modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-23 18:27:52
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 492
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-23 18:25:26
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
MiVaCod/rotten | MiVaCod | 2024-05-14T15:46:41Z | 108 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-03-06T17:44:35Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: rotten
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rotten
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8598
- Accuracy: 0.8527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.405 | 1.0 | 1067 | 0.3657 | 0.8546 |
| 0.225 | 2.0 | 2134 | 0.7075 | 0.8433 |
| 0.0711 | 3.0 | 3201 | 0.8598 | 0.8527 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
kyl23/hw3_SST2_lora_1e-4_r4 | kyl23 | 2024-05-14T15:45:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T15:45:35Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Trelis/OpenELM-270M-instruct-ORPO | Trelis | 2024-05-14T15:40:34Z | 156 | 1 | transformers | [
"transformers",
"safetensors",
"openelm",
"text-generation",
"apple",
"OpenELM",
"conversational",
"custom_code",
"dataset:argilla/dpo-mix-7k",
"arxiv:2404.14619",
"license:other",
"autotrain_compatible",
"region:us"
] | text-generation | 2024-05-14T15:30:11Z | ---
license: other
license_name: apple-sample-code-license
license_link: LICENSE
datasets:
- argilla/dpo-mix-7k
tags:
- apple
- OpenELM
---
# OpenELM
These are ORPO fine-tunes, done using the Argilla/dpo-mix-7k dataset:
- [270M fine-tune](https://huggingface.co/Trelis/OpenELM-270M-instruct-ORPO)
- [450M fine-tune](https://huggingface.co/Trelis/OpenELM-450M-instruct-ORPO)
## Performance notes
OpenELM models are quite weak.
- OpenELM 270M is uniquely small, but weak.
- OpenELM 450M improves a little over the 270M model, but remains weak on accuracy and hallucinates strongly.
- Qwen 1.5 0.5B is stronger than the OpenELM model.
- TinyLlama is stronger than OpenELM 1B.
- Models like Phi-3 are stronger than OpenELM 3B.
## Usage Notes
- Flash attention is not supported
- Making GGUFs is not [yet supported](https://github.com/ggerganov/llama.cpp/issues/6868)
## Inference
See [this Colab Notebook](https://colab.research.google.com/drive/1vFMRhHdPyUxbZAlRWwyl79NwnrSz_yQL?usp=sharing)
~~~
The original model card follows below.
~~~
*Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, Mohammad Rastegari*
We introduce **OpenELM**, a family of **Open** **E**fficient **L**anguage **M**odels. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. We pretrained OpenELM models using the [CoreNet](https://github.com/apple/corenet) library. We release both pretrained and instruction tuned models with 270M, 450M, 1.1B and 3B parameters.
Our pre-training dataset contains RefinedWeb, deduplicated PILE, a subset of RedPajama, and a subset of Dolma v1.6, totaling approximately 1.8 trillion tokens. Please check license agreements and terms of these datasets before using them.
## Usage
We have provided an example function to generate output from OpenELM models loaded via [HuggingFace Hub](https://huggingface.co/docs/hub/) in `generate_openelm.py`.
You can try the model by running the following command:
```
python generate_openelm.py --model apple/OpenELM-450M-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2
```
Please refer to [this link](https://huggingface.co/docs/hub/security-tokens) to obtain your hugging face access token.
Additional arguments to the hugging face generate function can be passed via `generate_kwargs`. As an example, to speedup the inference, you can try [lookup token speculative generation](https://huggingface.co/docs/transformers/generation_strategies) by passing the `prompt_lookup_num_tokens` argument as follows:
```
python generate_openelm.py --model apple/OpenELM-450M-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
```
Alternatively, try model-wise speculative generation with an [assistive model](https://huggingface.co/blog/assisted-generation) by passing a smaller model through the `assistant_model` argument, for example:
```
python generate_openelm.py --model apple/OpenELM-450M-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model [SMALLER_MODEL]
```
## Main Results
### Zero-Shot
| **Model Size** | **ARC-c** | **ARC-e** | **BoolQ** | **HellaSwag** | **PIQA** | **SciQ** | **WinoGrande** | **Average** |
|-----------------------------------------------------------------------------|-----------|-----------|-----------|---------------|-----------|-----------|----------------|-------------|
| [OpenELM-270M](https://huggingface.co/apple/OpenELM-270M) | 26.45 | 45.08 | **53.98** | 46.71 | 69.75 | **84.70** | **53.91** | 54.37 |
| [OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) | **30.55** | **46.68** | 48.56 | **52.07** | **70.78** | 84.40 | 52.72 | **55.11** |
| [OpenELM-450M](https://huggingface.co/apple/OpenELM-450M) | 27.56 | 48.06 | 55.78 | 53.97 | 72.31 | 87.20 | 58.01 | 57.56 |
| [OpenELM-450M-Instruct](https://huggingface.co/apple/OpenELM-450M-Instruct) | **30.38** | **50.00** | **60.37** | **59.34** | **72.63** | **88.00** | **58.96** | **59.95** |
| [OpenELM-1_1B](https://huggingface.co/apple/OpenELM-1_1B) | 32.34 | **55.43** | 63.58 | 64.81 | **75.57** | **90.60** | 61.72 | 63.44 |
| [OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) | **37.97** | 52.23 | **70.00** | **71.20** | 75.03 | 89.30 | **62.75** | **65.50** |
| [OpenELM-3B](https://huggingface.co/apple/OpenELM-3B) | 35.58 | 59.89 | 67.40 | 72.44 | 78.24 | **92.70** | 65.51 | 67.39 |
| [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) | **39.42** | **61.74** | **68.17** | **76.36** | **79.00** | 92.50 | **66.85** | **69.15** |
### LLM360
| **Model Size** | **ARC-c** | **HellaSwag** | **MMLU** | **TruthfulQA** | **WinoGrande** | **Average** |
|-----------------------------------------------------------------------------|-----------|---------------|-----------|----------------|----------------|-------------|
| [OpenELM-270M](https://huggingface.co/apple/OpenELM-270M) | 27.65 | 47.15 | 25.72 | **39.24** | **53.83** | 38.72 |
| [OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) | **32.51** | **51.58** | **26.70** | 38.72 | 53.20 | **40.54** |
| [OpenELM-450M](https://huggingface.co/apple/OpenELM-450M) | 30.20 | 53.86 | **26.01** | 40.18 | 57.22 | 41.50 |
| [OpenELM-450M-Instruct](https://huggingface.co/apple/OpenELM-450M-Instruct) | **33.53** | **59.31** | 25.41 | **40.48** | **58.33** | **43.41** |
| [OpenELM-1_1B](https://huggingface.co/apple/OpenELM-1_1B) | 36.69 | 65.71 | **27.05** | 36.98 | 63.22 | 45.93 |
| [OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) | **41.55** | **71.83** | 25.65 | **45.95** | **64.72** | **49.94** |
| [OpenELM-3B](https://huggingface.co/apple/OpenELM-3B) | 42.24 | 73.28 | **26.76** | 34.98 | 67.25 | 48.90 |
| [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) | **47.70** | **76.87** | 24.80 | **38.76** | **67.96** | **51.22** |
### OpenLLM Leaderboard
| **Model Size** | **ARC-c** | **CrowS-Pairs** | **HellaSwag** | **MMLU** | **PIQA** | **RACE** | **TruthfulQA** | **WinoGrande** | **Average** |
|-----------------------------------------------------------------------------|-----------|-----------------|---------------|-----------|-----------|-----------|----------------|----------------|-------------|
| [OpenELM-270M](https://huggingface.co/apple/OpenELM-270M) | 27.65 | **66.79** | 47.15 | 25.72 | 69.75 | 30.91 | **39.24** | **53.83** | 45.13 |
| [OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) | **32.51** | 66.01 | **51.58** | **26.70** | **70.78** | 33.78 | 38.72 | 53.20 | **46.66** |
| [OpenELM-450M](https://huggingface.co/apple/OpenELM-450M) | 30.20 | **68.63** | 53.86 | **26.01** | 72.31 | 33.11 | 40.18 | 57.22 | 47.69 |
| [OpenELM-450M-Instruct](https://huggingface.co/apple/OpenELM-450M-Instruct) | **33.53** | 67.44 | **59.31** | 25.41 | **72.63** | **36.84** | **40.48** | **58.33** | **49.25** |
| [OpenELM-1_1B](https://huggingface.co/apple/OpenELM-1_1B) | 36.69 | **71.74** | 65.71 | **27.05** | **75.57** | 36.46 | 36.98 | 63.22 | 51.68 |
| [OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) | **41.55** | 71.02 | **71.83** | 25.65 | 75.03 | **39.43** | **45.95** | **64.72** | **54.40** |
| [OpenELM-3B](https://huggingface.co/apple/OpenELM-3B) | 42.24 | **73.29** | 73.28 | **26.76** | 78.24 | **38.76** | 34.98 | 67.25 | 54.35 |
| [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) | **47.70** | 72.33 | **76.87** | 24.80 | **79.00** | 38.47 | **38.76** | **67.96** | **55.73** |
See the technical report for more results and comparison.
## Evaluation
### Setup
Install the following dependencies:
```bash
# install public lm-eval-harness
harness_repo="public-lm-eval-harness"
git clone https://github.com/EleutherAI/lm-evaluation-harness ${harness_repo}
cd ${harness_repo}
# use main branch on 03-15-2024, SHA is dc90fec
git checkout dc90fec
pip install -e .
cd ..
# 66d6242 is the main branch on 2024-04-01
pip install datasets@git+https://github.com/huggingface/datasets.git@66d6242
pip install tokenizers>=0.15.2 transformers>=4.38.2 sentencepiece>=0.2.0
```
### Evaluate OpenELM
```bash
# OpenELM-450M-Instruct
hf_model=apple/OpenELM-450M-Instruct
# this flag is needed because lm-eval-harness set add_bos_token to False by default, but OpenELM uses LLaMA tokenizer which requires add_bos_token to be True
tokenizer=meta-llama/Llama-2-7b-hf
add_bos_token=True
batch_size=1
mkdir lm_eval_output
shot=0
task=arc_challenge,arc_easy,boolq,hellaswag,piqa,race,winogrande,sciq,truthfulqa_mc2
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
shot=5
task=mmlu,winogrande
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
shot=25
task=arc_challenge,crows_pairs_english
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
shot=10
task=hellaswag
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
```
## Bias, Risks, and Limitations
The release of OpenELM models aims to empower and enrich the open research community by providing access to state-of-the-art language models. Trained on publicly available datasets, these models are made available without any safety guarantees. Consequently, there exists the possibility of these models producing outputs that are inaccurate, harmful, biased, or objectionable in response to user prompts. Thus, it is imperative for users and developers to undertake thorough safety testing and implement appropriate filtering mechanisms tailored to their specific requirements.
## Citation
If you find our work useful, please cite:
```BibTex
@article{mehtaOpenELMEfficientLanguage2024,
title = {{OpenELM}: {An} {Efficient} {Language} {Model} {Family} with {Open} {Training} and {Inference} {Framework}},
shorttitle = {{OpenELM}},
url = {https://arxiv.org/abs/2404.14619v1},
language = {en},
urldate = {2024-04-24},
journal = {arXiv.org},
author = {Mehta, Sachin and Sekhavat, Mohammad Hossein and Cao, Qingqing and Horton, Maxwell and Jin, Yanzi and Sun, Chenfan and Mirzadeh, Iman and Najibi, Mahyar and Belenko, Dmitry and Zatloukal, Peter and Rastegari, Mohammad},
month = apr,
year = {2024},
}
@inproceedings{mehta2022cvnets,
author = {Mehta, Sachin and Abdolhosseini, Farzad and Rastegari, Mohammad},
title = {CVNets: High Performance Library for Computer Vision},
year = {2022},
booktitle = {Proceedings of the 30th ACM International Conference on Multimedia},
series = {MM '22}
}
```
|
saucam/PowerBot-8B | saucam | 2024-05-14T15:39:25Z | 94 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"mergekit",
"nvidia/Llama3-ChatQA-1.5-8B",
"refuelai/Llama-3-Refueled",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-09T16:02:07Z | ---
tags:
- merge
- mergekit
- nvidia/Llama3-ChatQA-1.5-8B
- refuelai/Llama-3-Refueled
models:
- nvidia/Llama3-ChatQA-1.5-8B
- refuelai/Llama-3-Refueled
license: apache-2.0
language:
- en
---

# PowerBot-8B
PowerBot-8B is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit):
* [nvidia/Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)
* [refuelai/Llama-3-Refueled](https://huggingface.co/refuelai/Llama-3-Refueled)
## π§© Configuration
```yamlname: PowerBot-8B
tokenizer_source: union
embed_slerp: true
models:
- model: nvidia/Llama3-ChatQA-1.5-8B
parameters:
density: 0.5
weight: 0.6
# No parameters necessary for base model
- model: refuelai/Llama-3-Refueled
parameters:
density: 0.5
weight: 0.4
merge_method: dare_ties
base_model: nvidia/Llama3-ChatQA-1.5-8B
parameters:
int8_mask: true
dtype: bfloat16
```
## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "saucam/PowerBot-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
```
Loading checkpoint shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:07<00:00, 3.75s/it]
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.
<|im_start|>user
What is a large language model?<|im_end|>
<|im_start|>assistant
A large language model (LLM) is a deep neural network that is trained to predict the next word in a sequence of text. LLMs are typically trained on large amounts of text data and can be used for a variety of tasks such as language translation, text completion, and question answering. They are often used to generate human-like text and are becoming increasingly popular in natural language processing applications. The LLM uses a transformer architecture, which consists of multiple layers of neural networks that are trained to process and understand the relationships between words in a sentence. The transformer architecture is designed to handle long sequences of text and is capable of capturing the context of a word within a sentence. This allows the LLM to generate coherent and grammatically correct text that is similar to human writing. LLMs are typically trained on a large corpus of text data and can be fine-tuned for specific tasks by retraining on smaller datasets that are relevant to the task at hand. This allows the LLM to adapt to the specific requirements of a particular application and improve its performance. The LLM can be used to generate text in a variety of formats, including natural language, code, and even mathematical expressions. It can also be used to translate text from one language to another, generate summaries of
```
Preserves the whole document as context capability
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "saucam/PowerBot-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
messages = [
{"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
]
document = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
def get_formatted_input(messages, context):
system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
instruction = "Please give a full and complete answer for the question."
for item in messages:
if item['role'] == "user":
## only apply this instruction for the first user turn
item['content'] = instruction + " " + item['content']
break
conversation = '\n\n'.join(["User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages]) + "\n\nAssistant:"
formatted_input = system + "\n\n" + context + "\n\n" + conversation
return formatted_input
formatted_input = get_formatted_input(messages, document)
tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
```
Downloading shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 12.71it/s]
Loading checkpoint shards: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:08<00:00, 4.05s/it]
Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.
The percentage change of the net income from Q4 FY23 to Q4 FY24 is 769%. This is calculated by taking the difference between the two net incomes ($12,285 million and $1,414 million) and dividing it by the net income from Q4 FY23 ($1,414 million), then multiplying by 100 to get the percentage change. So, the formula is ((12,285 - 1,414) / 1,414) * 100 = 769%.
```
Sample run on classification tasks, positive labelling still works
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "saucam/PowerBot-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
messages = [{"role": "user", "content": "Is this comment toxic or non-toxic: RefuelLLM is the new way to label text data!"}]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0]))
```
```
Loading checkpoint shards: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:07<00:00, 3.89s/it]
No chat template is defined for this tokenizer - using a default chat template that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for your model, please set `tokenizer.chat_template` to an appropriate template. See https://huggingface.co/docs/transformers/main/chat_templating for more information.
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.
<|im_start|>user
Is this comment toxic or non-toxic: RefuelLLM is the new way to label text data!<|im_end|>
<|im_start|>assistant
This comment is non-toxic.
<|im_end|><|end_of_text|>
``` |
reemmasoud/idv_vs_col_llama-3_PromptTuning_CAUSAL_LM_gradient_descent_v1 | reemmasoud | 2024-05-14T15:39:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T15:39:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
terry69/mistral_poe_10-full | terry69 | 2024-05-14T15:31:35Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T15:29:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF | mradermacher | 2024-05-14T15:30:55Z | 21 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:mergekit-community/LLaMa-3-Base-Zeroed-13B",
"base_model:quantized:mergekit-community/LLaMa-3-Base-Zeroed-13B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-14T14:39:16Z | ---
base_model: mergekit-community/LLaMa-3-Base-Zeroed-13B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/mergekit-community/LLaMa-3-Base-Zeroed-13B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q2_K.gguf) | Q2_K | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.IQ3_XS.gguf) | IQ3_XS | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q3_K_S.gguf) | Q3_K_S | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.IQ3_S.gguf) | IQ3_S | 6.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.IQ3_M.gguf) | IQ3_M | 6.1 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q3_K_M.gguf) | Q3_K_M | 6.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q3_K_L.gguf) | Q3_K_L | 7.1 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.IQ4_XS.gguf) | IQ4_XS | 7.3 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q4_K_S.gguf) | Q4_K_S | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q5_K_S.gguf) | Q5_K_S | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q5_K_M.gguf) | Q5_K_M | 9.4 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q6_K.gguf) | Q6_K | 10.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/LLaMa-3-Base-Zeroed-13B-GGUF/resolve/main/LLaMa-3-Base-Zeroed-13B.Q8_0.gguf) | Q8_0 | 14.0 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
terry69/mistral_poe_add-full | terry69 | 2024-05-14T15:23:42Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T15:10:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mjavadf/whisper-small-dv | mjavadf | 2024-05-14T15:21:12Z | 94 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dv",
"dataset:mozilla-foundation/common_voice_13_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-14T13:19:41Z | ---
language:
- dv
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Dv - Sanchit Gandhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: dv
split: test
args: dv
metrics:
- name: Wer
type: wer
value: 13.60712174427096
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Dv - Sanchit Gandhi
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1733
- Wer Ortho: 62.6715
- Wer: 13.6071
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.1198 | 1.6287 | 500 | 0.1733 | 62.6715 | 13.6071 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Antonio49/ModeloCanal | Antonio49 | 2024-05-14T15:20:20Z | 113 | 2 | transformers | [
"transformers",
"safetensors",
"bert",
"question-answering",
"es",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2024-04-07T08:20:05Z | ---
title: Antonio.BERT.Canal
emoji: π
colorFrom: red
colorTo: blue
sdk: gradio
sdk_version: 3.33.1
app_file: app.py
pinned: false
license: mit
language:
- es
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed] |
philschmid/Llama-3-70b-lora | philschmid | 2024-05-14T15:19:31Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"arxiv:1910.09700",
"region:us"
] | null | 2024-05-14T15:18:52Z | ---
library_name: peft
base_model: meta-llama/Meta-Llama-3-70b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
PantagrueLLM/jargon-general-biomed | PantagrueLLM | 2024-05-14T15:17:56Z | 110 | 0 | transformers | [
"transformers",
"pytorch",
"jargon",
"fill-mask",
"linformer",
"medical",
"RoBERTa",
"custom_code",
"fr",
"license:mit",
"autotrain_compatible",
"region:us"
] | fill-mask | 2024-05-13T17:49:04Z | ---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- medical
- RoBERTa
- pytorch
---
# Jargon-general-biomed
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
Jargon is available in several versions with different context sizes and types of pre-training corpora.
