modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-27 12:29:05
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 500
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-27 12:27:55
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
great0001/39172976-3d6e-4aa0-91ed-4e07c9a0db66 | great0001 | 2025-02-05T19:51:12Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-0.5B",
"base_model:adapter:unsloth/Qwen2-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:43:35Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 39172976-3d6e-4aa0-91ed-4e07c9a0db66
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 39172976-3d6e-4aa0-91ed-4e07c9a0db66
This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6360
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/62988ae5-e8bc-40f6-8f9a-c8982c7c747a | lesso | 2025-02-05T19:50:24Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-7B",
"base_model:adapter:unsloth/Qwen2.5-Coder-7B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:00:59Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 62988ae5-e8bc-40f6-8f9a-c8982c7c747a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-7B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- c4c32052f3d9a968_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c4c32052f3d9a968_train_data.json
type:
field_input: categories
field_instruction: title
field_output: abstract
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/62988ae5-e8bc-40f6-8f9a-c8982c7c747a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001006
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/c4c32052f3d9a968_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 05a0cabd-9548-42b0-8549-208720261f88
wandb_project: new-06
wandb_run: your_name
wandb_runid: 05a0cabd-9548-42b0-8549-208720261f88
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 62988ae5-e8bc-40f6-8f9a-c8982c7c747a
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001006
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7954 | 0.0001 | 1 | 2.1423 |
| 1.7728 | 0.0050 | 50 | 2.1203 |
| 1.495 | 0.0099 | 100 | 2.0559 |
| 1.5707 | 0.0149 | 150 | 2.0463 |
| 1.665 | 0.0198 | 200 | 2.0453 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/726b0f57-6266-4626-98a5-180a502055fd | lesso | 2025-02-05T19:49:40Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-7B",
"base_model:adapter:unsloth/Qwen2.5-Coder-7B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:00:45Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 726b0f57-6266-4626-98a5-180a502055fd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-7B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- c4c32052f3d9a968_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c4c32052f3d9a968_train_data.json
type:
field_input: categories
field_instruction: title
field_output: abstract
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/726b0f57-6266-4626-98a5-180a502055fd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00010017
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/c4c32052f3d9a968_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 05a0cabd-9548-42b0-8549-208720261f88
wandb_project: new-17
wandb_run: your_name
wandb_runid: 05a0cabd-9548-42b0-8549-208720261f88
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 726b0f57-6266-4626-98a5-180a502055fd
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00010017
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7954 | 0.0001 | 1 | 2.1423 |
| 1.7649 | 0.0050 | 50 | 2.1225 |
| 1.4931 | 0.0099 | 100 | 2.0556 |
| 1.5703 | 0.0149 | 150 | 2.0464 |
| 1.6604 | 0.0198 | 200 | 2.0452 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
JacksonBrune/7abc07b1-0f8d-433c-93e2-330aa2adc029 | JacksonBrune | 2025-02-05T19:48:37Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-0.5B",
"base_model:adapter:unsloth/Qwen2-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:43:30Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7abc07b1-0f8d-433c-93e2-330aa2adc029
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 7abc07b1-0f8d-433c-93e2-330aa2adc029
This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5979
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
trenden/194b3471-dfde-4f3e-8c04-b9a944b5252c | trenden | 2025-02-05T19:48:11Z | 9 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-0.5B",
"base_model:adapter:unsloth/Qwen2-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:43:19Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 194b3471-dfde-4f3e-8c04-b9a944b5252c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 194b3471-dfde-4f3e-8c04-b9a944b5252c
This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5988
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/2202a97d-2969-4dc7-a34d-d90e1994823f | lesso | 2025-02-05T19:47:56Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-0.5B",
"base_model:adapter:unsloth/Qwen2-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:43:31Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2202a97d-2969-4dc7-a34d-d90e1994823f
