modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-31 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
461 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-31 18:26:36
card
stringlengths
11
1.01M
Bodolaz/Unit-4.2-final2
Bodolaz
2023-06-27T19:17:52Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T19:17:30Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Unit-4.2-final2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 26.20 +/- 25.13 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
leniero/gmag
leniero
2023-06-27T19:08:30Z
0
0
diffusers
[ "diffusers", "gmag", "queer", "brazil", "en", "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T23:39:36Z
--- license: creativeml-openrail-m language: - en library_name: diffusers tags: - gmag - queer - brazil ---
ivyraine/test_model
ivyraine
2023-06-27T19:01:17Z
0
0
adapter-transformers
[ "adapter-transformers", "region:us" ]
null
2023-06-27T19:00:36Z
--- library_name: adapter-transformers ---
facebook/galactica-125m
facebook
2023-06-27T19:00:15Z
2,773
36
transformers
[ "transformers", "pytorch", "safetensors", "opt", "text-generation", "galactica", "arxiv:1810.03993", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-11-16T13:21:41Z
--- license: cc-by-nc-4.0 tags: - galactica widget: - text: "The Transformer architecture [START_REF]" - text: "The Schwarzschild radius is defined as: \\[" - text: "A force of 0.6N is applied to an object, which accelerates at 3m/s. What is its mass? <work>" - text: "Lecture 1: The Ising Model\n\n" - text: "[START_I_SMILES]" - text: "[START_AMINO]GHMQSITAGQKVISKHKNGRFYQCEVVRLTTETFYEVNFDDGSFSDNLYPEDIVSQDCLQFGPPAEGEVVQVRWTDGQVYGAKFVASHPIQMYQVEFEDGSQLVVKRDDVYTLDEELP[END_AMINO] ## Keywords" inference: false --- ![logo](https://s3.amazonaws.com/moonup/production/uploads/1668679814649-62441d1d9fdefb55a0b7d12c.png) # GALACTICA 125M (mini) Model card from the original [repo](https://github.com/paperswithcode/galai/blob/main/docs/model_card.md) Following [Mitchell et al. (2018)](https://arxiv.org/abs/1810.03993), this model card provides information about the GALACTICA model, how it was trained, and the intended use cases. Full details about how the model was trained and evaluated can be found in the [release paper](https://galactica.org/paper.pdf). ## Model Details The GALACTICA models are trained on a large-scale scientific corpus. The models are designed to perform scientific tasks, including but not limited to citation prediction, scientific QA, mathematical reasoning, summarization, document generation, molecular property prediction and entity extraction. The models were developed by the Papers with Code team at Meta AI to study the use of language models for the automatic organization of science. We train models with sizes ranging from 125M to 120B parameters. Below is a summary of the released models: | Size | Parameters | |:-----------:|:-----------:| | `mini` | 125 M | | `base` | 1.3 B | | `standard` | 6.7 B | | `large` | 30 B | | `huge` | 120 B | ## Release Date November 2022 ## Model Type Transformer based architecture in a decoder-only setup with a few modifications (see paper for more details). ## Paper & Demo [Paper](https://galactica.org/paper.pdf) / [Demo](https://galactica.org) ## Model Use The primary intended users of the GALACTICA models are researchers studying language models applied to the scientific domain. We also anticipate the model will be useful for developers who wish to build scientific tooling. However, we caution against production use without safeguards given the potential of language models to hallucinate. The models are made available under a non-commercial CC BY-NC 4.0 license. More information about how to use the model can be found in the README.md of this repository. ## Training Data The GALACTICA models are trained on 106 billion tokens of open-access scientific text and data. This includes papers, textbooks, scientific websites, encyclopedias, reference material, knowledge bases, and more. We tokenize different modalities to provide a natural langauge interface for different tasks. See the README.md for more information. See the paper for full information on the training data. ## How to use Find below some example scripts on how to use the model in `transformers`: ## Using the Pytorch model ### Running the model on a CPU <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, OPTForCausalLM tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m") model = OPTForCausalLM.from_pretrained("facebook/galactica-125m") input_text = "The Transformer architecture [START_REF]" input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ### Running the model on a GPU <details> <summary> Click to expand </summary> ```python # pip install accelerate from transformers import AutoTokenizer, OPTForCausalLM tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m") model = OPTForCausalLM.from_pretrained("facebook/galactica-125m", device_map="auto") input_text = "The Transformer architecture [START_REF]" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ### Running the model on a GPU using different precisions #### FP16 <details> <summary> Click to expand </summary> ```python # pip install accelerate import torch from transformers import AutoTokenizer, OPTForCausalLM tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m") model = OPTForCausalLM.from_pretrained("facebook/galactica-125m", device_map="auto", torch_dtype=torch.float16) input_text = "The Transformer architecture [START_REF]" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> #### INT8 <details> <summary> Click to expand </summary> ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, OPTForCausalLM tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m") model = OPTForCausalLM.from_pretrained("facebook/galactica-125m", device_map="auto", load_in_8bit=True) input_text = "The Transformer architecture [START_REF]" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ## Performance and Limitations The model outperforms several existing language models on a range of knowledge probes, reasoning, and knowledge-intensive scientific tasks. This also extends to general NLP tasks, where GALACTICA outperforms other open source general language models. That being said, we note a number of limitations in this section. As with other language models, GALACTICA is often prone to hallucination - and training on a high-quality academic corpus does not prevent this, especially for less popular and less cited scientific concepts. There are no guarantees of truthful output when generating from the model. This extends to specific modalities such as citation prediction. While GALACTICA's citation behaviour approaches the ground truth citation behaviour with scale, the model continues to exhibit a popularity bias at larger scales. In addition, we evaluated the model on several types of benchmarks related to stereotypes and toxicity. Overall, the model exhibits substantially lower toxicity rates compared to other large language models. That being said, the model continues to exhibit bias on certain measures (see the paper for details). So we recommend care when using the model for generations. ## Broader Implications GALACTICA can potentially be used as a new way to discover academic literature. We also expect a lot of downstream use for application to particular domains, such as mathematics, biology, and chemistry. In the paper, we demonstrated several examples of the model acting as alternative to standard search tools. We expect a new generation of scientific tools to be built upon large language models such as GALACTICA. We encourage researchers to investigate beneficial and new use cases for these models. That being said, it is important to be aware of the current limitations of large language models. Researchers should pay attention to common issues such as hallucination and biases that could emerge from using these models. ## Citation ```bibtex @inproceedings{GALACTICA, title={GALACTICA: A Large Language Model for Science}, author={Ross Taylor and Marcin Kardas and Guillem Cucurull and Thomas Scialom and Anthony Hartshorn and Elvis Saravia and Andrew Poulton and Viktor Kerkez and Robert Stojnic}, year={2022} } ```
facebook/data2vec-audio-large-100h
facebook
2023-06-27T18:52:19Z
80
2
transformers
[ "transformers", "pytorch", "safetensors", "data2vec-audio", "automatic-speech-recognition", "speech", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-02T16:00:42Z
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Data2Vec-Audio-Large-100h [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The large model pretrained and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-large-100h") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-large-100h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```
derek-thomas/distilhubert-finetuned-gtzan
derek-thomas
2023-06-27T18:47:55Z
159
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-27T16:58:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7072 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0694 | 1.0 | 57 | 2.0452 | 0.42 | | 1.6795 | 2.0 | 114 | 1.5549 | 0.55 | | 1.1745 | 3.0 | 171 | 1.2160 | 0.73 | | 1.1069 | 4.0 | 228 | 1.0979 | 0.73 | | 0.7755 | 5.0 | 285 | 0.9282 | 0.73 | | 0.7111 | 6.0 | 342 | 0.8393 | 0.78 | | 0.5609 | 7.0 | 399 | 0.7911 | 0.79 | | 0.4891 | 8.0 | 456 | 0.7098 | 0.81 | | 0.518 | 9.0 | 513 | 0.7079 | 0.8 | | 0.5737 | 10.0 | 570 | 0.7072 | 0.81 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Jumartineze/distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos
Jumartineze
2023-06-27T18:15:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T16:54:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0252 - F1: 0.5395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0599 | 1.0 | 766 | 1.0518 | 0.5080 | | 0.9391 | 2.0 | 1532 | 1.0252 | 0.5395 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
numanBot/customer_feedback_summarization
numanBot
2023-06-27T18:11:20Z
61
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-27T18:03:46Z
from transformers import TFAutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("t5-base") model = TFAutoModelForSeq2SeqLM("numanBot/customer_feedback_summarization")
maidacundo/falcon_qlora_r2_sql_no_schema
maidacundo
2023-06-27T18:09:11Z
0
0
null
[ "generated_from_trainer", "dataset:spider", "license:apache-2.0", "region:us" ]
null
2023-06-27T17:13:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - spider model-index: - name: falcon_qlora_r2_sql_no_schema results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon_qlora_r2_sql_no_schema This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the spider dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 43.7 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
MindNetML/ppo-SnowballTarget
MindNetML
2023-06-27T17:55:01Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-27T17:54:55Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: MindNetML/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
winterForestStump/Roberta-fake-news-detector
winterForestStump
2023-06-27T17:53:47Z
137
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "en", "license:gpl-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T09:46:03Z
--- license: gpl-2.0 language: - en tags: - text-classification widget: - text: "According to the former prime minister of Italy, Mario Draghi, no one in the EU needs peace or negotiations, only the total defeat of Russia, and the destroyed Ukraine will just be collateral damage of the EU ambitions." example_title: "Fake news" --- # Fake News Recognition <!-- Provide a quick summary of what the model is/does. --> This model is fine-tuned Roberta model 'jy46604790/Fake-News-Bert-Detect' (https://huggingface.co/jy46604790/Fake-News-Bert-Detect). This model is trained by 8 000 news articles from https://euvsdisinfo.eu/ portal. It can give result by simply entering the text of the news less than 512 words(the excess will be truncated automatically). Labels: * 0: Fake news * 1: Real news ## How to Get Started with the Model Use the code below to get started with the model. ### Download The Model ``` from transformers import pipeline MODEL = "winterForestStump/Roberta-fake-news-detector" clf = pipeline("text-classification", model=MODEL, tokenizer=MODEL) ``` ### Feed Data ``` text = "From the very beginning, the EU has been extremely non-transparent. The deployment of the European Union presence in Armenia was carried out forcefully, under serious pressure from Brussels" ``` ### Result ``` result = clf(text) result ``` ### Output ``` [{'label': 'FAKE', 'score': 0.9999946355819702}] ``` About the data source EUVSDISINFO.eu: Using data analysis and media monitoring services in multiple languages, EUvsDisinfo identifies, compiles, and exposes disinformation cases originating in pro-Kremlin outlets. These cases (and their disproofs) are collected in the EUvsDisinfo database – the only searchable, open-source repository of its kind. The database is updated every week.
