong, it takes the same amount of time! explain step by step 25-4*2+3=? ``` Step 1: Perform the multiplication operation first. 25 - 4 * 2 + 3 = 25 - 8 + 3 Step 2: Now, perform the subtraction and addition operations from left to right. 25 - 8 + 3 = 17 + 3 Step 3: Finally, perform the remaining addition operation. 17 + 3 = 20 So, 25-4*2+3 equals 20. ``` ## Eval ### WizardLM/WizardLM-70B-V1.0 vs. MaziyarPanahi/WizardLM-Math-70B-v0.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fd5e18a90b6dc4633f6d292/7NWjisnm1gfZN2cMg4c5X.png) ### Leaderboard ```python { "all": { "acc": 0.6914116069568377, "acc_stderr": 0.03063431437342948, "acc_norm": 0.6938613221179539, "acc_norm_stderr": 0.031238741076549784, "mc1": 0.40269277845777235, "mc1_stderr": 0.01716883093518722, "mc2": 0.5707095526544473, "mc2_stderr": 0.01525040450448649 }, "harness|arc:challenge|25": { "acc": 0.6322525597269625, "acc_stderr": 0.014090995618168482, "acc_norm": 0.6706484641638225, "acc_norm_stderr": 0.013734057652635474 }, "harness|hellaswag|10": { "acc": 0.6746664011153157, "acc_stderr": 0.0046754187743142306, "acc_norm": 0.8600876319458275, "acc_norm_stderr": 0.0034618713240671846 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.34, "acc_stderr": 0.04760952285695236, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695236 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6518518518518519, "acc_stderr": 0.041153246103369526, "acc_norm": 0.6518518518518519, "acc_norm_stderr": 0.041153246103369526 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7894736842105263, "acc_stderr": 0.03317672787533157, "acc_norm": 0.7894736842105263, "acc_norm_stderr": 0.03317672787533157 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.73, "acc_stderr": 0.04461960433384741, "acc_norm": 0.73, "acc_norm_stderr": 0.04461960433384741 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7283018867924528, "acc_stderr": 0.027377706624670713, "acc_norm": 0.7283018867924528, "acc_norm_stderr": 0.027377706624670713 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8194444444444444, "acc_stderr": 0.032166008088022675, "acc_norm": 0.8194444444444444, "acc_norm_stderr": 0.032166008088022675 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.57, "acc_stderr": 0.049756985195624284, "acc_norm": 0.57, "acc_norm_stderr": 0.049756985195624284 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6878612716763006, "acc_stderr": 0.035331333893236574, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.035331333893236574 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.35294117647058826, "acc_stderr": 0.047551296160629475, "acc_norm": 0.35294117647058826, "acc_norm_stderr": 0.047551296160629475 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.676595744680851, "acc_stderr": 0.030579442773610337, "acc_norm": 0.676595744680851, "acc_norm_stderr": 0.030579442773610337 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.40350877192982454, "acc_stderr": 0.046151869625837026, "acc_norm": 0.40350877192982454, "acc_norm_stderr": 0.046151869625837026 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5793103448275863, "acc_stderr": 0.04113914981189261, "acc_norm": 0.5793103448275863, "acc_norm_stderr": 0.04113914981189261 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4497354497354497, "acc_stderr": 0.02562085704293665, "acc_norm": 0.4497354497354497, "acc_norm_stderr": 0.02562085704293665 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.46825396825396826, "acc_stderr": 0.04463112720677172, "acc_norm": 0.46825396825396826, "acc_norm_stderr": 0.04463112720677172 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.46, "acc_stderr": 0.05009082659620332, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8129032258064516, "acc_stderr": 0.022185710092252252, "acc_norm": 0.8129032258064516, "acc_norm_stderr": 0.022185710092252252 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5369458128078818, "acc_stderr": 0.035083705204426656, "acc_norm": 0.5369458128078818, "acc_norm_stderr": 0.035083705204426656 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.79, "acc_stderr": 0.040936018074033256, "acc_norm": 0.79, "acc_norm_stderr": 0.040936018074033256 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8363636363636363, "acc_stderr": 0.02888787239548795, "acc_norm": 0.8363636363636363, "acc_norm_stderr": 0.02888787239548795 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8686868686868687, "acc_stderr": 0.024063156416822502, "acc_norm": 0.8686868686868687, "acc_norm_stderr": 0.024063156416822502 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.927461139896373, "acc_stderr": 0.018718998520678178, "acc_norm": 0.927461139896373, "acc_norm_stderr": 0.018718998520678178 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.7025641025641025, "acc_stderr": 0.023177408131465953, "acc_norm": 0.7025641025641025, "acc_norm_stderr": 0.023177408131465953 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.34814814814814815, "acc_stderr": 0.02904560029061626, "acc_norm": 0.34814814814814815, "acc_norm_stderr": 0.02904560029061626 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7941176470588235, "acc_stderr": 0.02626502460827588, "acc_norm": 0.7941176470588235, "acc_norm_stderr": 0.02626502460827588 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.4503311258278146, "acc_stderr": 0.04062290018683776, "acc_norm": 0.4503311258278146, "acc_norm_stderr": 0.04062290018683776 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8954128440366973, "acc_stderr": 0.013120530245265593, "acc_norm": 0.8954128440366973, "acc_norm_stderr": 0.013120530245265593 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5787037037037037, "acc_stderr": 0.03367462138896078, "acc_norm": 0.5787037037037037, "acc_norm_stderr": 0.03367462138896078 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9166666666666666, "acc_stderr": 0.019398452135813905, "acc_norm": 0.9166666666666666, "acc_norm_stderr": 0.019398452135813905 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8860759493670886, "acc_stderr": 0.020681745135884565, "acc_norm": 0.8860759493670886, "acc_norm_stderr": 0.020681745135884565 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.757847533632287, "acc_stderr": 0.028751392398694755, "acc_norm": 0.757847533632287, "acc_norm_stderr": 0.028751392398694755 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8702290076335878, "acc_stderr": 0.029473649496907065, "acc_norm": 0.8702290076335878, "acc_norm_stderr": 0.029473649496907065 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8181818181818182, "acc_stderr": 0.03520893951097655, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.03520893951097655 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8148148148148148, "acc_stderr": 0.03755265865037181, "acc_norm": 0.8148148148148148, "acc_norm_stderr": 0.03755265865037181 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7791411042944786, "acc_stderr": 0.03259177392742179, "acc_norm": 0.7791411042944786, "acc_norm_stderr": 0.03259177392742179 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.8446601941747572, "acc_stderr": 0.03586594738573974, "acc_norm": 0.8446601941747572, "acc_norm_stderr": 0.03586594738573974 }, "harness|hendrycksTest-marketing|5": { "acc": 0.905982905982906, "acc_stderr": 0.019119892798924974, "acc_norm": 0.905982905982906, "acc_norm_stderr": 0.019119892798924974 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.67, "acc_stderr": 0.047258156262526066, "acc_norm": 0.67, "acc_norm_stderr": 0.047258156262526066 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8697318007662835, "acc_stderr": 0.012036729568216054, "acc_norm": 0.8697318007662835, "acc_norm_stderr": 0.012036729568216054 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7774566473988439, "acc_stderr": 0.02239421566194282, "acc_norm": 0.7774566473988439, "acc_norm_stderr": 0.02239421566194282 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.5553072625698324, "acc_stderr": 0.016619881988177012, "acc_norm": 0.5553072625698324, "acc_norm_stderr": 0.016619881988177012 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7516339869281046, "acc_stderr": 0.024739981355113592, "acc_norm": 0.7516339869281046, "acc_norm_stderr": 0.024739981355113592 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.77491961414791, "acc_stderr": 0.023720088516179027, "acc_norm": 0.77491961414791, "acc_norm_stderr": 0.023720088516179027 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7962962962962963, "acc_stderr": 0.02240967454730417, "acc_norm": 0.7962962962962963, "acc_norm_stderr": 0.02240967454730417 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5390070921985816, "acc_stderr": 0.029736592526424445, "acc_norm": 0.5390070921985816, "acc_norm_stderr": 0.029736592526424445 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5586701434159062, "acc_stderr": 0.012682016335646683, "acc_norm": 0.5586701434159062, "acc_norm_stderr": 0.012682016335646683 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7242647058823529, "acc_stderr": 0.027146271936625162, "acc_norm": 0.7242647058823529, "acc_norm_stderr": 0.027146271936625162 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.761437908496732, "acc_stderr": 0.017242385828779627, "acc_norm": 0.761437908496732, "acc_norm_stderr": 0.017242385828779627 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7454545454545455, "acc_stderr": 0.041723430387053825, "acc_norm": 0.7454545454545455, "acc_norm_stderr": 0.041723430387053825 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7877551020408163, "acc_stderr": 0.026176967197866767, "acc_norm": 0.7877551020408163, "acc_norm_stderr": 0.026176967197866767 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8805970149253731, "acc_stderr": 0.02292879327721974, "acc_norm": 0.8805970149253731, "acc_norm_stderr": 0.02292879327721974 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.9, "acc_stderr": 0.030151134457776334, "acc_norm": 0.9, "acc_norm_stderr": 0.030151134457776334 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699122, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699122 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8596491228070176, "acc_stderr": 0.0266405825391332, "acc_norm": 0.8596491228070176, "acc_norm_stderr": 0.0266405825391332 }, "harness|truthfulqa:mc|0": { "mc1": 0.40269277845777235, "mc1_stderr": 0.01716883093518722, "mc2": 0.5707095526544473, "mc2_stderr": 0.01525040450448649 }, "harness|winogrande|5": { "acc": 0.8176795580110497, "acc_stderr": 0.010851565594267207 }, "harness|gsm8k|5": { "acc": 0.6444275966641395, "acc_stderr": 0.013185402252713852 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__WizardLM-Math-70B-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |70.92| |AI2 Reasoning Challenge (25-Shot)|67.06| |HellaSwag (10-Shot) |86.01| |MMLU (5-Shot) |69.14| |TruthfulQA (0-shot) |57.07| |Winogrande (5-shot) |81.77| |GSM8k (5-shot) |64.44|
theprint/ReWiz-Worldbuilder-7B
theprint
2024-11-03T04:42:51Z
13
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:theprint/ReWiz-7B", "base_model:merge:theprint/ReWiz-7B", "base_model:theprint/WorldBuilder-7B", "base_model:merge:theprint/WorldBuilder-7B", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-28T04:32:04Z
--- library_name: transformers tags: - mergekit - merge base_model: - theprint/WorldBuilder-7B - theprint/ReWiz-7B model-index: - name: ReWiz-Worldbuilder-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 25.1 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 25.08 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.95 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 2.57 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.39 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 21.9 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B name: Open LLM Leaderboard --- <img src="https://huggingface.co/theprint/ReWiz-Llama-3.2-3B/resolve/main/ReWiz_banner.png"> Half the data was geared towards better reasoning (EvolKit-20k and reasoning-base-20k), the other half will help to de-censor the model (WizardLM data set). # Merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [theprint/WorldBuilder-7B](https://huggingface.co/theprint/WorldBuilder-7B) * [theprint/ReWiz-7B](https://huggingface.co/theprint/ReWiz-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: theprint/ReWiz-7B layer_range: [0, 32] - model: theprint/WorldBuilder-7B layer_range: [0, 32] merge_method: slerp base_model: theprint/ReWiz-7B parameters: t: - filter: self_attn value: [0.1, 0.5, 0.3, 0.7, 0.9] - filter: mlp value: [0.9, 0.5, 0.7, 0.3, 0.1] - value: 0.5 dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_theprint__ReWiz-Worldbuilder-7B) | Metric |Value| |-------------------|----:| |Avg. |15.66| |IFEval (0-Shot) |25.10| |BBH (3-Shot) |25.08| |MATH Lvl 5 (4-Shot)| 2.95| |GPQA (0-shot) | 2.57| |MuSR (0-shot) |16.39| |MMLU-PRO (5-shot) |21.90|
theprint/ReWiz-Llama-3.1-8B
theprint
2024-11-03T04:41:56Z
115
1
null
[ "safetensors", "gguf", "llama", "unsloth", "trl", "sft", "theprint", "ReWiz", "en", "dataset:KingNish/reasoning-base-20k", "dataset:arcee-ai/EvolKit-20k", "dataset:cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-10-16T00:47:37Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit language: - en license: apache-2.0 tags: - unsloth - trl - sft - theprint - ReWiz datasets: - KingNish/reasoning-base-20k - arcee-ai/EvolKit-20k - cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered --- <img src="https://huggingface.co/theprint/ReWiz-Llama-3.2-3B/resolve/main/ReWiz_banner.png"> Half the data was geared towards better reasoning (EvolKit-20k and reasoning-base-20k), the other half will help to de-censor the model (WizardLM data set). # Uploaded model - **Developed by:** theprint - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
theprint/ReWiz-7B
theprint
2024-11-03T04:40:57Z
159
0