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
-->
| **Model** | **Initialised from...** |
|-------------------------------------------------------------------------------------|:-----------------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base) | scratch |
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed) | jargon-general-base |
| jargon-general-legal | jargon-general-base |
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |
| jargon-legal | scratch |
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096) | scratch |
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096) | scratch |
## Evaluation
The Jargon models were evaluated on an range of specialized downstream tasks.
## Biomedical Benchmark
Results averaged across five funs with varying random seeds.
| |[**FrenchMedMCQA**](https://huggingface.co/datasets/qanastek/frenchmedmcqa)|[**MQC**](https://aclanthology.org/2020.lrec-1.72/)|[**CAS-POS**](https://clementdalloux.fr/?page_id=28)|[**ESSAI-POS**](https://clementdalloux.fr/?page_id=28)|[**CAS-SG**](https://aclanthology.org/W18-5614/)|[**MEDLINE**](https://huggingface.co/datasets/mnaguib/QuaeroFrenchMed)|[**EMEA**](https://huggingface.co/datasets/mnaguib/QuaeroFrenchMed)|[**E3C-NER**](https://live.european-language-grid.eu/catalogue/corpus/7618)|[**CLISTER**](https://aclanthology.org/2022.lrec-1.459/)|
|-------------------------|:-----------------------:|:-----------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|
| **Task Type** | Sequence Classification | Sequence Classification | Token Classification | Token Classification | Token Classification | Token Classification | Token Classification | Token Classification | STS |
| **Metric** | EMR | Accuracy | Macro-F1 | Macro-F1 | Weighted F1 | Weighted F1 | Weighted F1 | Weighted F1 | Spearman Correlation |
| jargon-general-base | 12.9 | 76.7 | 96.6 | 96.0 | 69.4 | 81.7 | 96.5 | 91.9 | 78.0 |
| jargon-biomed | 15.3 | 91.1 | 96.5 | 95.6 | 75.1 | 83.7 | 96.5 | 93.5 | 74.6 |
| jargon-biomed-4096 | 14.4 | 78.9 | 96.6 | 95.9 | 73.3 | 82.3 | 96.3 | 92.5 | 65.3 |
| jargon-general-biomed | 16.1 | 69.7 | 95.1 | 95.1 | 67.8 | 78.2 | 96.6 | 91.3 | 59.7 |
| jargon-multidomain-base | 14.9 | 86.9 | 96.3 | 96.0 | 70.6 | 82.4 | 96.6 | 92.6 | 74.8 |
| jargon-NACHOS | 13.3 | 90.7 | 96.3 | 96.2 | 75.0 | 83.4 | 96.8 | 93.1 | 70.9 |
| jargon-NACHOS-4096 | 18.4 | 93.2 | 96.2 | 95.9 | 74.9 | 83.8 | 96.8 | 93.2 | 74.9 |
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
## Using Jargon models with HuggingFace transformers
You can get started with `jargon-general-biomed` using the code snippet below:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-general-biomed", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-general-biomed", trust_remote_code=True)
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allΓ© au <mask> hier")
```
You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.
- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
- GENCI-IDRIS (Grant 2022 A0131013801)
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
- PROPICTO ANR-20-CE93-0005
- Lawbot ANR-20-CE38-0013
- Swiss National Science Foundation (grant PROPICTO NΒ°197864)
- **Authors**
- Vincent Segonne
- Aidan Mannion
- Laura Cristina Alonzo Canul
- Alexandre Audibert
- Xingyu Liu
- CΓ©cile Macaire
- Adrien Pupier
- Yongxin Zhou
- Mathilde Aguiar
- Felix Herron
- Magali NorrΓ©
- Massih-Reza Amini
- Pierrette Bouillon
- Iris Eshkol-Taravella
- Emmanuelle EsperanΓ§a-Rodier
- Thomas FranΓ§ois
- Lorraine Goeuriot
- JΓ©rΓ΄me Goulian
- Mathieu Lafourcade
- Benjamin Lecouteux
- FranΓ§ois Portet
- Fabien Ringeval
- Vincent Vandeghinste
- Maximin Coavoux
- Marco Dinarelli
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{segonne:hal-04535557,
TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
URL = {https://hal.science/hal-04535557},
BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
ADDRESS = {Turin, Italy},
YEAR = {2024},
MONTH = May,
KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
HAL_ID = {hal-04535557},
HAL_VERSION = {v1},
}
```
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!--
### Model Sources [optional]
<!-- Provide the basic links for the model. --> |
kishiyev/ppo-LunarLander-v2 | kishiyev | 2024-05-14T15:16:31Z | 3 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-14T12:59:54Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 246.27 +/- 19.96
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
repo_id = "kishiyev/ppo-LunarLander-v2" # The repo_id
filename = "ppo-LunarLander-v2.zip" # The model filename.zip
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
...
```
|
emilykang/Phi_finetune_med | emilykang | 2024-05-14T15:16:15Z | 0 | 0 | peft | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:microsoft/phi-2",
"base_model:adapter:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-05-14T09:30:46Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/phi-2
datasets:
- generator
model-index:
- name: Phi_finetune_med
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi_finetune_med
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1 |
PantagrueLLM/jargon-NACHOS | PantagrueLLM | 2024-05-14T15:15:56Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"jargon",
"fill-mask",
"linformer",
"medical",
"RoBERTa",
"custom_code",
"fr",
"license:mit",
"autotrain_compatible",
"region:us"
] | fill-mask | 2024-05-13T18:48:04Z | ---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- medical
- RoBERTa
- pytorch
---
# Jargon-NACHOS
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
Jargon is available in several versions with different context sizes and types of pre-training corpora.
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
-->
| **Model** | **Initialised from...** |**Training Data**|
|-------------------------------------------------------------------------------------|:-----------------------:|:----------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base) | scratch |8.5GB Web Corpus|
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed) | jargon-general-base |5.4GB Medical Corpus|
| jargon-general-legal | jargon-general-base |18GB Legal Corpus
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |Medical+Legal Corpora|
| jargon-legal | scratch |18GB Legal Corpus|
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096) | scratch |18GB Legal Corpus|
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |5.4GB Medical Corpus|
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |5.4GB Medical Corpus|
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
## Evaluation
The Jargon models were evaluated on an range of specialized downstream tasks.
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
## Using Jargon models with HuggingFace transformers
You can get started with this model using the code snippet below:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-NACHOS", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-NACHOS", trust_remote_code=True)
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allΓ© au <mask> hier")
```
You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.
- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
- GENCI-IDRIS (Grant 2022 A0131013801)
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
- PROPICTO ANR-20-CE93-0005
- Lawbot ANR-20-CE38-0013
- Swiss National Science Foundation (grant PROPICTO NΒ°197864)
- **Authors**
- Vincent Segonne
- Aidan Mannion
- Laura Cristina Alonzo Canul
- Alexandre Audibert
- Xingyu Liu
- CΓ©cile Macaire
- Adrien Pupier
- Yongxin Zhou
- Mathilde Aguiar
- Felix Herron
- Magali NorrΓ©
- Massih-Reza Amini
- Pierrette Bouillon
- Iris Eshkol-Taravella
- Emmanuelle EsperanΓ§a-Rodier
- Thomas FranΓ§ois
- Lorraine Goeuriot
- JΓ©rΓ΄me Goulian
- Mathieu Lafourcade
- Benjamin Lecouteux
- FranΓ§ois Portet
- Fabien Ringeval
- Vincent Vandeghinste
- Maximin Coavoux
- Marco Dinarelli
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{segonne:hal-04535557,
TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
URL = {https://hal.science/hal-04535557},
BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
ADDRESS = {Turin, Italy},
YEAR = {2024},
MONTH = May,
KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
HAL_ID = {hal-04535557},
HAL_VERSION = {v1},
}
```
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!--
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
|
PantagrueLLM/jargon-biomed-4096 | PantagrueLLM | 2024-05-14T15:15:06Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"jargon",
"fill-mask",
"linformer",
"medical",
"RoBERTa",
"custom_code",
"fr",
"license:mit",
"autotrain_compatible",
"region:us"
] | fill-mask | 2024-05-13T18:40:05Z | ---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- medical
- RoBERTa
- pytorch
---
# Jargon-biomed-4096
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
Jargon is available in several versions with different context sizes and types of pre-training corpora.
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
-->
| **Model** | **Initialised from...** |**Training Data**|
|-------------------------------------------------------------------------------------|:-----------------------:|:----------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base) | scratch |8.5GB Web Corpus|
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed) | jargon-general-base |5.4GB Medical Corpus|
| jargon-general-legal | jargon-general-base |18GB Legal Corpus
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |Medical+Legal Corpora|
| jargon-legal | scratch |18GB Legal Corpus|
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096) | scratch |18GB Legal Corpus|
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |5.4GB Medical Corpus|
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |5.4GB Medical Corpus|
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
## Evaluation
The Jargon models were evaluated on an range of specialized downstream tasks.
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
## Using Jargon models with HuggingFace transformers
You can get started with `jargon-biomed-4096` using the code snippet below:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-biomed-4096", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-biomed-4096", trust_remote_code=True)
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allΓ© au <mask> hier")
```
You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.
- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
- GENCI-IDRIS (Grant 2022 A0131013801)
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
- PROPICTO ANR-20-CE93-0005
- Lawbot ANR-20-CE38-0013
- Swiss National Science Foundation (grant PROPICTO NΒ°197864)
- **Authors**
- Vincent Segonne
- Aidan Mannion
- Laura Cristina Alonzo Canul
- Alexandre Audibert
- Xingyu Liu
- CΓ©cile Macaire
- Adrien Pupier
- Yongxin Zhou
- Mathilde Aguiar
- Felix Herron
- Magali NorrΓ©
- Massih-Reza Amini
- Pierrette Bouillon
- Iris Eshkol-Taravella
- Emmanuelle EsperanΓ§a-Rodier
- Thomas FranΓ§ois
- Lorraine Goeuriot
- JΓ©rΓ΄me Goulian
- Mathieu Lafourcade
- Benjamin Lecouteux
- FranΓ§ois Portet
- Fabien Ringeval
- Vincent Vandeghinste
- Maximin Coavoux
- Marco Dinarelli
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{segonne:hal-04535557,
TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
URL = {https://hal.science/hal-04535557},
BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
ADDRESS = {Turin, Italy},
YEAR = {2024},
MONTH = May,
KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
HAL_ID = {hal-04535557},
HAL_VERSION = {v1},
}
```
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!--
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
|
amaye15/google-vit-base-patch16-224-batch32-lr0.005-standford-dogs | amaye15 | 2024-05-14T15:14:07Z | 219 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:stanford-dogs",
"base_model:google/vit-base-patch16-224",
"base_model:finetune:google/vit-base-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-14T15:13:46Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- stanford-dogs
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: google-vit-base-patch16-224-batch32-lr0.005-standford-dogs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: stanford-dogs
type: stanford-dogs
config: default
split: full
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8797376093294461
- name: F1
type: f1
value: 0.8759381135610711
- name: Precision
type: precision
value: 0.88124155438923
- name: Recall
type: recall
value: 0.876557313613651
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# google-vit-base-patch16-224-batch32-lr0.005-standford-dogs
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the stanford-dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4511
- Accuracy: 0.8797
- F1: 0.8759
- Precision: 0.8812
- Recall: 0.8766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 4.8453 | 0.0777 | 10 | 4.6341 | 0.0355 | 0.0304 | 0.0311 | 0.0364 |
| 4.5433 | 0.1553 | 20 | 4.3107 | 0.1246 | 0.0982 | 0.1263 | 0.1225 |
| 4.2752 | 0.2330 | 30 | 3.9697 | 0.2719 | 0.2176 | 0.2518 | 0.2632 |
| 3.9872 | 0.3107 | 40 | 3.6402 | 0.4274 | 0.3661 | 0.4264 | 0.4167 |
| 3.7182 | 0.3883 | 50 | 3.3251 | 0.5362 | 0.4888 | 0.5817 | 0.5247 |
| 3.473 | 0.4660 | 60 | 3.0453 | 0.6220 | 0.5815 | 0.6516 | 0.6115 |
| 3.2252 | 0.5437 | 70 | 2.7739 | 0.6817 | 0.6506 | 0.7194 | 0.6713 |
| 2.9976 | 0.6214 | 80 | 2.5391 | 0.7046 | 0.6756 | 0.7286 | 0.6954 |
| 2.762 | 0.6990 | 90 | 2.2990 | 0.7505 | 0.7258 | 0.7646 | 0.7421 |
| 2.5763 | 0.7767 | 100 | 2.1075 | 0.7646 | 0.7434 | 0.7793 | 0.7556 |
| 2.4357 | 0.8544 | 110 | 1.9226 | 0.7850 | 0.7652 | 0.8027 | 0.7768 |
| 2.2669 | 0.9320 | 120 | 1.7673 | 0.8008 | 0.7838 | 0.8149 | 0.7938 |
| 2.1459 | 1.0097 | 130 | 1.6339 | 0.8175 | 0.8058 | 0.8291 | 0.8110 |
| 1.9822 | 1.0874 | 140 | 1.5204 | 0.8214 | 0.8114 | 0.8366 | 0.8151 |
| 1.8701 | 1.1650 | 150 | 1.4219 | 0.8173 | 0.8091 | 0.8330 | 0.8117 |
| 1.8007 | 1.2427 | 160 | 1.3224 | 0.8292 | 0.8205 | 0.8390 | 0.8233 |
| 1.8004 | 1.3204 | 170 | 1.2553 | 0.8324 | 0.8243 | 0.8413 | 0.8271 |
| 1.6511 | 1.3981 | 180 | 1.1728 | 0.8372 | 0.8282 | 0.8467 | 0.8314 |
| 1.548 | 1.4757 | 190 | 1.1091 | 0.8394 | 0.8300 | 0.8500 | 0.8340 |
| 1.5634 | 1.5534 | 200 | 1.0561 | 0.8345 | 0.8263 | 0.8444 | 0.8287 |
| 1.5163 | 1.6311 | 210 | 0.9983 | 0.8457 | 0.8382 | 0.8512 | 0.8409 |
| 1.3883 | 1.7087 | 220 | 0.9574 | 0.8499 | 0.8425 | 0.8545 | 0.8452 |
| 1.3161 | 1.7864 | 230 | 0.9129 | 0.8511 | 0.8425 | 0.8564 | 0.8457 |
| 1.304 | 1.8641 | 240 | 0.8727 | 0.8535 | 0.8454 | 0.8570 | 0.8487 |
| 1.3268 | 1.9417 | 250 | 0.8412 | 0.8511 | 0.8441 | 0.8572 | 0.8473 |
| 1.2388 | 2.0194 | 260 | 0.8104 | 0.8569 | 0.8482 | 0.8608 | 0.8522 |
| 1.1333 | 2.0971 | 270 | 0.7920 | 0.8557 | 0.8486 | 0.8596 | 0.8516 |
| 1.1305 | 2.1748 | 280 | 0.7565 | 0.8579 | 0.8505 | 0.8630 | 0.8534 |