chriskim2273/test_headline_qa
chriskim2273
2023-06-27T17:53:46Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-27T17:31:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test_headline_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_headline_qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 5.7992 | | No log | 2.0 | 4 | 5.7051 | | No log | 3.0 | 6 | 5.6068 | | No log | 4.0 | 8 | 5.5043 | | No log | 5.0 | 10 | 5.3968 | | No log | 6.0 | 12 | 5.2848 | | No log | 7.0 | 14 | 5.1784 | | No log | 8.0 | 16 | 5.0876 | | No log | 9.0 | 18 | 5.0222 | | No log | 10.0 | 20 | 4.9920 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
zofiski/squad-bloom-3b
zofiski
2023-06-27T17:36:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-27T17:36:33Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Nekochu/Wav2Lip
Nekochu
2023-06-27T17:32:53Z
0
1
null
[ "arxiv:2008.10010", "region:us" ]
null
2023-06-27T17:25:26Z
Original upload: https://github.com/Rudrabha/Wav2Lip # **Wav2Lip**: *Accurately Lip-syncing Videos In The Wild* For commercial requests, please contact us at [email protected] or [email protected]. We have an HD model ready that can be used commercially. This code is part of the paper: _A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild_ published at ACM Multimedia 2020. [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrs2)](https://paperswithcode.com/sota/lip-sync-on-lrs2?p=a-lip-sync-expert-is-all-you-need-for-speech) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrs3)](https://paperswithcode.com/sota/lip-sync-on-lrs3?p=a-lip-sync-expert-is-all-you-need-for-speech) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrw)](https://paperswithcode.com/sota/lip-sync-on-lrw?p=a-lip-sync-expert-is-all-you-need-for-speech) |📑 Original Paper|📰 Project Page|🌀 Demo|⚡ Live Testing|📔 Colab Notebook |:-:|:-:|:-:|:-:|:-:| [Paper](http://arxiv.org/abs/2008.10010) | [Project Page](http://cvit.iiit.ac.in/research/projects/cvit-projects/a-lip-sync-expert-is-all-you-need-for-speech-to-lip-generation-in-the-wild/) | [Demo Video](https://youtu.be/0fXaDCZNOJc) | [Interactive Demo](https://bhaasha.iiit.ac.in/lipsync) | [Colab Notebook](https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing) /[Updated Collab Notebook](https://colab.research.google.com/drive/1IjFW1cLevs6Ouyu4Yht4mnR4yeuMqO7Y#scrollTo=MH1m608OymLH) <img src="https://drive.google.com/uc?export=view&id=1Wn0hPmpo4GRbCIJR8Tf20Akzdi1qjjG9"/> ---------- **Highlights** ---------- - Weights of the visual quality disc has been updated in readme! - Lip-sync videos to any target speech with high accuracy :100:. Try our [interactive demo](https://bhaasha.iiit.ac.in/lipsync). - :sparkles: Works for any identity, voice, and language. Also works for CGI faces and synthetic voices. - Complete training code, inference code, and pretrained models are available :boom: - Or, quick-start with the Google Colab Notebook: [Link](https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing). Checkpoints and samples are available in a Google Drive [folder](https://drive.google.com/drive/folders/1I-0dNLfFOSFwrfqjNa-SXuwaURHE5K4k?usp=sharing) as well. There is also a [tutorial video](https://www.youtube.com/watch?v=Ic0TBhfuOrA) on this, courtesy of [What Make Art](https://www.youtube.com/channel/UCmGXH-jy0o2CuhqtpxbaQgA). Also, thanks to [Eyal Gruss](https://eyalgruss.com), there is a more accessible [Google Colab notebook](https://j.mp/wav2lip) with more useful features. A tutorial collab notebook is present at this [link](https://colab.research.google.com/drive/1IjFW1cLevs6Ouyu4Yht4mnR4yeuMqO7Y#scrollTo=MH1m608OymLH). - :fire: :fire: Several new, reliable evaluation benchmarks and metrics [[`evaluation/` folder of this repo]](https://github.com/Rudrabha/Wav2Lip/tree/master/evaluation) released. Instructions to calculate the metrics reported in the paper are also present. -------- **Disclaimer** -------- All results from this open-source code or our [demo website](https://bhaasha.iiit.ac.in/lipsync) should only be used for research/academic/personal purposes only. As the models are trained on the <a href="http://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html">LRS2 dataset</a>, any form of commercial use is strictly prohibhited. For commercial requests please contact us directly! Prerequisites ------------- - `Python 3.6` - ffmpeg: `sudo apt-get install ffmpeg` - Install necessary packages using `pip install -r requirements.txt`. Alternatively, instructions for using a docker image is provided [here](https://gist.github.com/xenogenesi/e62d3d13dadbc164124c830e9c453668). Have a look at [this comment](https://github.com/Rudrabha/Wav2Lip/issues/131#issuecomment-725478562) and comment on [the gist](https://gist.github.com/xenogenesi/e62d3d13dadbc164124c830e9c453668) if you encounter any issues. - Face detection [pre-trained model](https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth) should be downloaded to `face_detection/detection/sfd/s3fd.pth`. Alternative [link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/prajwal_k_research_iiit_ac_in/EZsy6qWuivtDnANIG73iHjIBjMSoojcIV0NULXV-yiuiIg?e=qTasa8) if the above does not work. Getting the weights ---------- | Model | Description | Link to the model | | :-------------: | :---------------: | :---------------: | | Wav2Lip | Highly accurate lip-sync | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/Eb3LEzbfuKlJiR600lQWRxgBIY27JZg80f7V9jtMfbNDaQ?e=TBFBVW) | | Wav2Lip + GAN | Slightly inferior lip-sync, but better visual quality | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA?e=n9ljGW) | | Expert Discriminator | Weights of the expert discriminator | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EQRvmiZg-HRAjvI6zqN9eTEBP74KefynCwPWVmF57l-AYA?e=ZRPHKP) | | Visual Quality Discriminator | Weights of the visual disc trained in a GAN setup | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EQVqH88dTm1HjlK11eNba5gBbn15WMS0B0EZbDBttqrqkg?e=ic0ljo) | Lip-syncing videos using the pre-trained models (Inference) ------- You can lip-sync any video to any audio: ```bash python inference.py --checkpoint_path <ckpt> --face <video.mp4> --audio <an-audio-source> ``` The result is saved (by default) in `results/result_voice.mp4`. You can specify it as an argument, similar to several other available options. The audio source can be any file supported by `FFMPEG` containing audio data: `*.wav`, `*.mp3` or even a video file, from which the code will automatically extract the audio. ##### Tips for better results: - Experiment with the `--pads` argument to adjust the detected face bounding box. Often leads to improved results. You might need to increase the bottom padding to include the chin region. E.g. `--pads 0 20 0 0`. - If you see the mouth position dislocated or some weird artifacts such as two mouths, then it can be because of over-smoothing the face detections. Use the `--nosmooth` argument and give another try. - Experiment with the `--resize_factor` argument, to get a lower resolution video. Why? The models are trained on faces which were at a lower resolution. You might get better, visually pleasing results for 720p videos than for 1080p videos (in many cases, the latter works well too). - The Wav2Lip model without GAN usually needs more experimenting with the above two to get the most ideal results, and sometimes, can give you a better result as well. Preparing LRS2 for training ---------- Our models are trained on LRS2. See [here](#training-on-datasets-other-than-lrs2) for a few suggestions regarding training on other datasets. ##### LRS2 dataset folder structure ``` data_root (mvlrs_v1) ├── main, pretrain (we use only main folder in this work) | ├── list of folders | │ ├── five-digit numbered video IDs ending with (.mp4) ``` Place the LRS2 filelists (train, val, test) `.txt` files in the `filelists/` folder. ##### Preprocess the dataset for fast training ```bash python preprocess.py --data_root data_root/main --preprocessed_root lrs2_preprocessed/ ``` Additional options like `batch_size` and number of GPUs to use in parallel to use can also be set. ##### Preprocessed LRS2 folder structure ``` preprocessed_root (lrs2_preprocessed) ├── list of folders | ├── Folders with five-digit numbered video IDs | │ ├── *.jpg | │ ├── audio.wav ``` Train! ---------- There are two major steps: (i) Train the expert lip-sync discriminator, (ii) Train the Wav2Lip model(s). ##### Training the expert discriminator You can download [the pre-trained weights](#getting-the-weights) if you want to skip this step. To train it: ```bash python color_syncnet_train.py --data_root lrs2_preprocessed/ --checkpoint_dir <folder_to_save_checkpoints> ``` ##### Training the Wav2Lip models You can either train the model without the additional visual quality disriminator (< 1 day of training) or use the discriminator (~2 days). For the former, run: ```bash python wav2lip_train.py --data_root lrs2_preprocessed/ --checkpoint_dir <folder_to_save_checkpoints> --syncnet_checkpoint_path <path_to_expert_disc_checkpoint> ``` To train with the visual quality discriminator, you should run `hq_wav2lip_train.py` instead. The arguments for both the files are similar. In both the cases, you can resume training as well. Look at `python wav2lip_train.py --help` for more details. You can also set additional less commonly-used hyper-parameters at the bottom of the `hparams.py` file. Training on datasets other than LRS2 ------------------------------------ Training on other datasets might require modifications to the code. Please read the following before you raise an issue: - You might not get good results by training/fine-tuning on a few minutes of a single speaker. This is a separate research problem, to which we do not have a solution yet. Thus, we would most likely not be able to resolve your issue. - You must train the expert discriminator for your own dataset before training Wav2Lip. - If it is your own dataset downloaded from the web, in most cases, needs to be sync-corrected. - Be mindful of the FPS of the videos of your dataset. Changes to FPS would need significant code changes. - The expert discriminator's eval loss should go down to ~0.25 and the Wav2Lip eval sync loss should go down to ~0.2 to get good results. When raising an issue on this topic, please let us know that you are aware of all these points. We have an HD model trained on a dataset allowing commercial usage. The size of the generated face will be 192 x 288 in our new model. Evaluation ---------- Please check the `evaluation/` folder for the instructions. and Citation ---------- Theis repository can only be used for personal/research/non-commercial purposes. However, for commercial requests, please contact us directly at [email protected] or [email protected]. We have an HD model trained on a dataset allowing commercial usage. The size of the generated face will be 192 x 288 in our new model. Please cite the following paper if you use this repository: ``` @inproceedings{10.1145/3394171.3413532, author = {Prajwal, K R and Mukhopadhyay, Rudrabha and Namboodiri, Vinay P. and Jawahar, C.V.}, title = {A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild}, year = {2020}, isbn = {9781450379885}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3394171.3413532}, doi = {10.1145/3394171.3413532}, booktitle = {Proceedings of the 28th ACM International Conference on Multimedia}, pages = {484–492}, numpages = {9}, keywords = {lip sync, talking face generation, video generation}, location = {Seattle, WA, USA}, series = {MM '20} } ``` Acknowledgements ---------- Parts of the code structure is inspired by this [TTS repository](https://github.com/r9y9/deepvoice3_pytorch). We thank the author for this wonderful code. The code for Face Detection has been taken from the [face_alignment](https://github.com/1adrianb/face-alignment) repository. We thank the authors for releasing their code and models. We thank [zabique](https://github.com/zabique) for the tutorial collab notebook.
mnavas/beto-finetuned-token-reqadjzar
mnavas