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "theprint", "conversational", "en", "dataset:KingNish/reasoning-base-20k", "dataset:arcee-ai/EvolKit-20k", "dataset:cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-08T12:15:58Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft - theprint base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit datasets: - KingNish/reasoning-base-20k - arcee-ai/EvolKit-20k - cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered model-index: - name: ReWiz-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 40.48 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 23.5 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.57 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 3.36 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.74 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 18.56 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-7B name: Open LLM Leaderboard --- <img src="https://huggingface.co/theprint/ReWiz-Llama-3.2-3B/resolve/main/ReWiz_banner.png"> # ReWiz-7B This is a fine tune of Mistral 7B Instruct (0.3). Half the data was geared towards better reasoning (EvolKit-20k and reasoning-base-20k), the other half will help to de-censor the model (WizardLM data set). # Uploaded model - **Developed by:** theprint - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_theprint__ReWiz-7B) | Metric |Value| |-------------------|----:| |Avg. |17.54| |IFEval (0-Shot) |40.48| |BBH (3-Shot) |23.50| |MATH Lvl 5 (4-Shot)| 2.57| |GPQA (0-shot) | 3.36| |MuSR (0-shot) |16.74| |MMLU-PRO (5-shot) |18.56|
theprint/ReWiz-Nemo-12B-Instruct-GGUF
theprint
2024-11-03T04:39:44Z
323
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:theprint/ReWiz-Nemo-12B-Instruct", "base_model:quantized:theprint/ReWiz-Nemo-12B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-31T02:15:41Z
--- base_model: - theprint/ReWiz-Nemo-12B-Instruct language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf --- <img src="https://huggingface.co/theprint/ReWiz-Llama-3.2-3B/resolve/main/ReWiz_banner.png"> # Uploaded model - **Developed by:** theprint - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
GreenBitAI/Qwen-2.5-72B-Instruct-layer-mix-bpw-4.0
GreenBitAI
2024-11-03T04:15:47Z
5
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2024-10-29T04:04:17Z
--- license: apache-2.0 ---
waloneai/kathein-cartoon
waloneai
2024-11-03T04:13:57Z
7
3
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-03T04:13:53Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: kathein festival license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # kathein cartoon <Gallery /> ## Model description kathein cartoon ## Trigger words You should use `kathein festival` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/shweaung/kathein-cartoon/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
mradermacher/OGNO-7B-GGUF
mradermacher
2024-11-03T04:11:11Z
29
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "liminerity/Omningotex-7b-slerp", "eren23/dpo-binarized-NeutrixOmnibe-7B", "en", "base_model:paulml/OGNO-7B", "base_model:quantized:paulml/OGNO-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-02T05:03:16Z
--- base_model: paulml/OGNO-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - liminerity/Omningotex-7b-slerp - eren23/dpo-binarized-NeutrixOmnibe-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/paulml/OGNO-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-GGUF/resolve/main/OGNO-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/OGNO-7B-i1-GGUF
mradermacher
2024-11-03T04:11:11Z
420
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "liminerity/Omningotex-7b-slerp", "eren23/dpo-binarized-NeutrixOmnibe-7B", "en", "base_model:paulml/OGNO-7B", "base_model:quantized:paulml/OGNO-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-03T01:57:18Z
--- base_model: paulml/OGNO-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - liminerity/Omningotex-7b-slerp - eren23/dpo-binarized-NeutrixOmnibe-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/paulml/OGNO-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/OGNO-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OGNO-7B-i1-GGUF/resolve/main/OGNO-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
AbdoulayeDIOP/lettuce-npk-vit
AbdoulayeDIOP
2024-11-03T04:09:58Z
14
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-11-03T00:41:04Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: lettuce-npk-vit results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9523809523809523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/abdoulaye-diop/lettuce-npk-deficiency-prediction/runs/zjp8gyck) # lettuce-npk-vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1492 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.1633 | 0.992 | 31 | 1.1239 | 0.8571 | | 0.4802 | 1.984 | 62 | 0.4213 | 0.9048 | | 0.1386 | 2.976 | 93 | 0.2501 | 0.9524 | | 0.1003 | 4.0 | 125 | 0.1879 | 0.9524 | | 0.0871 | 4.992 | 156 | 0.3482 | 0.8571 | | 0.0702 | 5.984 | 187 | 0.2048 | 0.9524 | | 0.0594 | 6.976 | 218 | 0.2824 | 0.9048 | | 0.0425 | 8.0 | 250 | 0.2567 | 0.9524 | | 0.0398 | 8.992 | 281 | 0.3363 | 0.8571 | | 0.0348 | 9.984 | 312 | 0.2518 | 0.9524 | | 0.0411 | 10.9760 | 343 | 0.0369 | 1.0 | | 0.0445 | 12.0 | 375 | 0.2288 | 0.9524 | | 0.0353 | 12.992 | 406 | 0.2364 | 0.8571 | | 0.0384 | 13.984 | 437 | 0.2255 | 0.9524 | | 0.0331 | 14.9760 | 468 | 0.0572 | 1.0 | | 0.0252 | 16.0 | 500 | 0.2103 | 0.9524 | | 0.0337 | 16.992 | 531 | 0.0295 | 1.0 | | 0.0302 | 17.984 | 562 | 0.2805 | 0.9048 | | 0.0328 | 18.976 | 593 | 0.2127 | 0.9524 | | 0.0315 | 19.84 | 620 | 0.1492 | 0.9524 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
bartowski/Mistral-Crab-DPO-GGUF
bartowski
2024-11-03T04:05:34Z
93
0
null
[ "gguf", "alignment-handbook", "generated_from_trainer", "text-generation", "en", "base_model:THU-KEG/Mistral-Crab-DPO", "base_model:quantized:THU-KEG/Mistral-Crab-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-03T03:09:31Z
--- base_model: THU-KEG/Mistral-Crab-DPO language: - en license: apache-2.0 metrics: - accuracy pipeline_tag: text-generation tags: - alignment-handbook - generated_from_trainer quantized_by: bartowski --- ## Llamacpp imatrix Quantizations of Mistral-Crab-DPO Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4014">b4014</a> for quantization. Original model: https://huggingface.co/THU-KEG/Mistral-Crab-DPO All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) ## Prompt format ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Mistral-Crab-DPO-f16.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-f16.gguf) | f16 | 14.50GB | false | Full F16 weights. | | [Mistral-Crab-DPO-Q8_0.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q8_0.gguf) | Q8_0 | 7.70GB | false | Extremely high quality, generally unneeded but max available quant. | | [Mistral-Crab-DPO-Q6_K_L.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q6_K_L.gguf) | Q6_K_L | 6.01GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [Mistral-Crab-DPO-Q6_K.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q6_K.gguf) | Q6_K | 5.95GB | false | Very high quality, near perfect, *recommended*. | | [Mistral-Crab-DPO-Q5_K_L.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q5_K_L.gguf) | Q5_K_L | 5.22GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [Mistral-Crab-DPO-Q5_K_M.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q5_K_M.gguf) | Q5_K_M | 5.14GB | false | High quality, *recommended*. | | [Mistral-Crab-DPO-Q5_K_S.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q5_K_S.gguf) | Q5_K_S | 5.00GB | false | High quality, *recommended*. | | [Mistral-Crab-DPO-Q4_K_L.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_K_L.gguf) | Q4_K_L | 4.47GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Mistral-Crab-DPO-Q4_K_M.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_K_M.gguf) | Q4_K_M | 4.37GB | false | Good quality, default size for must use cases, *recommended*. | | [Mistral-Crab-DPO-Q4_K_S.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_K_S.gguf) | Q4_K_S | 4.14GB | false | Slightly lower quality with more space savings, *recommended*. | | [Mistral-Crab-DPO-Q4_0.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_0.gguf) | Q4_0 | 4.13GB | false | Legacy format, generally not worth using over similarly sized formats | | [Mistral-Crab-DPO-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_0_8_8.gguf) | Q4_0_8_8 | 4.11GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. | | [Mistral-Crab-DPO-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_0_4_8.gguf) | Q4_0_4_8 | 4.11GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. | | [Mistral-Crab-DPO-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q4_0_4_4.gguf) | Q4_0_4_4 | 4.11GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. | | [Mistral-Crab-DPO-Q3_K_XL.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q3_K_XL.gguf) | Q3_K_XL | 3.94GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Mistral-Crab-DPO-IQ4_XS.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-IQ4_XS.gguf) | IQ4_XS | 3.91GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Mistral-Crab-DPO-Q3_K_L.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q3_K_L.gguf) | Q3_K_L | 3.83GB | false | Lower quality but usable, good for low RAM availability. | | [Mistral-Crab-DPO-Q3_K_M.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q3_K_M.gguf) | Q3_K_M | 3.52GB | false | Low quality. | | [Mistral-Crab-DPO-IQ3_M.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-IQ3_M.gguf) | IQ3_M | 3.29GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Mistral-Crab-DPO-Q3_K_S.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q3_K_S.gguf) | Q3_K_S | 3.17GB | false | Low quality, not recommended. | | [Mistral-Crab-DPO-IQ3_XS.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-IQ3_XS.gguf) | IQ3_XS | 3.02GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Mistral-Crab-DPO-Q2_K_L.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q2_K_L.gguf) | Q2_K_L | 2.85GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Mistral-Crab-DPO-Q2_K.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-Q2_K.gguf) | Q2_K | 2.72GB | false | Very low quality but surprisingly usable. | | [Mistral-Crab-DPO-IQ2_M.gguf](https://huggingface.co/bartowski/Mistral-Crab-DPO-GGUF/blob/main/Mistral-Crab-DPO-IQ2_M.gguf) | IQ2_M | 2.50GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using. Thanks! ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Mistral-Crab-DPO-GGUF --include "Mistral-Crab-DPO-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Mistral-Crab-DPO-GGUF --include "Mistral-Crab-DPO-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (Mistral-Crab-DPO-Q8_0) or download them all in place (./) ## Q4_0_X_X These are *NOT* for Metal (Apple) offloading, only ARM chips. If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660) To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!). ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset Thank you ZeroWw for the inspiration to experiment with embed/output Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
mradermacher/LWM-Text-Chat-512K-GGUF
mradermacher
2024-11-03T04:05:10Z
18
0
transformers
[ "transformers", "gguf", "en", "base_model:LargeWorldModel/LWM-Text-Chat-512K", "base_model:quantized:LargeWorldModel/LWM-Text-Chat-512K", "endpoints_compatible", "region:us" ]
null
2024-11-02T04:50:50Z
--- base_model: LargeWorldModel/LWM-Text-Chat-512K language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/LargeWorldModel/LWM-Text-Chat-512K <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/LWM-Text-Chat-512K-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-Chat-512K-GGUF/resolve/main/LWM-Text-Chat-512K.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Kimberlywww/bert-finetuned-squad
Kimberlywww
2024-11-03T03:59:37Z
116
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-11-03T02:01:09Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Tokenizers 0.19.1
kiwi1229/cross_encoder_distil_deberta_3
kiwi1229
2024-11-03T03:45:52Z
117
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-03T03:45:31Z
--- library_name: transformers tags: - cross-encoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlekseyCalvin/Mayakovsky_Posters_2_5kSt
AlekseyCalvin
2024-11-03T03:19:32Z
9
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "image-generation", "flux-diffusers", "schnell", "photo", "Mayakovsky", "art", "poster", "realism", "character", "historical person", "poetry", "literature", "history", "archival", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:adapter:black-forest-labs/FLUX.1-schnell", "license:apache-2.0", "region:us" ]
text-to-image
2024-11-03T00:21:33Z