| 1.1849 | 2.2524 | 290 | 0.7498 | 0.8593 | 0.8536 | 0.8646 | 0.8549 |
| 1.1287 | 2.3301 | 300 | 0.7348 | 0.8593 | 0.8533 | 0.8653 | 0.8552 |
| 1.0537 | 2.4078 | 310 | 0.7120 | 0.8554 | 0.8496 | 0.8586 | 0.8515 |
| 1.1157 | 2.4854 | 320 | 0.6832 | 0.8622 | 0.8552 | 0.8662 | 0.8579 |
| 1.1008 | 2.5631 | 330 | 0.6705 | 0.8618 | 0.8546 | 0.8640 | 0.8574 |
| 1.0512 | 2.6408 | 340 | 0.6557 | 0.8630 | 0.8563 | 0.8636 | 0.8593 |
| 1.0641 | 2.7184 | 350 | 0.6490 | 0.8632 | 0.8581 | 0.8691 | 0.8596 |
| 1.0446 | 2.7961 | 360 | 0.6301 | 0.8652 | 0.8597 | 0.8692 | 0.8612 |
| 1.0104 | 2.8738 | 370 | 0.6287 | 0.8632 | 0.8562 | 0.8668 | 0.8588 |
| 1.0544 | 2.9515 | 380 | 0.6150 | 0.8644 | 0.8579 | 0.8657 | 0.8602 |
| 1.0074 | 3.0291 | 390 | 0.6061 | 0.8683 | 0.8617 | 0.8712 | 0.8641 |
| 0.9329 | 3.1068 | 400 | 0.6001 | 0.8661 | 0.8591 | 0.8750 | 0.8620 |
| 0.9049 | 3.1845 | 410 | 0.5925 | 0.8686 | 0.8617 | 0.8731 | 0.8647 |
| 0.9815 | 3.2621 | 420 | 0.5806 | 0.8686 | 0.8622 | 0.8717 | 0.8644 |
| 0.9507 | 3.3398 | 430 | 0.5793 | 0.8673 | 0.8613 | 0.8691 | 0.8638 |
| 0.9608 | 3.4175 | 440 | 0.5721 | 0.8671 | 0.8614 | 0.8683 | 0.8636 |
| 0.9409 | 3.4951 | 450 | 0.5688 | 0.8652 | 0.8591 | 0.8658 | 0.8612 |
| 0.8856 | 3.5728 | 460 | 0.5563 | 0.8700 | 0.8650 | 0.8714 | 0.8667 |
| 0.9099 | 3.6505 | 470 | 0.5557 | 0.8661 | 0.8613 | 0.8681 | 0.8622 |
| 0.9167 | 3.7282 | 480 | 0.5527 | 0.8686 | 0.8639 | 0.8701 | 0.8648 |
| 0.9077 | 3.8058 | 490 | 0.5431 | 0.8705 | 0.8669 | 0.8722 | 0.8674 |
| 0.9005 | 3.8835 | 500 | 0.5390 | 0.8732 | 0.8697 | 0.8749 | 0.8701 |
| 0.8596 | 3.9612 | 510 | 0.5375 | 0.8707 | 0.8655 | 0.8732 | 0.8668 |
| 0.8856 | 4.0388 | 520 | 0.5254 | 0.8705 | 0.8651 | 0.8741 | 0.8663 |
| 0.8869 | 4.1165 | 530 | 0.5238 | 0.8717 | 0.8657 | 0.8731 | 0.8680 |
| 0.8069 | 4.1942 | 540 | 0.5188 | 0.8732 | 0.8671 | 0.8744 | 0.8695 |
| 0.8474 | 4.2718 | 550 | 0.5188 | 0.8710 | 0.8649 | 0.8729 | 0.8671 |
| 0.8243 | 4.3495 | 560 | 0.5177 | 0.8727 | 0.8684 | 0.8756 | 0.8696 |
| 0.8437 | 4.4272 | 570 | 0.5107 | 0.8727 | 0.8682 | 0.8742 | 0.8693 |
| 0.7761 | 4.5049 | 580 | 0.5025 | 0.8739 | 0.8700 | 0.8751 | 0.8708 |
| 0.784 | 4.5825 | 590 | 0.5016 | 0.8768 | 0.8717 | 0.8778 | 0.8734 |
| 0.8055 | 4.6602 | 600 | 0.5019 | 0.8739 | 0.8701 | 0.8772 | 0.8710 |
| 0.8109 | 4.7379 | 610 | 0.4960 | 0.8771 | 0.8724 | 0.8785 | 0.8740 |
| 0.8697 | 4.8155 | 620 | 0.4887 | 0.8793 | 0.8749 | 0.8816 | 0.8757 |
| 0.7996 | 4.8932 | 630 | 0.4878 | 0.8773 | 0.8719 | 0.8782 | 0.8734 |
| 0.8002 | 4.9709 | 640 | 0.4847 | 0.8785 | 0.8738 | 0.8807 | 0.8752 |
| 0.7404 | 5.0485 | 650 | 0.4888 | 0.8771 | 0.8726 | 0.8795 | 0.8739 |
| 0.7326 | 5.1262 | 660 | 0.4883 | 0.8746 | 0.8701 | 0.8772 | 0.8718 |
| 0.797 | 5.2039 | 670 | 0.4892 | 0.8729 | 0.8689 | 0.8752 | 0.8701 |
| 0.8084 | 5.2816 | 680 | 0.4800 | 0.8793 | 0.8752 | 0.8817 | 0.8763 |
| 0.8025 | 5.3592 | 690 | 0.4762 | 0.8768 | 0.8727 | 0.8771 | 0.8736 |
| 0.7087 | 5.4369 | 700 | 0.4762 | 0.8783 | 0.8750 | 0.8807 | 0.8756 |
| 0.7502 | 5.5146 | 710 | 0.4754 | 0.8785 | 0.8754 | 0.8801 | 0.8759 |
| 0.7386 | 5.5922 | 720 | 0.4738 | 0.8793 | 0.8754 | 0.8807 | 0.8760 |
| 0.8173 | 5.6699 | 730 | 0.4712 | 0.8793 | 0.8750 | 0.8801 | 0.8762 |
| 0.8213 | 5.7476 | 740 | 0.4696 | 0.8790 | 0.8750 | 0.8795 | 0.8756 |
| 0.7184 | 5.8252 | 750 | 0.4714 | 0.8805 | 0.8759 | 0.8826 | 0.8768 |
| 0.7168 | 5.9029 | 760 | 0.4682 | 0.8749 | 0.8695 | 0.8771 | 0.8715 |
| 0.7558 | 5.9806 | 770 | 0.4673 | 0.8761 | 0.8711 | 0.8787 | 0.8729 |
| 0.7169 | 6.0583 | 780 | 0.4678 | 0.8783 | 0.8736 | 0.8801 | 0.8749 |
| 0.7042 | 6.1359 | 790 | 0.4628 | 0.8759 | 0.8710 | 0.8773 | 0.8724 |
| 0.7332 | 6.2136 | 800 | 0.4672 | 0.8766 | 0.8720 | 0.8790 | 0.8731 |
| 0.7027 | 6.2913 | 810 | 0.4644 | 0.8785 | 0.8736 | 0.8805 | 0.8749 |
| 0.7283 | 6.3689 | 820 | 0.4642 | 0.8776 | 0.8724 | 0.8793 | 0.8740 |
| 0.7305 | 6.4466 | 830 | 0.4613 | 0.8780 | 0.8729 | 0.8785 | 0.8742 |
| 0.7186 | 6.5243 | 840 | 0.4606 | 0.8768 | 0.8723 | 0.8783 | 0.8734 |
| 0.759 | 6.6019 | 850 | 0.4592 | 0.8766 | 0.8719 | 0.8769 | 0.8730 |
| 0.6865 | 6.6796 | 860 | 0.4580 | 0.8771 | 0.8727 | 0.8782 | 0.8737 |
| 0.689 | 6.7573 | 870 | 0.4574 | 0.8776 | 0.8735 | 0.8788 | 0.8745 |
| 0.6851 | 6.8350 | 880 | 0.4561 | 0.8802 | 0.8764 | 0.8815 | 0.8773 |
| 0.7158 | 6.9126 | 890 | 0.4547 | 0.8795 | 0.8759 | 0.8808 | 0.8766 |
| 0.6938 | 6.9903 | 900 | 0.4533 | 0.8800 | 0.8759 | 0.8810 | 0.8768 |
| 0.6596 | 7.0680 | 910 | 0.4540 | 0.8800 | 0.8759 | 0.8808 | 0.8768 |
| 0.7519 | 7.1456 | 920 | 0.4530 | 0.8800 | 0.8758 | 0.8809 | 0.8769 |
| 0.6836 | 7.2233 | 930 | 0.4519 | 0.8793 | 0.8753 | 0.8806 | 0.8762 |
| 0.7407 | 7.3010 | 940 | 0.4520 | 0.8788 | 0.8751 | 0.8807 | 0.8757 |
| 0.6823 | 7.3786 | 950 | 0.4522 | 0.8785 | 0.8750 | 0.8802 | 0.8753 |
| 0.7029 | 7.4563 | 960 | 0.4524 | 0.8785 | 0.8746 | 0.8802 | 0.8753 |
| 0.6536 | 7.5340 | 970 | 0.4515 | 0.8795 | 0.8756 | 0.8812 | 0.8763 |
| 0.6837 | 7.6117 | 980 | 0.4513 | 0.8800 | 0.8761 | 0.8815 | 0.8768 |
| 0.6604 | 7.6893 | 990 | 0.4512 | 0.8797 | 0.8759 | 0.8812 | 0.8766 |
| 0.683 | 7.7670 | 1000 | 0.4511 | 0.8797 | 0.8759 | 0.8812 | 0.8766 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
AlkQ/ppo-SnowballTarget | AlkQ | 2024-05-14T15:13:57Z | 13 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] | reinforcement-learning | 2024-05-14T15:13:54Z | ---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog πΆ to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AlkQ/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
PantagrueLLM/jargon-NACHOS-4096 | PantagrueLLM | 2024-05-14T15:13:54Z | 101 | 0 | transformers | [
"transformers",
"pytorch",
"jargon",
"fill-mask",
"linformer",
"medical",
"RoBERTa",
"custom_code",
"fr",
"license:mit",
"autotrain_compatible",
"region:us"
] | fill-mask | 2024-05-13T18:49:23Z | ---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- medical
- RoBERTa
- pytorch
---
# Jargon-NACHOS-4096
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
Jargon is available in several versions with different context sizes and types of pre-training corpora.
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
-->
| **Model** | **Initialised from...** |**Training Data**|
|-------------------------------------------------------------------------------------|:-----------------------:|:----------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base) | scratch |8.5GB Web Corpus|
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed) | jargon-general-base |5.4GB Medical Corpus|
| jargon-general-legal | jargon-general-base |18GB Legal Corpus
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |Medical+Legal Corpora|
| jargon-legal | scratch |18GB Legal Corpus|
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096) | scratch |18GB Legal Corpus|
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |5.4GB Medical Corpus|
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |5.4GB Medical Corpus|
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
## Evaluation
The Jargon models were evaluated on an range of specialized downstream tasks.
## Biomedical Benchmark
Results averaged across five funs with varying random seeds.
| |[**FrenchMedMCQA**](https://huggingface.co/datasets/qanastek/frenchmedmcqa)|[**MQC**](https://aclanthology.org/2020.lrec-1.72/)|[**CAS-POS**](https://clementdalloux.fr/?page_id=28)|[**ESSAI-POS**](https://clementdalloux.fr/?page_id=28)|[**CAS-SG**](https://aclanthology.org/W18-5614/)|[**MEDLINE**](https://huggingface.co/datasets/mnaguib/QuaeroFrenchMed)|[**EMEA**](https://huggingface.co/datasets/mnaguib/QuaeroFrenchMed)|[**E3C-NER**](https://live.european-language-grid.eu/catalogue/corpus/7618)|[**CLISTER**](https://aclanthology.org/2022.lrec-1.459/)|
|-------------------------|:-----------------------:|:-----------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|
| **Task Type** | Sequence Classification | Sequence Classification | Token Classification | Token Classification | Token Classification | Token Classification | Token Classification | Token Classification | STS |
| **Metric** | EMR | Accuracy | Macro-F1 | Macro-F1 | Weighted F1 | Weighted F1 | Weighted F1 | Weighted F1 | Spearman Correlation |
| jargon-general-base | 12.9 | 76.7 | 96.6 | 96.0 | 69.4 | 81.7 | 96.5 | 91.9 | 78.0 |
| jargon-biomed | 15.3 | 91.1 | 96.5 | 95.6 | 75.1 | 83.7 | 96.5 | 93.5 | 74.6 |
| jargon-biomed-4096 | 14.4 | 78.9 | 96.6 | 95.9 | 73.3 | 82.3 | 96.3 | 92.5 | 65.3 |
| jargon-general-biomed | 16.1 | 69.7 | 95.1 | 95.1 | 67.8 | 78.2 | 96.6 | 91.3 | 59.7 |
| jargon-multidomain-base | 14.9 | 86.9 | 96.3 | 96.0 | 70.6 | 82.4 | 96.6 | 92.6 | 74.8 |
| jargon-NACHOS | 13.3 | 90.7 | 96.3 | 96.2 | 75.0 | 83.4 | 96.8 | 93.1 | 70.9 |
| jargon-NACHOS-4096 | 18.4 | 93.2 | 96.2 | 95.9 | 74.9 | 83.8 | 96.8 | 93.2 | 74.9 |
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
## Using Jargon models with HuggingFace transformers
You can get started with `jargon-NACHOS-4096` using the code snippet below:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-NACHOS-4096", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-NACHOS-4096", trust_remote_code=True)
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allΓ© au <mask> hier")
```
You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.
- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
- GENCI-IDRIS (Grant 2022 A0131013801)
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
- PROPICTO ANR-20-CE93-0005
- Lawbot ANR-20-CE38-0013
- Swiss National Science Foundation (grant PROPICTO NΒ°197864)
- **Authors**
- Vincent Segonne
- Aidan Mannion
- Laura Cristina Alonzo Canul
- Alexandre Audibert
- Xingyu Liu
- CΓ©cile Macaire
- Adrien Pupier
- Yongxin Zhou
- Mathilde Aguiar
- Felix Herron
- Magali NorrΓ©
- Massih-Reza Amini
- Pierrette Bouillon
- Iris Eshkol-Taravella
- Emmanuelle EsperanΓ§a-Rodier
- Thomas FranΓ§ois
- Lorraine Goeuriot
- JΓ©rΓ΄me Goulian
- Mathieu Lafourcade
- Benjamin Lecouteux
- FranΓ§ois Portet
- Fabien Ringeval
- Vincent Vandeghinste
- Maximin Coavoux
- Marco Dinarelli
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{segonne:hal-04535557,
TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
URL = {https://hal.science/hal-04535557},
BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
ADDRESS = {Turin, Italy},
YEAR = {2024},
MONTH = May,
KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
HAL_ID = {hal-04535557},
HAL_VERSION = {v1},
}
```
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!--
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
|
Ap98/zephyr-7b-sft-qlora | Ap98 | 2024-05-14T15:12:20Z | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"mistral",
"trl",
"sft",
"generated_from_trainer",
"alignment-handbook",
"dataset:generator",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2024-05-14T14:40:32Z | ---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- alignment-handbook
base_model: mistralai/Mistral-7B-v0.1
datasets:
- generator
model-index:
- name: zephyr-7b-sft-qlora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-sft-qlora
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0182
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9758 | 1.0 | 42 | 1.0182 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
kyl23/hw3_SST2_lora_1e-3 | kyl23 | 2024-05-14T15:11:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T15:10:59Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF | mradermacher | 2024-05-14T15:09:07Z | 119 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:asiansoul/Joah-Remix-Llama-3-KoEn-8B-Reborn",
"base_model:quantized:asiansoul/Joah-Remix-Llama-3-KoEn-8B-Reborn",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T14:39:15Z | ---
base_model: asiansoul/Joah-Remix-Llama-3-KoEn-8B-Reborn
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/asiansoul/Joah-Remix-Llama-3-KoEn-8B-Reborn
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Joah-Remix-Llama-3-KoEn-8B-Reborn-GGUF/resolve/main/Joah-Remix-Llama-3-KoEn-8B-Reborn.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Gigax/NPC-LLM-7B | Gigax | 2024-05-14T15:05:43Z | 79 | 11 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-04-26T15:34:34Z | ---
license: apache-2.0
language:
- en
---
# NPC Model
This repo contains the domain-specific NPC model we've fined-tuned from **Mistral-7B**, using LoRA.
This model parses a text description of a game scene, and outputs commands like:
* `say <player1> "Hello Adventurer, care to join me on a quest?`
* `greet <player1>`
* `attack <player1>`
* Any other `<action> <param>` you add to the prompt! (We call these "skills"!)
β οΈ This model has been trained to **overfit** on our input prompt format. Follow it closely to reach optimal performance β οΈ
## Usage
**Make your life easier, use our [Python client library](https://github.com/GigaxGames/gigax)**
* Instantiating the model using outlines:
```py
from outlines import models
from gigax.step import NPCStepper
# Download model from the Hub
model_name = "Gigax/NPC-LLM-7B"
llm = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Our stepper takes in a Outlines model to enable guided generation
# This forces the model to follow our output format
model = models.Transformers(llm, tokenizer)
# Instantiate a stepper: handles prompting + output parsing
stepper = NPCStepper(model=model)
```
* Calling the model on your game's data:
```py
from gigax.parse import CharacterAction
from gigax.scene import (
Character,
Item,
Location,
ProtagonistCharacter,
ProtagonistCharacter,
Skill,
ParameterType,
)
# Use sample data
context = "Medieval world"
current_location = Location(name="Old Town", description="A quiet and peaceful town.")
locations = [current_location] # you can add more locations to the scene
NPCs = [
Character(
name="John the Brave",
description="A fearless warrior",
current_location=current_location,
)
]
protagonist = ProtagonistCharacter(
name="Aldren",
description="Brave and curious",
current_location=current_location,
memories=["Saved the village", "Lost a friend"],
quests=["Find the ancient artifact", "Defeat the evil warlock"],
skills=[
Skill(
name="Attack",
description="Deliver a powerful blow",
parameter_types=[ParameterType.character],
)
],
psychological_profile="Determined and compassionate",
)
items = [Item(name="Sword", description="A sharp blade")]
events = [
CharacterAction(
command="Say",
protagonist=protagonist,
parameters=[items[0], "What a fine sword!"],
)
]
action = stepper.get_action(
context=context,
locations=locations,
NPCs=NPCs,
protagonist=protagonist,
items=items,
events=events,
)
```
## Input prompt
Here's a sample input prompt, showing you the format on which the model has been trained:
```txt
- WORLD KNOWLEDGE: A vast open world full of mystery and adventure.
- KNOWN LOCATIONS: Old Town
- NPCS: John the Brave
- CURRENT LOCATION: Old Town: A quiet and peaceful town.
- CURRENT LOCATION ITEMS: Sword
- LAST EVENTS:
Aldren: Say Sword What a fine sword!