2023-06-27T17:23:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-07T15:07:50Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: beto-finetuned-token-reqadjzar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beto-finetuned-token-reqadjzar This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1061 - Precision: 0.2533 - Recall: 0.3333 - F1: 0.2879 - Accuracy: 0.8498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7331 | 1.0 | 24 | 0.5920 | 0.0 | 0.0 | 0.0 | 0.7532 | | 0.4759 | 2.0 | 48 | 0.3954 | 0.0085 | 0.0175 | 0.0115 | 0.8321 | | 0.3186 | 3.0 | 72 | 0.5127 | 0.0188 | 0.0702 | 0.0296 | 0.8159 | | 0.1906 | 4.0 | 96 | 0.4865 | 0.1190 | 0.2632 | 0.1639 | 0.8509 | | 0.145 | 5.0 | 120 | 0.4650 | 0.1597 | 0.3333 | 0.2159 | 0.8760 | | 0.1107 | 6.0 | 144 | 0.5465 | 0.1062 | 0.2105 | 0.1412 | 0.8514 | | 0.0903 | 7.0 | 168 | 0.5441 | 0.1359 | 0.2456 | 0.175 | 0.8796 | | 0.0698 | 8.0 | 192 | 0.4353 | 0.1204 | 0.2281 | 0.1576 | 0.8842 | | 0.0505 | 9.0 | 216 | 0.7170 | 0.19 | 0.3333 | 0.2420 | 0.8432 | | 0.0687 | 10.0 | 240 | 0.5893 | 0.1963 | 0.3684 | 0.2561 | 0.8860 | | 0.039 | 11.0 | 264 | 0.5877 | 0.1951 | 0.4211 | 0.2667 | 0.8780 | | 0.0278 | 12.0 | 288 | 0.5715 | 0.2237 | 0.2982 | 0.2556 | 0.8577 | | 0.0354 | 13.0 | 312 | 0.9535 | 0.2283 | 0.3684 | 0.2819 | 0.8532 | | 0.024 | 14.0 | 336 | 0.6500 | 0.2169 | 0.3158 | 0.2571 | 0.8674 | | 0.0223 | 15.0 | 360 | 0.7513 | 0.1855 | 0.4035 | 0.2541 | 0.8722 | | 0.0156 | 16.0 | 384 | 0.6566 | 0.3 | 0.4737 | 0.3673 | 0.9012 | | 0.0156 | 17.0 | 408 | 0.8436 | 0.2292 | 0.3860 | 0.2876 | 0.8696 | | 0.0189 | 18.0 | 432 | 0.8043 | 0.1711 | 0.2281 | 0.1955 | 0.8181 | | 0.0128 | 19.0 | 456 | 0.6518 | 0.1619 | 0.2982 | 0.2099 | 0.8814 | | 0.0122 | 20.0 | 480 | 0.8418 | 0.2347 | 0.4035 | 0.2968 | 0.8793 | | 0.0242 | 21.0 | 504 | 0.7948 | 0.2292 | 0.3860 | 0.2876 | 0.8814 | | 0.0124 | 22.0 | 528 | 0.8059 | 0.2037 | 0.3860 | 0.2667 | 0.8842 | | 0.0098 | 23.0 | 552 | 0.9458 | 0.1765 | 0.2632 | 0.2113 | 0.8584 | | 0.0287 | 24.0 | 576 | 0.7110 | 0.1488 | 0.3158 | 0.2022 | 0.8825 | | 0.0253 | 25.0 | 600 | 0.6823 | 0.2021 | 0.3333 | 0.2517 | 0.8781 | | 0.0151 | 26.0 | 624 | 0.7382 | 0.2022 | 0.3158 | 0.2466 | 0.8791 | | 0.0118 | 27.0 | 648 | 0.6036 | 0.2360 | 0.3684 | 0.2877 | 0.8965 | | 0.0102 | 28.0 | 672 | 0.9152 | 0.1765 | 0.3158 | 0.2264 | 0.8446 | | 0.0229 | 29.0 | 696 | 0.6878 | 0.2584 | 0.4035 | 0.3151 | 0.8982 | | 0.0168 | 30.0 | 720 | 0.7333 | 0.2784 | 0.4737 | 0.3506 | 0.8937 | | 0.0145 | 31.0 | 744 | 0.6051 | 0.1864 | 0.3860 | 0.2514 | 0.9 | | 0.0207 | 32.0 | 768 | 0.9083 | 0.3279 | 0.3509 | 0.3390 | 0.8894 | | 0.0191 | 33.0 | 792 | 0.6983 | 0.2222 | 0.3509 | 0.2721 | 0.8884 | | 0.0103 | 34.0 | 816 | 0.7287 | 0.2449 | 0.4211 | 0.3097 | 0.8840 | | 0.0091 | 35.0 | 840 | 0.5929 | 0.2184 | 0.3333 | 0.2639 | 0.8851 | | 0.0059 | 36.0 | 864 | 0.7604 | 0.2421 | 0.4035 | 0.3026 | 0.8810 | | 0.0035 | 37.0 | 888 | 0.9380 | 0.2143 | 0.3684 | 0.2710 | 0.8622 | | 0.0025 | 38.0 | 912 | 0.9824 | 0.2 | 0.3509 | 0.2548 | 0.8704 | | 0.0059 | 39.0 | 936 | 1.0658 | 0.2796 | 0.4561 | 0.3467 | 0.8669 | | 0.0199 | 40.0 | 960 | 0.9755 | 0.1705 | 0.3860 | 0.2366 | 0.8449 | | 0.0034 | 41.0 | 984 | 0.9697 | 0.2619 | 0.3860 | 0.3121 | 0.8656 | | 0.0035 | 42.0 | 1008 | 1.0582 | 0.1959 | 0.3333 | 0.2468 | 0.8461 | | 0.0088 | 43.0 | 1032 | 0.8500 | 0.1849 | 0.3860 | 0.25 | 0.8515 | | 0.0263 | 44.0 | 1056 | 1.2832 | 0.2 | 0.3509 | 0.2548 | 0.8255 | | 0.0088 | 45.0 | 1080 | 0.9282 | 0.2308 | 0.4211 | 0.2981 | 0.8534 | | 0.0343 | 46.0 | 1104 | 0.7165 | 0.2222 | 0.3158 | 0.2609 | 0.8594 | | 0.0024 | 47.0 | 1128 | 0.7355 | 0.2308 | 0.4737 | 0.3103 | 0.8782 | | 0.0019 | 48.0 | 1152 | 0.6493 | 0.2165 | 0.3684 | 0.2727 | 0.8779 | | 0.0009 | 49.0 | 1176 | 0.6999 | 0.1964 | 0.3860 | 0.2604 | 0.8766 | | 0.0008 | 50.0 | 1200 | 0.7496 | 0.2062 | 0.3509 | 0.2597 | 0.8709 | | 0.0009 | 51.0 | 1224 | 0.7670 | 0.2019 | 0.3684 | 0.2609 | 0.8750 | | 0.0006 | 52.0 | 1248 | 0.7549 | 0.24 | 0.4211 | 0.3057 | 0.8832 | | 0.0007 | 53.0 | 1272 | 0.7556 | 0.2706 | 0.4035 | 0.3239 | 0.8870 | | 0.0007 | 54.0 | 1296 | 0.7188 | 0.1695 | 0.3509 | 0.2286 | 0.8833 | | 0.0005 | 55.0 | 1320 | 0.7120 | 0.1927 | 0.3684 | 0.2530 | 0.8822 | | 0.0009 | 56.0 | 1344 | 0.7377 | 0.2245 | 0.3860 | 0.2839 | 0.8819 | | 0.0008 | 57.0 | 1368 | 0.7295 | 0.2277 | 0.4035 | 0.2911 | 0.8859 | | 0.0009 | 58.0 | 1392 | 0.7158 | 0.2340 | 0.3860 | 0.2914 | 0.8900 | | 0.0013 | 59.0 | 1416 | 0.6715 | 0.1897 | 0.3860 | 0.2543 | 0.8941 | | 0.0006 | 60.0 | 1440 | 0.6787 | 0.21 | 0.3684 | 0.2675 | 0.8861 | | 0.0007 | 61.0 | 1464 | 0.6794 | 0.2584 | 0.4035 | 0.3151 | 0.8940 | | 0.0012 | 62.0 | 1488 | 0.6823 | 0.2273 | 0.3509 | 0.2759 | 0.8778 | | 0.0008 | 63.0 | 1512 | 0.7189 | 0.2588 | 0.3860 | 0.3099 | 0.8791 | | 0.0008 | 64.0 | 1536 | 0.7077 | 0.2371 | 0.4035 | 0.2987 | 0.8905 | | 0.0007 | 65.0 | 1560 | 0.7201 | 0.2738 | 0.4035 | 0.3262 | 0.8860 | | 0.0005 | 66.0 | 1584 | 0.7339 | 0.2584 | 0.4035 | 0.3151 | 0.8894 | | 0.0005 | 67.0 | 1608 | 0.7490 | 0.2157 | 0.3860 | 0.2767 | 0.8845 | | 0.0006 | 68.0 | 1632 | 0.7342 | 0.2162 | 0.4211 | 0.2857 | 0.8833 | | 0.0012 | 69.0 | 1656 | 0.7287 | 0.3108 | 0.4035 | 0.3511 | 0.8895 | | 0.0012 | 70.0 | 1680 | 0.8877 | 0.2079 | 0.3684 | 0.2658 | 0.8615 | | 0.0007 | 71.0 | 1704 | 0.9370 | 0.2095 | 0.3860 | 0.2716 | 0.8644 | | 0.002 | 72.0 | 1728 | 0.7715 | 0.2391 | 0.3860 | 0.2953 | 0.8677 | | 0.0007 | 73.0 | 1752 | 0.8765 | 0.22 | 0.3860 | 0.2803 | 0.8628 | | 0.0006 | 74.0 | 1776 | 0.8515 | 0.2371 | 0.4035 | 0.2987 | 0.8639 | | 0.0007 | 75.0 | 1800 | 0.8448 | 0.2286 | 0.4211 | 0.2963 | 0.8633 | | 0.0009 | 76.0 | 1824 | 0.8501 | 0.2232 | 0.4386 | 0.2959 | 0.8650 | | 0.0007 | 77.0 | 1848 | 0.8550 | 0.2198 | 0.3509 | 0.2703 | 0.8657 | | 0.0005 | 78.0 | 1872 | 0.7445 | 0.25 | 0.4035 | 0.3087 | 0.8780 | | 0.0007 | 79.0 | 1896 | 0.8889 | 0.26 | 0.4561 | 0.3312 | 0.8630 | | 0.0005 | 80.0 | 1920 | 0.8930 | 0.2812 | 0.4737 | 0.3529 | 0.8650 | | 0.0004 | 81.0 | 1944 | 0.8678 | 0.26 | 0.4561 | 0.3312 | 0.8745 | | 0.0005 | 82.0 | 1968 | 0.8747 | 0.2784 | 0.4737 | 0.3506 | 0.8746 | | 0.0005 | 83.0 | 1992 | 0.8726 | 0.2872 | 0.4737 | 0.3576 | 0.8687 | | 0.001 | 84.0 | 2016 | 0.8887 | 0.2857 | 0.4211 | 0.3404 | 0.8693 | | 0.0006 | 85.0 | 2040 | 0.7915 | 0.2963 | 0.4211 | 0.3478 | 0.8821 | | 0.0007 | 86.0 | 2064 | 1.0194 | 0.2857 | 0.4211 | 0.3404 | 0.8606 | | 0.0009 | 87.0 | 2088 | 0.7594 | 0.2366 | 0.3860 | 0.2933 | 0.8777 | | 0.0021 | 88.0 | 2112 | 0.9788 | 0.25 | 0.3333 | 0.2857 | 0.8539 | | 0.0012 | 89.0 | 2136 | 0.8719 | 0.2093 | 0.3158 | 0.2517 | 0.8697 | | 0.0019 | 90.0 | 2160 | 1.1859 | 0.1810 | 0.3684 | 0.2428 | 0.8111 | | 0.001 | 91.0 | 2184 | 0.9690 | 0.2118 | 0.3158 | 0.2535 | 0.8421 | | 0.0007 | 92.0 | 2208 | 0.9863 | 0.1880 | 0.3860 | 0.2529 | 0.8495 | | 0.0006 | 93.0 | 2232 | 0.9942 | 0.1868 | 0.2982 | 0.2297 | 0.8641 | | 0.0007 | 94.0 | 2256 | 1.0118 | 0.2159 | 0.3333 | 0.2621 | 0.8637 | | 0.0007 | 95.0 | 2280 | 1.0435 | 0.2754 | 0.3333 | 0.3016 | 0.8615 | | 0.0008 | 96.0 | 2304 | 0.9795 | 0.2471 | 0.3684 | 0.2958 | 0.8657 | | 0.0007 | 97.0 | 2328 | 0.9189 | 0.2020 | 0.3509 | 0.2564 | 0.8807 | | 0.0009 | 98.0 | 2352 | 0.9240 | 0.2273 | 0.3509 | 0.2759 | 0.8762 | | 0.0005 | 99.0 | 2376 | 0.8891 | 0.2561 | 0.3684 | 0.3022 | 0.8821 | | 0.0004 | 100.0 | 2400 | 0.9028 | 0.2469 | 0.3509 | 0.2899 | 0.8818 | | 0.0004 | 101.0 | 2424 | 0.9228 | 0.2410 | 0.3509 | 0.2857 | 0.8830 | | 0.0004 | 102.0 | 2448 | 0.9409 | 0.2278 | 0.3158 | 0.2647 | 0.8795 | | 0.0006 | 103.0 | 2472 | 0.9777 | 0.24 | 0.3158 | 0.2727 | 0.8796 | | 0.0005 | 104.0 | 2496 | 0.9872 | 0.2432 | 0.3158 | 0.2748 | 0.8791 | | 0.0006 | 105.0 | 2520 | 0.9820 | 0.2329 | 0.2982 | 0.2615 | 0.8746 | | 0.0006 | 106.0 | 2544 | 1.0301 | 0.2879 | 0.3333 | 0.3089 | 0.8702 | | 0.0006 | 107.0 | 2568 | 1.0468 | 0.3226 | 0.3509 | 0.3361 | 0.8637 | | 0.0004 | 108.0 | 2592 | 1.0155 | 0.2941 | 0.3509 | 0.3200 | 0.8683 | | 0.0005 | 109.0 | 2616 | 0.9970 | 0.2821 | 0.3860 | 0.3259 | 0.8678 | | 0.0004 | 110.0 | 2640 | 1.0453 | 0.28 | 0.3684 | 0.3182 | 0.8687 | | 0.0009 | 111.0 | 2664 | 0.9247 | 0.2278 | 0.3158 | 0.2647 | 0.8747 | | 0.0006 | 112.0 | 2688 | 0.8811 | 0.2785 | 0.3860 | 0.3235 | 0.8921 | | 0.0005 | 113.0 | 2712 | 0.9462 | 0.1905 | 0.2807 | 0.2270 | 0.8817 | | 0.0005 | 114.0 | 2736 | 0.9685 | 0.2078 | 0.2807 | 0.2388 | 0.8792 | | 0.0006 | 115.0 | 2760 | 1.0339 | 0.2712 | 0.2807 | 0.2759 | 0.8672 | | 0.0004 | 116.0 | 2784 | 1.0155 | 0.2571 | 0.3158 | 0.2835 | 0.8687 | | 0.0005 | 117.0 | 2808 | 0.9998 | 0.25 | 0.3509 | 0.2920 | 0.8768 | | 0.0006 | 118.0 | 2832 | 0.9849 | 0.2473 | 0.4035 | 0.3067 | 0.8715 | | 0.0033 | 119.0 | 2856 | 0.7929 | 0.2376 | 0.4211 | 0.3038 | 0.8832 | | 0.0485 | 120.0 | 2880 | 0.9585 | 0.2 | 0.2807 | 0.2336 | 0.8585 | | 0.0114 | 121.0 | 2904 | 0.7619 | 0.2472 | 0.3860 | 0.3014 | 0.8831 | | 0.0177 | 122.0 | 2928 | 0.7737 | 0.2881 | 0.2982 | 0.2931 | 0.8688 | | 0.02 | 123.0 | 2952 | 1.1362 | 0.1959 | 0.3333 | 0.2468 | 0.8214 | | 0.0056 | 124.0 | 2976 | 1.2073 | 0.3659 | 0.2632 | 0.3061 | 0.8277 | | 0.0208 | 125.0 | 3000 | 0.8549 | 0.2162 | 0.2807 | 0.2443 | 0.8430 | | 0.0066 | 126.0 | 3024 | 0.9482 | 0.2667 | 0.2807 | 0.2735 | 0.8383 | | 0.0155 | 127.0 | 3048 | 0.7532 | 0.2289 | 0.3333 | 0.2714 | 0.8629 | | 0.0091 | 128.0 | 3072 | 0.7973 | 0.2368 | 0.3158 | 0.2707 | 0.8524 | | 0.0029 | 129.0 | 3096 | 0.8988 | 0.25 | 0.3684 | 0.2979 | 0.8621 | | 0.0054 | 130.0 | 3120 | 0.9882 | 0.2299 | 0.3509 | 0.2778 | 0.8362 | | 0.0037 | 131.0 | 3144 | 1.0792 | 0.2093 | 0.3158 | 0.2517 | 0.8468 | | 0.0012 | 132.0 | 3168 | 0.9729 | 0.2632 | 0.3509 | 0.3008 | 0.8427 | | 0.0009 | 133.0 | 3192 | 0.9521 | 0.2043 | 0.3333 | 0.2533 | 0.8416 | | 0.0011 | 134.0 | 3216 | 0.9539 | 0.1978 | 0.3158 | 0.2432 | 0.8401 | | 0.0006 | 135.0 | 3240 | 0.9692 | 0.2754 | 0.3333 | 0.3016 | 0.8504 | | 0.0007 | 136.0 | 3264 | 0.9811 | 0.2603 | 0.3333 | 0.2923 | 0.8526 | | 0.0007 | 137.0 | 3288 | 0.9732 | 0.25 | 0.3333 | 0.2857 | 0.8444 | | 0.0004 | 138.0 | 3312 | 0.9955 | 0.2278 | 0.3158 | 0.2647 | 0.8373 | | 0.0005 | 139.0 | 3336 | 0.9939 | 0.2466 | 0.3158 | 0.2769 | 0.8389 | | 0.001 | 140.0 | 3360 | 1.0081 | 0.2432 | 0.3158 | 0.2748 | 0.8377 | | 0.0006 | 141.0 | 3384 | 1.0216 | 0.2308 | 0.3158 | 0.2667 | 0.8404 | | 0.0005 | 142.0 | 3408 | 1.0364 | 0.25 | 0.3158 | 0.2791 | 0.8332 | | 0.0004 | 143.0 | 3432 | 1.0185 | 0.2571 | 0.3158 | 0.2835 | 0.8426 | | 0.0006 | 144.0 | 3456 | 1.0168 | 0.2603 | 0.3333 | 0.2923 | 0.8458 | | 0.0005 | 145.0 | 3480 | 1.0079 | 0.2754 | 0.3333 | 0.3016 | 0.8476 | | 0.0006 | 146.0 | 3504 | 1.0080 | 0.25 | 0.3333 | 0.2857 | 0.8438 | | 0.0004 | 147.0 | 3528 | 1.0194 | 0.2346 | 0.3333 | 0.2754 | 0.8396 | | 0.0004 | 148.0 | 3552 | 1.0299 | 0.2262 | 0.3333 | 0.2695 | 0.8373 | | 0.0005 | 149.0 | 3576 | 1.0331 | 0.2289 | 0.3333 | 0.2714 | 0.8387 | | 0.0004 | 150.0 | 3600 | 1.0294 | 0.2436 | 0.3333 | 0.2815 | 0.8412 | | 0.0004 | 151.0 | 3624 | 1.0366 | 0.2405 | 0.3333 | 0.2794 | 0.8410 | | 0.0004 | 152.0 | 3648 | 1.0533 | 0.2468 | 0.3333 | 0.2836 | 0.8448 | | 0.0005 | 153.0 | 3672 | 1.0379 | 0.2879 | 0.3333 | 0.3089 | 0.8458 | | 0.0005 | 154.0 | 3696 | 1.0395 | 0.2836 | 0.3333 | 0.3065 | 0.8454 | | 0.0004 | 155.0 | 3720 | 1.0438 | 0.2836 | 0.3333 | 0.3065 | 0.8453 | | 0.0004 | 156.0 | 3744 | 1.0475 | 0.2879 | 0.3333 | 0.3089 | 0.8453 | | 0.0004 | 157.0 | 3768 | 1.0558 | 0.2794 | 0.3333 | 0.304 | 0.8450 | | 0.0004 | 158.0 | 3792 | 1.0596 | 0.2754 | 0.3333 | 0.3016 | 0.8444 | | 0.0004 | 159.0 | 3816 | 1.0633 | 0.2836 | 0.3333 | 0.3065 | 0.8445 | | 0.0004 | 160.0 | 3840 | 1.0653 | 0.2836 | 0.3333 | 0.3065 | 0.8445 | | 0.0004 | 161.0 | 3864 | 1.0687 | 0.2754 | 0.3333 | 0.3016 | 0.8446 | | 0.0004 | 162.0 | 3888 | 1.0732 | 0.2714 | 0.3333 | 0.2992 | 0.8448 | | 0.0005 | 163.0 | 3912 | 1.0729 | 0.2568 | 0.3333 | 0.2901 | 0.8444 | | 0.0004 | 164.0 | 3936 | 1.0764 | 0.2533 | 0.3333 | 0.2879 | 0.8436 | | 0.0005 | 165.0 | 3960 | 1.0737 | 0.2794 | 0.3333 | 0.304 | 0.8465 | | 0.0005 | 166.0 | 3984 | 1.0700 | 0.2754 | 0.3333 | 0.3016 | 0.8482 | | 0.0004 | 167.0 | 4008 | 1.0679 | 0.2794 | 0.3333 | 0.304 | 0.8496 | | 0.0005 | 168.0 | 4032 | 1.0695 | 0.2676 | 0.3333 | 0.2969 | 0.8498 | | 0.0004 | 169.0 | 4056 | 1.0704 | 0.2714 | 0.3333 | 0.2992 | 0.8498 | | 0.0005 | 170.0 | 4080 | 1.0716 | 0.2794 | 0.3333 | 0.304 | 0.8495 | | 0.0004 | 171.0 | 4104 | 1.0702 | 0.2639 | 0.3333 | 0.2946 | 0.8498 | | 0.0005 | 172.0 | 4128 | 1.0713 | 0.25 | 0.3333 | 0.2857 | 0.8491 | | 0.0004 | 173.0 | 4152 | 1.0736 | 0.2436 | 0.3333 | 0.2815 | 0.8491 | | 0.0005 | 174.0 | 4176 | 1.0808 | 0.2568 | 0.3333 | 0.2901 | 0.8486 | | 0.0004 | 175.0 | 4200 | 1.0867 | 0.2639 | 0.3333 | 0.2946 | 0.8486 | | 0.0004 | 176.0 | 4224 | 1.0899 | 0.2754 | 0.3333 | 0.3016 | 0.8486 | | 0.0004 | 177.0 | 4248 | 1.0900 | 0.2603 | 0.3333 | 0.2923 | 0.8486 | | 0.0005 | 178.0 | 4272 | 1.0871 | 0.2754 | 0.3333 | 0.3016 | 0.8489 | | 0.0004 | 179.0 | 4296 | 1.0863 | 0.2794 | 0.3333 | 0.304 | 0.8492 | | 0.0004 | 180.0 | 4320 | 1.0892 | 0.2754 | 0.3333 | 0.3016 | 0.8493 | | 0.0004 | 181.0 | 4344 | 1.0919 | 0.2639 | 0.3333 | 0.2946 | 0.8489 | | 0.0004 | 182.0 | 4368 | 1.0933 | 0.2639 | 0.3333 | 0.2946 | 0.8490 | | 0.0004 | 183.0 | 4392 | 1.0949 | 0.2639 | 0.3333 | 0.2946 | 0.8489 | | 0.0004 | 184.0 | 4416 | 1.0953 | 0.2639 | 0.3333 | 0.2946 | 0.8489 | | 0.0004 | 185.0 | 4440 | 1.1031 | 0.2714 | 0.3333 | 0.2992 | 0.8496 | | 0.0004 | 186.0 | 4464 | 1.1049 | 0.2639 | 0.3333 | 0.2946 | 0.8494 | | 0.0004 | 187.0 | 4488 | 1.1082 | 0.2676 | 0.3333 | 0.2969 | 0.8495 | | 0.0004 | 188.0 | 4512 | 1.1091 | 0.2639 | 0.3333 | 0.2946 | 0.8494 | | 0.0004 | 189.0 | 4536 | 1.1109 | 0.2639 | 0.3333 | 0.2946 | 0.8494 | | 0.0004 | 190.0 | 4560 | 1.1119 | 0.2639 | 0.3333 | 0.2946 | 0.8494 | | 0.0004 | 191.0 | 4584 | 1.1129 | 0.2603 | 0.3333 | 0.2923 | 0.8494 | | 0.0004 | 192.0 | 4608 | 1.1139 | 0.2639 | 0.3333 | 0.2946 | 0.8494 | | 0.0005 | 193.0 | 4632 | 1.1051 | 0.2676 | 0.3333 | 0.2969 | 0.8497 | | 0.0004 | 194.0 | 4656 | 1.1037 | 0.2639 | 0.3333 | 0.2946 | 0.8495 | | 0.0004 | 195.0 | 4680 | 1.1045 | 0.2568 | 0.3333 | 0.2901 | 0.8496 | | 0.0004 | 196.0 | 4704 | 1.1052 | 0.2568 | 0.3333 | 0.2901 | 0.8496 | | 0.0004 | 197.0 | 4728 | 1.1057 | 0.2568 | 0.3333 | 0.2901 | 0.8496 | | 0.0004 | 198.0 | 4752 | 1.1057 | 0.2533 | 0.3333 | 0.2879 | 0.8497 | | 0.0004 | 199.0 | 4776 | 1.1061 | 0.2533 | 0.3333 | 0.2879 | 0.8497 | | 0.0004 | 200.0 | 4800 | 1.1061 | 0.2533 | 0.3333 | 0.2879 | 0.8498 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