--- license: apache-2.0 language: - en tags: - flux - diffusers - lora - replicate - image-generation - flux-diffusers - schnell - photo - Mayakovsky - art - poster - realism - character - historical person - poetry - literature - history - archival base_model: "black-forest-labs/FLUX.1-schnell" pipeline_tag: text-to-image library_name: diffusers emoji: 🔜 instance_prompt: MAYAK style Constructivist Poster widget: - text: MAYAK style drawing of Osip Mandelshtam reciting /OH, BUT PETERSBURG! NO! IM NOT READY TO DIE! YOU STILL HOLD ALL THE TELEPHONE NUMBERS OF MINE!/ output: url: 1730591317624__000005000_3.jpg - text: >- (Post-Gen Edited Text) MAYAK style drawing of aging poet Osip Mandelstam reading in a trolley in Leningrad /IVE RETURNED TO MY CITY, I KNOW IT TO TEARS, TINY VEINS, & TO GLANDS, SWOLLEN UP LIKE A KID'S!/ output: url: OMlend.jpg - text: >- MAYAK style satyrical Constructivist book cover panel featuring Vladimir Mayakovsky in a suit, yelling out from the top of an American skyscraper to top-hatted capitalists below the following text: "AND YOU? COULD YOU HAVE?", stylized book art output: url: Ay_2.jpg - text: >- MAYAK style art of poet Mandelstam reading /YOU'VE RETURNED HERE, SO SWALLOW THEN, FAST AS YOU MIGHT, ALL THE FISH OIL OF LENINGRAD'S RIVERINE LIGHT!/ output: url: OmRIver5k.jpg --- <Gallery /> # Mayakovsky Style Soviet Constructivist Posters & Cartoons Flux LoRA – Version 2 – by SOON® Trained via Ostris' [ai-toolkit](https://replicate.com/ostris/flux-dev-lora-trainer/train) on 50 high-resolution scans of 1910s/1920s posters & artworks by the great Soviet **poet, artist, & Marxist activist Vladimir Mayakovsky**. <br> For this training experiment, we first spent many days rigorously translating the textual elements (slogans, captions, titles, inset poems, speech fragments, etc), with form/signification/rhymes intact, throughout every image subsequently used for training. <br> These translated textographic elements were, furthermore, re-placed by us into their original visual contexts, using fonts matched up to the sources. <br> We then manually composed highly detailed paragraph-long captions, wherein we detailed both the graphic and the textual content of each piece, its layout, as well as the most intuitive/intended apprehension of each composition. <br> This second version of the resultent LoRA was trained on our custom Schnell-based checkpoint (Historic Color 2), available [here in fp8 Safetensors](https://huggingface.co/AlekseyCalvin/HistoricColorSoonrFluxV2/tree/main) and [here in Diffusers format](https://huggingface.co/AlekseyCalvin/HistoricColorSoonr_v2_FluxSchnell_Diffusers). <br> The training went for 5000 steps at a DiT Learning Rate of .00002, batch 1, with the ademamix8bit optimizer, and both text encoders trained alongside the DiT!<br> No synthetic data was used for the training, nor any auto-generated captions! Everything was manually and attentively pre-curated with a deep respect for the sources used. <br> This is a **rank-32/alpha-64 Constructivist Art & Soviet Satirical Cartoon LoRA for Flux** (whether of a [Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev), a [Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell), or a [Soon®](https://huggingface.co/AlekseyCalvin/HistoricColorSoonr_Schnell) sort...) <br> Check out our **translations of Mayakovsky's verse-works**, adapted from a proto-Soviet song-tongue into a Worldish one...<br> And found, along with many other poets' songs and tomes... Over **at [SilverAgePoets.com](https://www.silveragepoets.com)!** ## Trigger words You should use `MAYAK style` or `MAYAK style Constructivist poster art` or `MAYAK style satyrical drawing` or suchlike to summon the poet's deathlessly pens and brushes. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('AlekseyCalvin/Mayakovsky_Posters_2_5kSt', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
rahulvk007/CustomLlama
rahulvk007
2024-11-03T03:08:58Z
86
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-03T03:04:32Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rehan1234/whispher-small-gujarati
Rehan1234
2024-11-03T03:02:45Z
7
0
null
[ "safetensors", "whisper", "whisper-event", "gu", "license:apache-2.0", "model-index", "region:us" ]
null
2024-10-18T09:01:48Z
--- language: - gu license: apache-2.0 tags: - whisper-event metrics: - wer model-index: - name: Whisper Gujarati Small - Vasista Sai Lodagala results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: gu_in split: test metrics: - type: wer value: 14.73 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Gujarati Small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Gujarati data available from multiple publicly available ASR corpuses. It has been fine-tuned as a part of the Whisper fine-tuning sprint. **NOTE:** The code used to train this model is available for re-use in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository. ## Usage In order to evaluate this model on an entire dataset, the evaluation codes available in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository can be used. The same repository also provides the scripts for faster inference using whisper-jax. In order to infer a single audio file using this model, the following code snippet can be used: ```python >>> import torch >>> from transformers import pipeline >>> # path to the audio file to be transcribed >>> audio = "/path/to/audio.format" >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-gujarati-small", chunk_length_s=30, device=device) >>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="gu", task="transcribe") >>> print('Transcription: ', transcribe(audio)["text"]) ``` For faster inference of whisper models, the [whisper-jax](https://github.com/sanchit-gandhi/whisper-jax) library can be used. Please follow the necessary installation steps as mentioned [here](https://github.com/vasistalodagala/whisper-finetune#faster-evaluation-with-whisper-jax), before using the following code snippet: ```python >>> import jax.numpy as jnp >>> from whisper_jax import FlaxWhisperForConditionalGeneration, FlaxWhisperPipline >>> # path to the audio file to be transcribed >>> audio = "/path/to/audio.format" >>> transcribe = FlaxWhisperPipline("vasista22/whisper-gujarati-small", batch_size=16) >>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="gu", task="transcribe") >>> print('Transcription: ', transcribe(audio)["text"]) ``` ## Training and evaluation data Training Data: - [ULCA ASR Corpus](https://github.com/Open-Speech-EkStep/ULCA-asr-dataset-corpus#gujarati-labelled-total-duration-is-430-hours) - [Microsoft Speech Corpus (Indian Languages)](https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e) - [Google/Fleurs Train+Dev set](https://huggingface.co/datasets/google/fleurs) - [OpenSLR](https://www.openslr.org/78/) Evaluation Data: - [Microsoft Speech Corpus (Indian Languages) Test Set](https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e) - [Google/Fleurs Test Set](https://huggingface.co/datasets/google/fleurs) ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.7e-05 - train_batch_size: 48 - eval_batch_size: 32 - seed: 22 - optimizer: adamw_bnb_8bit - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - training_steps: 20532 (terminated upon convergence. Initially set to 21240 steps) - mixed_precision_training: True
mradermacher/LWM-Text-256K-GGUF
mradermacher
2024-11-03T03:02:11Z
34
0
transformers
[ "transformers", "gguf", "en", "base_model:LargeWorldModel/LWM-Text-256K", "base_model:quantized:LargeWorldModel/LWM-Text-256K", "endpoints_compatible", "region:us" ]
null
2024-11-02T04:28:42Z
--- base_model: LargeWorldModel/LWM-Text-256K language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/LargeWorldModel/LWM-Text-256K <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/LWM-Text-256K-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/LWM-Text-256K-GGUF/resolve/main/LWM-Text-256K.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
streamize/leosam5-lightning
streamize
2024-11-03T02:58:38Z
49
0
diffusers
[ "diffusers", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-11-03T02:56:31Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kayfour/T3Q-ko-solar-dpo-v8-testv1
kayfour
2024-11-03T02:56:21Z
12
0
null
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
2024-11-01T05:39:01Z
--- license: apache-2.0 --- Model Card for Model ID Model Details Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. Developed by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Direct Use [More Information Needed] Downstream Use [optional] [More Information Needed] Out-of-Scope Use [More Information Needed] Bias, Risks, and Limitations [More Information Needed] Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] Training Details Training Data [More Information Needed] Training Procedure Preprocessing [optional] [More Information Needed] Training Hyperparameters Training regime: [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed] Evaluation Testing Data, Factors & Metrics Testing Data [More Information Needed] Factors [More Information Needed] Metrics [More Information Needed] Results [More Information Needed] Summary Model Examination [optional] [More Information Needed] Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). Hardware Type: [More Information Needed] Hours used: [More Information Needed] Cloud Provider: [More Information Needed] Compute Region: [More Information Needed] Carbon Emitted: [More Information Needed] Technical Specifications [optional] Model Architecture and Objective [More Information Needed] Compute Infrastructure [More Information Needed] Hardware [More Information Needed] Software [More Information Needed] Citation [optional] BibTeX: [More Information Needed] APA: [More Information Needed] Glossary [optional] [More Information Needed] More Information [optional] [More Information Needed] Model Card Authors [optional] [More Information Needed] Model Card Contact [More Information Needed]
mradermacher/DPOB-INMTOB-7B-GGUF
mradermacher
2024-11-03T02:37:13Z
31
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "liminerity/Omningotex-7b-slerp", "eren23/merged-dpo-binarized-NeutrixOmnibe-7B", "en", "base_model:paulml/DPOB-INMTOB-7B", "base_model:quantized:paulml/DPOB-INMTOB-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-02T03:49:51Z
--- base_model: paulml/DPOB-INMTOB-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - liminerity/Omningotex-7b-slerp - eren23/merged-dpo-binarized-NeutrixOmnibe-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/paulml/DPOB-INMTOB-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DPOB-INMTOB-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DPOB-INMTOB-7B-GGUF/resolve/main/DPOB-INMTOB-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Xu-Ouyang/pythia-2.8b-deduped-int3-step16-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T02:36:22Z
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "gptq", "region:us" ]
text-generation
2024-11-03T02:33:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
osoriohans/bert_ciberseguridad_1
osoriohans
2024-11-03T02:29:08Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-03T02:28:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Tele-AI/TeleChat2-115B
Tele-AI
2024-11-03T02:09:42Z
7
0
null
[ "safetensors", "telechat", "custom_code", "arxiv:2104.09864", "arxiv:2002.05202", "arxiv:1910.07467", "arxiv:2401.03804", "license:apache-2.0", "region:us" ]
null
2024-09-20T05:50:48Z
--- license: apache-2.0 --- <div align="center"> <h1> 星辰语义大模型-TeleChat2 </h1> </div> <p align="center"> 🤗 <a href="https://huggingface.co/Tele-AI" target="_blank">Hugging Face</a> • 🤖 <a href="https://modelscope.cn/organization/TeleAI" target="_blank">ModelScope</a> • 🏔 <a href="https://gitee.com/mindspore/mindformers/tree/dev/research/telechat" target="_blank">MindSpore</a> • 🐾 <a href="https://gitee.com/Tele-AI/tele-chat" target="_blank">gitee</a>️ • 💬 <a href="https://github.com/Tele-AI/Telechat/blob/master/images/wechat.jpg" target="_blank">WeChat</a> </p> # 目录 - [模型介绍](#模型介绍) - [效果评测](#效果评测) - [声明、协议、引用](#声明协议引用) # 最新动态 - 2024.9.20 开源TeleChat2-115B模型,该模型是**首个完全国产算力训练并开源的千亿参数模型**。 # 模型介绍 ### 星辰语义大模型-TeleChat2 - 星辰语义大模型**TeleChat2**是由中国电信人工智能研究院研发训练的大语言模型,该系列模型**完全基于国产算力训练**。 - 本次开源**TeleChat2-115B**模型采用10万亿 Tokens中英文高质量语料进行训练,同步开源对话模型**TeleChat2-115B**的多格式、多平台权重文件。 - **TeleChat2**在训练数据、训练方法等方面进行了改进,在通用问答和知识类、代码类、数学类榜单上相比**TeleChat1**均有大幅提升。 - **TeleChat2**完全基于国产算力和国产深度学习框架进行训练,算力和算法框架更自主可控。优化MP、PP、SP实现方式提升模型性能,优化算子来提升训练速度。 - 我们使用大量小模型实验来验证scaling law规律,在不同模型结构、不同数据配比和数据清洗方式中寻找最优设计。 - 采用RingAttention及其他序列切分方式,实现长文训练性能提升;通过ntk-aware+attention-scaling的方式保证训练长度切换时的平稳过渡,以此来保证模型在不同长度数据下的训练效果。 - 在微调数据方面,我们进行了指令复杂性提升与多样性扩充,通过数据合成和人工标注生成高质量数据,并使用拒绝采样生成多样的推理路径;通过研究一套基于base模型反向选择偏好对齐数据方案,基于适配数据最大限度提升模型效果。 - 通用能力较TeleChat系列模型提升超过29%,在逻辑推理、总结摘要、长文写作和数学计算上均有大幅提升。 ### 模型结构 我们采用标准的 `Decoder-only` 结构设计了 **TeleChat2** 模型,使用 [Rotary Embedding](https://arxiv.org/pdf/2104.09864.pdf) 的位置编码方法、使用 [SwiGLU](https://arxiv.org/pdf/2002.05202.pdf) 激活函数来替代GELU激活函数、使用基于 [RMSNorm](https://arxiv.org/abs/1910.07467) 的 Pre-Normalization进行层标准化操作。我们将**TeleChat2**的词嵌入层和输出lm head层参数分开,有助于增强训练稳定性和收敛性。我们选择了GQA以节约attention部分的参数量和计算量、提升训练和推理速度。 **TeleChat2**的模型结构配置如下表所示: | | layer_num | hidden_size | ffn_hidden_size | head_num | tie_word_embeddings | GQA | | ---- | --------- | ----------- | --------------- | -------- | ------------------- | ---- | | 115B | 96 | 8192 | 40960 | 64 | 否 | 是 | # 效果评测 TeleChat模型相比同规模模型在评测效果方面也有较好的表现,我们的评测集涵盖了包括MMLU、C-Eval、CMMLU、 GSM8K、MATH、HumanEval、BBH等数据集,评测能力包括了指令遵循、考试能力、数学计算和推理、代码生成等 ## 评测集介绍 ### 通用能力 - MMLU 数据集是一个全面的英文评测数据集,涵盖了 57 个学科,包括人文学科、社会科学、自然科学、初等数学、美国历史、计算机科学、法律等等。 - CEVAL 数据集是一个全面的中文评估测试集,包括初中、高中、大学和专业难度级别的多项选择题,涵盖了 52 个不同的学科领域。 - CMMLU 数据集同样是一个全面的中文评估测试集,涵盖了从基础学科到高级专业水平的67个主题。 ### 推理和代码能力 - GSM8K 数据集包含了8.5K高质量的小学数学题,能够评估语言模型在数学推理能力上的表现。 - HumanEval 数据集是一个由openai提供的代码能力测试数据集,它由 164 个编程问题组成,要求根据给定的问题和代码模板,生成正确的代码片段。 - BBH 数据集全名为BIG-Bench Hard(BBH),包含23个具有挑战性的BIG-Bench任务,均为之前的语言模型评估中没有超过平均人类评审者表现的任务。 - MBPP 数据集包含大约1000个众包的Python编程问题,涵盖编程基础知识、标准库功能等。每个问题包括任务描述、代码解决方案和3个自动化测试用例。 ### 主观题能力 - [AlignBench](https://github.com/THUDM/AlignBench)是一个多维度全面评估中文大模型对齐水平的评测基准,包含638道单轮主观评测题。 - [MT-bench](https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/README.md)是一个用于评估聊天助手的具有挑战性的多轮开放式问题集,包含80通多轮主观评测题。 ### 指令遵循能力 - [IFEval](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/ifeval/README.md)旨在评估语言模型对指令的精确遵循能力,它包含了500条可精确验证的指令,是Open LLM Leaderboard中使用的核心基准测试之一。 ## 评测结果如下 | Dataset | Llama-3.1-70B | Qwen1.5-110B | Qwen2-72-instruct | DeepSeek-v2 | TeleChat2-115B | |:----------:|:-------------:|:------------:|:-----------------:|:-----------:|:--------------:| | C-Eval | - | - | 83.8 | 78 | **86.9** | | MMLU | **86** | 80.4 | 82.3 | 77.8 | 80.9 | | CMMLU | 69.01 | 87.64 | 87.47 | 81.6 | **89.94** | | GSM8K | **95.1** | 85.4 | 91.1 | 92.2 | 92.2 | | HumanEval | 80.5 | 52.4 |**86** | 81.1 | 75 | | BBH | - | 74.8 | - | 79.7 | **89.04** | | MBPP | **86** | 58.1 | 80.2 | 72 | 78 | | AlignBench | - | 7.86 | **8.27** | 7.91 | 8.03 | | MT-bench | 8.79 | 8.88 | **9.12** | 8.97 | 8.89 | | IFEval | **87.5** | - | 77.6 | 63.8 | 82.81 | # 模型推理和部署 ### 模型推理 当前模型推理兼容了单卡和多卡推理,以及针对长文推理做了部分优化工作。 **模型推理方法示范** ```python >> > import os >> > import torch >> > from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig >> > tokenizer = AutoTokenizer.from_pretrained('../models/115B', trust_remote_code=True) >> > model = AutoModelForCausalLM.from_pretrained('../models/115B', trust_remote_code=True, device_map="auto", torch_dtype=torch.float16) >> > generate_config = GenerationConfig.from_pretrained('../models/115B') >> > question = "生抽与老抽的区别?" >> > answer, history = model.chat(tokenizer=tokenizer, question=question, history=[], generation_config=generate_config, stream=False) >> > print(answer) 生抽和老抽是两种不同的酱油,它们在风味、色泽和用途上都有所区别。 1.颜色:生抽的颜色比较淡,而老抽的颜色较深。生抽的颜色呈红褐色或棕红色,而老抽的颜色则呈棕黑色。 2.味道:生抽具有鲜美的咸味和微甜的味浅,而老抽浓郁,颜色较深。根据个人口味和烹饪需求选择不同的酱油类型可以获得更好的口感和菜肴效果。 ``` # 国产化适配 ### 昇腾Atlas 800T A2训练服务器+昇思MindSpore框架: 训练、推理适配 当前星辰语义大模型TeleChat2支持昇腾Atlas 800T A2训练服务器,可基于昇思MindSpore框架进行模型训练和评测。 - 性能方面,具体对比如下: - | NAME | performance(samples/p/s) | Epochs | AMP_Type | |--------------------------| ---------------------: | ------ | -------: | | 115B | 0.0192 | 1 | O1 | | 115B | 0.0174 | 1 | O2 | 说明:建议采用8台一组进行训练 - TeleChat支持昇腾Atlas 800T A2训练服务器,可基于昇思MindSpore框架进行模型训练,训练所需的modeling、README、 脚本已发布:[TeleChat-MindSpore](https://gitee.com/mindspore/mindformers/tree/dev/research/telechat) # 声明、协议、引用 ### 声明 我们在此声明,不要使用TeleChat模型及其衍生模型进行任何危害国家社会安全或违法的活动。同时,我们也要求使用者不要将TeleChat模型用于没有安全审查和备案的互联网服务。我们希望所有使用者遵守上述原则,确保科技发展在合法合规的环境下进行。 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用TeleChat开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。 ### 协议 社区使用 TeleChat 模型需要遵循《[TeleChat模型社区许可协议](./TeleChat模型社区许可协议.pdf)》。TeleChat模型支持商业用途,如果您计划将 TeleChat 模型或其衍生品用于商业目的,您需要通过以下联系邮箱 [email protected],提交《TeleChat模型社区许可协议》要求的申请材料。审核通过后,将特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销的商用版权许可。 ### 引用 如需引用我们的工作,请使用如下 reference: ``` @misc{wang2024telechat, title={TeleChat Technical Report}, author={Zihan Wang and Xinzhang Liu and Shixuan Liu and Yitong Yao and Yuyao Huang and Zhongjiang He and Xuelong Li and Yongxiang Li and Zhonghao Che and Zhaoxi Zhang and Yan Wang and Xin Wang and Luwen Pu and Huihan Xu and Ruiyu Fang and Yu Zhao and Jie Zhang and Xiaomeng Huang and Zhilong Lu and Jiaxin Peng and Wenjun Zheng and Shiquan Wang and Bingkai Yang and Xuewei he and Zhuoru Jiang and Qiyi Xie and Yanhan Zhang and Zhongqiu Li and Lingling Shi and Weiwei Fu and Yin Zhang and Zilu Huang and Sishi Xiong and Yuxiang Zhang and Chao Wang and Shuangyong Song}, year={2024}, eprint={2401.03804}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Xu-Ouyang/pythia-2.8b-deduped-int4-step8-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T02:08:38Z
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-03T02:08:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF
featherless-ai-quants
2024-11-03T02:01:46Z
39
0
null
[ "gguf", "text-generation", "base_model:TroyDoesAI/Mermaid-Coder-MoE-Expert1", "base_model:quantized:TroyDoesAI/Mermaid-Coder-MoE-Expert1", "endpoints_compatible", "region:us" ]
text-generation
2024-11-03T01:01:46Z
--- base_model: TroyDoesAI/Mermaid-Coder-MoE-Expert1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # TroyDoesAI/Mermaid-Coder-MoE-Expert1 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q8_0.gguf) | 10875.85 MB | | Q4_K_S | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q4_K_S.gguf) | 5835.08 MB | | Q2_K | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q2_K.gguf) | 3817.78 MB | | Q6_K | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q6_K.gguf) | 8397.30 MB | | Q3_K_M | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q3_K_M.gguf) | 4954.98 MB | | Q3_K_S | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q3_K_S.gguf) | 4448.48 MB | | Q3_K_L | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q3_K_L.gguf) | 5388.98 MB | | Q4_K_M | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q4_K_M.gguf) | 6162.33 MB | | Q5_K_S | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q5_K_S.gguf) | 7054.70 MB | | Q5_K_M | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-Q5_K_M.gguf) | 7245.95 MB | | IQ4_XS | [TroyDoesAI-Mermaid-Coder-MoE-Expert1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid-Coder-MoE-Expert1-GGUF/blob/main/TroyDoesAI-Mermaid-Coder-MoE-Expert1-IQ4_XS.gguf) | 5557.67 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF
mradermacher
2024-11-03T02:00:10Z
316
0
transformers
[ "transformers", "gguf", "merge", "dpo", "conversation", "text-generation-inference", "Kukedlc/NeuTrixOmniBe-7B-model-remix", "en", "dataset:argilla/OpenHermes2.5-dpo-binarized-alpha", "base_model:eren23/dpo-binarized-NeutrixOmnibe-7B", "base_model:quantized:eren23/dpo-binarized-NeutrixOmnibe-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-02T23:42:30Z
--- base_model: eren23/dpo-binarized-NeutrixOmnibe-7B datasets: - argilla/OpenHermes2.5-dpo-binarized-alpha language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - dpo - conversation - text-generation-inference - Kukedlc/NeuTrixOmniBe-7B-model-remix --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/dpo-binarized-NeutrixOmnibe-7B-i1-GGUF/resolve/main/dpo-binarized-NeutrixOmnibe-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
DanJoshua/profesor_Swin3D_B_VIOPERU
DanJoshua
2024-11-03T01:50:57Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-11-03T01:11:52Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: profesor_Swin3D_B_VIOPERU results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # profesor_Swin3D_B_VIOPERU This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4563 - Accuracy: 0.8571 - F1: 0.8571 - Precision: 0.8571 - Recall: 0.8571 - Roc Auc: 0.9037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 84 - training_steps: 560 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 1.3718 | 2.0161 | 37 | 0.6728 | 0.6607 | 0.6166 | 0.7979 | 0.6607 | 0.7666 | | 1.307 | 5.0071 | 74 | 0.6388 | 0.8393 | 0.8367 | 0.8619 | 0.8393 | 0.8367 | | 1.2244 | 7.0232 | 111 | 0.5896 | 0.8036 | 0.8020 | 0.8136 | 0.8036 | 0.8508 | | 1.0091 | 10.0143 | 148 | 0.5448 | 0.8214 | 0.8205 | 0.8281 | 0.8214 | 0.8648 | | 0.8839 | 13.0054 | 185 | 0.4877 | 0.8393 | 0.8380 | 0.8505 | 0.8393 | 0.8763 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1
lukaspetersson/flux_oxe
lukaspetersson
2024-11-03T01:48:34Z
5
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-03T01:48:31Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Flux_Oxe <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('lukaspetersson/flux_oxe', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Xu-Ouyang/pythia-2.8b-deduped-int3-step8-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T01:46:23Z
76
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "gptq", "region:us" ]
text-generation
2024-11-03T01:42:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/WestLake-7B-v2-laser-i1-GGUF
mradermacher
2024-11-03T01:46:10Z
69
1
transformers
[ "transformers", "gguf", "en", "base_model:cognitivecomputations/WestLake-7B-v2-laser", "base_model:quantized:cognitivecomputations/WestLake-7B-v2-laser", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-03T00:35:42Z
--- base_model: cognitivecomputations/WestLake-7B-v2-laser language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/WestLake-7B-v2-laser-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/WestLake-7B-v2-laser-i1-GGUF/resolve/main/WestLake-7B-v2-laser.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Kurapika993/sentiment
Kurapika993
2024-11-03T01:36:52Z
182
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T23:46:31Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2664 | 1.0 | 1563 | 0.2394 | 0.9067 | | 0.2312 | 2.0 | 3126 | 0.2318 | 0.9149 | | 0.2173 | 3.0 | 4689 | 0.2231 | 0.9179 | | 0.2011 | 4.0 | 6252 | 0.2271 | 0.9184 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF
mradermacher
2024-11-03T01:29:14Z
38
1
transformers
[ "transformers", "gguf", "merge", "en", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp", "base_model:quantized:Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-02T03:37:59Z
--- base_model: Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF
mradermacher
2024-11-03T01:29:10Z
16
1
transformers
[ "transformers", "gguf", "merge", "en", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp", "base_model:quantized:Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-03T00:19:13Z
--- base_model: Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OpenHermes-2.5-neural-chat-v3-2-Slerp-i1-GGUF/resolve/main/OpenHermes-2.5-neural-chat-v3-2-Slerp.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mtzig/tinyllama_run
mtzig
2024-11-03T01:28:04Z
48
0
transformers
[ "transformers", "safetensors", "llama", "token-classification", "generated_from_trainer", "base_model:TinyPixel/small-llama2", "base_model:finetune:TinyPixel/small-llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2024-11-03T01:21:17Z
--- library_name: transformers base_model: TinyPixel/small-llama2 tags: - generated_from_trainer model-index: - name: tinyllama_run results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama_run This model is a fine-tuned version of [TinyPixel/small-llama2](https://huggingface.co/TinyPixel/small-llama2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 25 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.1
featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF
featherless-ai-quants
2024-11-03T01:26:11Z
6
0
null
[ "gguf", "text-generation", "base_model:TroyDoesAI/Mermaid_PythonCoder", "base_model:quantized:TroyDoesAI/Mermaid_PythonCoder", "endpoints_compatible", "region:us" ]
text-generation
2024-11-03T00:54:50Z
--- base_model: TroyDoesAI/Mermaid_PythonCoder pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # TroyDoesAI/Mermaid_PythonCoder GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [TroyDoesAI-Mermaid_PythonCoder-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q8_0.gguf) | 10875.85 MB | | Q4_K_S | [TroyDoesAI-Mermaid_PythonCoder-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q4_K_S.gguf) | 5835.08 MB | | Q2_K | [TroyDoesAI-Mermaid_PythonCoder-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q2_K.gguf) | 3817.78 MB | | Q6_K | [TroyDoesAI-Mermaid_PythonCoder-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q6_K.gguf) | 8397.30 MB | | Q3_K_M | [TroyDoesAI-Mermaid_PythonCoder-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q3_K_M.gguf) | 4954.97 MB | | Q3_K_S | [TroyDoesAI-Mermaid_PythonCoder-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q3_K_S.gguf) | 4448.47 MB | | Q3_K_L | [TroyDoesAI-Mermaid_PythonCoder-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q3_K_L.gguf) | 5388.97 MB | | Q4_K_M | [TroyDoesAI-Mermaid_PythonCoder-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q4_K_M.gguf) | 6162.33 MB | | Q5_K_S | [TroyDoesAI-Mermaid_PythonCoder-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q5_K_S.gguf) | 7054.70 MB | | Q5_K_M | [TroyDoesAI-Mermaid_PythonCoder-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-Q5_K_M.gguf) | 7245.95 MB | | IQ4_XS | [TroyDoesAI-Mermaid_PythonCoder-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/TroyDoesAI-Mermaid_PythonCoder-GGUF/blob/main/TroyDoesAI-Mermaid_PythonCoder-IQ4_XS.gguf) | 5557.67 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/LaseredHermes-7B-i1-GGUF
mradermacher
2024-11-03T01:23:11Z
18
0
transformers
[ "transformers", "gguf", "en", "dataset:teknium/openhermes", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:Intel/orca_dpo_pairs", "base_model:LHC88/LaseredHermes-7B", "base_model:quantized:LHC88/LaseredHermes-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T22:30:19Z
--- base_model: LHC88/LaseredHermes-7B datasets: - teknium/openhermes - allenai/ultrafeedback_binarized_cleaned - Intel/orca_dpo_pairs language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/LHC88/LaseredHermes-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LaseredHermes-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/LaseredHermes-7B-i1-GGUF/resolve/main/LaseredHermes-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Xu-Ouyang/pythia-2.8b-deduped-int4-step4-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T01:20:50Z
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-03T01:20:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zixianma/mma_mantis_mix_586k-seq_len_8192-lr_1e-5-gl_bs_128-ep_1
zixianma
2024-11-03T01:12:57Z
9
0
null
[ "safetensors", "llava", "generated_from_trainer", "base_model:TIGER-Lab/Mantis-8B-siglip-llama3-pretraind", "base_model:finetune:TIGER-Lab/Mantis-8B-siglip-llama3-pretraind", "license:llama3", "region:us" ]
null
2024-11-02T06:15:24Z
--- license: llama3 base_model: TIGER-Lab/Mantis-8B-siglip-llama3-pretraind tags: - generated_from_trainer model-index: - name: mma_mantis_mix_586k-seq_len_8192-lr_1e-5-gl_bs_128-ep_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://salesforceairesearch.wandb.io/jianguozhang/Mantis/runs/cgv4spj9) # mma_mantis_mix_586k-seq_len_8192-lr_1e-5-gl_bs_128-ep_1 This model is a fine-tuned version of [TIGER-Lab/Mantis-8B-siglip-llama3-pretraind](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3-pretraind) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.43.0 - Pytorch 2.4.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
Xu-Ouyang/pythia-160m-deduped-int4-step128-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T01:12:12Z
76
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-02T04:51:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kiwi1229/cross_encoder_distil_roberta_base_2
kiwi1229
2024-11-03T00:59:19Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-03T00:59:08Z
--- library_name: transformers tags: - cross-encoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
faizalbs777/news-summarization-finetuned-mistral-7b
faizalbs777
2024-11-03T00:54:23Z
5