- PROTAGONIST NAME: Aldren
- PROTAGONIST PSYCHOLOGICAL PROFILE: Brave and curious
- PROTAGONIST MEMORIES:
Saved the village
Lost a friend
- PROTAGONIST PENDING QUESTS:
Find the ancient artifact
Defeat the evil warlock
- PROTAGONIST ALLOWED ACTIONS:
Attack <character> : Deliver a powerful blow
Aldren:
```
### π€ We are currently working hard on training on the latest SoTA models (Phi-3, LLama, etc.), and on better data ! π€
## Model info
- **Developed by:** Gigax
- **Language(s) (NLP):** English
- **Finetuned from model [optional]:** [Mistral-7B-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- **Contact:** Join our [Discord](https://discord.gg/xES2Z8X4J6) for info, help, and more!
## How to Cite
```bibtex
@misc{NPC-LLM-7B,
url={[https://huggingface.co/Gigax/NPC-LLM-7B](https://huggingface.co/Gigax/NPC-LLM-7B)},
title={NPC-LLM-7B},
author={Gigax team}
}
``` |
aaaagao/CustomModel | aaaagao | 2024-05-14T15:05:42Z | 108 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-14T15:05:30Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Gigax/NPC-LLM-3_8B-GGUF | Gigax | 2024-05-14T15:05:13Z | 32 | 1 | null | [
"gguf",
"en",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-14T11:37:15Z | ---
license: mit
language:
- en
---
# NPC Model
This repo contains the domain-specific NPC model we've fined-tuned from **Phi-3**, using LoRA.
This model parses a text description of a game scene, and outputs commands like:
* `say <player1> "Hello Adventurer, care to join me on a quest?`
* `greet <player1>`
* `attack <player1>`
* Any other `<action> <param>` you add to the prompt! (We call these "skills"!)
β οΈ This model has been trained to **overfit** on our input prompt format. Follow it closely to reach optimal performance β οΈ
## Usage
**Make your life easier, use our [Python client library](https://github.com/GigaxGames/gigax)**
* Instantiating the model using outlines:
```py
from outlines import models
from gigax.step import NPCStepper
from llama_cpp import Llama
# Download model from the Hugging Face Gigax Hub before run this code
# Our stepper takes in a Outlines model to enable guided generation
# This forces the model to follow our output format
llm = Llama.from_pretrained(
repo_id="Gigax/NPC-LLM-3_8B-GGUF",
filename="npc-llm-3_8B.gguf"
# n_gpu_layers=-1, # Uncomment to use GPU acceleration
# seed=1337, # Uncomment to set a specific seed
# n_ctx=2048, # Uncomment to increase the context window
)
model = models.LlamaCpp(llm)
# Instantiate a stepper: handles prompting + output parsing
stepper = NPCStepper(model=model)
```
* Calling the model on your game's data:
```py
from gigax.parse import CharacterAction
from gigax.scene import (
Character,
Item,
Location,
ProtagonistCharacter,
ProtagonistCharacter,
Skill,
ParameterType,
)
# Use sample data
context = "Medieval world"
current_location = Location(name="Old Town", description="A quiet and peaceful town.")
locations = [current_location] # you can add more locations to the scene
NPCs = [
Character(
name="John the Brave",
description="A fearless warrior",
current_location=current_location,
)
]
protagonist = ProtagonistCharacter(
name="Aldren",
description="Brave and curious",
current_location=current_location,
memories=["Saved the village", "Lost a friend"],
quests=["Find the ancient artifact", "Defeat the evil warlock"],
skills=[
Skill(
name="Attack",
description="Deliver a powerful blow",
parameter_types=[ParameterType.character],
)
],
psychological_profile="Determined and compassionate",
)
items = [Item(name="Sword", description="A sharp blade")]
events = [
CharacterAction(
command="Say",
protagonist=protagonist,
parameters=[items[0], "What a fine sword!"],
)
]
action = stepper.get_action(
context=context,
locations=locations,
NPCs=NPCs,
protagonist=protagonist,
items=items,
events=events,
)
```
## Input prompt
Here's a sample input prompt, showing you the format on which the model has been trained:
```txt
- WORLD KNOWLEDGE: A vast open world full of mystery and adventure.
- KNOWN LOCATIONS: Old Town
- NPCS: John the Brave
- CURRENT LOCATION: Old Town: A quiet and peaceful town.
- CURRENT LOCATION ITEMS: Sword
- LAST EVENTS:
Aldren: Say Sword What a fine sword!
- PROTAGONIST NAME: Aldren
- PROTAGONIST PSYCHOLOGICAL PROFILE: Brave and curious
- PROTAGONIST MEMORIES:
Saved the village
Lost a friend
- PROTAGONIST PENDING QUESTS:
Find the ancient artifact
Defeat the evil warlock
- PROTAGONIST ALLOWED ACTIONS:
Attack <character> : Deliver a powerful blow
Aldren:
```
### π€ We are currently working hard on training on the latest SoTA models (Phi-3, LLama, etc.), and on better data ! π€
## Model info
- **Developed by:** Gigax
- **Language(s) (NLP):** English
- **Finetuned from model [optional]:** [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- **Contact:** Join our [Discord](https://discord.gg/xES2Z8X4J6) for info, help, and more!
## How to Cite
```bibtex
@misc{NPC-LLM-3_8B-GGUF,
url={[https://huggingface.co/Gigax/NPC-LLM-3_8B-GGUF-](https://huggingface.co/Gigax/NPC-LLM-3_8B-GGUF)},
title={NPC-LLM-3_8B-GGUF},
author={Gigax team}
}
``` |
eminow/deneme1 | eminow | 2024-05-14T15:04:42Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-14T15:04:42Z | ---
license: apache-2.0
---
|
Gigax/NPC-LLM-3_8B-128k-GGUF | Gigax | 2024-05-14T15:04:28Z | 4 | 2 | null | [
"gguf",
"en",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-14T11:55:47Z | ---
license: mit
language:
- en
---
# NPC Model
This repo contains the domain-specific NPC model we've fined-tuned from **Phi-3-128k**, using LoRA.
This model parses a text description of a game scene, and outputs commands like:
* `say <player1> "Hello Adventurer, care to join me on a quest?`
* `greet <player1>`
* `attack <player1>`
* Any other `<action> <param>` you add to the prompt! (We call these "skills"!)
β οΈ This model has been trained to **overfit** on our input prompt format. Follow it closely to reach optimal performance β οΈ
## Usage
**Make your life easier, use our [Python client library](https://github.com/GigaxGames/gigax)**
* Instantiating the model using outlines:
```py
from outlines import models
from gigax.step import NPCStepper
from llama_cpp import Llama
# Download model from the Hugging Face Gigax Hub before run this code
# Our stepper takes in a Outlines model to enable guided generation
# This forces the model to follow our output format
llm = Llama.from_pretrained(
repo_id="Gigax/NPC-LLM-3_8B-128k-GGUF",
filename="npc-llm-3_8B-128k.gguf"
# n_gpu_layers=-1, # Uncomment to use GPU acceleration
# seed=1337, # Uncomment to set a specific seed
# n_ctx=2048, # Uncomment to increase the context window
)
model = models.LlamaCpp(llm)
# Instantiate a stepper: handles prompting + output parsing
stepper = NPCStepper(model=model)
```
* Calling the model on your game's data:
```py
from gigax.parse import CharacterAction
from gigax.scene import (
Character,
Item,
Location,
ProtagonistCharacter,
ProtagonistCharacter,
Skill,
ParameterType,
)
# Use sample data
context = "Medieval world"
current_location = Location(name="Old Town", description="A quiet and peaceful town.")
locations = [current_location] # you can add more locations to the scene
NPCs = [
Character(
name="John the Brave",
description="A fearless warrior",
current_location=current_location,
)
]
protagonist = ProtagonistCharacter(
name="Aldren",
description="Brave and curious",
current_location=current_location,
memories=["Saved the village", "Lost a friend"],
quests=["Find the ancient artifact", "Defeat the evil warlock"],
skills=[
Skill(
name="Attack",
description="Deliver a powerful blow",
parameter_types=[ParameterType.character],
)
],
psychological_profile="Determined and compassionate",
)
items = [Item(name="Sword", description="A sharp blade")]
events = [
CharacterAction(
command="Say",
protagonist=protagonist,
parameters=[items[0], "What a fine sword!"],
)
]
action = stepper.get_action(
context=context,
locations=locations,
NPCs=NPCs,
protagonist=protagonist,
items=items,
events=events,
)
```
## Input prompt
Here's a sample input prompt, showing you the format on which the model has been trained:
```txt
- WORLD KNOWLEDGE: A vast open world full of mystery and adventure.
- KNOWN LOCATIONS: Old Town
- NPCS: John the Brave
- CURRENT LOCATION: Old Town: A quiet and peaceful town.
- CURRENT LOCATION ITEMS: Sword
- LAST EVENTS:
Aldren: Say Sword What a fine sword!
- PROTAGONIST NAME: Aldren
- PROTAGONIST PSYCHOLOGICAL PROFILE: Brave and curious
- PROTAGONIST MEMORIES:
Saved the village
Lost a friend
- PROTAGONIST PENDING QUESTS:
Find the ancient artifact
Defeat the evil warlock
- PROTAGONIST ALLOWED ACTIONS:
Attack <character> : Deliver a powerful blow
Aldren:
```
### π€ We are currently working hard on training on the latest SoTA models (Phi-3, LLama, etc.), and on better data ! π€
## Model info
- **Developed by:** Gigax
- **Language(s) (NLP):** English
- **Finetuned from model [optional]:** [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)
- **Contact:** Join our [Discord](https://discord.gg/xES2Z8X4J6) for info, help, and more!
## How to Cite
```bibtex
@misc{NPC-LLM-3_8B-128k-GGUF,
url={[https://huggingface.co/Gigax/NPC-LLM-3_8B-128k-GGUF](https://huggingface.co/Gigax/NPC-LLM-3_8B-128k-GGUF)},
title={NPC-LLM-3_8B-128k-GGUF},
author={Gigax team}
}
``` |
NikolayKozloff/Llama-3-portuguese-Tom-cat-8b-instruct-Q6_K-GGUF | NikolayKozloff | 2024-05-14T15:03:48Z | 6 | 1 | transformers | [
"transformers",
"gguf",
"portugues",
"portuguese",
"QA",
"instruct",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"pt",
"dataset:rhaymison/superset",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:quantized:meta-llama/Meta-Llama-3-8B-Instruct",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-14T15:03:30Z | ---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portugues
- portuguese
- QA
- instruct
- llama-cpp
- gguf-my-repo
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- rhaymison/superset
pipeline_tag: text-generation
model-index:
- name: Llama-3-portuguese-Tom-cat-8b-instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 70.4
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 58.0
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 51.07
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 90.91
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 75.4
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 76.05
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 86.99
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 60.39
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 65.92
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
name: Open Portuguese LLM Leaderboard
---
# NikolayKozloff/Llama-3-portuguese-Tom-cat-8b-instruct-Q6_K-GGUF
This model was converted to GGUF format from [`rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct`](https://huggingface.co/rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo NikolayKozloff/Llama-3-portuguese-Tom-cat-8b-instruct-Q6_K-GGUF --model llama-3-portuguese-tom-cat-8b-instruct.Q6_K.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo NikolayKozloff/Llama-3-portuguese-Tom-cat-8b-instruct-Q6_K-GGUF --model llama-3-portuguese-tom-cat-8b-instruct.Q6_K.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-portuguese-tom-cat-8b-instruct.Q6_K.gguf -n 128
```
|
quocanh944/viT5-med-qa | quocanh944 | 2024-05-14T14:59:05Z | 163 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-14T14:57:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
typealias/SFR-Iterative-DPO-Llama-3-8B-R-mx-4bit | typealias | 2024-05-14T14:56:39Z | 7 | 1 | mlx | [
"mlx",
"safetensors",
"llama",
"license:cc-by-nc-nd-3.0",
"region:us"
] | null | 2024-05-14T14:33:46Z | ---
license: cc-by-nc-nd-3.0
tags:
- mlx
---
# typealias/SFR-Iterative-DPO-Llama-3-8B-R-mx-4bit
The Model [typealias/SFR-Iterative-DPO-Llama-3-8B-R-mx-4bit](https://huggingface.co/typealias/SFR-Iterative-DPO-Llama-3-8B-R-mx-4bit) was converted to MLX format from [Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R](https://huggingface.co/Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R) using mlx-lm version **0.13.0**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("typealias/SFR-Iterative-DPO-Llama-3-8B-R-mx-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|
MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF | MaziyarPanahi | 2024-05-14T14:51:23Z | 140,056 | 166 | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"16-bit",
"GGUF",
"text-generation",
"en",
"region:us",
"conversational"
] | text-generation | 2024-04-18T16:42:52Z | ---
language:
- en
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- 16-bit
- GGUF
inference: false
model_creator: MaziyarPanahi
model_name: Meta-Llama-3-70B-Instruct-GGUF
quantized_by: MaziyarPanahi
license_name: llama3
---
# MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF
The GGUF and quantized models here are based on [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) model
## How to download
You can download only the quants you need instead of cloning the entire repository as follows:
```
huggingface-cli download MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF --local-dir . --include '*Q2_K*gguf'
```
## Load GGUF models
You `MUST` follow the prompt template provided by Llama-3:
```sh
./llama.cpp/main -m Meta-Llama-3-70B-Instruct.Q2_K.gguf -r '<|eot_id|>' --in-prefix "\n<|start_header_id|>user<|end_header_id|>\n\n" --in-suffix "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" -p "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability.<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\nHi! How are you?<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n" -n 1024
```
Original README
---
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes β 8B and 70B parameters β in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase.
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3).
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Metaβs sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. Weβve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Metaβs cybersecurity safety eval suite, measuring Llama 3βs propensity to suggest insecure code when used as a coding assistant, and Llama 3βs propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the modelβs capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3βs potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
---
|
emilykang/Gemma_finetune_med | emilykang | 2024-05-14T14:48:35Z | 7 | 0 | peft | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-14T12:23:43Z | ---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: Gemma_finetune_med
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma_finetune_med
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.0.1+cu117
- Datasets 2.19.0
- Tokenizers 0.19.1 |
Recaru/Llama-3-KoEn-8B-Instruct-preview-Q5_K_M-GGUF | Recaru | 2024-05-14T14:48:20Z | 2 | 0 | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"llama-3-ko",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"ko",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-14T14:47:59Z | ---
language:
- en
- ko
license: cc-by-nc-sa-4.0
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-3-ko
- llama-cpp
- gguf-my-repo
pipeline_tag: text-generation
license_name: llama3
license_link: LICENSE
---
# Recaru/Llama-3-KoEn-8B-Instruct-preview-Q5_K_M-GGUF
This model was converted to GGUF format from [`beomi/Llama-3-KoEn-8B-Instruct-preview`](https://huggingface.co/beomi/Llama-3-KoEn-8B-Instruct-preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/beomi/Llama-3-KoEn-8B-Instruct-preview) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo Recaru/Llama-3-KoEn-8B-Instruct-preview-Q5_K_M-GGUF --model llama-3-koen-8b-instruct-preview.Q5_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo Recaru/Llama-3-KoEn-8B-Instruct-preview-Q5_K_M-GGUF --model llama-3-koen-8b-instruct-preview.Q5_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-koen-8b-instruct-preview.Q5_K_M.gguf -n 128
```
|
Recaru/Llama-3-KoEn-8B-Instruct-preview-Q8_0-GGUF | Recaru | 2024-05-14T14:41:50Z | 0 | 0 | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"llama-3-ko",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"ko",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-14T14:41:27Z | ---
language:
- en
- ko
license: cc-by-nc-sa-4.0
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-3-ko
- llama-cpp
- gguf-my-repo
pipeline_tag: text-generation
license_name: llama3
license_link: LICENSE
---
# Recaru/Llama-3-KoEn-8B-Instruct-preview-Q8_0-GGUF
This model was converted to GGUF format from [`beomi/Llama-3-KoEn-8B-Instruct-preview`](https://huggingface.co/beomi/Llama-3-KoEn-8B-Instruct-preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/beomi/Llama-3-KoEn-8B-Instruct-preview) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo Recaru/Llama-3-KoEn-8B-Instruct-preview-Q8_0-GGUF --model llama-3-koen-8b-instruct-preview.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo Recaru/Llama-3-KoEn-8B-Instruct-preview-Q8_0-GGUF --model llama-3-koen-8b-instruct-preview.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-koen-8b-instruct-preview.Q8_0.gguf -n 128
```
|
Skylar1211/autotrain-90f1d-ojqc3 | Skylar1211 | 2024-05-14T14:38:44Z | 6 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"autotrain",
"text-generation-inference",
"peft",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T13:22:55Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
AhmetAytar/all-mpnet-base-v2-fine-tuned_5_textbook_grobid | AhmetAytar | 2024-05-14T14:30:17Z | 8 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"mpnet",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2024-05-14T14:26:27Z | ---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# AhmetAytar/all-mpnet-base-v2-fine-tuned_5_textbook_grobid
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('AhmetAytar/all-mpnet-base-v2-fine-tuned_5_textbook_grobid')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=AhmetAytar/all-mpnet-base-v2-fine-tuned_5_textbook_grobid)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 160 with parameters:
```
{'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 50,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 32,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
cimphony-ai-admin/Cimphony-Mistral-Law-7B | cimphony-ai-admin | 2024-05-14T14:28:04Z | 30 | 3 | peft | [
"peft",
"safetensors",
"mistral",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"text-generation",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"model-index",
"region:us"
] | text-generation | 2024-05-10T18:58:33Z | ---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: Cimphony-Mistral-Law-7B
results:
- task:
type: text-generation
dataset:
type: cais/mmlu
name: MMLU
metrics:
- name: International Law
type: accuracy
value: 0.802
verified: false
- task:
type: text-generation
dataset:
type: cais/mmlu
name: MMLU
metrics:
- name: Jurisprudence
type: accuracy
value: 0.704
verified: false
- task:
type: text-generation
dataset:
type: cais/mmlu
name: MMLU
metrics:
- name: Professional Law
type: accuracy
value: 0.416
verified: false
- task:
type: text-generation
dataset:
type: coastalcph/lex_glue
name: LexGLUE
metrics:
- name: ECtHR A
type: balanced accuracy
value: 0.631
verified: false
- task:
type: text-generation
dataset:
type: coastalcph/lex_glue
name: LexGLUE
metrics:
- name: LEDGAR
type: balanced accuracy
value: 0.741
verified: false
- task:
type: text-generation
dataset:
type: coastalcph/lex_glue
name: LexGLUE
metrics:
- name: CaseHOLD
type: accuracy
value: 0.776
verified: false
- task:
type: text-generation
dataset:
type: coastalcph/lex_glue
name: LexGLUE
metrics:
- name: Unfair-ToS
type: balanced accuracy
value: 0.809
verified: false
pipeline_tag: text-generation
---
# Cimphony-Mistral-Law-7B
We introduce Cimphony-Mistral-Law-7B, a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
Cimphonyβs LLMs present state-of-the-art performance on legal benchmarks, suppressing models trained on a much larger corpus with significantly more resources, even GPT-4, OpenAIβs flagship model.