tyavika/percobaan_cnnlstm
tyavika
2023-06-27T17:10:40Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-06-25T04:49:10Z
--- tags: - generated_from_trainer model-index: - name: percobaan_cnnlstm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # percobaan_cnnlstm This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.9961 | 1.0 | 756 | 4.4533 | | 4.2209 | 2.0 | 1512 | 4.3710 | | 3.861 | 3.0 | 2268 | 4.5066 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.2
kojitakahiro/dar
kojitakahiro
2023-06-27T17:05:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T17:03:16Z
--- license: creativeml-openrail-m ---
numanBot/summary_annotation_score
numanBot
2023-06-27T16:45:33Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T16:32:58Z
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") model = TFAutoModelForSequenceClassification.from_pretrained("numanBot/summary_annotation_score", num_labels=1)
breadlicker45/dough-instruct-base-001
breadlicker45
2023-06-27T16:42:18Z
1,635
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dataset:breadlicker45/bread-qa", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T15:39:22Z
--- datasets: - breadlicker45/bread-qa ---
jdawnduan/q-FrozenLake-v1-4x4-noSlippery
jdawnduan
2023-06-27T16:40:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T16:40:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jdawnduan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
maidh/YOUR_REPO_ID
maidh
2023-06-27T16:34:59Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T15:44:43Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.73 +/- 5.48 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r WilliamADSP/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
slone/fastText-LID-323
slone
2023-06-27T16:28:03Z
4
9
fasttext
[ "fasttext", "text-classification", "language-identification", "arxiv:2209.09368", "region:us" ]
text-classification
2022-09-15T06:44:18Z
--- library_name: fasttext tags: - text-classification - language-identification --- This is a fastText-based language classification model from the paper [The first neural machine translation system for the Erzya language](https://arxiv.org/abs/2209.09368). It supports 323 languages used in Wikipedia (as of July 2022), and has extended support of the Erzya (`myv`) and Moksha (`mdf`) languages. Example usage: ```Python import fasttext import urllib.request import os model_path = 'lid.323.ftz' url = 'https://huggingface.co/slone/fastText-LID-323/resolve/main/lid.323.ftz' if not os.path.exists(model_path): urllib.request.urlretrieve(url, model_path) # or just download it manually model = fasttext.load_model(model_path) languages, scores = model.predict("эрзянь кель", k=3) # k is the number of returned hypotheses ``` The model was trained on texts of articles randomly sampled from Wikipedia. It works better with sentences and longer texts than with words, and may be sensitive to noise.
chunwoolee0/xlm-roberta-base-finetuned-panx-de
chunwoolee0
2023-06-27T16:09:19Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-27T15:29:35Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8653353814644136 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - F1: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.0 | 525 | 0.1596 | 0.8231 | | 0.1262 | 2.0 | 1050 | 0.1395 | 0.8468 | | 0.0824 | 3.0 | 1575 | 0.1339 | 0.8653 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ag159/ppo-Huggy
ag159
2023-06-27T16:09:09Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-27T16:08:59Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ag159/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
guimrtns/ppo-Huggy
guimrtns
2023-06-27T15:55:41Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-27T14:48:43Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: guimrtns/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mnicamartins8/bert-base-uncased-with-expansion-correction
mnicamartins8
2023-06-27T15:47:40Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T23:17:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-uncased-with-expansion-correction results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-with-expansion-correction This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2180 - Accuracy: 0.9099 - Precision: 0.9142 - Recall: 0.9099 - F1: 0.9114 - Balanced Acc: 0.8900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Guilherme34/Jennifer-lora-7bvChatv2
Guilherme34
2023-06-27T15:45:53Z
0
1
null
[ "tensorboard", "pt", "region:us" ]
null
2023-05-16T16:40:03Z
--- language: - pt --- Esta é a segunda versão Chat de uma inteligência artificial finetunada que fala em português do brasil, ela foi treinada em cima do llama 7b de decapoda, e foi treinada no LLaMA-LoRA Tuner de zetavg utilizando o dataset da cabrita lora e o alpaca cleaned e WizardLM_alpaca_evol_instruct_70k_unfiltered, também utilizou datasets do baize Divirta-se!
gongliyu/fine-tuned-t5-small
gongliyu
2023-06-27T15:44:16Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-23T19:00:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: fine-tuned-t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-t5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5422 - Precision: nan - Recall: 0.7117 - F1: 0.5635 - Hashcode: roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Hashcode | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------------------------------------------------------:|:-------:| | No log | 1.0 | 1 | 12.9679 | 0.7745 | 0.7227 | 0.7474 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 2.0 | 2 | 12.1426 | 0.7811 | 0.7221 | 0.7503 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 3.0 | 3 | 11.2809 | 0.7811 | 0.7221 | 0.7503 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 4.0 | 4 | 10.4669 | 0.7821 | 0.7273 | 0.7536 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 5.0 | 5 | 9.7061 | 0.7821 | 0.7273 | 0.7536 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 6.0 | 6 | 9.0054 | 0.7821 | 0.7273 | 0.7536 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 7.0 | 7 | 8.3875 | 0.7821 | 0.7273 | 0.7536 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 8.0 | 8 | 7.8287 | 0.7772 | 0.7278 | 0.7515 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 9.0 | 9 | 7.3385 | 0.7772 | 0.7278 | 0.7515 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 10.0 | 10 | 6.9141 | 0.7772 | 0.7278 | 0.7515 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 11.0 | 11 | 6.5516 | 0.7801 | 0.7240 | 0.7509 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 12.0 | 12 | 6.2399 | 0.7801 | 0.7240 | 0.7509 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 13.0 | 13 | 5.9851 | 0.7801 | 0.7240 | 0.7509 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 14.0 | 14 | 5.7744 | 0.7801 | 0.7240 | 0.7509 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 15.0 | 15 | 5.5976 | 0.7801 | 0.7240 | 0.7509 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 16.0 | 16 | 5.4546 | 0.7873 | 0.7158 | 0.7497 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 17.0 | 17 | 5.3403 | 0.7873 | 0.7158 | 0.7497 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 18.0 | 18 | 5.2461 | 0.7873 | 0.7158 | 0.7497 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 19.0 | 19 | 5.1688 | 0.7873 | 0.7158 | 0.7497 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 20.0 | 20 | 5.1052 | 0.7922 | 0.7169 | 0.7525 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 21.0 | 21 | 5.0489 | 0.7922 | 0.7169 | 0.7525 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 22.0 | 22 | 5.0025 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 23.0 | 23 | 4.9621 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 24.0 | 24 | 4.9263 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 25.0 | 25 | 4.8933 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 26.0 | 26 | 4.8623 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 27.0 | 27 | 4.8327 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 28.0 | 28 | 4.8060 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 29.0 | 29 | 4.7811 | 0.7941 | 0.7122 | 0.7508 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 30.0 | 30 | 4.7583 | 0.7712 | 0.7105 | 0.7392 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 31.0 | 31 | 4.7361 | 0.7712 | 0.7105 | 0.7392 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 32.0 | 32 | 4.7152 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 33.0 | 33 | 4.6964 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 34.0 | 34 | 4.6789 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 35.0 | 35 | 4.6627 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 36.0 | 36 | 4.6475 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 37.0 | 37 | 4.6330 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 38.0 | 38 | 4.6192 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 39.0 | 39 | 4.6066 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 40.0 | 40 | 4.5957 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 41.0 | 41 | 4.5859 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 42.0 | 42 | 4.5771 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 43.0 | 43 | 4.5693 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 44.0 | 44 | 4.5625 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 45.0 | 45 | 4.5567 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 46.0 | 46 | 4.5518 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 47.0 | 47 | 4.5480 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 48.0 | 48 | 4.5451 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 49.0 | 49 | 4.5432 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | | No log | 50.0 | 50 | 4.5422 | nan | 0.7117 | 0.5635 | roberta-large_L17_idf_version=0.3.12(hug_trans=4.30.2) | 19.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Yhyu13/vicuna-33b-v1.3-gptq-4bit
Yhyu13
2023-06-27T15:37:52Z
6
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T14:46:37Z
--- license: apache-2.0 --- GPTQ 4-bit no actor version for compatibility that works in textgen-webui Generated by using scripts from https://gitee.com/yhyu13/llama_-tools Original weight : https://huggingface.co/lmsys/vicuna-33b-v1.3
rafaeljosem/DeepESP-gpt2-spanish-tripadvisor
rafaeljosem
2023-06-27T15:35:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T22:23:03Z
--- license: mit tags: - generated_from_trainer model-index: - name: DeepESP-gpt2-spanish-tripadvisor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeepESP-gpt2-spanish-tripadvisor This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8665 | 1.0 | 2089 | 0.7441 | | 0.7336 | 2.0 | 4178 | 0.6916 | | 0.6856 | 3.0 | 6267 | 0.6632 | | 0.6559 | 4.0 | 8356 | 0.6446 | | 0.6341 | 5.0 | 10445 | 0.6322 | | 0.6169 | 6.0 | 12534 | 0.6213 | | 0.6022 | 7.0 | 14623 | 0.6138 | | 0.5896 | 8.0 | 16712 | 0.6096 | | 0.5788 | 9.0 | 18801 | 0.6037 | | 0.5692 | 10.0 | 20890 | 0.5989 | | 0.5604 | 11.0 | 22979 | 0.5965 | | 0.5528 | 12.0 | 25068 | 0.5941 | | 0.5457 | 13.0 | 27157 | 0.5915 | | 0.5392 | 14.0 | 29246 | 0.5900 | | 0.5334 | 15.0 | 31335 | 0.5879 | | 0.5285 | 16.0 | 33424 | 0.5875 | | 0.524 | 17.0 | 35513 | 0.5870 | | 0.5209 | 18.0 | 37602 | 0.5866 | | 0.5179 | 19.0 | 39691 | 0.5867 | | 0.5157 | 20.0 | 41780 | 0.5865 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3
mnicamartins8/bert-base-uncased-with-misspelling-expansion-correction
mnicamartins8
2023-06-27T15:34:24Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T15:27:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-uncased-with-misspelling-expansion-correction results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-with-misspelling-expansion-correction This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2229 - Accuracy: 0.9083 - Precision: 0.9132 - Recall: 0.9083 - F1: 0.9100 - Balanced Acc: 0.8893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
eutimio-arevalo-valarezo/ppo-LunarLander-v2
eutimio-arevalo-valarezo
2023-06-27T15:33:42Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T15:33:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.30 +/- 26.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
maidh/ppo-LunarLander-v2
maidh
2023-06-27T15:32:32Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-20T10:05:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.58 +/- 12.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Allenpai/llm
Allenpai
2023-06-27T15:21:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-27T13:06:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
GabrielCaido/ppo-LunarLander-v2
GabrielCaido
2023-06-27T15:13:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T15:13:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.44 +/- 20.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ahishamm/vit-large-HAM-10000-patch-32
ahishamm