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-05-08T09:19:10Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: news-summarization-finetuned-mistral-7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # news-summarization-finetuned-mistral-7b This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 2.0477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1549 | 0.0109 | 20 | 2.1256 | | 2.0143 | 0.0219 | 40 | 2.0855 | | 2.0595 | 0.0328 | 60 | 2.0559 | | 1.9444 | 0.0437 | 80 | 2.0500 | | 2.1425 | 0.0547 | 100 | 2.0477 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.4.1+cu121 - Datasets 2.16.0 - Tokenizers 0.20.0
mradermacher/MS-Schisandra-22B-vA2-i1-GGUF
mradermacher
2024-11-03T00:51:15Z
5
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T21:15:50Z
--- base_model: Nohobby/MS-Schisandra-22B-vA2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nohobby/MS-Schisandra-22B-vA2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ1_S.gguf) | i1-IQ1_S | 4.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ1_M.gguf) | i1-IQ1_M | 5.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ2_S.gguf) | i1-IQ2_S | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ2_M.gguf) | i1-IQ2_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q2_K.gguf) | i1-Q2_K | 8.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 8.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ3_S.gguf) | i1-IQ3_S | 9.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ3_M.gguf) | i1-IQ3_M | 10.2 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 11.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.0 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q4_0.gguf) | i1-Q4_0 | 12.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 12.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 13.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 15.4 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 15.8 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF/resolve/main/MS-Schisandra-22B-vA2.i1-Q6_K.gguf) | i1-Q6_K | 18.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/MS-Schisandra-22B-vA2-GGUF
mradermacher
2024-11-03T00:51:14Z
12
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-02T16:48:36Z
--- base_model: Nohobby/MS-Schisandra-22B-vA2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Nohobby/MS-Schisandra-22B-vA2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q2_K.gguf) | Q2_K | 8.4 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q3_K_S.gguf) | Q3_K_S | 9.7 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q3_K_M.gguf) | Q3_K_M | 10.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q3_K_L.gguf) | Q3_K_L | 11.8 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.IQ4_XS.gguf) | IQ4_XS | 12.1 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q4_K_S.gguf) | Q4_K_S | 12.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q4_K_M.gguf) | Q4_K_M | 13.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q5_K_S.gguf) | Q5_K_S | 15.4 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q5_K_M.gguf) | Q5_K_M | 15.8 | | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q6_K.gguf) | Q6_K | 18.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MS-Schisandra-22B-vA2-GGUF/resolve/main/MS-Schisandra-22B-vA2.Q8_0.gguf) | Q8_0 | 23.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Mavkif/urdu-mt5-mmarco
Mavkif
2024-11-03T00:47:25Z
9
0
null
[ "safetensors", "mt5", "Information Retrieval", "Natural Language Processing", "Question Answering", "base_model:unicamp-dl/mt5-base-mmarco-v2", "base_model:finetune:unicamp-dl/mt5-base-mmarco-v2", "license:apache-2.0", "region:us" ]
null
2024-11-02T12:34:55Z
--- metrics: - Recall @10 0.438 - MRR @10 0.247 base_model: - unicamp-dl/mt5-base-mmarco-v2 tags: - Information Retrieval - Natural Language Processing - Question Answering license: apache-2.0 --- # Urdu mT5 msmarco: Fine-Tuned mT5 Model for Urdu Information Retrieval As part of ongoing efforts to make Information Retrieval (IR) more inclusive, this model addresses the needs of low-resource languages, focusing specifically on Urdu. We created this model by translating the MS-Marco dataset into Urdu using the IndicTrans2 model. To establish baseline performance, we initially tested for zero-shot learning for IR in Urdu using the unicamp-dl/mt5-base-mmarco-v2 model and then applied fine-tuning with the mMARCO multilingual IR methodology on the translated dataset, resulting in State-Of-The-Art results for urdu IR ## Model Details ### Model Description - **Developed by:** Umer Butt - **Model type:** IR model for reranking - **Language(s) (NLP):** Python/pytorch ## Uses ### Direct Use ## Bias, Risks, and Limitations Although this model performs well and is state-of-the-art for now. But still this model is finetuned on mmarco model and a translated dataset(which was created using indicTrans2 model). Hence the limitations of those apply here too. ## Evaluation The evaluation was done using the scripts in the pygaggle library. Specifically these files: evaluate_monot5_reranker.py ms_marco_eval.py #### Metrics Following the approach in the mmarco work. The same two metrics were used. Recal @10 : 0.438 MRR @10 : 0.247 ### Results | Model | Name | Data | Recall@10 | MRR@10 | Queries Ranked | |---------------------------------------|---------------------------------------|--------------|-----------|--------|----------------| | bm25 (k = 1000) | BM25 - Baseline from mmarco paper | English data | 0.391 | 0.187 | 6980 | | unicamp-dl/mt5-base-mmarco-v2 | mmarco reranker - Baseline from paper | English data | | 0.370 | 6980 | | bm25 (k = 1000) | BM25 | Urdu data | 0.2675 | 0.129 | 6980 | | unicamp-dl/mt5-base-mmarco-v2 | Zero-shot mmarco | Urdu data | 0.408 | 0.204 | 6980 | | This work | Mavkif/urdu-mt5-mmarco | Urdu data | 0.438 | 0.247 | 6980 | ### Model Architecture and Objective { "_name_or_path": "unicamp-dl/mt5-base-mmarco-v2", "architectures": ["MT5ForConditionalGeneration"], "d_model": 768, "num_heads": 12, "num_layers": 12, "dropout_rate": 0.1, "vocab_size": 250112, "model_type": "mt5", "transformers_version": "4.38.2" } For more details on how to customize the decoding parameters (such as max_length, num_beams, and early_stopping), refer to the Hugging Face documentation. ## How to Get Started with the Model Example Code for Scoring Query-Document Pairs: In an IR setting, you provide a query and one or more candidate documents. The model scores each document for relevance to the query, which can be used for ranking. ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch import torch.nn.functional as F # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Mavkif/urdu-mt5-mmarco") model = AutoModelForSeq2SeqLM.from_pretrained("Mavkif/urdu-mt5-mmarco") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def rank_documents(query, documents): # Create input pairs of query and documents query_document_pairs = [f"{query} [SEP] {doc}" for doc in documents] # Tokenize the input pairs inputs = tokenizer(query_document_pairs, padding=True, truncation=True, return_tensors="pt", max_length=512) inputs = {k: v.to(device) for k, v in inputs.items()} # Generate decoder input ids (starting with the decoder start token) decoder_input_ids = torch.full( (inputs["input_ids"].shape[0], 1), model.config.decoder_start_token_id, dtype=torch.long, device=device ) # Perform inference to get the logits with torch.no_grad(): outputs = model(**inputs, decoder_input_ids=decoder_input_ids) # Get the logits for the sequence output logits = outputs.logits # Extract the probabilities for the generated sequence scores = [] for idx, doc in enumerate(documents): # Calculate the softmax over the entire vocabulary for each token in the sequence doc_logits = logits[idx] doc_probs = F.softmax(doc_logits, dim=-1) # Get the probability score for "ہاں" token in the output sequence token_true_id = tokenizer.convert_tokens_to_ids("ہاں") token_probs = doc_probs[:, token_true_id] sum_prob = token_probs.sum().item() # Sum probability over the sequence scores.append((doc, sum_prob)) # Use the summed probability directly as the score # Normalize scores to be between 0 and 1 max_score = max(score for _, score in scores) min_score = min(score for _, score in scores) normalized_scores = [((score - min_score) / (max_score - min_score) if max_score > min_score else 0.5) for _, score in scores] # Create a list of documents with normalized scores ranked_documents = [(documents[idx], normalized_scores[idx]) for idx in range(len(documents))] # Sort documents based on scores (descending order) ranked_documents = sorted(ranked_documents, key=lambda x: x[1], reverse=True) return ranked_documents # Example query and documents query = "پاکستان کی معیشت کی موجودہ صورتحال کیا ہے؟" documents = [ "پاکستان کی معیشت میں بہتری کے اشارے ہیں۔", "زر مبادلہ کے ذخائر میں کمی دیکھی گئی ہے۔", "فٹبال پاکستان میں تیزی سے مقبول ہو رہا ہے۔" ] # Get ranked documents ranked_docs = rank_documents(query, documents) # Print the ranked documents for idx, (doc, score) in enumerate(ranked_docs): print(f"Rank {idx + 1}: Score: {score}, Document: {doc}") Rank 1: Score: 1.0, Document: پاکستان کی معیشت میں بہتری کے اشارے ہیں۔ Rank 2: Score: 0.547, Document: فٹبال پاکستان میں تیزی سے مقبول ہو رہا ہے۔ Rank 3: Score: 0.0, Document: زر مبادلہ کے ذخائر میں کمی دیکھی گئی ہے۔ ``` ## Model Card Authors [optional] Umer Butt ## Model Card Contact [email protected]
kiwi1229/cross_encoder_distil_roberta_base_1
kiwi1229
2024-11-03T00:43:16Z
105
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-03T00:43:07Z
--- library_name: transformers tags: - cross-encoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Gemma-2-9b-baymax-GGUF
mradermacher
2024-11-03T00:38:10Z
26
1
transformers
[ "transformers", "gguf", "en", "dataset:lavita/ChatDoctor-HealthCareMagic-100k", "base_model:samarth1029/Gemma-2-9b-baymax", "base_model:quantized:samarth1029/Gemma-2-9b-baymax", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-02T17:25:25Z
--- base_model: samarth1029/Gemma-2-9b-baymax datasets: - lavita/ChatDoctor-HealthCareMagic-100k language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/samarth1029/Gemma-2-9b-baymax <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Gemma-2-9b-baymax-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q4_0_4_4.gguf) | Q4_0_4_4 | 5.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-9b-baymax-GGUF/resolve/main/Gemma-2-9b-baymax.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Xu-Ouyang/pythia-2.8b-deduped-int4-step2-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T00:33:06Z
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-03T00:32:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF
mradermacher
2024-11-03T00:23:10Z
53
1
transformers
[ "transformers", "gguf", "Roleplay", "custom_code", "storytelling", "en", "base_model:aloobun/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1", "base_model:quantized:aloobun/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-02T23:42:35Z
--- base_model: aloobun/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1 language: - en library_name: transformers quantized_by: mradermacher tags: - Roleplay - custom_code - storytelling --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/aloobun/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q5_K_S.gguf) | Q5_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q5_K_M.gguf) | Q5_K_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1-GGUF/resolve/main/Reyna-RP-Qwen1.5-0.5B-Chat-v0.1.Q8_0.gguf) | Q8_0 | 0.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/NM-StarUnleashed-GGUF
mradermacher
2024-11-03T00:22:11Z
63
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mergekit-community/NM-StarUnleashed", "base_model:quantized:mergekit-community/NM-StarUnleashed", "endpoints_compatible", "region:us" ]
null
2024-11-02T17:33:54Z
--- base_model: mergekit-community/NM-StarUnleashed language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mergekit-community/NM-StarUnleashed <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/NM-StarUnleashed-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NM-StarUnleashed-GGUF/resolve/main/NM-StarUnleashed.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
DanJoshua/profesor_Swin3D_N_VIOPERU
DanJoshua
2024-11-03T00:12:02Z
42
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-11-02T21:11:53Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: profesor_Swin3D_N_VIOPERU results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # profesor_Swin3D_N_VIOPERU This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5378 - Accuracy: 0.7946 - F1: 0.7946 - Precision: 0.7947 - Recall: 0.7946 - Roc Auc: 0.8677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 84 - training_steps: 560 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 1.3382 | 2.0161 | 37 | 0.6576 | 0.7321 | 0.7279 | 0.7476 | 0.7321 | 0.7781 | | 1.2814 | 5.0071 | 74 | 0.6126 | 0.7679 | 0.7678 | 0.7682 | 0.7679 | 0.8508 | | 1.152 | 7.0232 | 111 | 0.5517 | 0.8036 | 0.8035 | 0.8040 | 0.8036 | 0.8546 | | 0.8907 | 10.0143 | 148 | 0.5129 | 0.7679 | 0.7678 | 0.7682 | 0.7679 | 0.8673 | | 0.7726 | 13.0054 | 185 | 0.4512 | 0.7857 | 0.7854 | 0.7872 | 0.7857 | 0.8827 | | 0.6067 | 15.0214 | 222 | 0.4228 | 0.8036 | 0.8030 | 0.8071 | 0.8036 | 0.8929 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1
Xu-Ouyang/pythia-2.8b-deduped-int3-step2-GPTQ-wikitext2
Xu-Ouyang
2024-11-03T00:10:51Z
76
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "gptq", "region:us" ]
text-generation
2024-11-03T00:07:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Felladrin/gguf-Q4_K_M-MiniCPM3-4B
Felladrin
2024-11-02T23:59:31Z
5
0
null
[ "gguf", "base_model:openbmb/MiniCPM3-4B-GGUF", "base_model:quantized:openbmb/MiniCPM3-4B-GGUF", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-02T23:58:58Z
--- base_model: openbmb/MiniCPM3-4B-GGUF --- Sharded GGUF version of [openbmb/MiniCPM3-4B-GGUF](https://huggingface.co/openbmb/MiniCPM3-4B-GGUF).