Checkout and register on our [https://cimphony.ai](https://app.cimphony.ai/signup?callbackUrl=https://app.cimphony.ai/)

## Model description
The model was trained on 600M tokens. We use novel methods to expose the model to this corpus during training, blending a variety of legal reading comprehension tasks, as well as general language data.
## Legal Evaluation Results
We evaluate on the legal splits of the MMLU benchmark, as well as LexGLUE. While both are multiple option benchmarks, prompts were adapted so that the models output a single answer. In some cases, additional post-processing was required.
Benchmarks for which the labels were A-E multiple-choice options use an accuracy mertic. Benchmarks that have a closed list of options (e.g. Unfair-ToS) use a balanced-accuracy metric, as classes may not be balanced.
| Model / Benchmark | International Law (MMLU) | Jurisprudence (MMLU) | Professional law (MMLU) | ECtHR A (LexGlue) | LEDGAR (LexGlue) | CaseHOLD (LexGlue) | Unfair-ToS (LexGlue) |
|:-----------------------------------|:--------------------------|:----------------------|:-------------------------|:-------------------|:------------------|:--------------------|:-----------------------|
| Mistral-7B-Instruct-v0.2 | 73.6% | 69.4% | 41.2% | 67.5% | 50.6% | 56.3% | 36.6% |
| AdaptLLM | 57.0% | 52.8% | 36.1% | 51.9% | 46.3% | 50.0% | 51.3% |
| Saul-7B | 69.4% | 63.0% | **43.2%** | **71.2%** | 55.9% | 65.8% | 80.3% |
|<tr style="background-color:yellow;"><td>Cimphony-7B</td><td>**80.2%**</td><td>**70.4%**</td><td>41.6%</td><td>63.1%</td><td>**74.1%**</td><td>**77.6%**</td><td>**80.9%**</td></tr>|
## Training and evaluation data
Following the framework presented in [AdaptLLM](https://huggingface.co/AdaptLLM/law-chat), we convert the raw legal text into reading comprehension. Taking inspiration from human learning via reading comprehension - practice after reading improves the ability to answer questions based on the learned knowledge.
We developed a high-quality prompt database, considering the capabilities weβd like the model to possess. LLMs were prompt with the raw text and a collection of prompts, and it returned answers, additional questions, and transformations relevant to the input data. With further post-processing of these outputs, we created our legal reading comprehension dataset.
| Domain | Dataset | Tokens | License |
|:-------------------|:--------------------|:------:|:------------|
| Legal | The Pile (FreeLaw) | 180M | MIT |
| Legal | LexGlue (train split only) | 108M | CC-BY-4.0 |
| Legal | USClassActions | 12M | GPL-3.0 |
| Math (CoT) | AQUA-RAT | 3M | Apache-2.0 |
| Commonsense (CoT) | ECQA | 2.4M | Apache-2.0 |
| Reasoning (CoT) | EntailmentBank | 1.8M | Apache-2.0 |
| Chat | UltraChat | 90M | MIT |
| Code | Code-Feedback | 36M | Apache-2.0 |
| Instruction | OpenOrca | 180M | MIT |
## Intended uses & limitations
This model can be used for use cases involving legal domain text generation.
As with any language model, users must not solely relay on model generations. This model has not gone through a human-feedback alignment (RLHF). The model may generate responses containing hallucinations and biases.
Example use:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("cimphonyadmin/Cimphony-Mistral-Law-7B")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
model = PeftModel.from_pretrained(model, "cimphonyadmin/Cimphony-Mistral-Law-7B")
# Put your input here:
user_input = '''What can you tell me about ex post facto laws?'''
# Apply the prompt template
prompt = tokenizer.apply_chat_template(user_input, tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
outputs = model.generate(input_ids=inputs, max_length=4096)[0]
answer_start = int(inputs.shape[-1])
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 24
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
crrodrvi/First_Order_Motion | crrodrvi | 2024-05-14T14:27:37Z | 0 | 0 | null | [
"arxiv:2104.11280",
"region:us"
] | null | 2024-05-11T21:47:57Z | <b>!!! Check out our new [paper](https://arxiv.org/pdf/2104.11280.pdf) and [framework](https://github.com/snap-research/articulated-animation) improved for articulated objects</b>
# First Order Motion Model for Image Animation
This repository contains the source code for the paper [First Order Motion Model for Image Animation](https://papers.nips.cc/paper/8935-first-order-motion-model-for-image-animation) by Aliaksandr Siarohin, [Stéphane Lathuilière](http://stelat.eu), [Sergey Tulyakov](http://stulyakov.com), [Elisa Ricci](http://elisaricci.eu/) and [Nicu Sebe](http://disi.unitn.it/~sebe/).
[Hugging Face Spaces](https://huggingface.co/spaces/abhishek/first-order-motion-model)
## Example animations
The videos on the left show the driving videos. The first row on the right for each dataset shows the source videos. The bottom row contains the animated sequences with motion transferred from the driving video and object taken from the source image. We trained a separate network for each task.
### VoxCeleb Dataset

### Fashion Dataset

### MGIF Dataset

### Installation
We support ```python3```. To install the dependencies run:
```
pip install -r requirements.txt
```
### YAML configs
There are several configuration (```config/dataset_name.yaml```) files one for each `dataset`. See ```config/taichi-256.yaml``` to get description of each parameter.
### Pre-trained checkpoint
Checkpoints can be found under following link: [google-drive](https://drive.google.com/open?id=1PyQJmkdCsAkOYwUyaj_l-l0as-iLDgeH) or [yandex-disk](https://yadi.sk/d/lEw8uRm140L_eQ).
### Animation Demo
To run a demo, download checkpoint and run the following command:
```
python demo.py --config config/dataset_name.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint --relative --adapt_scale
```
The result will be stored in ```result.mp4```.
The driving videos and source images should be cropped before it can be used in our method. To obtain some semi-automatic crop suggestions you can use ```python crop-video.py --inp some_youtube_video.mp4```. It will generate commands for crops using ffmpeg. In order to use the script, face-alligment library is needed:
```
git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install
```
### Animation demo with Docker
If you are having trouble getting the demo to work because of library compatibility issues,
and you're running Linux, you might try running it inside a Docker container, which would
give you better control over the execution environment.
Requirements: Docker 19.03+ and [nvidia-docker](https://github.com/NVIDIA/nvidia-docker)
installed and able to successfully run the `nvidia-docker` usage tests.
We'll first build the container.
```
docker build -t first-order-model .
```
And now that we have the container available locally, we can use it to run the demo.
```
docker run -it --rm --gpus all \
-v $HOME/first-order-model:/app first-order-model \
python3 demo.py --config config/vox-256.yaml \
--driving_video driving.mp4 \
--source_image source.png \
--checkpoint vox-cpk.pth.tar \
--result_video result.mp4 \
--relative --adapt_scale
```
### Colab Demo
[](https://colab.research.google.com/github/AliaksandrSiarohin/first-order-model/blob/master/demo.ipynb) [](https://kaggle.com/kernels/welcome?src=https://github.com/AliaksandrSiarohin/first-order-model/blob/master/demo.ipynb)
@graphemecluster prepared a GUI demo for the Google Colab. It also works in Kaggle. For the source code, see [```demo.ipynb```](https://github.com/AliaksandrSiarohin/first-order-model/blob/master/demo.ipynb).
For the old demo, see [```old_demo.ipynb```](https://github.com/AliaksandrSiarohin/first-order-model/blob/master/old_demo.ipynb).
### Face-swap
It is possible to modify the method to perform face-swap using supervised segmentation masks.

For both unsupervised and supervised video editing, such as face-swap, please refer to [Motion Co-Segmentation](https://github.com/AliaksandrSiarohin/motion-cosegmentation).
### Training
To train a model on specific dataset run:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3
```
The code will create a folder in the log directory (each run will create a time-stamped new directory).
Checkpoints will be saved to this folder.
To check the loss values during training see ```log.txt```.
You can also check training data reconstructions in the ```train-vis``` subfolder.
By default the batch size is tunned to run on 2 or 4 Titan-X gpu (appart from speed it does not make much difference). You can change the batch size in the train_params in corresponding ```.yaml``` file.
### Evaluation on video reconstruction
To evaluate the reconstruction performance run:
```
CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint
```
You will need to specify the path to the checkpoint,
the ```reconstruction``` subfolder will be created in the checkpoint folder.
The generated video will be stored to this folder, also generated videos will be stored in ```png``` subfolder in loss-less '.png' format for evaluation.
Instructions for computing metrics from the paper can be found: https://github.com/AliaksandrSiarohin/pose-evaluation.
### Image animation
In order to animate videos run:
```
CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint
```
You will need to specify the path to the checkpoint,
the ```animation``` subfolder will be created in the same folder as the checkpoint.
You can find the generated video there and its loss-less version in the ```png``` subfolder.
By default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding ```.csv``` files. The path to this file should be specified in corresponding ```.yaml``` file in pairs_list setting.
There are 2 different ways of performing animation:
by using **absolute** keypoint locations or by using **relative** keypoint locations.
1) <i>Animation using absolute coordinates:</i> the animation is performed using the absolute postions of the driving video and appearance of the source image.
In this way there are no specific requirements for the driving video and source appearance that is used.
However this usually leads to poor performance since unrelevant details such as shape is transfered.
Check animate parameters in ```taichi-256.yaml``` to enable this mode.
<img src="sup-mat/absolute-demo.gif" width="512">
2) <i>Animation using relative coordinates:</i> from the driving video we first estimate the relative movement of each keypoint,
then we add this movement to the absolute position of keypoints in the source image.
This keypoint along with source image is used for animation. This usually leads to better performance, however this requires
that the object in the first frame of the video and in the source image have the same pose
<img src="sup-mat/relative-demo.gif" width="512">
### Datasets
1) **Bair**. This dataset can be directly [downloaded](https://yadi.sk/d/Rr-fjn-PdmmqeA).
2) **Mgif**. This dataset can be directly [downloaded](https://yadi.sk/d/5VdqLARizmnj3Q).
3) **Fashion**. Follow the instruction on dataset downloading [from](https://vision.cs.ubc.ca/datasets/fashion/).
4) **Taichi**. Follow the instructions in [data/taichi-loading](data/taichi-loading/README.md) or instructions from https://github.com/AliaksandrSiarohin/video-preprocessing.
5) **Nemo**. Please follow the [instructions](https://www.uva-nemo.org/) on how to download the dataset. Then the dataset should be preprocessed using scripts from https://github.com/AliaksandrSiarohin/video-preprocessing.
6) **VoxCeleb**. Please follow the instruction from https://github.com/AliaksandrSiarohin/video-preprocessing.
### Training on your own dataset
1) Resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images.
We recommend the later, for each video make a separate folder with all the frames in '.png' format. This format is loss-less, and it has better i/o performance.
2) Create a folder ```data/dataset_name``` with 2 subfolders ```train``` and ```test```, put training videos in the ```train``` and testing in the ```test```.
3) Create a config ```config/dataset_name.yaml```, in dataset_params specify the root dir the ```root_dir: data/dataset_name```. Also adjust the number of epoch in train_params.
#### Additional notes
Citation:
```
@InProceedings{Siarohin_2019_NeurIPS,
author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
title={First Order Motion Model for Image Animation},
booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
month = {December},
year = {2019}
}
```
|
Danieljacobsen/Helsinki-DA-SV-v6 | Danieljacobsen | 2024-05-14T14:25:37Z | 106 | 0 | transformers | [
"transformers",
"safetensors",
"marian",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-14T11:24:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
NikolayKozloff/Phi3-ITA-mini-4K-instruct-Q8_0-GGUF | NikolayKozloff | 2024-05-14T14:24:43Z | 2 | 1 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"trl",
"sft",
"phi-3",
"phi-3-mini",
"italian",
"llama-cpp",
"gguf-my-repo",
"it",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:quantized:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-14T14:24:32Z | ---
language:
- it
license: mit
tags:
- text-generation-inference
- transformers
- trl
- sft
- phi-3
- phi-3-mini
- italian
- llama-cpp
- gguf-my-repo
base_model: microsoft/Phi-3-mini-4k-instruct
---
# NikolayKozloff/Phi3-ITA-mini-4K-instruct-Q8_0-GGUF
This model was converted to GGUF format from [`e-palmisano/Phi3-ITA-mini-4K-instruct`](https://huggingface.co/e-palmisano/Phi3-ITA-mini-4K-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/e-palmisano/Phi3-ITA-mini-4K-instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo NikolayKozloff/Phi3-ITA-mini-4K-instruct-Q8_0-GGUF --model phi3-ita-mini-4k-instruct.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo NikolayKozloff/Phi3-ITA-mini-4K-instruct-Q8_0-GGUF --model phi3-ita-mini-4k-instruct.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m phi3-ita-mini-4k-instruct.Q8_0.gguf -n 128
```
|
SABR22/unsloth-llama-3-8b-sql | SABR22 | 2024-05-14T14:19:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T14:19:26Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** SABR22
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
camilomj/jenniebpdebutera | camilomj | 2024-05-14T14:18:55Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-14T14:16:51Z | ---
license: apache-2.0
---
|
Ankesh1234/gemma-medical_qa-Finetune | Ankesh1234 | 2024-05-14T14:18:05Z | 142 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T14:11:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
gutsartificial/hermes-2-pro-llama3-entity-mapping | gutsartificial | 2024-05-14T14:17:11Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:NousResearch/Hermes-2-Pro-Llama-3-8B",
"base_model:finetune:NousResearch/Hermes-2-Pro-Llama-3-8B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T13:47:49Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
---
# Uploaded model
- **Developed by:** gutsartificial
- **License:** apache-2.0
- **Finetuned from model :** NousResearch/Hermes-2-Pro-Llama-3-8B
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Huseyin/checkpoint-1000 | Huseyin | 2024-05-14T14:16:08Z | 16 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"tr",
"dataset:mozilla-foundation/common_voice_17_0",
"base_model:openai/whisper-medium",
"base_model:finetune:openai/whisper-medium",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-05-14T14:09:18Z | ---
language:
- tr
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Medium Tr - Huseyin Ates
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: tr
split: test
args: 'config: tr, split: test'
metrics:
- name: Wer
type: wer
value: 19.615089840756195
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Tr - Huseyin Ates
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2422
- Wer: 19.6151
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1504 | 0.1724 | 1000 | 0.2422 | 19.6151 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Basirudin/distilbert-base-uncased-finetuned-ner | Basirudin | 2024-05-14T14:09:57Z | 61 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-02-15T21:10:21Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Basirudin/distilbert-base-uncased-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Basirudin/distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2004
- Validation Loss: 0.0706
- Train Precision: 0.9102
- Train Recall: 0.9211
- Train F1: 0.9157
- Train Accuracy: 0.9803
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 0.2004 | 0.0706 | 0.9102 | 0.9211 | 0.9157 | 0.9803 | 0 |
### Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Tonnytempus/tempusdonum | Tonnytempus | 2024-05-14T14:09:17Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T14:02:59Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TSingye/DYG_TiBERT | TSingye | 2024-05-14T14:08:53Z | 48 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T12:52:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ZcepZtar/DaToSw_V1 | ZcepZtar | 2024-05-14T14:06:27Z | 114 | 0 | transformers | [
"transformers",
"safetensors",
"marian",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-14T14:06:02Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
EthanRhys/Dr-Crygor-Current | EthanRhys | 2024-05-14T14:05:51Z | 0 | 0 | null | [
"license:openrail++",
"region:us"
] | null | 2024-05-14T14:05:04Z | ---
license: openrail++
---
|
akansha2k2/Burger_sandwich_pizza | akansha2k2 | 2024-05-14T14:05:50Z | 196 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"pytorch",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2024-05-14T14:05:42Z | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: Burger_sandwich_pizza
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.8656716346740723
---
# Burger_sandwich_pizza
Autogenerated by HuggingPicsπ€πΌοΈ
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### Burger

#### pizza

#### sandwich
 |
SidXXD/dog-mist-whole-sandesh | SidXXD | 2024-05-14T14:00:35Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2024-05-14T11:55:30Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - SidXXD/dog-mist-whole-sandesh
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
xfaturx12/gpt2-wikitext2 | xfaturx12 | 2024-05-14T13:58:18Z | 144 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T13:56:46Z | ---
license: mit
tags:
- generated_from_trainer
base_model: gpt2
model-index:
- name: gpt2-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-wikitext2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.1103
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.5572 | 1.0 | 2249 | 6.4710 |
| 6.1904 | 2.0 | 4498 | 6.1964 |
| 6.012 | 3.0 | 6747 | 6.1103 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
casque/0509_clear_see_through_v1 | casque | 2024-05-14T13:57:21Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-05-14T13:53:21Z | ---
license: creativeml-openrail-m
---
|
ramirces/clasificador-dair-ai-emotion | ramirces | 2024-05-14T13:56:19Z | 106 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-04-25T22:18:44Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- classification
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: clasificador-dair-ai-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: test
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9245
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-dair-ai-emotion
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2276
- Accuracy: 0.9245
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2371 | 1.0 | 2000 | 0.2465 | 0.919 |
| 0.1524 | 2.0 | 4000 | 0.1867 | 0.933 |
| 0.1102 | 3.0 | 6000 | 0.2276 | 0.9245 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
MLP-Lemma/Lemma-Llama-DS-ckpt3.5k | MLP-Lemma | 2024-05-14T13:53:32Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T13:26:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tomaszki/llama-21 | tomaszki | 2024-05-14T13:52:25Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T13:48:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
lmstudio-community/codegemma-1.1-7b-it-GGUF | lmstudio-community | 2024-05-14T13:49:54Z | 714 | 5 | transformers | [
"transformers",
"gguf",
"text-generation",
"base_model:google/codegemma-1.1-7b-it",
"base_model:quantized:google/codegemma-1.1-7b-it",
"license:gemma",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2024-05-04T22:25:17Z | ---
library_name: transformers
extra_gated_heading: Access CodeGemma on Hugging Face
extra_gated_prompt: >-
To access CodeGemma on Hugging Face, youβre required to review and agree to
Googleβs usage license. To do this, please ensure youβre logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
pipeline_tag: text-generation
widget:
- text: >
<start_of_turn>user
Write a Python function to calculate the nth fibonacci number.<end_of_turn>
<start_of_turn>model
inference:
parameters:
max_new_tokens: 200
license: gemma
license_link: https://ai.google.dev/gemma/terms
quantized_by: bartowski
base_model: google/codegemma-1.1-7b-it
lm_studio:
param_count: 8b
use_case: coding
release_date: 30-04-2024
model_creator: google
prompt_template: Google Gemma Instruct
system_prompt: none
base_model: gemma
original_repo: google/codegemma-1.1-7b-it
---
## π« Community Model> CodeGemma 1.1 7b Instruct by Google
*πΎ [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
**Model creator:** [Google](https://huggingface.co/google)<br>
**Original model**: [google/codegemma-1.1-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it)<br>
**GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b2777](https://github.com/ggerganov/llama.cpp/releases/tag/b2777)<br>
## Model Summary:
CodeGemma 1.1 7b Instruct is an iteration on the initial CodeGemma release. It should come with minor improvements to code generation.<br>
This model is meant to be used as a coding companion or for code generation.<br>
## Prompt Template:
Choose the 'Google Gemma Instruct' preset in your LM Studio.