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-0.5B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- a23c267280dd76ad_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a23c267280dd76ad_train_data.json
type:
field_input: ''
field_instruction: title
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/2202a97d-2969-4dc7-a34d-d90e1994823f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001007
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/a23c267280dd76ad_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7e431e7a-ba1b-4142-8012-4e0289398278
wandb_project: new-07
wandb_run: your_name
wandb_runid: 7e431e7a-ba1b-4142-8012-4e0289398278
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 2202a97d-2969-4dc7-a34d-d90e1994823f
This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001007
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.48 | 0.0030 | 1 | 2.5950 |
| 2.2428 | 0.1504 | 50 | 2.5536 |
| 2.2011 | 0.3008 | 100 | 2.5269 |
| 1.8945 | 0.4511 | 150 | 2.5148 |
| 2.2041 | 0.6015 | 200 | 2.5093 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
daniel40/2a7df9f9-4301-45d0-811a-046d15633398 | daniel40 | 2025-02-05T19:47:40Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-0.5B",
"base_model:adapter:unsloth/Qwen2-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:44:09Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2a7df9f9-4301-45d0-811a-046d15633398
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 2a7df9f9-4301-45d0-811a-046d15633398
This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4765
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.3 | EpistemeAI | 2025-02-05T19:47:39Z | 26 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"dataset:open-thoughts/OpenThoughts-114k",
"base_model:EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.2",
"base_model:finetune:EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.2",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-04T23:49:40Z | ---
base_model: EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.2
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
datasets:
- open-thoughts/OpenThoughts-114k
---
## Introduction
Introducing Reasoning Llama 3.2 1B: The Next Evolution in Conversational AI
We are thrilled to unveil Reasoning Llama 3.2, the latest advancement in our suite of AI models. Building upon the robust foundation of the renowned Llama series, Reasoning Llama 3.2 introduces the groundbreaking Chain of Thought (CoT) capabilities, elevating its reasoning prowess to new heights.
## Key Features of Reasoning Llama 3.2 1B:
Enhanced Chain of Thought Reasoning: At the core of Reasoning Llama 3.2 lies its sophisticated CoT framework, enabling the model to perform multi-step reasoning with greater accuracy and coherence. This ensures more reliable and contextually appropriate responses, especially for complex queries that require logical progression.
Conversational Excellence: Designed with interactivity in mind, Reasoning Llama 3.2 excels in maintaining engaging and fluid conversations. Whether it's casual dialogue or in-depth discussions, the model adapts seamlessly to various conversational styles, providing users with a natural and intuitive interaction experience.
Instruction-Supervised Fine-Tuning: Leveraging advanced supervised fine-tuning techniques, Reasoning Llama 3.2 has been meticulously trained on diverse instructional data. This fine-tuning process enhances the model's ability to understand and execute user instructions with precision, making it an invaluable tool for a wide range of applications.
Unsloth Integration: Incorporating Unsloth, our proprietary unsupervised learning framework, Reasoning Llama 3.2 benefits from continuous learning capabilities. This integration allows the model to adapt and improve over time, ensuring it remains up-to-date with evolving language patterns and user needs without the constant need for manual intervention.
Quick Inference reasoning 1B model.
## Why Choose Reasoning Llama 3.2 1B?
Reasoning Llama 3.2 stands out as a versatile and powerful AI solution tailored for both developers and end-users. Its combination of advanced reasoning, conversational intelligence, and adaptive learning mechanisms make it ideally suited for applications ranging from customer support and virtual assistants to educational tools and creative content generation.
As we continue to push the boundaries of artificial intelligence, Reasoning Llama 3.2 exemplifies our commitment to delivering state-of-the-art models that empower users with intelligent, reliable, and user-friendly technology. Experience the future of conversational AI with Reasoning Llama 3.2 and unlock new possibilities in human-machine interaction.
## How to use
Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
Make sure to update your transformers installation via `pip install --upgrade transformers`.