Felladrin/gguf-Q5_K_L-AMD-OLMo-1B-SFT-DPO
Felladrin
2024-11-02T23:45:28Z
14
0
null
[ "gguf", "base_model:bartowski/AMD-OLMo-1B-SFT-DPO-GGUF", "base_model:quantized:bartowski/AMD-OLMo-1B-SFT-DPO-GGUF", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T23:45:14Z
--- base_model: bartowski/AMD-OLMo-1B-SFT-DPO-GGUF --- Sharded GGUF version of [bartowski/AMD-OLMo-1B-SFT-DPO-GGUF](https://huggingface.co/bartowski/AMD-OLMo-1B-SFT-DPO-GGUF).
mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF
mradermacher
2024-11-02T23:44:10Z
21
0
transformers
[ "transformers", "gguf", "en", "dataset:Yukang/LongAlpaca-12k", "base_model:Pretergeek/OpenChat-3.5-0106_32K-PoSE", "base_model:quantized:Pretergeek/OpenChat-3.5-0106_32K-PoSE", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T21:31:26Z
--- base_model: Pretergeek/OpenChat-3.5-0106_32K-PoSE datasets: - Yukang/LongAlpaca-12k language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Pretergeek/OpenChat-3.5-0106_32K-PoSE <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OpenChat-3.5-0106_32K-PoSE-i1-GGUF/resolve/main/OpenChat-3.5-0106_32K-PoSE.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
jlbaker361/ddpogan_512_cubism_40_0_20_increasing
jlbaker361
2024-11-02T23:22:27Z
7
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-10-30T05:08:46Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers pipeline that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mav23/openchat-3.6-8b-20240522-GGUF
mav23
2024-11-02T23:17:53Z
48
0
transformers
[ "transformers", "gguf", "openchat", "llama3", "C-RLFT", "text-generation", "arxiv:2309.11235", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:quantized:meta-llama/Meta-Llama-3-8B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T22:15:55Z
--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - openchat - llama3 - C-RLFT library_name: transformers pipeline_tag: text-generation --- <div align="center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%"> <h1>Advancing Open-source Language Models with Mixed-Quality Data</h1> </div> <p align="center" style="margin-top: 0px;"> <a href="https://openchat.team"> <img src="https://github.com/alpayariyak/openchat/blob/master/assets/logo_nobg.png?raw=true" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">Online Demo</span> </a> | <a href="https://github.com/imoneoi/openchat"> <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">GitHub</span> </a> | <a href="https://arxiv.org/pdf/2309.11235.pdf"> <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style="margin-right: 5px;">Paper</span> </a> | <a href="https://discord.gg/pQjnXvNKHY"> <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text">Discord</span> </a> </p> <p align="center" style="margin-top: 0px;"> <span class="link-text" style=" margin-right: 0px; font-size: 0.8em">Sponsored by RunPod</span> <img src="https://styles.redditmedia.com/t5_6075m3/styles/profileIcon_71syco7c5lt81.png?width=256&height=256&frame=1&auto=webp&crop=256:256,smart&s=24bd3c71dc11edc5d4f88d0cbc1da72ed7ae1969" alt="RunPod Logo" style="width:30px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> </p> <div style="background-color: white; padding: 0.7em; border-radius: 0.5em; color: black; display: flex; flex-direction: column; justify-content: center; text-align: center"> <a href="https://huggingface.co/openchat/openchat-3.5-0106" style="text-decoration: none; color: black;"> <span style="font-size: 1.7em; font-family: 'Helvetica'; letter-spacing: 0.1em; font-weight: bold; color: black;">Llama 3 Version: OPENCHAT</span><span style="font-size: 1.8em; font-family: 'Helvetica'; color: #3c72db; ">3.6</span> <span style="font-size: 1.0em; font-family: 'Helvetica'; color: white; background-color: #90e0ef; vertical-align: top; border-radius: 6em; padding: 0.066em 0.4em; letter-spacing: 0.1em; font-weight: bold;">20240522</span> <span style="font-size: 0.85em; font-family: 'Helvetica'; color: black;"> <br> 🏆 The Overall Best Performing Open-source 8B Model 🏆 <br> 🚀 Outperforms Llama-3-8B-Instruct and open-source finetunes/merges 🚀 </span> </a> </div> <div style="display: flex; justify-content: center; align-items: center; width: 110%; margin-left: -5%;"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/benchmarks-openchat-3.6-20240522.svg" style="width: 100%; border-radius: 1em"> </div> <div style="display: flex; justify-content: center; align-items: center"> <p>* Llama-3-Instruct often fails to follow the few-shot templates. See <a href="https://huggingface.co/openchat/openchat-3.6-8b-20240522/discussions/6">example</a>.</p> </div> <div align="center"> <h2> Usage </h2> </div> To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command. Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience. If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server. | Model | Size | Context | Weights | Serving | |-----------------------|------|---------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------| | OpenChat-3.6-20240522 | 8B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat-3.6-8b-20240522) | `python -m ochat.serving.openai_api_server --model openchat/openchat-3.6-8b-20240522` | <details> <summary>Example request (click to expand)</summary> ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.6", "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}] }' ``` </details> ### Conversation templates 💡 **Default Mode**: Best for coding, chat and general tasks. It's a modified version of the Llama 3 Instruct template, the only difference is role names, which are either `GPT4 Correct User` or `GPT4 Correct Assistant` ``` <|start_header_id|>GPT4 Correct User<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\nHi<|eot_id|><|start_header_id|>GPT4 Correct User<|end_header_id|>\n\nHow are you today?<|eot_id|><|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n ``` ⚠️ **Notice:** Remember to set `<|eot_id|>` as end of generation token. The default template is also available as the integrated `tokenizer.chat_template`, which can be used instead of manually specifying the template: ```python messages = [ {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi"}, {"role": "user", "content": "How are you today?"} ] tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True) ``` ## Inference using Transformers ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "openchat/openchat-3.6-8b-20240522" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "user", "content": "Explain how large language models work in detail."}, ] input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(input_ids, do_sample=True, temperature=0.5, max_new_tokens=1024 ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` <div align="center"> <h2> Limitations </h2> </div> **Foundation Model Limitations** Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as: - Complex reasoning - Mathematical and arithmetic tasks - Programming and coding challenges **Hallucination of Non-existent Information** OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model. **Safety** OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses. <div align="center"> <h2> 💌 Contact </h2> </div> We look forward to hearing from you and collaborating on this exciting project! **Project Lead:** - Guan Wang [imonenext at gmail dot com] - [Alpay Ariyak](https://github.com/alpayariyak) [aariyak at wpi dot edu] <div align="center"> <h2> Citation </h2> </div> ``` @article{wang2023openchat, title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data}, author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang}, journal={arXiv preprint arXiv:2309.11235}, year={2023} } ```
mradermacher/Gemma-2-2b-baymax-i1-GGUF
mradermacher
2024-11-02T23:14:15Z
227
0
transformers
[ "transformers", "gguf", "en", "dataset:lavita/ChatDoctor-HealthCareMagic-100k", "base_model:samarth1029/Gemma-2-2b-baymax", "base_model:quantized:samarth1029/Gemma-2-2b-baymax", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T22:51:38Z
--- base_model: samarth1029/Gemma-2-2b-baymax datasets: - lavita/ChatDoctor-HealthCareMagic-100k language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/samarth1029/Gemma-2-2b-baymax <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Gemma-2-2b-baymax-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ2_S.gguf) | i1-IQ2_S | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ2_M.gguf) | i1-IQ2_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q2_K.gguf) | i1-Q2_K | 1.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ3_S.gguf) | i1-IQ3_S | 1.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ3_M.gguf) | i1-IQ3_M | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 1.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 1.7 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 1.7 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q4_0.gguf) | i1-Q4_0 | 1.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2-2b-baymax-i1-GGUF/resolve/main/Gemma-2-2b-baymax.i1-Q6_K.gguf) | i1-Q6_K | 2.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
svr1945/my_awesome_eli5_clm-model
svr1945
2024-11-02T23:02:01Z
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "dataset:eli5_category", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-02T23:01:53Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilgpt2 tags: - generated_from_trainer datasets: - eli5_category model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on the eli5_category dataset. It achieves the following results on the evaluation set: - Loss: 3.8240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9547 | 1.0 | 1315 | 3.8307 | | 3.8542 | 2.0 | 2630 | 3.8240 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1
MaziyarPanahi/Llama-3-Groq-8B-Tool-Use-bf16-GGUF
MaziyarPanahi
2024-11-02T22:53:12Z
47
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:mlx-community/Llama-3-Groq-8B-Tool-Use-bf16", "base_model:quantized:mlx-community/Llama-3-Groq-8B-Tool-Use-bf16", "region:us", "conversational" ]
text-generation
2024-11-02T22:32:44Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Llama-3-Groq-8B-Tool-Use-bf16-GGUF base_model: mlx-community/Llama-3-Groq-8B-Tool-Use-bf16 inference: false model_creator: mlx-community pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Llama-3-Groq-8B-Tool-Use-bf16-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-Groq-8B-Tool-Use-bf16-GGUF) - Model creator: [mlx-community](https://huggingface.co/mlx-community) - Original model: [mlx-community/Llama-3-Groq-8B-Tool-Use-bf16](https://huggingface.co/mlx-community/Llama-3-Groq-8B-Tool-Use-bf16) ## Description [MaziyarPanahi/Llama-3-Groq-8B-Tool-Use-bf16-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-Groq-8B-Tool-Use-bf16-GGUF) contains GGUF format model files for [mlx-community/Llama-3-Groq-8B-Tool-Use-bf16](https://huggingface.co/mlx-community/Llama-3-Groq-8B-Tool-Use-bf16). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
Xu-Ouyang/pythia-6.9b-deduped-int4-step1000-GPTQ-wikitext2
Xu-Ouyang
2024-11-02T22:48:56Z
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-02T22:47:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mikeyandfriends/PixelWave_FLUX.1-schnell_03
mikeyandfriends
2024-11-02T22:43:52Z
386
7
null
[ "gguf", "license:other", "region:us" ]
null
2024-10-28T08:46:02Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # PixelWave Flux.1-schnell 03 Suprise! Schnell version of the PixelWave Flux 03 model. You can expect some differences between the dev and schnell version. A general-purpose FLUX model, great for art and photo styles. **Standard Use:** - Euler, Simple - DPM++ 2M, SGM Uniform - At least 4 steps to remove noise, but will probably need 6 to 8 steps to reduce errors with limbs, etc. As training differences were extracted from dev and applied to schnell, this could be interpreted as a derivative of the dev model and as such inherit the license from dev. ![Sample Images](images/photo-collage-schnell.png)
glif-loradex-trainer/i12_appelsiensam_blendedreality_v1
glif-loradex-trainer
2024-11-02T22:40:26Z
11
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2024-11-02T22:39:50Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1730587124832__000003000_0.jpg text: portrait of a worn man, NLNDDRLT_PPLSNSM - output: url: samples/1730587148404__000003000_1.jpg text: sloth driving a car, NLNDDRLT_PPLSNSM - output: url: samples/1730587172370__000003000_2.jpg text: a cosmic well, military satellite tech, NLNDDRLT_PPLSNSM base_model: black-forest-labs/FLUX.1-dev trigger: NLNDDRLT_PPLSNSM instance_prompt: NLNDDRLT_PPLSNSM license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # appelsiensam_blendedreality_v1 Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `i12`. <Gallery /> ## Trigger words You should use `NLNDDRLT_PPLSNSM` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/i12_appelsiensam_blendedreality_v1/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF
mradermacher
2024-11-02T22:35:14Z
245
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "paulml/OmniBeagleMBX-v3-7B", "flemmingmiguel/MBX-7B-v3", "en", "base_model:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:quantized:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-02T17:59:27Z
--- base_model: paulml/OmniBeagleSquaredMBX-v3-7B-v2 language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - paulml/OmniBeagleMBX-v3-7B - flemmingmiguel/MBX-7B-v3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/paulml/OmniBeagleSquaredMBX-v3-7B-v2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
unstpb-nlp/llama-2-13b-ft-CompLex-2021
unstpb-nlp
2024-11-02T22:31:00Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-04T16:08:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/CyberWitch-7B-GGUF
mradermacher
2024-11-02T22:30:49Z
109
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "WizardLM/WizardMath-7B-V1.1", "segolilylabs/Lily-Cybersecurity-7B-v0.2", "en", "base_model:LunaticPython161/CyberWitch-7B", "base_model:quantized:LunaticPython161/CyberWitch-7B", "endpoints_compatible", "region:us" ]
null
2024-11-01T06:29:55Z
--- base_model: LunaticPython161/CyberWitch-7B language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - WizardLM/WizardMath-7B-V1.1 - segolilylabs/Lily-Cybersecurity-7B-v0.2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/LunaticPython161/CyberWitch-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/CyberWitch-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/CyberWitch-7B-GGUF/resolve/main/CyberWitch-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
exala/db_aca2_4.10.1
exala
2024-11-02T22:17:26Z
116
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T22:17:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF
featherless-ai-quants
2024-11-02T22:17:14Z
14
0
null
[ "gguf", "text-generation", "base_model:Eric111/SOLAR-10.7B-Instruct-v1.0-DPO", "base_model:quantized:Eric111/SOLAR-10.7B-Instruct-v1.0-DPO", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T22:02:28Z
--- base_model: Eric111/SOLAR-10.7B-Instruct-v1.0-DPO pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Eric111/SOLAR-10.7B-Instruct-v1.0-DPO GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q8_0.gguf) | 10875.85 MB | | Q4_K_S | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q4_K_S.gguf) | 5835.08 MB | | Q2_K | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q2_K.gguf) | 3817.78 MB | | Q6_K | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q6_K.gguf) | 8397.30 MB | | Q3_K_M | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q3_K_M.gguf) | 4954.98 MB | | Q3_K_S | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q3_K_S.gguf) | 4448.48 MB | | Q3_K_L | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q3_K_L.gguf) | 5388.98 MB | | Q4_K_M | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q4_K_M.gguf) | 6162.33 MB | | Q5_K_S | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q5_K_S.gguf) | 7054.70 MB | | Q5_K_M | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-Q5_K_M.gguf) | 7245.95 MB | | IQ4_XS | [Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-GGUF/blob/main/Eric111-SOLAR-10.7B-Instruct-v1.0-DPO-IQ4_XS.gguf) | 5557.67 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