Under the hood, the model will see a prompt that's formatted like so:
```
<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
```
## Technical Details
CodeGemma is based on the Gemma 7b model with additional training on web documents, mathematics, and code, with a mixture of 80% code and 20% natural language.
The code used is based on publicly avaialble code repositories.
The instruct version was further trained on mathematical datasets in an attempt to improve its mathematical reasoning capabilities, as well as synthetic code generation combined with a second LLM for evaluation and reinforcement feedback.
Additional details can be found on Google's official report PDF [here](https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf)
## Special thanks
π Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
π Special thanks to [Kalomaze](https://github.com/kalomaze) for his dataset (linked [here](https://github.com/ggerganov/llama.cpp/discussions/5263)) that was used for calculating the imatrix for these quants, which improves the overall quality!
## Disclaimers
LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
|
kyl23/hw3_RTE_lora_1e-4_r16 | kyl23 | 2024-05-14T13:47:56Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T13:47:51Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
benjamin/Mistral-7B-v0.1-zett-gpt2 | benjamin | 2024-05-14T13:47:41Z | 12 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T13:36:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
NoteDance/Swin | NoteDance | 2024-05-14T13:45:44Z | 0 | 0 | tf | [
"tf",
"Note",
"swin",
"vision",
"image-classification",
"dataset:imagenet-1k",
"dataset:imagenet-21k",
"license:apache-2.0",
"region:us"
] | image-classification | 2024-05-14T13:42:11Z | ---
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-21k
library_name: tf
pipeline_tag: image-classification
tags:
- Note
- swin
- vision
---
This model is built by Note, Note can be found [here](https://github.com/NoteDance/Note). The model can be found [here](https://github.com/NoteDance/Note/blob/Note-7.0/Note/neuralnetwork/tf/SwinTransformerV2.py). The tutorial can be found [here](https://github.com/NoteDance/Note-documentation/tree/tf-7.0). |
duyntnet/Vistral-7B-Chat-DPO-imatrix-GGUF | duyntnet | 2024-05-14T13:39:22Z | 11 | 0 | transformers | [
"transformers",
"gguf",
"imatrix",
"Vistral-7B-Chat-DPO",
"text-generation",
"en",
"license:other",
"region:us",
"conversational"
] | text-generation | 2024-05-14T11:01:19Z | ---
license: other
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- transformers
- gguf
- imatrix
- Vistral-7B-Chat-DPO
---
Quantizations of https://huggingface.co/jan-hq/Vistral-7B-Chat-DPO
# From original readme
## Prompt template
Mistral
```
[INST] <<SYS>>
{system_message}
<</SYS>>
{prompt} [/INST]
``` |
gmmaalouf/finetuning-sentiment-model-3000-samples | gmmaalouf | 2024-05-14T13:36:34Z | 122 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-09T15:48:16Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3684
- Accuracy: 0.8567
- F1: 0.8599
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
kasrahabib/all-MiniLM-L6-v2-finetuned-iso29148-f_nf_req-embdr | kasrahabib | 2024-05-14T13:35:10Z | 62 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:sentence-transformers/all-MiniLM-L6-v2",
"base_model:finetune:sentence-transformers/all-MiniLM-L6-v2",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-14T13:26:31Z | ---
license: apache-2.0
base_model: sentence-transformers/all-MiniLM-L6-v2
tags:
- generated_from_keras_callback
model-index:
- name: kasrahabib/all-MiniLM-L6-v2-finetuned-iso29148-f_nf_req-embdr
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# kasrahabib/all-MiniLM-L6-v2-finetuned-iso29148-f_nf_req-embdr
This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0009
- Validation Loss: 0.6623
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4710, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.5280 | 0.3710 | 0 |
| 0.3075 | 0.3428 | 1 |
| 0.2140 | 0.3139 | 2 |
| 0.1252 | 0.3637 | 3 |
| 0.0794 | 0.3695 | 4 |
| 0.0506 | 0.4162 | 5 |
| 0.0384 | 0.4577 | 6 |
| 0.0253 | 0.4791 | 7 |
| 0.0190 | 0.5735 | 8 |
| 0.0119 | 0.5711 | 9 |
| 0.0141 | 0.5977 | 10 |
| 0.0131 | 0.5945 | 11 |
| 0.0060 | 0.6052 | 12 |
| 0.0098 | 0.6270 | 13 |
| 0.0080 | 0.6484 | 14 |
| 0.0098 | 0.6139 | 15 |
| 0.0064 | 0.6103 | 16 |
| 0.0067 | 0.6232 | 17 |
| 0.0078 | 0.6205 | 18 |
| 0.0067 | 0.6126 | 19 |
| 0.0039 | 0.6108 | 20 |
| 0.0039 | 0.6407 | 21 |
| 0.0052 | 0.6501 | 22 |
| 0.0043 | 0.6523 | 23 |
| 0.0048 | 0.6800 | 24 |
| 0.0071 | 0.6644 | 25 |
| 0.0014 | 0.6600 | 26 |
| 0.0026 | 0.6578 | 27 |
| 0.0010 | 0.6613 | 28 |
| 0.0009 | 0.6623 | 29 |
### Framework versions
- Transformers 4.40.1
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
davideaguglia/rl_course_vizdoom_health_gathering_supreme | davideaguglia | 2024-05-14T13:31:57Z | 0 | 0 | sample-factory | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-14T13:31:51Z | ---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 7.85 +/- 2.12
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r davideaguglia/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
fine-tuned/jina-embeddings-v2-base-en-14052024-afuz-webapp | fine-tuned | 2024-05-14T13:25:33Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"mteb",
"Fantasy",
"Novels",
"Books",
"Fiction",
"Literature",
"custom_code",
"en",
"dataset:fine-tuned/jina-embeddings-v2-base-en-14052024-afuz-webapp",
"dataset:allenai/c4",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2024-05-14T13:25:16Z | ---
license: apache-2.0
datasets:
- fine-tuned/jina-embeddings-v2-base-en-14052024-afuz-webapp
- allenai/c4
language:
- en
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- Fantasy
- Novels
- Books
- Fiction
- Literature
---
This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case:
genre-specific search for fantasy novels
## How to Use
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
'fine-tuned/jina-embeddings-v2-base-en-14052024-afuz-webapp',
trust_remote_code=True
)
embeddings = model.encode([
'first text to embed',
'second text to embed'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
|
ANGJustinl/Microsoft_Design_ArtStyle | ANGJustinl | 2024-05-14T13:24:23Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-05-14T13:24:22Z | ---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: >-
text:"Microsoft Design", A blue and purple color scheme is used in this
image with a focus on the blue and pink hues. The image features a series of
blue and violet waves which are arranged in a way that creates a visually
appealing pattern. The colors are vibrant and eye-catching making the image
an interesting design element., masterpiece, best quality, detailed
parameters:
negative_prompt: >-
bad anatomy, worst quality, low quality, normal quality, watermark,
blurry,
output:
url: images/Upscale_2024-05-14-205452_0.png
- text: >-
text:"Microsoft Design", A blue and purple color scheme is used in this
image with a focus on the blue and pink hues. The image features a series of
blue and violet waves which are arranged in a way that creates a visually
appealing pattern. The colors are vibrant and eye-catching making the image
an interesting design element., masterpiece, best quality, detailed
parameters:
negative_prompt: >-
bad anatomy, worst quality, low quality, normal quality, watermark,
blurry,
output:
url: images/Upscale_2024-05-14-205434_0.png
- text: >-
text:"Microsoft Design", A blue and purple color scheme is used in this
image with a focus on the blue and pink hues. The image features a series of
blue and violet waves which are arranged in a way that creates a visually
appealing pattern. The colors are vibrant and eye-catching making the image
an interesting design element., masterpiece, best quality, detailed
parameters:
negative_prompt: >-
bad anatomy, worst quality, low quality, normal quality, watermark,
blurry,
output:
url: images/Upscale_2024-05-14-205416_0.png
- text: >-
text:"Microsoft Design", A blue and purple color scheme is used in this
image with a focus on the blue and pink hues. The image features a series of
blue and violet waves which are arranged in a way that creates a visually
appealing pattern. The colors are vibrant and eye-catching making the image
an interesting design element., masterpiece, best quality, detailed
parameters:
negative_prompt: >-
bad anatomy, worst quality, low quality, normal quality, watermark,
blurry,
output:
url: images/Upscale_2024-05-14-205355_0.png
- text: >-
text:"Microsoft Design", A black and white image of a pink and purple design
with a black background., masterpiece, best quality, detailed
parameters:
negative_prompt: >-
bad anatomy, worst quality, low quality, normal quality, watermark,
blurry,
output:
url: images/Upscale_2024-05-14-204426_0.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: null
license: creativeml-openrail-m
---
# Microsoft Design ArtStyle
<Gallery />
## Model description
Same name on civitai
## Download model
Weights for this model are available in Safetensors format.
[Download](/ANGJustinl/Microsoft_Design_ArtStyle/tree/main) them in the Files & versions tab.
|
MoMonir/codegemma-1.1-7b-it-GGUF | MoMonir | 2024-05-14T13:20:48Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-05-14T12:35:46Z | ---
license: gemma
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
extra_gated_heading: Access CodeGemma on Hugging Face
extra_gated_prompt: To access CodeGemma on Hugging Face, youβre required to review
and agree to Googleβs usage license. To do this, please ensure youβre logged-in
to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
pipeline_tag: text-generation
widget:
- text: '<start_of_turn>user Write a Python function to calculate the nth fibonacci
number.<end_of_turn> <start_of_turn>model
'
inference:
parameters:
max_new_tokens: 200
license_link: https://ai.google.dev/gemma/terms
---
# MoMonir/codegemma-1.1-7b-it-GGUF
This model was converted to GGUF format from [`google/codegemma-1.1-7b-it`](https://huggingface.co/google/codegemma-1.1-7b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/google/codegemma-1.1-7b-it) for more details on the model.
<!-- README_GGUF.md-about-gguf start -->
### About GGUF ([TheBloke](https://huggingface.co/TheBloke) Description)
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
<!-- README_GGUF.md-about-gguf end -->
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo MoMonir/codegemma-1.1-7b-it-GGUF --model codegemma-1.1-7b-it.Q4_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo MoMonir/codegemma-1.1-7b-it-GGUF --model codegemma-1.1-7b-it.Q4_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m codegemma-1.1-7b-it.Q4_K_M.gguf -n 128
```
|
quangtqv/cross_encoder_tool_learning_best_model_14_5_2024 | quangtqv | 2024-05-14T13:20:04Z | 115 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-14T13:19:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Rishwonth/aa_model | Rishwonth | 2024-05-14T13:18:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T13:18:19Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Rishwonth
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Ankesh1234/gemma1_fine | Ankesh1234 | 2024-05-14T13:18:22Z | 77 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-05-14T12:33:38Z | ---
license: apache-2.0
---
|
Aryan0310/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization-finetuned-cnndaily | Aryan0310 | 2024-05-14T13:15:41Z | 113 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"base_model:mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization",
"base_model:finetune:mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2024-05-14T11:27:00Z | ---
license: apache-2.0
base_model: mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization-finetuned-cnndaily
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization-finetuned-cnndaily
This model is a fine-tuned version of [mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5035
- Rouge1: 39.9928
- Rouge2: 17.5649
- Rougel: 26.9635
- Rougelsum: 36.7394
- Gen Len: 72.8086
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.661 | 1.0 | 17945 | 2.5035 | 39.9928 | 17.5649 | 26.9635 | 36.7394 | 72.8086 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
catastropiyush/Mistral_7B_shell | catastropiyush | 2024-05-14T13:09:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T13:09:29Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** catastropiyush
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
terry69/mistral_adv_small | terry69 | 2024-05-14T13:09:02Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"mistral",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:HuggingFaceH4/ultrachat_200k",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-05-14T04:43:02Z | ---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- HuggingFaceH4/ultrachat_200k
model-index:
- name: mistral_adv_small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral_adv_small
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0 | 1.0 | 325 | nan |
### Framework versions
- PEFT 0.7.1
- Transformers 4.39.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |
PantagrueLLM/jargon-general-base | PantagrueLLM | 2024-05-14T13:03:42Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"jargon",
"fill-mask",
"linformer",
"legal",
"medical",
"RoBERTa",
"custom_code",
"fr",
"license:mit",
"autotrain_compatible",
"region:us"
] | fill-mask | 2024-05-13T15:09:52Z | ---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- legal
- medical
- RoBERTa
- pytorch
---
# Jargon-general-base
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
Jargon is available in several versions with different context sizes and types of pre-training corpora.
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
-->
| **Model** | **Initialised from...** |**Training Data**|
|-------------------------------------------------------------------------------------|:-----------------------:|:----------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base) | scratch |8.5GB Web Corpus|
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed) | jargon-general-base |5.4GB Medical Corpus|
| jargon-general-legal | jargon-general-base |18GB Legal Corpus
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |Medical+Legal Corpora|
| jargon-legal | scratch |18GB Legal Corpus|
| jargon-legal-4096 | scratch |18GB Legal Corpus|
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |5.4GB Medical Corpus|
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |5.4GB Medical Corpus|
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
## Evaluation
The Jargon models were evaluated on an range of specialized downstream tasks.
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
## Using Jargon models with HuggingFace transformers
You can get started with `jargon-general-base` using the code snippet below:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-general-base", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-general-base", trust_remote_code=True)
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allΓ© au <mask> hier")
```
You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.
- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
- GENCI-IDRIS (Grant 2022 A0131013801)
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
- PROPICTO ANR-20-CE93-0005
- Lawbot ANR-20-CE38-0013
- Swiss National Science Foundation (grant PROPICTO NΒ°197864)
- **Authors**
- Vincent Segonne
- Aidan Mannion
- Laura Cristina Alonzo Canul
- Alexandre Audibert
- Xingyu Liu
- CΓ©cile Macaire
- Adrien Pupier
- Yongxin Zhou
- Mathilde Aguiar
- Felix Herron
- Magali NorrΓ©
- Massih-Reza Amini
- Pierrette Bouillon
- Iris Eshkol-Taravella
- Emmanuelle EsperanΓ§a-Rodier
- Thomas FranΓ§ois
- Lorraine Goeuriot
- JΓ©rΓ΄me Goulian
- Mathieu Lafourcade
- Benjamin Lecouteux
- FranΓ§ois Portet
- Fabien Ringeval
- Vincent Vandeghinste
- Maximin Coavoux
- Marco Dinarelli
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{segonne:hal-04535557,
TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
URL = {https://hal.science/hal-04535557},
BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
ADDRESS = {Turin, Italy},
YEAR = {2024},
MONTH = May,
KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
HAL_ID = {hal-04535557},
HAL_VERSION = {v1},
}
```
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!--
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
|
sravaniayyagari/lora_model_6 | sravaniayyagari | 2024-05-14T13:01:46Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"arxiv:1910.09700",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:adapter:meta-llama/Meta-Llama-3-8B",
"region:us"
] | null | 2024-05-14T12:58:42Z | ---
library_name: peft
base_model: meta-llama/Meta-Llama-3-8B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 |
SidXXD/attn_maps-color_sandesh-dog-mist-whole | SidXXD | 2024-05-14T13:00:41Z | 1 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"custom-diffusion",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:adapter:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2024-05-14T12:42:42Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: photo of a <new1> dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- custom-diffusion
inference: true
---
# Custom Diffusion - SidXXD/attn_maps-color_sandesh-dog-mist-whole
These are Custom Diffusion adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on photo of a <new1> dog using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following.