2023-06-27T15:13:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T14:14:58Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-HAM-10000-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-HAM-10000-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/HAM_db dataset. It achieves the following results on the evaluation set: - Loss: 0.4810 - Accuracy: 0.8364 - Recall: 0.8364 - F1: 0.8364 - Precision: 0.8364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6405 | 0.2 | 100 | 0.7318 | 0.7481 | 0.7481 | 0.7481 | 0.7481 | | 0.7062 | 0.4 | 200 | 0.7735 | 0.7416 | 0.7416 | 0.7416 | 0.7416 | | 0.6334 | 0.6 | 300 | 0.6075 | 0.7781 | 0.7781 | 0.7781 | 0.7781 | | 0.7102 | 0.8 | 400 | 0.6618 | 0.7661 | 0.7661 | 0.7661 | 0.7661 | | 0.6814 | 1.0 | 500 | 0.5717 | 0.7890 | 0.7890 | 0.7890 | 0.7890 | | 0.4618 | 1.2 | 600 | 0.5624 | 0.8030 | 0.8030 | 0.8030 | 0.8030 | | 0.3824 | 1.4 | 700 | 0.5987 | 0.7766 | 0.7766 | 0.7766 | 0.7766 | | 0.4191 | 1.6 | 800 | 0.5145 | 0.8190 | 0.8190 | 0.8190 | 0.8190 | | 0.3998 | 1.8 | 900 | 0.5226 | 0.8090 | 0.8090 | 0.8090 | 0.8090 | | 0.4677 | 2.0 | 1000 | 0.4927 | 0.8219 | 0.8219 | 0.8219 | 0.8219 | | 0.2191 | 2.2 | 1100 | 0.5477 | 0.8284 | 0.8284 | 0.8284 | 0.8284 | | 0.2302 | 2.4 | 1200 | 0.5018 | 0.8329 | 0.8329 | 0.8329 | 0.8329 | | 0.191 | 2.59 | 1300 | 0.4810 | 0.8364 | 0.8364 | 0.8364 | 0.8364 | | 0.1736 | 2.79 | 1400 | 0.5096 | 0.8334 | 0.8334 | 0.8334 | 0.8334 | | 0.1049 | 2.99 | 1500 | 0.5944 | 0.8364 | 0.8364 | 0.8364 | 0.8364 | | 0.0612 | 3.19 | 1600 | 0.5552 | 0.8464 | 0.8464 | 0.8464 | 0.8464 | | 0.0181 | 3.39 | 1700 | 0.6199 | 0.8434 | 0.8434 | 0.8434 | 0.8434 | | 0.0816 | 3.59 | 1800 | 0.5081 | 0.8534 | 0.8534 | 0.8534 | 0.8534 | | 0.039 | 3.79 | 1900 | 0.5349 | 0.8544 | 0.8544 | 0.8544 | 0.8544 | | 0.0208 | 3.99 | 2000 | 0.5445 | 0.8544 | 0.8544 | 0.8544 | 0.8544 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
cointegrated/rut5-base-labse-decoder
cointegrated
2023-06-27T14:59:57Z
125
6
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "russian", "ru", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-17T16:38:34Z
--- language: ["ru"] tags: - russian license: mit --- This is the [rut5-base](https://huggingface.co/cointegrated/rut5-base) model, with the decoder fine-tuned to recover (approximately) Russian sentences from their [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) embeddings. Details are [here](https://habr.com/ru/post/677618/) (in Russian). It can be used, for example, for: - Paraphrasing Russian sentences; - Translating from the 109 LaBSE languages to Russian; - Summarizing a collection of sentences with a single sentence; - Interpolating between sentences; - Few-shot text style transfer (including cross-lingual). Example code: ```python import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel from transformers.modeling_outputs import BaseModelOutput enc_tokenizer = AutoTokenizer.from_pretrained('cointegrated/LaBSE-en-ru') encoder = AutoModel.from_pretrained('cointegrated/LaBSE-en-ru') dec_tokenizer = AutoTokenizer.from_pretrained('cointegrated/rut5-base-labse-decoder') decoder = AutoModelForSeq2SeqLM.from_pretrained('cointegrated/rut5-base-labse-decoder') def encode(texts): encoded_input = enc_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt') with torch.no_grad(): model_output = encoder(**encoded_input.to(encoder.device)) embeddings = model_output.pooler_output embeddings = torch.nn.functional.normalize(embeddings) return embeddings # encode some texts into vectors embeddings = encode([ "4 декабря 2000 года", "Давно такого не читала, очень хорошо пишешь!", "Я тогда не понимала, что происходит, не понимаю и сейчас.", "London is the capital of Great Britain.", ]) print(embeddings.shape) # torch.Size([4, 768]) # now try to recover the texts from the vectors out = decoder.generate( encoder_outputs=BaseModelOutput(last_hidden_state=embeddings.unsqueeze(1)), max_length=256, repetition_penalty=3.0, ) for tokens in out: print(dec_tokenizer.decode(tokens, skip_special_tokens=True)) # После 4 декабря 2000 года # Не так давно, это многое читала! # Я не понимала того, что происходит сейчас тогда, дальше. # Британская столица Англии. ```
uf-aice-lab/git_20
uf-aice-lab
2023-06-27T14:58:46Z
98
1
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "image-to-text", "en", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-06-27T14:50:51Z
--- license: mit language: - en pipeline_tag: image-to-text --- # git_20 <!-- Provide a quick summary of what the model is/does. --> This model is fine-tuned with Microsoft GIT with 1 Nvidia A100-80G GPU. We extracted 100,000 student assignments containing teacher feedback from 3 million student assignments as training data. The training data is divided into the image part of student assignments and the text part of teacher feedback. git_20 consists of 18 layers and over 170 million parameters, consuming up to 0.7 gigabytes of disk space. The project aims to use multi-modal and multi-task deep learning models to create a machine learning pipeline that provides automatic diagnostic feedback for students' mathematical reasoning. Researchers can experiment with and finetune the model to help construct multimodel that can effectively provide automatic diagnostic feedback for students' mathematical reasoning. ### Here is how to use it with texts in HuggingFace ```python from transformers import AutoModelForCausalLM from transformers import AutoProcessor from PIL import Image model = AutoModelForCausalLM.from_pretrained("Fan21/git_20") processor = AutoProcessor.from_pretrained("Fan21/git_20") image_path ='Please enter the image address here' image = Image.open(image_path) width, height = image.size display(image.resize((int(1 * width), int(1 * height)))) pixel_values = processor(images=image, return_tensors="pt").pixel_values with torch.no_grad(): outputs = model.generate(pixel_values=pixel_values, max_length=50) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) ```
nolanaatama/vllgrfrmmncrftrvcv2500pchnlgspdrwb
nolanaatama
2023-06-27T14:52:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T14:38:47Z
--- license: creativeml-openrail-m ---
Ellbendls/ppo-Pyramid
Ellbendls
2023-06-27T14:42:01Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-27T14:40:32Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Ellbendls/ppo-Pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
librarian-bots/BERTopic_model_card_bias
librarian-bots
2023-06-27T14:21:46Z
24
3
bertopic
[ "bertopic", "metadata", "model cards", "bias", "text-classification", "en", "dataset:davanstrien/model_cards_with_readmes", "license:mit", "region:us" ]
text-classification
2023-05-11T10:31:44Z
--- tags: - bertopic - metadata - model cards - bias library_name: bertopic datasets: - davanstrien/model_cards_with_readmes language: - en license: mit pipeline_tag: text-classification inference: false --- # BERTopic model card bias topic model This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("davanstrien/BERTopic_model_card_bias") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 11 * Number of training documents: 1271 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | evaluation - claim - reasoning - parameters - university | 13 | -1_evaluation_claim_reasoning_parameters | | 0 | checkpoint - fairly - characterized - even - sectionhttpshuggingfacecobertbaseuncased | 13 | 0_checkpoint_fairly_characterized_even | | 1 | generative - research - uses - processes - artistic | 137 | 1_generative_research_uses_processes | | 2 | checkpoint - try - snippet - sectionhttpshuggingfacecobertbaseuncased - limitation | 48 | 2_checkpoint_try_snippet_sectionhttpshuggingfacecobertbaseuncased | | 3 | meant - technical - sociotechnical - convey - needed | 32 | 3_meant_technical_sociotechnical_convey | | 4 | gpt2 - team - their - cardhttpsgithubcomopenaigpt2blobmastermodelcardmd - worked | 32 | 4_gpt2_team_their_cardhttpsgithubcomopenaigpt2blobmastermodelcardmd | | 5 | datasets - internet - unfiltered - therefore - lot | 27 | 5_datasets_internet_unfiltered_therefore | | 6 | dacy - danish - pipelines - transformer - bert | 25 | 6_dacy_danish_pipelines_transformer | | 7 | your - pythia - branch - checkpoints - provide | 20 | 7_your_pythia_branch_checkpoints | | 8 | opt - trained - large - software - code | 15 | 8_opt_trained_large_software | | 9 | al - et - identity - occupational - groups | 15 | 9_al_et_identity_occupational | </details> ## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.29.0 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.11
MariaK/whisper-tiny-minds-v5-numproc1
MariaK
2023-06-27T14:17:11Z
93
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-27T13:53:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds-v5-numproc1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[451:] args: en-US metrics: - name: Wer type: wer value: 0.37507453786523554 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds-v5-numproc1 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6530 - Wer Ortho: 0.4102 - Wer: 0.3751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.4354 | 3.57 | 100 | 0.5542 | 0.4539 | 0.3870 | | 0.066 | 7.14 | 200 | 0.5501 | 0.4059 | 0.3554 | | 0.0086 | 10.71 | 300 | 0.6204 | 0.3953 | 0.3542 | | 0.0028 | 14.29 | 400 | 0.6455 | 0.3990 | 0.3631 | | 0.0022 | 17.86 | 500 | 0.6530 | 0.4102 | 0.3751 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-large-HAM-10000-patch-16
ahishamm
2023-06-27T14:14:41Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T12:58:26Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-HAM-10000-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-HAM-10000-patch-16 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the ahishamm/HAM_db dataset. It achieves the following results on the evaluation set: - Loss: 0.5464 - Accuracy: 0.8095 - Recall: 0.8095 - F1: 0.8095 - Precision: 0.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.8281 | 0.2 | 100 | 0.9228 | 0.6788 | 0.6788 | 0.6788 | 0.6788 | | 0.912 | 0.4 | 200 | 0.8353 | 0.7147 | 0.7147 | 0.7147 | 0.7147 | | 0.6741 | 0.6 | 300 | 0.7841 | 0.7377 | 0.7377 | 0.7377 | 0.7377 | | 0.8472 | 0.8 | 400 | 0.6710 | 0.7566 | 0.7566 | 0.7566 | 0.7566 | | 0.7758 | 1.0 | 500 | 0.7587 | 0.7087 | 0.7087 | 0.7087 | 0.7087 | | 0.5388 | 1.2 | 600 | 0.6607 | 0.7746 | 0.7746 | 0.7746 | 0.7746 | | 0.5067 | 1.4 | 700 | 0.6133 | 0.7701 | 0.7701 | 0.7701 | 0.7701 | | 0.4992 | 1.6 | 800 | 0.6075 | 0.7786 | 0.7786 | 0.7786 | 0.7786 | | 0.5761 | 1.8 | 900 | 0.6286 | 0.7691 | 0.7691 | 0.7691 | 0.7691 | | 0.5892 | 2.0 | 1000 | 0.5498 | 0.8035 | 0.8035 | 0.8035 | 0.8035 | | 0.4258 | 2.2 | 1100 | 0.5901 | 0.7940 | 0.7940 | 0.7940 | 0.7940 | | 0.4066 | 2.4 | 1200 | 0.5553 | 0.8025 | 0.8025 | 0.8025 | 0.8025 | | 0.3032 | 2.59 | 1300 | 0.5754 | 0.8030 | 0.8030 | 0.8030 | 0.8030 | | 0.3843 | 2.79 | 1400 | 0.5464 | 0.8095 | 0.8095 | 0.8095 | 0.8095 | | 0.2679 | 2.99 | 1500 | 0.5683 | 0.8100 | 0.8100 | 0.8100 | 0.8100 | | 0.1787 | 3.19 | 1600 | 0.5931 | 0.8195 | 0.8195 | 0.8195 | 0.8195 | | 0.105 | 3.39 | 1700 | 0.6488 | 0.8279 | 0.8279 | 0.8279 | 0.8279 | | 0.2138 | 3.59 | 1800 | 0.6414 | 0.8130 | 0.8130 | 0.8130 | 0.8130 | | 0.1336 | 3.79 | 1900 | 0.5920 | 0.8264 | 0.8264 | 0.8264 | 0.8264 | | 0.1246 | 3.99 | 2000 | 0.5999 | 0.8289 | 0.8289 | 0.8289 | 0.8289 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Ellbendls/ppo-SnowballTarget
Ellbendls
2023-06-27T13:48:46Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-26T13:12:07Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Ellbendls/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Idan0405/ClipMD
Idan0405
2023-06-27T13:37:21Z
293
8
transformers
[ "transformers", "pytorch", "clip", "feature-extraction", "medical", "zero-shot-image-classification", "custom_code", "en", "arxiv:2303.13340", "doi:10.57967/hf/0898", "region:us" ]
zero-shot-image-classification
2023-03-22T19:39:57Z
--- model_type: clip tags: - medical language: - en inference: false pipeline_tag: zero-shot-image-classification --- # Model Card: ClipMD ## Model Details ClipMD is a medical image-text matching model based on OpenAI's CLIP model with a sliding window text encoder. ### Model Description The model uses a ViT-B/32 Transformer architecture as an image encoder and uses a masked sliding window elf-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. The model was fine-tuned on the [ROCO dataset](https://github.com/razorx89/roco-dataset). ## Use with Transformers ``` from PIL import Image from transformers import AutoProcessor,AutoModel model = AutoModel.from_pretrained("Idan0405/ClipMD",trust_remote_code=True) processor = AutoProcessor.from_pretrained("Idan0405/ClipMD") image = Image.open("your image path") inputs = processor(text=["chest x-ray", "head MRI"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs[0] # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` # See also * [ClipMD repository on github.](https://github.cs.huji.ac.il/tomhope-lab/ClipMD) * [ClipMD paper on arxiv](https://arxiv.org/abs/2303.13340)
mfaiq2307/whisper-large-cahya-peft
mfaiq2307
2023-06-27T13:25:28Z
0
0
transformers
[ "transformers", "pytorch", "automatic-speech-recognition", "license:other", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-24T12:36:44Z
--- license: other library_name: transformers pipeline_tag: automatic-speech-recognition --- This is a model for Indonesia audio recognition using LoRA on Whisper-large-v2.