gavinqiangli/mpnet-base-all-nli-triplet
gavinqiangli
2024-11-02T22:15:29Z
10
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:557850", "loss:MultipleNegativesRankingLoss", "en", "dataset:sentence-transformers/all-nli", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:BAAI/bge-large-en", "base_model:finetune:BAAI/bge-large-en", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-02T22:14:29Z
--- base_model: BAAI/bge-large-en datasets: - sentence-transformers/all-nli language: - en library_name: sentence-transformers metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MultipleNegativesRankingLoss widget: - source_sentence: A construction worker is standing on a crane placing a large arm on top of a stature in progress. sentences: - A man is playing with his camera. - A person standing - Nobody is standing - source_sentence: A boy in red slides down an inflatable ride. sentences: - a baby smiling - A boy is playing on an inflatable ride. - A boy pierces a knife through an inflatable ride. - source_sentence: A man in a black shirt is playing a guitar. sentences: - A group of women are selling their wares - The man is wearing black. - The man is wearing a blue shirt. - source_sentence: A man with a large power drill standing next to his daughter with a vacuum cleaner hose. sentences: - A man holding a drill stands next to a girl holding a vacuum hose. - Kids ride an amusement ride. - The man and girl are painting the walls. - source_sentence: A middle-aged man works under the engine of a train on rail tracks. sentences: - A guy is working on a train. - Two young asian men are squatting. - A guy is driving to work. model-index: - name: SentenceTransformer based on BAAI/bge-large-en results: - task: type: triplet name: Triplet dataset: name: all nli test type: all-nli-test metrics: - type: cosine_accuracy value: 0.8853079134513542 name: Cosine Accuracy - type: dot_accuracy value: 0.11469208654864578 name: Dot Accuracy - type: manhattan_accuracy value: 0.885761839915267 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.8853079134513542 name: Euclidean Accuracy - type: max_accuracy value: 0.885761839915267 name: Max Accuracy --- # SentenceTransformer based on BAAI/bge-large-en This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("gavinqiangli/mpnet-base-all-nli-triplet") # Run inference sentences = [ 'A middle-aged man works under the engine of a train on rail tracks.', 'A guy is working on a train.', 'A guy is driving to work.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Dataset: `all-nli-test` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.8853 | | dot_accuracy | 0.1147 | | manhattan_accuracy | 0.8858 | | euclidean_accuracy | 0.8853 | | **max_accuracy** | **0.8858** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 557,850 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 6,584 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | all-nli-test_max_accuracy | |:------:|:----:|:-------------:|:---------------:|:-------------------------:| | 0.3195 | 100 | 0.6642 | 0.6399 | - | | 0.6390 | 200 | 0.1421 | 0.8174 | - | | 0.9585 | 300 | 0.3632 | 1.0566 | - | | 1.0 | 313 | - | - | 0.8858 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.34.2 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
MaziyarPanahi/llama-3-youko-8b-instruct-GGUF
MaziyarPanahi
2024-11-02T22:13:24Z
38
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:rinna/llama-3-youko-8b-instruct", "base_model:quantized:rinna/llama-3-youko-8b-instruct", "region:us", "conversational" ]
text-generation
2024-11-02T21:52:40Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: llama-3-youko-8b-instruct-GGUF base_model: rinna/llama-3-youko-8b-instruct inference: false model_creator: rinna pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/llama-3-youko-8b-instruct-GGUF](https://huggingface.co/MaziyarPanahi/llama-3-youko-8b-instruct-GGUF) - Model creator: [rinna](https://huggingface.co/rinna) - Original model: [rinna/llama-3-youko-8b-instruct](https://huggingface.co/rinna/llama-3-youko-8b-instruct) ## Description [MaziyarPanahi/llama-3-youko-8b-instruct-GGUF](https://huggingface.co/MaziyarPanahi/llama-3-youko-8b-instruct-GGUF) contains GGUF format model files for [rinna/llama-3-youko-8b-instruct](https://huggingface.co/rinna/llama-3-youko-8b-instruct). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
winwithpartner/immi_llama_1
winwithpartner
2024-11-02T22:04:19Z
85
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-02T22:00:27Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bif02/classifier_llama_86
bif02
2024-11-02T22:00:34Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:bif02/classifier_llama_86", "base_model:finetune:bif02/classifier_llama_86", "license:llama3.1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T11:50:41Z
--- library_name: transformers license: llama3.1 base_model: bif02/classifier_llama_86 tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: classifier_llama_86 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classifier_llama_86 This model is a fine-tuned version of [bif02/classifier_llama_86](https://huggingface.co/bif02/classifier_llama_86) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6942 - Accuracy: 0.4392 - Precision: 0.4392 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:| | No log | 1.0 | 358 | 0.6954 | 0.4392 | 0.4392 | 1.0 | | 0.6953 | 2.0 | 716 | 0.6960 | 0.4392 | 0.4392 | 1.0 | | 0.6945 | 3.0 | 1074 | 0.6913 | 0.5608 | 0.0 | 0.0 | | 0.6945 | 4.0 | 1432 | 0.6939 | 0.4392 | 0.4392 | 1.0 | | 0.6938 | 5.0 | 1790 | 0.6924 | 0.5608 | 0.0 | 0.0 | | 0.6938 | 6.0 | 2148 | 0.6934 | 0.4392 | 0.4392 | 1.0 | | 0.6936 | 7.0 | 2506 | 0.6932 | 0.4392 | 0.4392 | 1.0 | | 0.6936 | 8.0 | 2864 | 0.6942 | 0.4392 | 0.4392 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
sshetty/task-13-microsoft-Phi-3-mini-4k-instruct
sshetty
2024-11-02T21:57:00Z
5
0
peft
[ "peft", "safetensors", "phi3", "custom_code", "arxiv:1910.09700", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:adapter:microsoft/Phi-3-mini-4k-instruct", "region:us" ]
null
2024-10-07T16:06:52Z
--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF
mradermacher
2024-11-02T21:31:37Z
147
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "paulml/OmniBeagleMBX-v3-7B", "flemmingmiguel/MBX-7B-v3", "en", "base_model:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:quantized:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-01T10:20:12Z
--- base_model: paulml/OmniBeagleSquaredMBX-v3-7B-v2 language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - paulml/OmniBeagleMBX-v3-7B - flemmingmiguel/MBX-7B-v3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/paulml/OmniBeagleSquaredMBX-v3-7B-v2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OmniBeagleSquaredMBX-v3-7B-v2-GGUF/resolve/main/OmniBeagleSquaredMBX-v3-7B-v2.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/ONS-SOLAR-10.7B-GGUF
mradermacher
2024-11-02T21:31:04Z
52
0
transformers
[ "transformers", "gguf", "SOLAR-10.7B", "ko", "base_model:ONS-AI-RESEARCH/ONS-SOLAR-10.7B", "base_model:quantized:ONS-AI-RESEARCH/ONS-SOLAR-10.7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-01T02:00:17Z
--- base_model: ONS-AI-RESEARCH/ONS-SOLAR-10.7B language: - ko library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - SOLAR-10.7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q2_K.gguf) | Q2_K | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q3_K_L.gguf) | Q3_K_L | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.IQ4_XS.gguf) | IQ4_XS | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q4_K_S.gguf) | Q4_K_S | 6.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q5_K_S.gguf) | Q5_K_S | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q5_K_M.gguf) | Q5_K_M | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q6_K.gguf) | Q6_K | 9.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ONS-SOLAR-10.7B-GGUF/resolve/main/ONS-SOLAR-10.7B.Q8_0.gguf) | Q8_0 | 11.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MaziyarPanahi/Llama-Guard-3-8B-GGUF
MaziyarPanahi
2024-11-02T21:29:30Z
44
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:meta-llama/Llama-Guard-3-8B", "base_model:quantized:meta-llama/Llama-Guard-3-8B", "region:us", "conversational" ]
text-generation
2024-11-02T21:08:07Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Llama-Guard-3-8B-GGUF base_model: meta-llama/Llama-Guard-3-8B inference: false model_creator: meta-llama pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Llama-Guard-3-8B-GGUF](https://huggingface.co/MaziyarPanahi/Llama-Guard-3-8B-GGUF) - Model creator: [meta-llama](https://huggingface.co/meta-llama) - Original model: [meta-llama/Llama-Guard-3-8B](https://huggingface.co/meta-llama/Llama-Guard-3-8B) ## Description [MaziyarPanahi/Llama-Guard-3-8B-GGUF](https://huggingface.co/MaziyarPanahi/Llama-Guard-3-8B-GGUF) contains GGUF format model files for [meta-llama/Llama-Guard-3-8B](https://huggingface.co/meta-llama/Llama-Guard-3-8B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF
mradermacher
2024-11-02T21:19:07Z
115
0
transformers
[ "transformers", "gguf", "Retrieval Augmented Generation", "RAG", "Multi-domain", "ko", "dataset:HumanF-MarkrAI/Korean-RAG-ver2", "base_model:MarkrAI/RAG-KO-Mixtral-7Bx2-v2.0", "base_model:quantized:MarkrAI/RAG-KO-Mixtral-7Bx2-v2.0", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-01T05:51:12Z
--- base_model: MarkrAI/RAG-KO-Mixtral-7Bx2-v2.0 datasets: - HumanF-MarkrAI/Korean-RAG-ver2 language: - ko library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher tags: - Retrieval Augmented Generation - RAG - Multi-domain --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MarkrAI/RAG-KO-Mixtral-7Bx2-v2.0 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q3_K_S.gguf) | Q3_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q3_K_M.gguf) | Q3_K_M | 6.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q3_K_L.gguf) | Q3_K_L | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q4_K_S.gguf) | Q4_K_S | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q4_K_M.gguf) | Q4_K_M | 7.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q5_K_S.gguf) | Q5_K_S | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q5_K_M.gguf) | Q5_K_M | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q6_K.gguf) | Q6_K | 10.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/RAG-KO-Mixtral-7Bx2-v2.0-GGUF/resolve/main/RAG-KO-Mixtral-7Bx2-v2.0.Q8_0.gguf) | Q8_0 | 13.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF
mradermacher
2024-11-02T21:18:08Z
411
0
transformers
[ "transformers", "gguf", "ko", "base_model:megastudyedu/M-SOLAR-10.7B-v1.4-dpo", "base_model:quantized:megastudyedu/M-SOLAR-10.7B-v1.4-dpo", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T19:33:16Z
--- base_model: megastudyedu/M-SOLAR-10.7B-v1.4-dpo language: - ko library_name: transformers license: cc-by-nc-nd-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ1_M.gguf) | i1-IQ1_M | 2.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ3_S.gguf) | i1-IQ3_S | 4.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 6.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 6.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 6.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q4_0.gguf) | i1-Q4_0 | 6.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.5 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/M-SOLAR-10.7B-v1.4-dpo-i1-GGUF/resolve/main/M-SOLAR-10.7B-v1.4-dpo.i1-Q6_K.gguf) | i1-Q6_K | 8.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
DanJoshua/profesor_MViT_S_VIOPERU
DanJoshua
2024-11-02T21:09:53Z
34
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-11-02T00:03:29Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: profesor_MViT_S_VIOPERU results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # profesor_MViT_S_VIOPERU This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.9107 - F1: 0.9107 - Precision: 0.9112 - Recall: 0.9107 - Roc Auc: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 23 - eval_batch_size: 23 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 81 - training_steps: 810 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.6473 | 6.0111 | 81 | 0.6350 | 0.75 | 0.7497 | 0.7513 | 0.75 | 0.8418 | | 0.5438 | 13.0074 | 162 | 0.5559 | 0.7857 | 0.7857 | 0.7857 | 0.7857 | 0.8980 | | 0.4124 | 20.0037 | 243 | 0.4445 | 0.8571 | 0.8564 | 0.8646 | 0.8571 | 0.9439 | | 0.2958 | 26.0148 | 324 | 0.3501 | 0.8929 | 0.8927 | 0.8949 | 0.8929 | 0.9745 | | 0.2126 | 33.0111 | 405 | 0.2827 | 0.8929 | 0.8927 | 0.8949 | 0.8929 | 0.9745 | | 0.1469 | 40.0074 | 486 | 0.3615 | 0.875 | 0.8746 | 0.8794 | 0.875 | 0.9732 | | 0.1063 | 47.0037 | 567 | 0.3208 | 0.8929 | 0.8927 | 0.8949 | 0.8929 | 0.9783 | | 0.0883 | 53.0148 | 648 | 0.4270 | 0.875 | 0.8746 | 0.8794 | 0.875 | 0.9745 | | 0.0631 | 60.0111 | 729 | 0.4191 | 0.8929 | 0.8927 | 0.8949 | 0.8929 | 0.9783 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1
featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF
featherless-ai-quants
2024-11-02T21:09:51Z
24
0
null
[ "gguf", "text-generation", "base_model:saishf/SOVL-Mega-Mash-L3-8B", "base_model:quantized:saishf/SOVL-Mega-Mash-L3-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T20:54:03Z
--- base_model: saishf/SOVL-Mega-Mash-L3-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # saishf/SOVL-Mega-Mash-L3-8B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [saishf-SOVL-Mega-Mash-L3-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [saishf-SOVL-Mega-Mash-L3-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [saishf-SOVL-Mega-Mash-L3-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q2_K.gguf) | 3031.86 MB | | Q6_K | [saishf-SOVL-Mega-Mash-L3-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [saishf-SOVL-Mega-Mash-L3-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [saishf-SOVL-Mega-Mash-L3-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [saishf-SOVL-Mega-Mash-L3-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [saishf-SOVL-Mega-Mash-L3-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [saishf-SOVL-Mega-Mash-L3-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [saishf-SOVL-Mega-Mash-L3-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [saishf-SOVL-Mega-Mash-L3-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/saishf-SOVL-Mega-Mash-L3-8B-GGUF/blob/main/saishf-SOVL-Mega-Mash-L3-8B-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/canarim-7b-vestibulaide-i1-GGUF
mradermacher
2024-11-02T21:06:16Z
69
0
transformers
[ "transformers", "gguf", "text-generation", "pytorch", "LLM", "Portuguese", "Llama 2", "pt", "base_model:dominguesm/canarim-7b-vestibulaide", "base_model:quantized:dominguesm/canarim-7b-vestibulaide", "license:llama2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2024-11-02T20:02:53Z
--- base_model: dominguesm/canarim-7b-vestibulaide language: - pt library_name: transformers license: llama2 quantized_by: mradermacher tags: - text-generation - pytorch - LLM - Portuguese - Llama 2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/dominguesm/canarim-7b-vestibulaide <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/canarim-7b-vestibulaide-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 3.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 3.9 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 3.9 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/canarim-7b-vestibulaide-i1-GGUF/resolve/main/canarim-7b-vestibulaide.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF
featherless-ai-quants
2024-11-02T21:03:46Z
6
0
null