For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
|
llxlb/lora_model_test1 | llxlb | 2024-05-14T12:56:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T12:56:23Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** llxlb
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
fine-tuned/jina-embeddings-v2-base-en-14052024-5b5o-webapp | fine-tuned | 2024-05-14T12:49:58Z | 6 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"mteb",
"Fashion",
"Clothing",
"Sustainability",
"Quality",
"Brands",
"custom_code",
"de",
"dataset:fine-tuned/jina-embeddings-v2-base-en-14052024-5b5o-webapp",
"dataset:allenai/c4",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2024-05-14T12:49:42Z | ---
license: apache-2.0
datasets:
- fine-tuned/jina-embeddings-v2-base-en-14052024-5b5o-webapp
- allenai/c4
language:
- de
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- Fashion
- Clothing
- Sustainability
- Quality
- Brands
---
This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case:
Fashion boutique products and reviews search
## How to Use
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
'fine-tuned/jina-embeddings-v2-base-en-14052024-5b5o-webapp',
trust_remote_code=True
)
embeddings = model.encode([
'first text to embed',
'second text to embed'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
|
llxlb/lora_model_test | llxlb | 2024-05-14T12:45:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T12:44:54Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** llxlb
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
IEETA/Multi-Head-CRF | IEETA | 2024-05-14T12:45:00Z | 0 | 0 | null | [
"es",
"dataset:IEETA/SPACCC-Spanish-NER",
"license:mit",
"region:us"
] | null | 2024-05-10T14:29:08Z | ---
license: mit
datasets:
- IEETA/SPACCC-Spanish-NER
language:
- es
metrics:
- f1
---
# Model Card for Biomedical Named Entity Recognition in Spanish Clinical Texts
Our model focuses on Biomedical Named Entity Recognition (NER) in Spanish clinical texts, crucial for automated information extraction in medical research and treatment improvements. It proposes a novel approach using a Multi-Head Conditional Random Field (CRF) classifier to tackle multi-class NER tasks, overcoming challenges of overlapping entity instances. The classes it recognizes include symptoms, procedures, diseases, chemicals, and proteins.
We provide 4 different models, available as branches of this repository.
## Model Details
### Model Description
- **Developed by:** IEETA
- **Model type:** Multi-Head-CRF, Roberta Base
- **Language(s) (NLP):** Spanish
- **License:** MIT
- **Finetuned from model:** lcampillos/roberta-es-clinical-trials-ner
### Model Sources
- **Repository:** [IEETA Multi-Head-CRF GitHub](https://github.com/ieeta-pt/Multi-Head-CRF)
- **Paper:** Multi-head CRF classifier for biomedical multi-class Named Entity Recognition on Spanish clinical notes [Awaiting Publication]
**Authors:**
- Richard A A Jonker ([ORCID: 0000-0002-3806-6940](https://orcid.org/0000-0002-3806-6940))
- Tiago Almeida ([ORCID: 0000-0002-4258-3350](https://orcid.org/0000-0002-4258-3350))
- Rui Antunes ([ORCID: 0000-0003-3533-8872](https://orcid.org/0000-0003-3533-8872))
- JoΓ£o R Almeida ([ORCID: 0000-0003-0729-2264](https://orcid.org/0000-0003-0729-2264))
- SΓ©rgio Matos ([ORCID: 0000-0003-1941-3983](https://orcid.org/0000-0003-1941-3983))
## Uses
Note we do not take any liability for the use of the model in any professional/medical domain. The model is intended for academic purposes only. It performs Named Entity Recognition over 5 classes namely: SYMPTOM PROCEDURE DISEASE PROTEIN CHEMICAL
## How to Get Started with the Model
Please refer to our GitHub repository for more information on how to train the model and run inference: [IEETA Multi-Head-CRF GitHub](https://github.com/ieeta-pt/Multi-Head-CRF)
## Training Details
### Training Data
The training data can be found on IEETA/SPACCC-Spanish-NER, which is further described on the dataset card.
The dataset used consists of 4 seperate datasets:
- [SympTEMIST](https://zenodo.org/records/10635215)
- [MedProcNER](https://zenodo.org/records/8224056)
- [DisTEMIST](https://zenodo.org/records/7614764)
- [PharmaCoNER](https://zenodo.org/records/4270158)
### Speeds, Sizes, Times
The models were trained using an Nvidia Quadro RTX 8000. The models for 5 classes took approximately 1 hour to train and occupy around 1GB of disk space. Additionally, this model shows linear complexity (+8 minutes) per entity class to classify.
### Testing Data, Factors & Metrics
#### Testing Data
The testing data can be found on IEETA/SPACCC-Spanish-NER, which is further described on the dataset card.
#### Metrics
The models were evaluated using the micro-averaged F1-score metric, the standard for entity recognition tasks.
### Results
We provide 4 separate models with various hyperparameter changes:
| HLs per head | Augmentation | Percentage Tags | Augmentation Probability | F1 |
|--------------|--------------|-----------------|--------------------------|--------|
| 3 | Random | 0.25 | 0.50 | 78.73 |
| 3 | Unknown | 0.50 | 0.25 | 78.50 |
| 3 | None | - | - | **78.89** |
| 1 | Random | 0.25 | 0.50 | **78.89** |
All models are trained with a context size of 32 tokens for 60 epochs.
## Citation
**BibTeX:**
[Awaiting Publication]
|
mfuentelsaz/clasificador-muchocine | mfuentelsaz | 2024-05-14T12:43:55Z | 110 | 0 | transformers | [
"transformers",
"safetensors",
"electra",
"text-classification",
"classification",
"generated_from_trainer",
"base_model:mrm8488/electricidad-base-discriminator",
"base_model:finetune:mrm8488/electricidad-base-discriminator",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-09T08:32:58Z | ---
base_model: mrm8488/electricidad-base-discriminator
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clasificador-muchocine
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-muchocine
This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4057
- Accuracy: 0.4348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 388 | 1.3794 | 0.3961 |
| 1.3811 | 2.0 | 776 | 1.2981 | 0.4206 |
| 1.0028 | 3.0 | 1164 | 1.4057 | 0.4348 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
m-a-p/OpenCodeInterpreter-CL-70B | m-a-p | 2024-05-14T12:43:06Z | 27 | 25 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"code",
"conversational",
"en",
"arxiv:2402.14658",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-02-22T07:48:35Z | ---
language:
- en
pipeline_tag: text-generation
tags:
- code
license: apache-2.0
---
<h1 align="center"> OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement<h1>
<p align="center">
<img width="1000px" alt="OpenCodeInterpreter" src="https://opencodeinterpreter.github.io/static/images/figure1.png">
</p>
<p align="center">
<a href="https://opencodeinterpreter.github.io/">[π Homepage]</a>
|
<a href="https://github.com/OpenCodeInterpreter/OpenCodeInterpreter/">[π οΈCode]</a>
</p>
<hr>
## Introduction
OpenCodeInterpreter is a family of open-source code generation systems designed to bridge the gap between large language models and advanced proprietary systems like the GPT-4 Code Interpreter. It significantly advances code generation capabilities by integrating execution and iterative refinement functionalities.
For further information and related work, refer to our paper: ["OpenCodeInterpreter: A System for Enhanced Code Generation and Execution"](https://arxiv.org/abs/2402.14658) available on arXiv.
## Model Information
This model is based on [CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf).
## Benchmark Scores
The OpenCodeInterpreter Models series exemplifies the evolution of coding model performance, particularly highlighting the significant enhancements brought about by the integration of execution feedback. In an effort to quantify these improvements, we present a detailed comparison across two critical benchmarks: HumanEval and MBPP. This comparison not only showcases the individual performance metrics on each benchmark but also provides an aggregated view of the overall performance enhancement. The subsequent table succinctly encapsulates the performance data, offering a clear perspective on how execution feedback contributes to elevating the models' capabilities in code interpretation and execution tasks.
| **Benchmark** | **HumanEval (+)** | **MBPP (+)** | **Average (+)** |
|---------------|-------------------|--------------|-----------------|
| **OpenCodeInterpreter-DS-1.3B** | 65.2 (61.0) | 63.4 (52.4) | 64.3 (56.7) |
| + Execution Feedback | 65.2 (62.2) | 65.2 (55.6) | 65.2 (58.9) |
| **OpenCodeInterpreter-DS-6.7B** | 76.2 (72.0) | 73.9 (63.7) | 75.1 (67.9) |
| + Execution Feedback | 81.1 (78.7) | 82.7 (72.4) | 81.9 (75.6) |
| + Synth. Human Feedback | 87.2 (86.6) | 86.2 (74.2) | 86.7 (80.4) |
| + Synth. Human Feedback (Oracle) | 89.7 (86.6) | 87.2 (75.2) | 88.5 (80.9) |
| **OpenCodeInterpreter-DS-33B** | 79.3 (74.3) | 78.7 (66.4) | 79.0 (70.4) |
| + Execution Feedback | 82.9 (80.5) | 83.5 (72.2) | 83.2 (76.4) |
| + Synth. Human Feedback | 88.4 (86.0) | 87.5 (75.9) | 88.0 (81.0) |
| + Synth. Human Feedback (Oracle) | 92.7 (89.7) | 90.5 (79.5) | 91.6 (84.6) |
| **OpenCodeInterpreter-CL-7B** | 72.6 (67.7) | 66.4 (55.4) | 69.5 (61.6) |
| + Execution Feedback | 75.6 (70.1) | 69.9 (60.7) | 72.8 (65.4) |
| **OpenCodeInterpreter-CL-13B** | 77.4 (73.8) | 70.7 (59.2) | 74.1 (66.5) |
| + Execution Feedback | 81.1 (76.8) | 78.2 (67.2) | 79.7 (72.0) |
| **OpenCodeInterpreter-CL-34B** | 78.0 (72.6) | 73.4 (61.4) | 75.7 (67.0) |
| + Execution Feedback | 81.7 (78.7) | 80.2 (67.9) | 81.0 (73.3) |
| **OpenCodeInterpreter-CL-70B** | 76.2 (70.7) | 73.0 (61.9) | 74.6 (66.3) |
| + Execution Feedback | 79.9 (77.4) | 81.5 (69.9) | 80.7 (73.7) |
| **OpenCodeInterpreter-GM-7B** | 56.1 (50.0) | 39.8 (34.6) | 48.0 (42.3) |
| + Execution Feedback | 64.0 (54.3) | 48.6 (40.9) | 56.3 (47.6) |
| **OpenCodeInterpreter-SC2-3B** | 65.2 (57.9) | 62.7 (52.9) | 64.0 (55.4) |
| + Execution Feedback | 67.1 (60.4) | 63.4 (54.9) | 65.3 (57.7) |
| **OpenCodeInterpreter-SC2-7B** | 73.8 (68.9) | 61.7 (51.1) | 67.8 (60.0) |
| + Execution Feedback | 75.6 (69.5) | 66.9 (55.4) | 71.3 (62.5) |
| **OpenCodeInterpreter-SC2-15B** | 75.6 (69.5) | 71.2 (61.2) | 73.4 (65.4) |
| + Execution Feedback | 77.4 (72.0) | 74.2 (63.4) | 75.8 (67.7) |
*Note: The "(+)" notation represents scores from extended versions of the HumanEval and MBPP benchmarks. To ensure a fair comparison, the results shown for adding execution feedback are based on outcomes after just one iteration of feedback, without unrestricted iterations. This approach highlights the immediate impact of execution feedback on performance improvements across benchmarks.*
## Model Usage
### Inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path="m-a-p/OpenCodeInterpreter-CL-70B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model.eval()
prompt = "Write a function to find the shared elements from the given two lists."
inputs = tokenizer.apply_chat_template(
[{'role': 'user', 'content': prompt }],
return_tensors="pt"
).to(model.device)
outputs = model.generate(
inputs,
max_new_tokens=1024,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```
## Contact
If you have any inquiries, please feel free to raise an issue or reach out to us via email at: [email protected], [email protected].
We're here to assist you!" |
1aurent/ddpm-mnist | 1aurent | 2024-05-14T12:42:57Z | 4,421 | 4 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"dataset:mnist",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2023-10-06T14:14:37Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
datasets:
- mnist
library_name: diffusers
pipeline_tag: unconditional-image-generation
thumbnail: https://upload.wikimedia.org/wikipedia/commons/f/f7/MnistExamplesModified.png
---
# Unconditional MNIST DDPM

## Description
This model is a very lightweight UNet2D trained on the MNIST dataset. \
This model is unconditional, meaning that you cannot pick which number you'd like to generate. \
This model was trained in ~40min on an L4 GPU Google Colab instance. You can see the training logs in the [Training metrics](https://huggingface.co/1aurent/ddpm-mnist/tensorboard) tab.
A conditional model is available at [1aurent/ddpm-mnist-conditional](https://huggingface.co/1aurent/ddpm-mnist-conditional), though it is pretty buggy.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('1aurent/ddpm-mnist')
image = pipeline().images[0]
image
``` |
WenhaoWang/Meta-Llama-3-8B-AutoT2VPrompt | WenhaoWang | 2024-05-14T12:40:02Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-to-video generation",
"VidProM",
"Automatical text-to-video prompt",
"conversational",
"en",
"dataset:WenhaoWang/VidProM",
"arxiv:2403.06098",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-04-18T18:00:02Z | ---
license: cc-by-nc-4.0
datasets:
- WenhaoWang/VidProM
language:
- en
pipeline_tag: text-generation
tags:
- text-to-video generation
- VidProM
- Automatical text-to-video prompt
---
# The first model for automatic text-to-video prompt completion: Given a few words as input, the model will generate a few whole text-to-video prompts.
# Details
It is fine-tuned on the [VidProM](https://huggingface.co/datasets/WenhaoWang/VidProM) dataset using [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) and 8 A100 80G GPUs.
# Usage
## Download the model
```
from transformers import pipeline
import torch
pipe = pipeline("text-generation", model="WenhaoWang/Meta-Llama-3-8B-AutoT2VPrompt", model_kwargs={"torch_dtype": torch.bfloat16}, device_map="cuda:0")
```
## Set the Parameters
```
input = "An underwater world" # The input text to generate text-to-video prompt.
max_length = 50 # The maximum length of the generated text.
temperature = 1.2 # Controls the randomness of the generation. Higher values lead to more random outputs.
top_k = 8 # Limits the number of words considered at each step to the top k most likely words.
num_return_sequences = 10 # The number of different text-to-video prompts to generate from the same input.
```
## Generation
```
all_prompts = pipe(input, max_length = max_length, do_sample = True, temperature = temperature, top_k = top_k, num_return_sequences=num_return_sequences)
def process(text):
text = text.replace('\n', '.')
text = text.replace(' .', '.')
text = text[:text.rfind('.')]
text = text + '.'
return text
for i in range(num_return_sequences):
print(process(all_prompts[i]['generated_text']))
```
You will get 10 text-to-video prompts, and you can pick one you like most.
```
An underwater world of blue wonders. A vibrant Coral Gden sways with shades of aquamine. A Clownfish dances, while a Turtle leisurely glides by.
An underwater world full of colorful fish and coral formations.the sun rising over a field of corn ne a fm house on a beautiful morning.a woman is looking at vr controllers and trying to choose which one to choose, .
An underwater world teeming with vious unique mine creatures. Schools of fish gracefully swim among the colorful coral reefs and seaweed, creating a stunning underwater landscape.
An underwater world with a beautiful mermaid swimming in cle water and sunlight passing through the surface..the most beatuful view on the eth.
An underwater world teeming with a rainbow of coral reefs, swaying gently in the sea currents, surrounded by vibrant schools of tropical fish creating a stunning visual feast.
An underwater world filled with a rainbow fish and a sea turtle swiming.A woman walks in to a room where her child is sleeping. She leans over to check on the child. The child then wakes up..
An underwater world teeming with colorful creatures and vibrant coral reefs..a beautiful lady, big black eyes, with a white man bun hairstyle, weing a black professional attire, standing front and center, with a black background .
An underwater world with colorful coral reefs and a viety of sea creatures, all living together in hmony..a girl weing headphones listening to music at a dk coffee cafe at nighttime -camera zoom out - 10.
An underwater world full of mine life and corals, in the style of 8k 3d, photorealistic scenes, crystal cle water, mine and sea flora motifs, high details, glistening water effects, vibrant mine life, H.
An underwater world of vibrant coral reefs teeming with schools of tropical fish, creating a mesmerizing display of colors and movement beneath the azure waves.
```
# License
The model is licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en), and you should also follow the [license](https://llama.meta.com/llama3/license/) and [Agreement](https://huggingface.co/meta-llama/Meta-Llama-3-8B) from Meta AI.
# Citation
```
@article{wang2024vidprom,
title={VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models},
author={Wang, Wenhao and Yang, Yi},
journal={arXiv preprint arXiv:2403.06098},
year={2024}
}
```
# Acknowledgment
The fine-tuning process is helped by [Yaowei Zheng](https://github.com/hiyouga).
# Contact
If you have any questions, feel free to contact [Wenhao Wang](https://wangwenhao0716.github.io) ([email protected]).
|
WenhaoWang/AutoT2VPrompt | WenhaoWang | 2024-05-14T12:39:47Z | 11 | 5 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"text-to-video generation",
"VidProM",
"Automatical text-to-video prompt",
"en",
"dataset:WenhaoWang/VidProM",
"arxiv:2403.06098",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-04-04T21:08:52Z | ---
license: cc-by-nc-4.0
datasets:
- WenhaoWang/VidProM
language:
- en
pipeline_tag: text-generation
tags:
- text-to-video generation
- VidProM
- Automatical text-to-video prompt
---
# The first model for automatic text-to-video prompt completion: Given a few words as input, the model will generate a few whole text-to-video prompts.
# Details
It is fine-tuned on the [VidProM](https://huggingface.co/datasets/WenhaoWang/VidProM) dataset using [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and 8 A100 GPUs.