Jumtra/rinna-v1-tune-ep3
Jumtra
2023-06-27T13:23:15Z
86
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "ja", "lm", "nlp", "dataset:kunishou/databricks-dolly-15k-ja", "dataset:kunishou/hh-rlhf-49k-ja", "dataset:Jumtra/oasst1_ja", "dataset:Jumtra/jglue_jnli", "dataset:Jumtra/jglue_jsquad", "dataset:Jumtra/jglue_jsquads_with_input", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T12:19:44Z
--- license: mit tags: - ja - gpt_neox - text-generation - lm - nlp datasets: - kunishou/databricks-dolly-15k-ja - kunishou/hh-rlhf-49k-ja - Jumtra/oasst1_ja - Jumtra/jglue_jnli - Jumtra/jglue_jsquad - Jumtra/jglue_jsquads_with_input inference: false language: - ja --- # rinna-3.6b このモデルは、MosaicMLのllm-foundryリポジトリを使用して[Jumtra/rinna-3.6b-tune-ep5](https://huggingface.co/Jumtra/rinna-3.6b-tune-ep5)をファインチューニングしたモデルです。 ## Model Date June 28, 2023 ## Model License MIT ## 評価 [Jumtra/test_data_100QA](https://huggingface.co/datasets/Jumtra/test_data_100QA)を用いてモデルの正答率を評価した また、学習時のvalidateデータに対してのPerplexityを記載した。 | model name | 正答率 | Perplexity | | ---- | ---- | ---- | | [Jumtra/rinna-3.6b-tune-ep5](https://huggingface.co/Jumtra/rinna-3.6b-tune-ep5)| 40/100 | 8.105 | | [Jumtra/rinna-v1-tune-ep1](https://huggingface.co/Jumtra/rinna-v1-tune-ep1) | 42/100 | 7.458 | | [Jumtra/rinna-v1-tune-ep3](https://huggingface.co/Jumtra/rinna-v1-tune-ep3) | 41/100 | 7.034 | | [Jumtra/calm-7b-tune-ep4](https://huggingface.co/Jumtra/calm-7b-tune-ep4) | 40/100 | 9.766 | | [Jumtra/calm-v3-ep1](https://huggingface.co/Jumtra/calm-v3-ep1) | 35/100 | 9.305 | | [Jumtra/calm-v3-ep3](https://huggingface.co/Jumtra/calm-v3-ep3) | 37/100 | 13.276 | 以下のプロンプトを用いた ```python INSTRUCTION_KEY = "### 入力:" RESPONSE_KEY = "### 回答:" INTRO_BLURB = "以下はタスクを説明する指示と文脈のある文章が含まれた入力です。要求を適切に満たす回答を生成しなさい。" JP_PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) ```
Jumtra/calm-v3-ep3
Jumtra
2023-06-27T13:22:43Z
14
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "ja", "lm", "nlp", "dataset:kunishou/databricks-dolly-15k-ja", "dataset:kunishou/hh-rlhf-49k-ja", "dataset:Jumtra/oasst1_ja", "dataset:Jumtra/jglue_jnli", "dataset:Jumtra/jglue_jsquad", "dataset:Jumtra/jglue_jsquads_with_input", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T12:24:32Z
--- license: cc-by-sa-4.0 tags: - ja - gpt_neox - text-generation - lm - nlp datasets: - kunishou/databricks-dolly-15k-ja - kunishou/hh-rlhf-49k-ja - Jumtra/oasst1_ja - Jumtra/jglue_jnli - Jumtra/jglue_jsquad - Jumtra/jglue_jsquads_with_input inference: false language: - ja --- # open-calm-7b このモデルは、MosaicMLのllm-foundryリポジトリを使用して[Jumtra/calm-7b-tune-ep4](https://huggingface.co/Jumtra/calm-7b-tune-ep4)をファインチューニングしたモデルです。 ## Model Date June 28, 2023 ## Model License cc-by-sa-4.0 ## 評価 [Jumtra/test_data_100QA](https://huggingface.co/datasets/Jumtra/test_data_100QA)を用いてモデルの正答率を評価した また、学習時のvalidateデータに対してのPerplexityを記載した。 | model name | 正答率 | Perplexity | | ---- | ---- | ---- | | [Jumtra/rinna-3.6b-tune-ep5](https://huggingface.co/Jumtra/rinna-3.6b-tune-ep5)| 40/100 | 8.105 | | [Jumtra/rinna-v1-tune-ep1](https://huggingface.co/Jumtra/rinna-v1-tune-ep1) | 42/100 | 7.458 | | [Jumtra/rinna-v1-tune-ep3](https://huggingface.co/Jumtra/rinna-v1-tune-ep3) | 41/100 | 7.034 | | [Jumtra/calm-7b-tune-ep4](https://huggingface.co/Jumtra/calm-7b-tune-ep4) | 40/100 | 9.766 | | [Jumtra/calm-v3-ep1](https://huggingface.co/Jumtra/calm-v3-ep1) | 35/100 | 9.305 | | [Jumtra/calm-v3-ep3](https://huggingface.co/Jumtra/calm-v3-ep3) | 37/100 | 13.276 | 以下のプロンプトを用いた ```python INSTRUCTION_KEY = "### 入力:" RESPONSE_KEY = "### 回答:" INTRO_BLURB = "以下はタスクを説明する指示と文脈のある文章が含まれた入力です。要求を適切に満たす回答を生成しなさい。" JP_PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) ```
swl-models/SweetheartAnime-v1.0
swl-models
2023-06-27T13:22:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T13:18:34Z
--- license: creativeml-openrail-m ---
MariaK/whisper-tiny-minds-v4-FC
MariaK
2023-06-27T13:19:15Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-27T12:51:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-minds-v4-FC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds-v4-FC This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6530 - Wer Ortho: 0.4102 - Wer: 0.3751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.4354 | 3.57 | 100 | 0.5542 | 0.4539 | 0.3870 | | 0.066 | 7.14 | 200 | 0.5501 | 0.4059 | 0.3554 | | 0.0086 | 10.71 | 300 | 0.6204 | 0.3953 | 0.3542 | | 0.0028 | 14.29 | 400 | 0.6455 | 0.3990 | 0.3631 | | 0.0022 | 17.86 | 500 | 0.6530 | 0.4102 | 0.3751 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
swl-models/SummerWind-v1.0
swl-models
2023-06-27T13:17:18Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T13:15:52Z
--- license: creativeml-openrail-m ---
swl-models/CoffeescentAnime-v1.0
swl-models
2023-06-27T13:14:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T13:13:02Z
--- license: creativeml-openrail-m ---
machinelearnear/falcon-7b-alpaca-lora-ca
machinelearnear
2023-06-27T13:13:20Z
3
1
peft
[ "peft", "region:us" ]
null
2023-06-23T16:53:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
swl-models/EarlySpring-v1.0
swl-models
2023-06-27T13:12:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T13:09:27Z
--- license: creativeml-openrail-m ---
edofut/belle
edofut
2023-06-27T13:11:53Z
0
0
null
[ "license:gpl-3.0", "region:us" ]
null
2023-06-27T12:01:06Z
--- license: gpl-3.0 --- from transformers import GPT3Tokenizer, GPT3ForChatbot class JackBot: def __init__(self): self.tokenizer = GPT3Tokenizer.from_pretrained("gpt3.5-turbo") self.model = GPT3ForChatbot.from_pretrained("gpt3.5-turbo") def generate_response(self, input_text): input_ids = self.tokenizer.encode(input_text, return_tensors="pt") response = self.model.generate(input_ids, max_length=100, num_return_sequences=1, temperature=0.7) response_text = self.tokenizer.decode(response[0], skip_special_tokens=True) return response_text bot = JackBot() while True: user_input = input("User: ") if user_input.lower() == "bye": print("Jack: Goodbye!") break response = bot.generate_response(user_input) print("Jack:", response)
swl-models/MeimeiCartoon-v1.0
swl-models
2023-06-27T13:04:30Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T13:02:20Z
--- license: creativeml-openrail-m ---
Shubham09/falcon_hcltech_p1
Shubham09
2023-06-27T13:00:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-27T12:52:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
avecoder/marian-finetuned-kde4-en-to-ru
avecoder
2023-06-27T13:00:25Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-06-27T04:40:39Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-ru results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-ru split: train args: en-ru metrics: - name: Bleu type: bleu value: 29.07778420930096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-ru This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ru](https://huggingface.co/Helsinki-NLP/opus-mt-en-ru) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.3767 - Bleu: 29.0778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-base-HAM-10000-patch-32
ahishamm
2023-06-27T12:58:11Z
201
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T12:23:15Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-patch-32 This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the ahishamm/HAM_db dataset. It achieves the following results on the evaluation set: - Loss: 0.5210 - Accuracy: 0.8040 - Recall: 0.8040 - F1: 0.8040 - Precision: 0.8040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7 | 0.2 | 100 | 0.7878 | 0.7307 | 0.7307 | 0.7307 | 0.7307 | | 0.8248 | 0.4 | 200 | 0.7338 | 0.7476 | 0.7476 | 0.7476 | 0.7476 | | 0.6647 | 0.6 | 300 | 0.6417 | 0.7541 | 0.7541 | 0.7541 | 0.7541 | | 0.6755 | 0.8 | 400 | 0.6682 | 0.7576 | 0.7576 | 0.7576 | 0.7576 | | 0.7443 | 1.0 | 500 | 0.6037 | 0.7890 | 0.7890 | 0.7890 | 0.7890 | | 0.5316 | 1.2 | 600 | 0.5963 | 0.7915 | 0.7915 | 0.7915 | 0.7915 | | 0.4404 | 1.4 | 700 | 0.5626 | 0.7955 | 0.7955 | 0.7955 | 0.7955 | | 0.4431 | 1.6 | 800 | 0.5719 | 0.8005 | 0.8005 | 0.8005 | 0.8005 | | 0.5011 | 1.8 | 900 | 0.5581 | 0.7880 | 0.7880 | 0.7880 | 0.7880 | | 0.4692 | 2.0 | 1000 | 0.5210 | 0.8040 | 0.8040 | 0.8040 | 0.8040 | | 0.2648 | 2.2 | 1100 | 0.5776 | 0.8070 | 0.8070 | 0.8070 | 0.8070 | | 0.2723 | 2.4 | 1200 | 0.5317 | 0.8180 | 0.8180 | 0.8180 | 0.8180 | | 0.2325 | 2.59 | 1300 | 0.5223 | 0.8170 | 0.8170 | 0.8170 | 0.8170 | | 0.2547 | 2.79 | 1400 | 0.5314 | 0.8244 | 0.8244 | 0.8244 | 0.8244 | | 0.146 | 2.99 | 1500 | 0.5583 | 0.8274 | 0.8274 | 0.8274 | 0.8274 | | 0.1224 | 3.19 | 1600 | 0.5960 | 0.8289 | 0.8289 | 0.8289 | 0.8289 | | 0.0313 | 3.39 | 1700 | 0.6081 | 0.8304 | 0.8304 | 0.8304 | 0.8304 | | 0.104 | 3.59 | 1800 | 0.5770 | 0.8339 | 0.8339 | 0.8339 | 0.8339 | | 0.0538 | 3.79 | 1900 | 0.5364 | 0.8464 | 0.8464 | 0.8464 | 0.8464 | | 0.0827 | 3.99 | 2000 | 0.5414 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Holmodi/Reinforce-policy-gradient
Holmodi
2023-06-27T12:55:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T12:55:14Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-policy-gradient results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
advokat/tiraMOEsu
advokat
2023-06-27T12:54:27Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T12:45:53Z
--- license: creativeml-openrail-m ---
MariaK/whisper-tiny-minds-v3
MariaK
2023-06-27T12:44:57Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-27T12:20:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-minds-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds-v3 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6530 - Wer Ortho: 0.4102 - Wer: 0.3751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.4354 | 3.57 | 100 | 0.5542 | 0.4539 | 0.3870 | | 0.066 | 7.14 | 200 | 0.5501 | 0.4059 | 0.3554 | | 0.0086 | 10.71 | 300 | 0.6204 | 0.3953 | 0.3542 | | 0.0028 | 14.29 | 400 | 0.6455 | 0.3990 | 0.3631 | | 0.0022 | 17.86 | 500 | 0.6530 | 0.4102 | 0.3751 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
fatcat22/ppo-Pyramids
fatcat22
2023-06-27T12:34:19Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-27T12:32:19Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: fatcat22/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ZTamas/xlm-roberta-large-squad2-qa-milqa-impossible
ZTamas
2023-06-27T12:34:15Z
134
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "hu", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T11:14:23Z
--- language: - hu pipeline_tag: question-answering --- This model is a fine-tuned version of deepset/xlm-roberta-large-squad2 on the milqa dataset. Packages to install for large roberta model: ```py sentencepiece==0.1.97 protobuf==3.20.0 ``` How to use: ```py from transformers import pipeline qa_pipeline = pipeline( "question-answering", model = "ZTamas/xlm-roberta-large-squad2-qa-milqa-impossible", tokenizer = "ZTamas/xlm-roberta-large-squad2-qa-milqa-impossible", device = 0, #GPU selection, -1 on CPU handle_impossible_answer = True, max_answer_len = 50 #This can be modified ) predictions = qa_pipeline({ 'context': context, 'question': question }) print(predictions) ```
DORA1222/cra-test0627
DORA1222
2023-06-27T12:31:22Z
0
0
null
[ "ab", "license:other", "region:us" ]
null
2023-06-27T12:30:02Z
--- license: other language: - ab metrics: - accuracy ---
kejolong/bayonetta2.0
kejolong
2023-06-27T12:10:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-27T12:06:19Z
--- license: creativeml-openrail-m ---
iioSnail/bert-base-chinese-medical-ner
iioSnail
2023-06-27T12:09:50Z
593
9
transformers
[ "transformers", "pytorch", "bert", "token-classification", "chinese", "ner", "medical", "zh", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-25T07:39:03Z
--- license: afl-3.0 tags: - chinese - ner - medical language: - zh --- # 医疗领域中文命名实体识别 项目地址:https://github.com/iioSnail/chinese_medical_ner 使用方法: ``` from transformers import AutoModelForTokenClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('iioSnail/bert-base-chinese-medical-ner') model = AutoModelForTokenClassification.from_pretrained("iioSnail/bert-base-chinese-medical-ner") sentences = ["瘦脸针、水光针和玻尿酸详解!", "半月板钙化的病因有哪些?"] inputs = tokenizer(sentences, return_tensors="pt", padding=True, add_special_tokens=False) outputs = model(**inputs) outputs = outputs.logits.argmax(-1) * inputs['attention_mask'] print(outputs) ``` 输出结果: ``` tensor([[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 4, 4], [1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 0, 0]]) ``` 其中 `1=B, 2=I, 3=E, 4=O`。`1, 3`表示一个二字医疗实体,`1,2,3`表示一个3字医疗实体, `1,2,2,3`表示一个4字医疗实体,依次类推。 可以使用项目中的`MedicalNerModel.format_outputs(sentences, outputs)`来将输出进行转换。 效果如下: ``` [ [ {'start': 0, 'end': 3, 'word': '瘦脸针'}, {'start': 4, 'end': 7, 'word': '水光针'}, {'start': 8, 'end': 11, 'word': '玻尿酸'}、 ], [ {'start': 0, 'end': 5, 'word': '半月板钙化'} ] ] ``` 更多信息请参考项目:https://github.com/iioSnail/chinese_medical_ner
TheYuriLover/airoboros-13b-gpt4-1.4-GPTQ-32g-ao-ts
TheYuriLover
2023-06-27T12:07:09Z
9
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T08:22:46Z
This is the gptq 4bit quantization of this model: https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4 This quantization was made by using this repository: https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/triton And I used the triton branch with all the gptq implementations available (true_sequential + act_order + groupsize 32)
J4m35M4xw3ll/Reinforce-CartPole-v1
J4m35M4xw3ll
2023-06-27T12:06:51Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T12:06:40Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
joncam14/rl_course_vizdoom_health_gathering_supreme
joncam14
2023-06-27T11:59:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T11:44:27Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.66 +/- 6.13 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r joncam14/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
youngp5/skin-conditions
youngp5
2023-06-27T11:50:31Z
217
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "medical", "en", "dataset:youngp5/tumors", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-20T17:14:27Z
--- license: mit datasets: - youngp5/tumors language: - en metrics: - accuracy library_name: transformers tags: - medical ---
aidn/squadBert3Epochs
aidn
2023-06-27T11:39:42Z