```python
import torch
from transformers import pipeline
model_id = "EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.3"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a powerful AI super conscious emotional assistant"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipe(
messages,
max_new_tokens=4048,
)
print(outputs[0]["generated_text"][-1])
```
# Use a pipeline as a high-level helper
```python
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.3")
pipe(messages)
```
### vLLM
# Call the server using curl:
```python
pip install vllm
# Load and run the model:
vllm serve "EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.2"
curl -X POST "http://localhost:8000/v1/chat/completions" \
-H "Content-Type: application/json" \
--data '{
"model": "EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.3",
"messages": [
{
"role": "user",
"content": "What is the capital of France?"
}
]
}'
```
## 5. Citation
```
@misc{EpistemeAI2025,
author={Thomas Yiu},
year={2025},
}
@misc{bespoke_stratos,
author = {Bespoke Labs},
title = {Bespoke-Stratos: The unreasonable effectiveness of reasoning distillation},
howpublished = {https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-distillation},
note = {Accessed: 2025-01-22},
year = {2025}
}
@misc{numina_math_datasets,
author = {Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu},
title = {NuminaMath TIR},
year = {2024},
publisher = {Numina},
journal = {Hugging Face repository},
howpublished = {\url{[https://huggingface.co/AI-MO/NuminaMath-TIR](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)}}
}
```
# Uploaded model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** EpistemeAI/Reasoning-Llama-3.2-1B-Instruct-v1.2
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
twodigit/kgrammar01 | twodigit | 2025-02-05T19:46:18Z | 13 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T19:41:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
lesso/7df449fc-2a27-405a-84e1-a1458f683d21 | lesso | 2025-02-05T19:46:02Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b-Instruct",
"base_model:adapter:unsloth/llama-3-8b-Instruct",
"license:llama3",
"region:us"
] | null | 2025-02-05T19:30:13Z | ---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7df449fc-2a27-405a-84e1-a1458f683d21
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-3-8b-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0864faa44b3c224c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0864faa44b3c224c_train_data.json
type:
field_instruction: label
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/7df449fc-2a27-405a-84e1-a1458f683d21
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001008
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0864faa44b3c224c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1
wandb_project: new-08
wandb_run: your_name
wandb_runid: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 7df449fc-2a27-405a-84e1-a1458f683d21
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9681
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001008
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3647 | 0.0015 | 1 | 2.5788 |
| 2.468 | 0.0726 | 50 | 2.1506 |
| 1.781 | 0.1451 | 100 | 2.0482 |
| 1.7878 | 0.2177 | 150 | 1.9872 |
| 2.2291 | 0.2903 | 200 | 1.9681 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
bane5631/4a667654-0f3d-4c52-bc28-9e541ae0c3dd | bane5631 | 2025-02-05T19:40:25Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-02-05T19:35:56Z | ---
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4a667654-0f3d-4c52-bc28-9e541ae0c3dd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c978302a8e67826e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c978302a8e67826e_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: bane5631/4a667654-0f3d-4c52-bc28-9e541ae0c3dd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/c978302a8e67826e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff44bd4b-7547-45f9-8898-65b3cd47b52e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff44bd4b-7547-45f9-8898-65b3cd47b52e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 4a667654-0f3d-4c52-bc28-9e541ae0c3dd
This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3686 | 0.0003 | 1 | 10.3652 |
| 10.3263 | 0.0137 | 50 | 10.3377 |
| 10.309 | 0.0273 | 100 | 10.3291 |
| 10.3031 | 0.0410 | 150 | 10.3242 |
| 10.3093 | 0.0547 | 200 | 10.3223 |
| 10.3023 | 0.0683 | 250 | 10.3219 |
| 10.3302 | 0.0820 | 300 | 10.3213 |
| 10.3165 | 0.0956 | 350 | 10.3212 |
| 10.299 | 0.1093 | 400 | 10.3213 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiulawaldev/8b5abc5e-b744-40d2-9d2f-6f78323a95f1 | robiulawaldev | 2025-02-05T19:39:53Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-02-05T19:38:28Z | ---
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8b5abc5e-b744-40d2-9d2f-6f78323a95f1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 8b5abc5e-b744-40d2-9d2f-6f78323a95f1