# Usage
## Download the model
```
from transformers import pipeline
import torch
pipe = pipeline("text-generation", model="WenhaoWang/AutoT2VPrompt", model_kwargs={"torch_dtype": torch.bfloat16}, device_map="cuda:0")
```
## Set the Parameters
```
input = "An underwater world" # The input text to generate text-to-video prompt.
max_length = 50 # The maximum length of the generated text.
temperature = 1.2 # Controls the randomness of the generation. Higher values lead to more random outputs.
top_k = 8 # Limits the number of words considered at each step to the top k most likely words.
num_return_sequences = 10 # The number of different text-to-video prompts to generate from the same input.
```
## Generation
```
all_prompts = pipe(input, max_length = max_length, do_sample = True, temperature = temperature, top_k = top_k, num_return_sequences=num_return_sequences)
def process(text):
text = text.replace('\n', '.')
text = text.replace(' .', '.')
text = text[:text.rfind('.')]
text = text + '.'
return text
for i in range(num_return_sequences):
print(process(all_prompts[i]['generated_text']))
```
You will get 10 text-to-video prompts, and you can pick one you like most.
```
An underwater world, 25 ye boy, with aqua-green eyes, dk sandy blond hair, from the back, and on his back a fish, 23 ye old, weing glasses,ctoon chacte.
An underwater world, the video should capture the essence of tranquility and the beauty of nature.. a woman with short hair weing a green dress sitting at the desk.
An underwater world, the ocean is full of discded items, the water flows, and the light penetrating through the water.
An underwater world.. a woman with red eyes and red lips is looking forwd.
An underwater world.. an old man sitting in a chair, smoking a pipe, a little smoke coming out of the chair, a man is drinking a glass.
An underwater world. The ocean is filled with bioluminess as the water reflects a soft glow from a bioluminescent phosphorescent light source. The camera slowly moves away and zooms in..
An underwater world. the girl looks at the camera and smiles with happiness..
An underwater world, 1960s horror film..
An underwater world.. 4 men in 1940s style clothes walk ound a gothic castle. night, fe. A girl is running, and there e some flowers along the river.
An underwater world, -camera pan up . A girl is playing with her cat on a sunny day in the pk. A man is running and then falling down and dying.
```
# License
The model is licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
# Citation
```
@article{wang2024vidprom,
title={VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models},
author={Wang, Wenhao and Yang, Yi},
journal={arXiv preprint arXiv:2403.06098},
year={2024}
}
```
# Acknowledgment
The fine-tuning process is helped by [Yaowei Zheng](https://github.com/hiyouga).
# Contact
If you have any questions, feel free to contact [Wenhao Wang](https://wangwenhao0716.github.io) ([email protected]). |
flaubert/flaubert_base_cased | flaubert | 2024-05-14T12:38:22Z | 5,735 | 8 | transformers | [
"transformers",
"pytorch",
"safetensors",
"flaubert",
"fill-mask",
"bert",
"language-model",
"flue",
"french",
"bert-base",
"flaubert-base",
"cased",
"fr",
"dataset:flaubert",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language: fr
license: mit
datasets:
- flaubert
metrics:
- flue
tags:
- bert
- language-model
- flaubert
- flue
- french
- bert-base
- flaubert-base
- cased
---
# FlauBERT: Unsupervised Language Model Pre-training for French
**FlauBERT** is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/ ) supercomputer.
Along with FlauBERT comes [**FLUE**](https://github.com/getalp/Flaubert/tree/master/flue): an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.For more details please refer to the [official website](https://github.com/getalp/Flaubert).
## FlauBERT models
| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------: | :---: | :---: | :---: | :---: |
| `flaubert-small-cased` | 6 | 8 | 512 | 54 M |
| `flaubert-base-uncased` | 12 | 12 | 768 | 137 M |
| `flaubert-base-cased` | 12 | 12 | 768 | 138 M |
| `flaubert-large-cased` | 24 | 16 | 1024 | 373 M |
**Note:** `flaubert-small-cased` is partially trained so performance is not guaranteed. Consider using it for debugging purpose only.
## Using FlauBERT with Hugging Face's Transformers
```python
import torch
from transformers import FlaubertModel, FlaubertTokenizer
# Choose among ['flaubert/flaubert_small_cased', 'flaubert/flaubert_base_uncased',
# 'flaubert/flaubert_base_cased', 'flaubert/flaubert_large_cased']
modelname = 'flaubert/flaubert_base_cased'
# Load pretrained model and tokenizer
flaubert, log = FlaubertModel.from_pretrained(modelname, output_loading_info=True)
flaubert_tokenizer = FlaubertTokenizer.from_pretrained(modelname, do_lowercase=False)
# do_lowercase=False if using cased models, True if using uncased ones
sentence = "Le chat mange une pomme."
token_ids = torch.tensor([flaubert_tokenizer.encode(sentence)])
last_layer = flaubert(token_ids)[0]
print(last_layer.shape)
# torch.Size([1, 8, 768]) -> (batch size x number of tokens x embedding dimension)
# The BERT [CLS] token correspond to the first hidden state of the last layer
cls_embedding = last_layer[:, 0, :]
```
**Notes:** if your `transformers` version is <=2.10.0, `modelname` should take one
of the following values:
```
['flaubert-small-cased', 'flaubert-base-uncased', 'flaubert-base-cased', 'flaubert-large-cased']
```
## References
If you use FlauBERT or the FLUE Benchmark for your scientific publication, or if you find the resources in this repository useful, please cite one of the following papers:
[LREC paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.302.pdf)
```
@InProceedings{le2020flaubert,
author = {Le, Hang and Vial, Lo\"{i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb\'{e}, Beno\^{i}t and Besacier, Laurent and Schwab, Didier},
title = {FlauBERT: Unsupervised Language Model Pre-training for French},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {2479--2490},
url = {https://www.aclweb.org/anthology/2020.lrec-1.302}
}
```
[TALN paper](https://hal.archives-ouvertes.fr/hal-02784776/)
```
@inproceedings{le2020flaubert,
title = {FlauBERT: des mod{\`e}les de langue contextualis{\'e}s pr{\'e}-entra{\^\i}n{\'e}s pour le fran{\c{c}}ais},
author = {Le, Hang and Vial, Lo{\"\i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb{\'e}, Beno{\^\i}t and Besacier, Laurent and Schwab, Didier},
booktitle = {Actes de la 6e conf{\'e}rence conjointe Journ{\'e}es d'{\'E}tudes sur la Parole (JEP, 31e {\'e}dition), Traitement Automatique des Langues Naturelles (TALN, 27e {\'e}dition), Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (R{\'E}CITAL, 22e {\'e}dition). Volume 2: Traitement Automatique des Langues Naturelles},
pages = {268--278},
year = {2020},
organization = {ATALA}
}
``` |
MattNandavong/QA_model7-test | MattNandavong | 2024-05-14T12:32:04Z | 121 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"base_model:deepset/roberta-base-squad2",
"base_model:finetune:deepset/roberta-base-squad2",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2024-05-14T12:24:18Z | ---
license: cc-by-4.0
base_model: deepset/roberta-base-squad2
tags:
- generated_from_trainer
model-index:
- name: QA_model7-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QA_model7-test
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.2383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 11
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 4 | 6.2383 |
| No log | 2.0 | 8 | 6.2383 |
| No log | 3.0 | 12 | 6.2383 |
| No log | 4.0 | 16 | 6.2383 |
| No log | 5.0 | 20 | 6.2383 |
| No log | 6.0 | 24 | 6.2383 |
| No log | 7.0 | 28 | 6.2383 |
| No log | 8.0 | 32 | 6.2383 |
| No log | 9.0 | 36 | 6.2383 |
| No log | 10.0 | 40 | 6.2383 |
| No log | 11.0 | 44 | 6.2383 |
| No log | 12.0 | 48 | 6.2383 |
| No log | 13.0 | 52 | 6.2383 |
| No log | 14.0 | 56 | 6.2383 |
| No log | 15.0 | 60 | 6.2383 |
| No log | 16.0 | 64 | 6.2383 |
| No log | 17.0 | 68 | 6.2383 |
| No log | 18.0 | 72 | 6.2383 |
| No log | 19.0 | 76 | 6.2383 |
| No log | 20.0 | 80 | 6.2383 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
philschmid/code-llama-7b-text-to-sql | philschmid | 2024-05-14T12:31:52Z | 11 | 4 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:codellama/CodeLlama-7b-hf",
"base_model:adapter:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-01-17T07:57:21Z | ---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: code-llama-7b-text-to-sql
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code-llama-7b-text-to-sql
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |
Fitti/PPO-LunarLander-v2 | Fitti | 2024-05-14T12:30:33Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2024-05-14T12:30:12Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.00 +/- 15.63
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
neopolita/meta-llama-guard-2-8b-gguf | neopolita | 2024-05-14T12:29:11Z | 42 | 1 | null | [
"gguf",
"region:us"
] | null | 2024-04-18T17:47:51Z | ---
{}
---
# GGUF quants for [**meta-llama/Meta-Llama-Guard-2-8B**](https://huggingface.co/meta-llama/Meta-Llama-Guard-2-8B) using [llama.cpp](https://github.com/ggerganov/llama.cpp)
**Terms of Use**: Please check the [**original model**](https://huggingface.co/meta-llama/Meta-Llama-Guard-2-8B)
<picture>
<img alt="cthulhu" src="https://huggingface.co/neopolita/common/resolve/main/profile.png">
</picture>
## Quants
* `q2_k`: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.
* `q3_k_s`: Uses Q3_K for all tensors
* `q3_k_m`: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* `q3_k_l`: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* `q4_0`: Original quant method, 4-bit.
* `q4_1`: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
* `q4_k_s`: Uses Q4_K for all tensors
* `q4_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K
* `q5_0`: Higher accuracy, higher resource usage and slower inference.
* `q5_1`: Even higher accuracy, resource usage and slower inference.
* `q5_k_s`: Uses Q5_K for all tensors
* `q5_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K
* `q6_k`: Uses Q8_K for all tensors
* `q8_0`: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
neopolita/meta-llama-3-8b-instruct-gguf | neopolita | 2024-05-14T12:16:50Z | 22 | 0 | null | [
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-04-18T20:53:35Z | ---
{}
---
# GGUF quants for [**meta-llama/Meta-Llama-3-8B-Instruct**](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) using [llama.cpp](https://github.com/ggerganov/llama.cpp)
**Terms of Use**: Please check the [**original model**](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
<picture>
<img alt="cthulhu" src="https://huggingface.co/neopolita/common/resolve/main/profile.png">
</picture>
## Quants
* `q2_k`: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.
* `q3_k_s`: Uses Q3_K for all tensors
* `q3_k_m`: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* `q3_k_l`: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* `q4_0`: Original quant method, 4-bit.
* `q4_1`: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
* `q4_k_s`: Uses Q4_K for all tensors
* `q4_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K
* `q5_0`: Higher accuracy, higher resource usage and slower inference.
* `q5_1`: Even higher accuracy, resource usage and slower inference.
* `q5_k_s`: Uses Q5_K for all tensors
* `q5_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K
* `q6_k`: Uses Q8_K for all tensors
* `q8_0`: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
Mag0g/Ezekiel27_2 | Mag0g | 2024-05-14T12:15:36Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-14T12:14:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ravi6389/twitter_sentiment | ravi6389 | 2024-05-14T12:13:25Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2024-05-14T08:45:54Z | ---
license: other
license_name: other
license_link: LICENSE
---
|
MeanBean-05/distilbert-for-intent-prediction | MeanBean-05 | 2024-05-14T12:11:53Z | 121 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-14T12:11:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Sajjo/w2v-bert-2.0-unified_v2 | Sajjo | 2024-05-14T12:10:55Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-14T12:09:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ludocomito/Minerva-MoE-2x3B | ludocomito | 2024-05-14T12:05:44Z | 2,817 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"moe",
"frankenmoe",
"merge",
"mergekit",
"lazymergekit",
"DeepMount00/Minerva-3B-base-RAG",
"FairMind/Minerva-3B-Instruct-v1.0",
"base_model:DeepMount00/Minerva-3B-base-RAG",
"base_model:merge:DeepMount00/Minerva-3B-base-RAG",
"base_model:FairMind/Minerva-3B-Instruct-v1.0",
"base_model:merge:FairMind/Minerva-3B-Instruct-v1.0",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-13T17:22:01Z | ---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- DeepMount00/Minerva-3B-base-RAG
- FairMind/Minerva-3B-Instruct-v1.0
base_model:
- DeepMount00/Minerva-3B-base-RAG
- FairMind/Minerva-3B-Instruct-v1.0
---
# Minerva-MoE-3x3B
Minerva-MoE-3x3B is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [DeepMount00/Minerva-3B-base-RAG](https://huggingface.co/DeepMount00/Minerva-3B-base-RAG)
* [FairMind/Minerva-3B-Instruct-v1.0](https://huggingface.co/FairMind/Minerva-3B-Instruct-v1.0)
## Evaluation
arc_it acc_norm: 31.91
hellaswag_it acc_norm: 52.20
mmmlu_it: 25.72
## π§© Configuration
```yaml
base_model: sapienzanlp/Minerva-3B-base-v1.0
experts:
- source_model: DeepMount00/Minerva-3B-base-RAG
positive_prompts:
- "rispondi a domande"
- "cosa Γ¨"
- "chi Γ¨"
- "dove Γ¨"
- "come si"
- "spiegami"
- "definisci"
- source_model: FairMind/Minerva-3B-Instruct-v1.0
positive_prompts:
- "istruzione"
- "input"
- "risposta"
- "scrivi"
- "sequenza"
- "istruzioni"
dtype: bfloat16
```
## π» Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ludocomito/Minerva-MoE-3x3B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |
lmms-lab/llava-next-110b | lmms-lab | 2024-05-14T12:05:00Z | 41 | 21 | transformers | [
"transformers",
"safetensors",
"llava",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-06T06:17:11Z | ---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# LLaVA Model Card
## Model Details
Model type: LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.
Base LLM: Qwen/Qwen1.5-110B-Chat
### Model Description
**Repository:** https://github.com/LLaVA-VL/LLaVA-NeXT
**Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. This is only for research exploration, and prohibited for commercial usage.
**Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
### License Notices
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the OpenAI Terms of Use for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. Llama-1/2 community license for LLaMA-2 and Vicuna-v1.5, [Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) and [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Procedure
We conducted the training on LLaVA-1.6's codebase with adding support of Llama-3 and Qwen model.
### Training Hyperparameters
```shell
LLM_VERSION="Qwen/Qwen1.5-110B-Chat"
LLM_VERSION_CLEAN="${LLM_VERSION//\//_}"
VISION_MODEL_VERSION="openai/clip-vit-large-patch14-336"
VISION_MODEL_VERSION_CLEAN="${VISION_MODEL_VERSION//\//_}"
PROMPT_VERSION=plain
PRETRAIN_DATA_VERSION="blip558k"
############### Pretrain ################
BASE_RUN_NAME="llavanext-${LLM_VERSION_CLEAN}-${VISION_MODEL_VERSION_CLEAN}-pretrain_${PRETRAIN_DATA_VERSION}_plain"
echo "BASE_RUN_NAME: ${BASE_RUN_NAME}"
PROMPT_VERSION="qwen_1_5"
MID_RUN_NAME="llavanext-${LLM_VERSION_CLEAN}-${VISION_MODEL_VERSION_CLEAN}-pretrain_${PRETRAIN_DATA_VERSION}_plain-ft_la1_6mix_d32k"
echo "MID_RUN_NAME: ${MID_RUN_NAME}"
torchrun # with necessary torchrun information for distributed training\
llava/train/train_mem.py \
--deepspeed scripts/zero3.json \
--model_name_or_path $LLM_VERSION \
--version $PROMPT_VERSION \
--data_path="/path/to/data/llava_instruct/llava1_6mix.json" \
--image_folder /path/to/data/llava_data \
--pretrain_mm_mlp_adapter="./checkpoints/projectors/${BASE_RUN_NAME}/mm_projector.bin" \
--mm_tunable_parts="mm_vision_tower,mm_mlp_adapter,mm_language_model" \
--mm_vision_tower_lr=2e-6 \
--vision_tower ${VISION_MODEL_VERSION} \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--group_by_modality_length True \
--image_aspect_ratio anyres \
--image_grid_pinpoints "[(336, 672), (672, 336), (672, 672), (1008, 336), (336, 1008)]" \
--mm_patch_merge_type spatial_unpad \
--bf16 True \
--run_name $MID_RUN_NAME \
--output_dir ./checkpoints/$MID_RUN_NAME \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 3000 \
--save_total_limit 1 \
--learning_rate 1e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 32768 \
--gradient_checkpointing True \
--dataloader_num_workers 8 \
--lazy_preprocess True \
--report_to wandb \
--torch_compile True \
--torch_compile_backend "inductor"
--dataloader_drop_last True
```
### Training Data
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 500K academic-task-oriented VQA data mixture.
- 50K GPT-4V data mixture.
- 40K ShareGPT data.
- 20K COCO Caption data.
#### Speeds, Sizes, Times [optional]
The training cost is ~18-20 hours on 16 x 8 NVIDIA H800-SXM4-80GB (may vary due to hardware differences).
[More Information Needed]
## Evaluation
The evaluation is conducted with the support of [`lmms-eval`](https://github.com/EvolvingLMMs-Lab/lmms-eval) |
Rishwonth/lora_model | Rishwonth | 2024-05-14T11:58:53Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-06T10:36:32Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Rishwonth
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ademakyol/emotion-analysis-with-distilbert | ademakyol | 2024-05-14T11:55:47Z | 62 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-05-14T11:40:09Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: ademakyol/emotion-analysis-with-distilbert
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ademakyol/emotion-analysis-with-distilbert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1366
- Validation Loss: 0.1496
- Train Accuracy: 0.9345
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.3770 | 0.2111 | 0.9205 | 0 |
| 0.1366 | 0.1496 | 0.9345 | 1 |
### Framework versions
- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Subsets and Splits