[ "gguf", "text-generation", "base_model:gradientai/Llama-3-8B-Instruct-262k", "base_model:quantized:gradientai/Llama-3-8B-Instruct-262k", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T20:30:00Z
--- base_model: gradientai/Llama-3-8B-Instruct-262k pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # gradientai/Llama-3-8B-Instruct-262k GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [gradientai-Llama-3-8B-Instruct-262k-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [gradientai-Llama-3-8B-Instruct-262k-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [gradientai-Llama-3-8B-Instruct-262k-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q2_K.gguf) | 3031.86 MB | | Q6_K | [gradientai-Llama-3-8B-Instruct-262k-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [gradientai-Llama-3-8B-Instruct-262k-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [gradientai-Llama-3-8B-Instruct-262k-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [gradientai-Llama-3-8B-Instruct-262k-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [gradientai-Llama-3-8B-Instruct-262k-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [gradientai-Llama-3-8B-Instruct-262k-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [gradientai-Llama-3-8B-Instruct-262k-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [gradientai-Llama-3-8B-Instruct-262k-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/gradientai-Llama-3-8B-Instruct-262k-GGUF/blob/main/gradientai-Llama-3-8B-Instruct-262k-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF
featherless-ai-quants
2024-11-02T20:54:29Z
10
0
null
[ "gguf", "text-generation", "base_model:Dampfinchen/Llama-3-8B-Ultra-Instruct-SaltSprinkle", "base_model:quantized:Dampfinchen/Llama-3-8B-Ultra-Instruct-SaltSprinkle", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T20:22:25Z
--- base_model: Dampfinchen/Llama-3-8B-Ultra-Instruct-SaltSprinkle pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Dampfinchen/Llama-3-8B-Ultra-Instruct-SaltSprinkle GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q2_K.gguf) | 3031.86 MB | | Q6_K | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-GGUF/blob/main/Dampfinchen-Llama-3-8B-Ultra-Instruct-SaltSprinkle-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
dhruvyadav89300/BERT-phishing-classifier
dhruvyadav89300
2024-11-02T20:52:57Z
160
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "dataset:shawhin/phishing-site-classification", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T20:24:25Z
--- library_name: transformers datasets: - shawhin/phishing-site-classification base_model: - google-bert/bert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [phishing-site-classification dataset](https://huggingface.co/datasets/shawhin/phishing-site-classification) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [GitHub](https://github.com/dhruvyadav89300/BERT-Phishing-Classifier) ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Training Results | Epoch | Training Loss | Step | Validation Loss | Accuracy | AUC | Learning Rate | |-------|---------------|------|-----------------|----------|------|---------------| | 1 | 0.4932 | 263 | 0.4237 | 0.789 | 0.912| 0.00019 | | 2 | 0.3908 | 526 | 0.3761 | 0.824 | 0.932| 0.00018 | | 3 | 0.3787 | 789 | 0.3136 | 0.860 | 0.941| 0.00017 | | 4 | 0.3606 | 1052 | 0.4401 | 0.818 | 0.944| 0.00016 | | 5 | 0.3545 | 1315 | 0.2928 | 0.864 | 0.947| 0.00015 | | 6 | 0.3600 | 1578 | 0.3406 | 0.867 | 0.949| 0.00014 | | 7 | 0.3233 | 1841 | 0.2897 | 0.869 | 0.950| 0.00013 | | 8 | 0.3411 | 2104 | 0.3328 | 0.871 | 0.949| 0.00012 | | 9 | 0.3292 | 2367 | 0.3189 | 0.876 | 0.954| 0.00011 | | 10 | 0.3239 | 2630 | 0.3685 | 0.849 | 0.956| 0.00010 | | 11 | 0.3201 | 2893 | 0.3317 | 0.862 | 0.956| 0.00009 | | 12 | 0.3335 | 3156 | 0.2725 | 0.869 | 0.957| 0.00008 | | 13 | 0.3230 | 3419 | 0.2856 | 0.882 | 0.955| 0.00007 | | 14 | 0.3087 | 3682 | 0.2900 | 0.882 | 0.957| 0.00006 | | 15 | 0.3050 | 3945 | 0.2704 | 0.893 | 0.957| 0.00005 | | 16 | 0.3032 | 4208 | 0.2662 | 0.878 | 0.957| 0.00004 | | 17 | 0.3027 | 4471 | 0.2930 | 0.882 | 0.956| 0.00003 | | 18 | 0.2950 | 4734 | 0.2707 | 0.880 | 0.957| 0.00002 | | 19 | 0.2998 | 4997 | 0.2782 | 0.884 | 0.957| 0.00001 | | 20 | 0.2971 | 5260 | 0.2792 | 0.882 | 0.957| 0.00000 | #### Final Training Summary - **Total Training Runtime:** 555.4381 seconds - **Final Training Loss:** 0.3372 - **Train Samples per Second:** 75.616 - **Eval Accuracy (Best Epoch):** 0.893 (Epoch 15) - **Eval AUC (Best Epoch):** 0.957 (Multiple Epochs)
zixianma/mma_mantis_mix_586k_bsline-seq_len_8192-lr_1e-5-gl_bs_128-ep_1
zixianma
2024-11-02T20:46:13Z
8
0
null
[ "safetensors", "llava", "generated_from_trainer", "base_model:TIGER-Lab/Mantis-8B-siglip-llama3-pretraind", "base_model:finetune:TIGER-Lab/Mantis-8B-siglip-llama3-pretraind", "license:llama3", "region:us" ]
null
2024-11-02T05:50:40Z
--- license: llama3 base_model: TIGER-Lab/Mantis-8B-siglip-llama3-pretraind tags: - generated_from_trainer model-index: - name: mma_mantis_mix_586k_bsline-seq_len_8192-lr_1e-5-gl_bs_128-ep_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://salesforceairesearch.wandb.io/jianguozhang/Mantis/runs/6rk46h2z) # mma_mantis_mix_586k_bsline-seq_len_8192-lr_1e-5-gl_bs_128-ep_1 This model is a fine-tuned version of [TIGER-Lab/Mantis-8B-siglip-llama3-pretraind](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3-pretraind) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.43.0 - Pytorch 2.4.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
griffio/vit-base-patch16-224-in21k-rotated-dungeons-v12
griffio
2024-11-02T20:37:56Z
190
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-11-02T20:36:44Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-rotated-dungeons-v12 results: - task: name: Image Classification type: image-classification dataset: name: rotated_maps type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6666666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-rotated-dungeons-v12 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the rotated_maps dataset. It achieves the following results on the evaluation set: - Loss: 1.4316 - Accuracy: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 27 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.0811 | 8.3333 | 100 | 1.6611 | 0.4167 | | 0.6509 | 16.6667 | 200 | 1.4987 | 0.5 | | 0.5656 | 25.0 | 300 | 1.4316 | 0.6667 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
PMJAi/bert-base-multilingual-cased-sl_50-reranker
PMJAi
2024-11-02T20:34:10Z
106
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T20:33:44Z
--- library_name: transformers tags: - cross-encoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
async0x42/Rombos-LLM-V2.5-Qwen-72b-exl2_3.25bpw
async0x42
2024-11-02T20:31:26Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "base_model:Qwen/Qwen2.5-72B-Instruct", "base_model:quantized:Qwen/Qwen2.5-72B-Instruct", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-11-02T20:18:05Z
--- license: other library_name: transformers base_model: - Qwen/Qwen2.5-72B-Instruct license_name: qwen license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE model-index: - name: Replete-LLM-V2.5-Qwen-72b_Duplicated results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 71.55 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 61.27 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 47.58 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 19.8 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.32 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 54.83 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated name: Open LLM Leaderboard --- # Rombos-LLM-V2.5-Qwen-72b ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/wp9qOi2K2WGzkey0I3SgH.jpeg) Rombos-LLM-V2.5-Qwen-72b is a continues finetuned version of Qwen2.5-72B. I noticed recently that the Qwen team did not learn from my methods of continuous finetuning, the great benefits, and no downsides of it. So I took it upon myself to merge the instruct model with the base model myself using the *Ties* merge method This version of the model shows higher performance than the original instruct and base models. Quants: (Coming soon) GGUF: https://huggingface.co/bartowski/Replete-LLM-V2.5-Qwen-72b-GGUF EXL2: Benchmarks: (Coming soon) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Replete-LLM-V2.5-Qwen-72b_Duplicated) | Metric |Value| |-------------------|----:| |Avg. |45.39| |IFEval (0-Shot) |71.55| |BBH (3-Shot) |61.27| |MATH Lvl 5 (4-Shot)|47.58| |GPQA (0-shot) |19.80| |MuSR (0-shot) |17.32| |MMLU-PRO (5-shot) |54.83|
rzv09/task-13-google-gemma-2-2b
rzv09
2024-11-02T20:28:58Z
5
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2-2b", "base_model:adapter:google/gemma-2-2b", "region:us" ]
null
2024-10-23T18:21:45Z
--- base_model: google/gemma-2-2b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF
featherless-ai-quants
2024-11-02T20:26:40Z
15
0
null
[ "gguf", "text-generation", "base_model:FlagAlpha/Llama3-Chinese-8B-Instruct", "base_model:quantized:FlagAlpha/Llama3-Chinese-8B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T20:15:04Z
--- base_model: FlagAlpha/Llama3-Chinese-8B-Instruct pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # FlagAlpha/Llama3-Chinese-8B-Instruct GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q2_K.gguf) | 3031.86 MB | | Q6_K | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [FlagAlpha-Llama3-Chinese-8B-Instruct-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [FlagAlpha-Llama3-Chinese-8B-Instruct-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/FlagAlpha-Llama3-Chinese-8B-Instruct-GGUF/blob/main/FlagAlpha-Llama3-Chinese-8B-Instruct-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
allknowingroger/Qwen2.5-7B-task6
allknowingroger
2024-11-02T20:23:19Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2212.04089", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2", "base_model:merge:Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2", "base_model:Qwen/Qwen2.5-7B", "base_model:merge:Qwen/Qwen2.5-7B", "base_model:fblgit/cybertron-v4-qw7B-MGS", "base_model:merge:fblgit/cybertron-v4-qw7B-MGS", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-02T20:19:09Z
--- base_model: - fblgit/cybertron-v4-qw7B-MGS - Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2 - Qwen/Qwen2.5-7B library_name: transformers tags: - mergekit - merge license: apache-2.0 --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) as a base. ### Models Merged The following models were included in the merge: * [fblgit/cybertron-v4-qw7B-MGS](https://huggingface.co/fblgit/cybertron-v4-qw7B-MGS) * [Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: fblgit/cybertron-v4-qw7B-MGS parameters: weight: 1.0 - model: Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2 parameters: weight: 1.0 merge_method: task_arithmetic base_model: Qwen/Qwen2.5-7B parameters: normalize: true dtype: bfloat16 ```
griffio/vit-base-patch16-224-in21k-rotated-dungeons-v10
griffio
2024-11-02T20:18:04Z
261
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-11-02T20:17:31Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-rotated-dungeons-v10 results: - task: name: Image Classification type: image-classification dataset: name: rotated_maps type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-rotated-dungeons-v10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the rotated_maps dataset. It achieves the following results on the evaluation set: - Loss: 0.9495 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.3924 | 8.3333 | 100 | 1.0648 | 0.75 | | 0.2925 | 16.6667 | 200 | 0.9745 | 0.875 | | 0.2696 | 25.0 | 300 | 0.9495 | 0.875 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
laishram/FineLlama-3.2-1B-GGUF
laishram
2024-11-02T20:16:40Z
31
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-19T18:53:43Z
--- base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** laishram - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF
featherless-ai-quants
2024-11-02T20:10:50Z
18
0
null
[ "gguf", "text-generation", "base_model:nbeerbower/llama3-KawaiiMahouSauce-8B", "base_model:quantized:nbeerbower/llama3-KawaiiMahouSauce-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-02T19:41:15Z
--- base_model: nbeerbower/llama3-KawaiiMahouSauce-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # nbeerbower/llama3-KawaiiMahouSauce-8B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | Q8_0 | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q8_0.gguf) | 8145.11 MB | | Q4_K_S | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q4_K_S.gguf) | 4475.28 MB | | Q2_K | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q2_K.gguf) | 3031.86 MB | | Q6_K | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q6_K.gguf) | 6290.44 MB | | Q3_K_M | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q3_K_S.gguf) | 3494.74 MB | | Q3_K_L | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q3_K_L.gguf) | 4121.74 MB | | Q4_K_M | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q4_K_M.gguf) | 4692.78 MB | | Q5_K_S | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q5_K_S.gguf) | 5339.90 MB | | Q5_K_M | [nbeerbower-llama3-KawaiiMahouSauce-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-Q5_K_M.gguf) | 5467.40 MB | | IQ4_XS | [nbeerbower-llama3-KawaiiMahouSauce-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3-KawaiiMahouSauce-8B-GGUF/blob/main/nbeerbower-llama3-KawaiiMahouSauce-8B-IQ4_XS.gguf) | 4276.62 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
ChiragB254/health-care-gemma2-kagglex
ChiragB254
2024-11-02T19:56:49Z
8
1
null
[ "text-generation", "en", "dataset:Mohammed-Altaf/medical-instruction-100k", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "region:us" ]
text-generation
2024-10-30T03:25:04Z
--- language: - en base_model: - google/gemma-2-2b-it datasets: - Mohammed-Altaf/medical-instruction-100k pipeline_tag: text-generation ---
pppereira3/distilbert-rating-regression-rob-dset
pppereira3
2024-11-02T19:52:17Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T19:25:11Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-rating-regression-rob-dset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rating-regression-rob-dset This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1938 - Accuracy: 0.5579 - Mse: 0.6630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Mse | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 425 | 1.0287 | 0.5356 | 0.7750 | | 1.1536 | 2.0 | 850 | 1.0397 | 0.5328 | 0.6829 | | 0.8897 | 3.0 | 1275 | 1.0515 | 0.5565 | 0.6503 | | 0.6831 | 4.0 | 1700 | 1.1938 | 0.5579 | 0.6630 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
hatemestinbejaia/mmarco-Arabic-AraElectra-cross-encoder-KD-v1
hatemestinbejaia
2024-11-02T19:51:03Z
106
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-02T19:50:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Xu-Ouyang/pythia-6.9b-deduped-int4-step256-GPTQ-wikitext2
Xu-Ouyang
2024-11-02T19:46:27Z
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-11-02T19:37:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF
mradermacher
2024-11-02T19:40:09Z
71
0
transformers
[ "transformers", "gguf", "llm-agent", "en", "dataset:xingyaoww/code-act", "base_model:xingyaoww/CodeActAgent-Llama-2-7b", "base_model:quantized:xingyaoww/CodeActAgent-Llama-2-7b", "license:llama2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-02T17:00:44Z
--- base_model: xingyaoww/CodeActAgent-Llama-2-7b datasets: - xingyaoww/code-act language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - llm-agent --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/xingyaoww/CodeActAgent-Llama-2-7b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 3.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 3.9 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 3.9 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/CodeActAgent-Llama-2-7b-i1-GGUF/resolve/main/CodeActAgent-Llama-2-7b.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->