63
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-27T10:47:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: aidn/squadBert3Epochs results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aidn/squadBert3Epochs This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8730 - Validation Loss: 1.1031 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 8758, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.5485 | 1.1485 | 0 | | 0.9929 | 1.1031 | 1 | | 0.8730 | 1.1031 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
Olehf/Re
Olehf
2023-06-27T11:36:04Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-06-27T11:36:04Z
--- license: bigscience-openrail-m ---
Anmol0130/bottle_detection_june
Anmol0130
2023-06-27T11:25:56Z
189
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T11:25:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: bottle_detection_june results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.84375 --- # bottle_detection_june Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Dewar's_12_Years ![Dewar's_12_Years](images/Dewar's_12_Years.jpg) #### Dewar's_white_lable ![Dewar's_white_lable](images/Dewar's_white_lable.png) #### bacardi_black ![bacardi_black](images/bacardi_black.jpg) #### bacardi_carta_blanca ![bacardi_carta_blanca](images/bacardi_carta_blanca.jpg) #### bacardi_carta_negra ![bacardi_carta_negra](images/bacardi_carta_negra.jpg) #### bacardi_carta_oro ![bacardi_carta_oro](images/bacardi_carta_oro.webp) #### bombay_sapphire ![bombay_sapphire](images/bombay_sapphire.jpg) #### coka_cola ![coka_cola](images/coka_cola.jpg) #### martini ![martini](images/martini.jpg)
ahishamm/vit-huge-PH2-patch-14
ahishamm
2023-06-27T11:21:19Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T11:18:25Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-huge-PH2-patch-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-huge-PH2-patch-14 This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on the ahishamm/ph2_vit_db dataset. It achieves the following results on the evaluation set: - Loss: 0.3385 - Accuracy: 0.875 - Recall: 0.875 - F1: 0.875 - Precision: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-large-PH2-patch-16
ahishamm
2023-06-27T11:16:04Z
190
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T11:14:23Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-PH2-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-PH2-patch-16 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the ahishamm/ph2_vit_db dataset. It achieves the following results on the evaluation set: - Loss: 0.5830 - Accuracy: 0.85 - Recall: 0.85 - F1: 0.85 - Precision: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-base-PH2-patch-32
ahishamm
2023-06-27T11:14:06Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T11:13:12Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-PH2-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-PH2-patch-32 This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the ahishamm/ph2_vit_db dataset. It achieves the following results on the evaluation set: - Loss: 0.3667 - Accuracy: 0.875 - Recall: 0.875 - F1: 0.875 - Precision: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-large-PH2-sharpened-patch-32
ahishamm
2023-06-27T10:54:39Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T10:51:42Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-PH2-sharpened-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-PH2-sharpened-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/PH2_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.0309 - Accuracy: 1.0 - Recall: 1.0 - F1: 1.0 - Precision: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
antoninobrillante/gtl-elephant-test2
antoninobrillante
2023-06-27T10:53:16Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-27T10:41:22Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### gtl-elephant-test2 Dreambooth model trained by antoninobrillante with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
maidh/poca-SoccerTwos
maidh
2023-06-27T10:53:06Z
17
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-06-27T10:52:53Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: maidh/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
TurkuNLP/bloom-finnish-176b
TurkuNLP
2023-06-27T10:52:36Z
44
6
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "arxiv:2303.03915", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-12T11:52:56Z
--- license: bigscience-bloom-rail-1.0 --- Multilingual Generative Pretrained Transformer with 176B parameters with capacity for Finnish. This model is built upon pretrained [BLOOM](https://huggingface.co/bigscience/bloom) which is then further pretrained with a combined ROOTS + Finnish (without weighting) dataset for 40B tokens. **Datasets** We used a combination of multiple Finnish resources. * Finnish Internet Parsebank https://turkunlp.org/finnish_nlp.html mC4 multilingual colossal, cleaned Common Crawl https://huggingface.co/datasets/mc4 * Common Crawl Finnish https://TODO * Finnish Wikipedia https://fi.wikipedia.org/wiki * Lönnrot Projekti Lönnrot http://www.lonnrot.net/ * ePub National library ”epub” collection * National library ”lehdet” collection * Suomi24 The Suomi 24 Corpus 2001-2020 http://urn.fi/urn:nbn:fi:lb-2021101527 * Reddit r/Suomi submissions and comments https://www.reddit.com/r/Suomi * STT Finnish News Agency Archive 1992-2018 http://urn.fi/urn:nbn:fi:lb-2019041501 * Yle Finnish News Archive 2011-2018 http://urn.fi/urn:nbn:fi:lb-2017070501 * Yle Finnish News Archive 2019-2020 http://urn.fi/urn:nbn:fi:lb-2021050401 * Yle News Archive Easy-to-read Finnish 2011-2018 http://urn.fi/urn:nbn:fi:lb-2019050901 * Yle News Archive Easy-to-read Finnish 2019-2020 http://urn.fi/urn:nbn:fi:lb-2021050701 * [ROOTS](https://arxiv.org/abs/2303.03915) - original BLOOM training corpus **Sampling ratios for Finnish** |Dataset | Chars | Ratio | Weight | W.Ratio | |----------|--------|---------|--------|---------| |Parsebank | 35.0B | 16.9\% | 1.5 | 22.7\%| |mC4-Fi | 46.3B | 22.4\% | 1.0 | 20.0\%| |CC-Fi | 79.6B | 38.5\% | 1.0 | 34.4\%| |Fiwiki | 0.8B | 0.4\% | 3.0 | 1.0\%| |Lönnrot | 0.8B | 0.4\% | 3.0 | 1.0\%| |Yle | 1.6B | 0.8\% | 2.0 | 1.4\%| |STT | 2.2B | 1.1\% | 2.0 | 1.9\%| |ePub | 13.5B | 6.5\% | 1.0 | 5.8\%| |Lehdet | 5.8B | 2.8\% | 1.0 | 2.5\%| |Suomi24 | 20.6B | 9.9\% | 1.0 | 8.9\%| |Reddit-Fi | 0.7B | 0.4\% | 1.0 | 0.3\%| |**TOTAL** | **207.0B** | **100.0\%** | **N/A** | **100.0\%** | And for whole continued pretraining, ROOTS is mixed in.
ahishamm/vit-base-PH2-sharpened-patch-32
ahishamm
2023-06-27T10:48:02Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-27T10:46:42Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-PH2-sharpened-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-PH2-sharpened-patch-32 This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the ahishamm/PH2_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.0426 - Accuracy: 1.0 - Recall: 1.0 - F1: 1.0 - Precision: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
michaelfeil/ct2fast-mpt-7b-instruct
michaelfeil
2023-06-27T10:34:39Z
6
0
transformers
[ "transformers", "mpt", "text-generation", "ctranslate2", "int8", "float16", "Composer", "MosaicML", "llm-foundry", "custom_code", "dataset:mosaicml/dolly_hhrlhf", "arxiv:2205.14135", "arxiv:2108.12409", "arxiv:2010.04245", "license:cc-by-sa-3.0", "autotrain_compatible", "region:us" ]
text-generation
2023-05-30T07:19:35Z
--- license: cc-by-sa-3.0 datasets: - mosaicml/dolly_hhrlhf tags: - ctranslate2 - int8 - float16 - Composer - MosaicML - llm-foundry inference: false --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.16.0 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-mpt-7b-instruct" from hf_hub_ctranslate2 import GeneratorCT2fromHfHub model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", # tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}") ) outputs = model.generate( text=["def fibonnaci(", "User: How are you doing? Bot:"], max_length=64, include_prompt_in_result=False ) print(outputs) ``` Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-06-27 using ``` ct2-transformers-converter --model mosaicml/mpt-7b-instruct --output_dir ~/tmp-ct2fast-mpt-7b-instruct --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json requirements.txt .gitattributes --quantization int8_float16 --trust_remote_code ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # MPT-7B-Instruct MPT-7B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. * License: _CC-By-SA-3.0_ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date May 5, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Longboi24**: > What is a quoll? **MPT-7B-Instruct**: >A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-instruct', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted in the dolly-15k format: ```python INSTRUCTION_KEY = "### Instruction:" RESPONSE_KEY = "### Response:" INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) example = "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week? Explain before answering." fmt_ex = PROMPT_FOR_GENERATION_FORMAT.format(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 8 A100-40GBs for about 2.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
Intel/deberta-v3-base-mrpc-int8-dynamic-inc
Intel
2023-06-27T10:32:10Z
6
0
transformers
[ "transformers", "onnx", "deberta-v2", "text-classification", "text-classfication", "int8", "Intel® Neural Compressor", "neural-compressor", "PostTrainingDynamic", "dataset:glue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-25T07:39:02Z
--- license: mit tags: - text-classfication - int8 - Intel® Neural Compressor - neural-compressor - PostTrainingDynamic - onnx datasets: - glue metrics: - f1 --- # INT8 deberta-v3-base-mrpc ## Post-training Dynamic quantization ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/deberta-v3-base-mrpc](https://huggingface.co/Intel/deberta-v3-base-mrpc). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.9239|0.9223| | **Model size (MB)** |350|705| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/deberta-v3-base-mrpc-int8-dynamic') ```
Pavlovvyache/video
Pavlovvyache
2023-06-27T10:28:30Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-06-27T10:26:28Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Intel/xlm-roberta-base-mrpc-int8-dynamic-inc
Intel
2023-06-27T10:01:34Z
5
0
transformers
[ "transformers", "onnx", "xlm-roberta", "text-classification", "text-classfication", "int8", "Intel® Neural Compressor", "PostTrainingDynamic", "en", "dataset:mrpc", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-28T07:33:55Z
--- language: en license: mit tags: - text-classfication - int8 - Intel® Neural Compressor - PostTrainingDynamic - onnx datasets: - mrpc metrics: - f1 --- # INT8 xlm-roberta base finetuned MRPC ## Post-training dynamic quantization ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/xlm-roberta-base-mrpc](https://huggingface.co/Intel/xlm-roberta-base-mrpc). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8966|0.9010| | **Model size (MB)** |354|1061| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/xlm-roberta-base-mrpc-int8-dynamic') ```
michaelfeil/ct2fast-open-llama-13b-open-instruct
michaelfeil
2023-06-27T09:55:36Z
6
0
transformers
[ "transformers", "llama", "text-generation", "ctranslate2", "int8", "float16", "en", "dataset:VMware/open-instruct-v1-oasst-dolly-hhrlhf", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T08:56:08Z
--- tags: - ctranslate2 - int8 - float16 license: cc datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [VMware/open-llama-13b-open-instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.16.0 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-open-llama-13b-open-instruct" from hf_hub_ctranslate2 import GeneratorCT2fromHfHub model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", # tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}") ) outputs = model.generate( text=["def fibonnaci(", "User: How are you doing? Bot:"], max_length=64, include_prompt_in_result=False ) print(outputs) ``` Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-06-27 using ``` ct2-transformers-converter --model VMware/open-llama-13b-open-instruct --output_dir ~/tmp-ct2fast-open-llama-13b-open-instruct --force --copy_files README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # VMware/open-llama-13B-open-instruct Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for <b>COMMERCIAL USE</b>. <br> <b> NOTE </b> : The model was trained using the Alpaca prompt template \ <b> NOTE </b> : Fast tokenizer results in incorrect encoding, set the ```use_fast = False``` parameter, when instantiating the tokenizer\ <b> NOTE </b> : The model might struggle with code as the tokenizer merges multiple spaces ## License - <b>Commercially Viable </b> - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 13B parameters - Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf) ## Use in Transformers ``` import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = 'VMware/open-llama-13b-open-instruct' tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential') prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" prompt = 'Explain in simple terms how the attention mechanism of a transformer model works' inputt = prompt_template.format(instruction= prompt) input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda") output1 = model.generate(input_ids, max_length=512) input_length = input_ids.shape[1] output1 = output1[:, input_length:] output = tokenizer.decode(output1[0]) print(output) ``` ## Finetuning details The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning) ## Evaluation <B>TODO</B>
CAiRE/SER-wav2vec2-large-xlsr-53-eng-zho-all-age
CAiRE
2023-06-27T09:52:35Z
551
4
transformers
[ "transformers", "pytorch", "wav2vec2", "speech-emotion-recognition", "audio-classification", "en", "zh", "dataset:Ar4ikov/iemocap_audio_text_splitted", "arxiv:2306.14517", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-27T09:09:18Z