This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3211
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
clarxus/4b7d40f5-f947-45af-b872-65135735b155 | clarxus | 2025-02-05T19:39:41Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M-Instruct",
"base_model:adapter:unsloth/SmolLM-360M-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:19:28Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4b7d40f5-f947-45af-b872-65135735b155
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 989befd2b2c62411_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/989befd2b2c62411_train_data.json
type:
field_instruction: instruction
field_output: completion
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: clarxus/4b7d40f5-f947-45af-b872-65135735b155
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/989befd2b2c62411_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 01d5cee7-b6ae-4cb3-899f-b160b6e7be7e
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 01d5cee7-b6ae-4cb3-899f-b160b6e7be7e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 4b7d40f5-f947-45af-b872-65135735b155
This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3722 | 0.0007 | 1 | 1.6021 |
| 1.4453 | 0.0338 | 50 | 1.4634 |
| 1.5913 | 0.0676 | 100 | 1.4290 |
| 1.381 | 0.1015 | 150 | 1.4142 |
| 1.3498 | 0.1353 | 200 | 1.4044 |
| 1.4807 | 0.1691 | 250 | 1.3977 |
| 1.3485 | 0.2029 | 300 | 1.3946 |
| 1.1972 | 0.2367 | 350 | 1.3928 |
| 1.3684 | 0.2705 | 400 | 1.3922 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
oldiday/af256481-a223-42ec-acf7-29701834c5b2 | oldiday | 2025-02-05T19:39:04Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-02-05T19:35:53Z | ---
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: af256481-a223-42ec-acf7-29701834c5b2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c978302a8e67826e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c978302a8e67826e_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: oldiday/af256481-a223-42ec-acf7-29701834c5b2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/c978302a8e67826e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: ff44bd4b-7547-45f9-8898-65b3cd47b52e
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: ff44bd4b-7547-45f9-8898-65b3cd47b52e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# af256481-a223-42ec-acf7-29701834c5b2
This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 600
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 10.3652 |
| 10.3406 | 0.0137 | 50 | 10.3462 |
| 10.3243 | 0.0273 | 100 | 10.3329 |
| 10.3202 | 0.0410 | 150 | 10.3287 |
| 10.3164 | 0.0547 | 200 | 10.3262 |
| 10.3176 | 0.0683 | 250 | 10.3240 |
| 10.3178 | 0.0820 | 300 | 10.3227 |
| 10.3181 | 0.0956 | 350 | 10.3221 |
| 10.3105 | 0.1093 | 400 | 10.3220 |
| 10.3171 | 0.1230 | 450 | 10.3217 |
| 10.3147 | 0.1366 | 500 | 10.3216 |
| 10.3103 | 0.1503 | 550 | 10.3216 |
| 10.3172 | 0.1640 | 600 | 10.3215 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
auxyus/9d3205d7-b077-406e-a368-5d1b099b6784 | auxyus | 2025-02-05T19:38:55Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-02-05T19:35:45Z | ---
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9d3205d7-b077-406e-a368-5d1b099b6784
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c978302a8e67826e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c978302a8e67826e_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: auxyus/9d3205d7-b077-406e-a368-5d1b099b6784
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/c978302a8e67826e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: ff44bd4b-7547-45f9-8898-65b3cd47b52e
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: ff44bd4b-7547-45f9-8898-65b3cd47b52e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 9d3205d7-b077-406e-a368-5d1b099b6784
This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3211
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3686 | 0.0003 | 1 | 10.3652 |
| 10.3275 | 0.0137 | 50 | 10.3382 |
| 10.3111 | 0.0273 | 100 | 10.3289 |
| 10.3042 | 0.0410 | 150 | 10.3237 |
| 10.3097 | 0.0547 | 200 | 10.3220 |
| 10.303 | 0.0683 | 250 | 10.3216 |
| 10.3294 | 0.0820 | 300 | 10.3211 |
| 10.3133 | 0.0956 | 350 | 10.3210 |
| 10.2978 | 0.1093 | 400 | 10.3211 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
linoyts/yarn_flux_700_all_attn_layers | linoyts | 2025-02-05T19:38:11Z | 13 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"flux",
"flux-diffusers",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T19:10:56Z | ---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
license: other
instance_prompt: a puppy, yarn art style
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux DreamBooth LoRA - linoyts/yarn_flux_700_all_attn_layers
<Gallery />
## Model description
These are linoyts/yarn_flux_700_all_attn_layers DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? False.