--- license: cc-by-sa-4.0 datasets: - Ar4ikov/iemocap_audio_text_splitted language: - en - zh metrics: - f1 library_name: transformers pipeline_tag: audio-classification tags: - speech-emotion-recognition --- # Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English and Chinese data from all-age speakers. The model is trained on the training sets of [CREMA-D](https://github.com/CheyneyComputerScience/CREMA-D), [CSED](https://github.com/AkishinoShiame/Chinese-Speech-Emotion-Datasets), [ElderReact](https://github.com/Mayer123/ElderReact), [ESD](https://github.com/HLTSingapore/Emotional-Speech-Data), [IEMOCAP](https://sail.usc.edu/iemocap/iemocap_release.htm), and [TESS](https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess). When using this model, make sure that your speech input is sampled at 16kHz. The scripts used for training and evaluation can be found here: [https://github.com/HLTCHKUST/elderly_ser/tree/main](https://github.com/HLTCHKUST/elderly_ser/tree/main) ## Evaluation Results For the details (e.g., the statistics of `train`, `valid`, and `test` data), please refer to our paper on [arXiv](https://arxiv.org/abs/2306.14517). It also provides the model's speech emotion recognition performances on: English-All, Chinese-All, English-Elderly, Chinese-Elderly, English-Adults, Chinese-Adults. ## Citation Our paper will be published at INTERSPEECH 2023. In the meantime, you can find our paper on [arXiv](https://arxiv.org/abs/2306.14517). If you find our work useful, please consider citing our paper as follows: ``` @misc{cahyawijaya2023crosslingual, title={Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition}, author={Samuel Cahyawijaya and Holy Lovenia and Willy Chung and Rita Frieske and Zihan Liu and Pascale Fung}, year={2023}, eprint={2306.14517}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
michaelfeil/ct2fast-starcoder
michaelfeil
2023-06-27T09:50:37Z
22
13
transformers
[ "transformers", "gpt_bigcode", "text-generation", "ctranslate2", "int8", "float16", "code", "dataset:bigcode/the-stack-dedup", "arxiv:1911.02150", "arxiv:2205.14135", "arxiv:2207.14255", "arxiv:2305.06161", "license:bigcode-openrail-m", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-23T00:18:05Z
--- pipeline_tag: text-generation inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers tags: - ctranslate2 - int8 - float16 - code model-index: - name: StarCoder results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval (Prompted) metrics: - name: pass@1 type: pass@1 value: 0.408 verified: false - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.336 verified: false - task: type: text-generation dataset: type: mbpp name: MBPP metrics: - name: pass@1 type: pass@1 value: 0.527 verified: false - task: type: text-generation dataset: type: ds1000 name: DS-1000 (Overall Completion) metrics: - name: pass@1 type: pass@1 value: 0.26 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 0.3155 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C#) metrics: - name: pass@1 type: pass@1 value: 0.2101 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (D) metrics: - name: pass@1 type: pass@1 value: 0.1357 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Go) metrics: - name: pass@1 type: pass@1 value: 0.1761 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 0.3022 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Julia) metrics: - name: pass@1 type: pass@1 value: 0.2302 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 0.3079 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Lua) metrics: - name: pass@1 type: pass@1 value: 0.2389 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 0.2608 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Perl) metrics: - name: pass@1 type: pass@1 value: 0.1734 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 0.3357 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (R) metrics: - name: pass@1 type: pass@1 value: 0.155 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Ruby) metrics: - name: pass@1 type: pass@1 value: 0.0124 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Racket) metrics: - name: pass@1 type: pass@1 value: 0.0007 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 0.2184 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Scala) metrics: - name: pass@1 type: pass@1 value: 0.2761 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Bash) metrics: - name: pass@1 type: pass@1 value: 0.1046 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Swift) metrics: - name: pass@1 type: pass@1 value: 0.2274 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (TypeScript) metrics: - name: pass@1 type: pass@1 value: 0.3229 verified: false extra_gated_prompt: >- ## Model License Agreement Please read the BigCode [OpenRAIL-M license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) agreement before accepting it. extra_gated_fields: I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.16.0 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-starcoder" from hf_hub_ctranslate2 import GeneratorCT2fromHfHub model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", # tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}") ) outputs = model.generate( text=["def fibonnaci(", "User: How are you doing? Bot:"], max_length=64, include_prompt_in_result=False ) print(outputs) ``` Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-06-27 using ``` ct2-transformers-converter --model bigcode/starcoder --output_dir ~/tmp-ct2fast-starcoder --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json vocab.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # StarCoder ![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/StarCoderBanner.png) Play with the model on the [StarCoder Playground](https://huggingface.co/spaces/bigcode/bigcode-playground). ## Table of Contents 1. [Model Summary](##model-summary) 2. [Use](##use) 3. [Limitations](##limitations) 4. [Training](##training) 5. [License](##license) 6. [Citation](##citation) ## Model Summary The StarCoder models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens. - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org) - **Paper:** [💫StarCoder: May the source be with you!](https://arxiv.org/abs/2305.06161) - **Point of Contact:** [[email protected]](mailto:[email protected]) - **Languages:** 80+ Programming languages ## Use ### Intended use The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant. **Feel free to share your generations in the Community tab!** ### Generation ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigcode/starcoder" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Fill-in-the-middle Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output: ```python input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>" inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Attribution & Other Requirements The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code. # Limitations The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations. # Training ## Model - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective - **Pretraining steps:** 250k - **Pretraining tokens:** 1 trillion - **Precision:** bfloat16 ## Hardware - **GPUs:** 512 Tesla A100 - **Training time:** 24 days ## Software - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # License The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement). # Citation ``` @article{li2023starcoder, title={StarCoder: may the source be with you!}, author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries}, year={2023}, eprint={2305.06161}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hongrui/mammogram_v_2_2
hongrui
2023-06-27T09:48:52Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-26T22:46:35Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - hongrui/mammogram_v_2_2 These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were fine-tuned on the hongrui/mammogram_v_1 dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
SHENMU007/neunit_BASE_V10.8
SHENMU007
2023-06-27T09:44:23Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-06-27T06:43:45Z
--- language: - zh license: mit tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
arildgrimstveit/vicuna7b
arildgrimstveit
2023-06-27T09:43:58Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T08:36:21Z
--- inference: false --- **NOTE: New version available** Please check out a newer version of the weights [here](https://huggingface.co/lmsys/vicuna-7b-v1.3). If you still want to use this old version, please see the compatibility and difference between different versions [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). **NOTE: This "delta model" cannot be used directly.** Users have to apply it on top of the original LLaMA weights to get actual Vicuna weights. See [instructions](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#how-to-apply-delta-weights-for-weights-v11-and-v0). <br> <br> # Vicuna Model Card ## Model details **Model type:** Vicuna is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. It is an auto-regressive language model, based on the transformer architecture. **Model date:** Vicuna was trained between March 2023 and April 2023. **Organizations developing the model:** The Vicuna team with members from UC Berkeley, CMU, Stanford, and UC San Diego. **Paper or resources for more information:** https://lmsys.org/blog/2023-03-30-vicuna/ **Where to send questions or comments about the model:** https://github.com/lm-sys/FastChat/issues ## Intended use **Primary intended uses:** The primary use of Vicuna is research on large language models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## Training dataset 70K conversations collected from ShareGPT.com. ## Evaluation dataset A preliminary evaluation of the model quality is conducted by creating a set of 80 diverse questions and utilizing GPT-4 to judge the model outputs. See https://lmsys.org/blog/2023-03-30-vicuna/ for more details.
apparaomulpuri/alpaca-HJ-model
apparaomulpuri
2023-06-27T09:39:37Z
6
0
peft
[ "peft", "region:us" ]
null
2023-06-27T05:12:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
hw2942/bert-base-chinese-finetuning-wallstreetcn-morning-news-vix-sz50-v1
hw2942
2023-06-27T09:03:45Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T02:57:50Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-chinese-finetuning-wallstreetcn-morning-news-vix-sz50-v1 results: [] language: - zh widget: - text:A股创业板六年新高;纳指跌落高位,标普又新高,创史上第二大中概IPO和今年美股最大IPO的滴滴首日冲高回落,市值破800亿美元,叮咚买菜次日涨逾60%;美元逾两月新高,金银铜6月大跌,原油半年涨超50%。\n中国6月官方制造业PMI为50.9,价格指数从高位回落。\n央行等六部门:充分发挥信贷等金融子市场合力,增强政策的针对性和可操作性。\n人社部 “十四五” 发展规划要求,基本养老保险参保率达95%,城镇新增就业逾5000万人。\n沪深交所7月19日起下调基金交易经手费收费标准。\n奈雪的茶赴港上市首日破发,收盘大跌14%,市值跌破300亿港元。\n港股上市倒计时,小鹏汽车定价165港元/股。\n格力2020股东会通过员工持股计划等议案,董明珠称接班人不是我说你行就行,是你能行才行。\n美国6月小非农ADP新增就业高于预期,绝对值较5月有所回落。\n美联储逆回购用量史上首次逼近1万亿美元。\n媒体称拜登最早下周颁布新行政令,限制多个行业的寡头垄断。\n亚马逊称FTC新任主席有偏见,寻求其回避反垄断调查。\n散户最爱平台Robinhood遭FINRA创纪录罚款7000万美元,被指坑害百万客户。 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuning-wallstreetcn-morning-news-vix-sz50-v1 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0050 - Accuracy: 0.6538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 19 | 0.6986 | 0.5 | | No log | 2.0 | 38 | 0.6988 | 0.5 | | No log | 3.0 | 57 | 0.7804 | 0.5 | | No log | 4.0 | 76 | 0.6912 | 0.5 | | No log | 5.0 | 95 | 0.8595 | 0.5192 | | No log | 6.0 | 114 | 0.7574 | 0.5962 | | No log | 7.0 | 133 | 1.6235 | 0.6154 | | No log | 8.0 | 152 | 1.2308 | 0.6346 | | No log | 9.0 | 171 | 1.1341 | 0.6923 | | No log | 10.0 | 190 | 1.0050 | 0.6538 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Rryay12/ppo-SnowballTarget
Rryay12
2023-06-27T08:58:22Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-27T08:48:38Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Rryay12/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SHENMU007/neunit-changchun-20230626V2
SHENMU007
2023-06-27T08:57:33Z
159
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-27T05:55:50Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: neunit-changchun-20230626V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # neunit-changchun-20230626V2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0047 | 1.0 | 3303 | 0.0019 | 0.9997 | | 0.0029 | 2.0 | 6606 | 0.0010 | 0.9996 | | 0.0044 | 3.0 | 9909 | 0.0003 | 0.9999 | | 0.0006 | 4.0 | 13212 | 0.0000 | 1.0 | | 0.0 | 5.0 | 16515 | 0.0001 | 1.0000 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
berluk/cow-detection
berluk
2023-06-27T08:51:37Z
4
0
tf-keras
[ "tf-keras", "image-classification", "region:us" ]
image-classification
2023-06-16T13:05:21Z
--- pipeline_tag: image-classification ---
Broonion/RLcourse-unit1-ppo-LunarLander-v2
Broonion
2023-06-27T08:46:01Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T08:45:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 295.76 +/- 14.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Intel/albert-base-v2-sst2-int8-dynamic-inc
Intel
2023-06-27T08:45:08Z
5
0
transformers
[ "transformers", "onnx", "albert", "text-classification", "text-classfication", "int8", "Intel® Neural Compressor", "PostTrainingDynamic", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-28T09:10:38Z
--- language: en license: apache-2.0 tags: - text-classfication - int8 - Intel® Neural Compressor - PostTrainingDynamic - onnx datasets: - glue metrics: - f1 --- # INT8 albert-base-v2-sst2 ## Post-training dynamic quantization ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Alireza1044/albert-base-v2-sst2](https://huggingface.co/Alireza1044/albert-base-v2-sst2). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-accuracy)** |0.9186|0.9232| | **Model size (MB)** |59|45| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/albert-base-v2-sst2-int8-dynamic') ```
joohwan/chanhyuk-gd
joohwan
2023-06-27T08:40:39Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-27T07:12:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: chanhyuk-gd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chanhyuk-gd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0837 - Wer: 9.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.246 | 0.18 | 500 | 0.2557 | 24.6951 | | 0.1363 | 0.36 | 1000 | 0.1898 | 18.1750 | | 0.094 | 0.54 | 1500 | 0.1450 | 14.4255 | | 0.0842 | 0.72 | 2000 | 0.1100 | 15.4495 | | 0.0595 | 0.9 | 2500 | 0.0916 | 10.6008 | | 0.0141 | 1.08 | 3000 | 0.0837 | 9.9533 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3