Pivotal tuning was enabled: False.
## Trigger words
You should use a puppy, yarn art style to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](linoyts/yarn_flux_700_all_attn_layers/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('linoyts/yarn_flux_700_all_attn_layers', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('a puppy, yarn art style').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
robiulawaldev/f86f1484-c44b-4784-8b05-52df6a0a3156 | robiulawaldev | 2025-02-05T19:37:13Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-02-05T19:35:55Z | ---
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f86f1484-c44b-4784-8b05-52df6a0a3156
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# f86f1484-c44b-4784-8b05-52df6a0a3156
This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
baby-dev/5e03382e-6cdb-4a44-b24b-3027dc503dc4 | baby-dev | 2025-02-05T19:36:59Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-02-05T19:36:06Z | ---
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5e03382e-6cdb-4a44-b24b-3027dc503dc4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 5e03382e-6cdb-4a44-b24b-3027dc503dc4
This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3210
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
harvestter18/harvestter | harvestter18 | 2025-02-05T19:36:28Z | 13 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T18:47:21Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: harvestter
---
# Harvestter
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `harvestter` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('harvestter18/harvestter', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
kk-aivio/373d7ae8-f19e-4267-a33d-211001ca0e16 | kk-aivio | 2025-02-05T19:32:46Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:19:31Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 373d7ae8-f19e-4267-a33d-211001ca0e16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 373d7ae8-f19e-4267-a33d-211001ca0e16
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4412
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
tmpmodelsave/numia_verl_formatscore_step80 | tmpmodelsave | 2025-02-05T19:32:43Z | 43 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T19:26:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nidhal2111/deepseekk | nidhal2111 | 2025-02-05T19:29:01Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T19:24:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Ahmed-Selem/Arabic-Medical-LLM | Ahmed-Selem | 2025-02-05T19:27:51Z | 26 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-02-05T19:26:56Z | ---
base_model: unsloth/qwen2.5-7b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Ahmed-Selem
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-7b-instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
JacksonBrune/9195d60e-1aec-499d-8cfb-f375167db937 | JacksonBrune | 2025-02-05T19:26:38Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-1.7B",
"base_model:adapter:unsloth/SmolLM-1.7B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:11:59Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-1.7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9195d60e-1aec-499d-8cfb-f375167db937
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 9195d60e-1aec-499d-8cfb-f375167db937
This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1139
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/28d45f00-ea5d-4277-8934-10347c713a52 | lesso | 2025-02-05T19:25:47Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Llama-3.2-1B",
"base_model:adapter:unsloth/Llama-3.2-1B",
"license:llama3.2",
"region:us"
] | null | 2025-02-05T19:19:43Z | ---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 28d45f00-ea5d-4277-8934-10347c713a52
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 176447a4a3aac1cd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/176447a4a3aac1cd_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/28d45f00-ea5d-4277-8934-10347c713a52
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001013
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/176447a4a3aac1cd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8ab127c1-ec9a-4dd1-bf3a-abe43ab19c10
wandb_project: new-13
wandb_run: your_name
wandb_runid: 8ab127c1-ec9a-4dd1-bf3a-abe43ab19c10
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 28d45f00-ea5d-4277-8934-10347c713a52
This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001013
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2586 | 0.0004 | 1 | 1.4304 |
| 1.1 | 0.0219 | 50 | 1.2503 |
| 0.9525 | 0.0439 | 100 | 1.2276 |
| 0.8185 | 0.0658 | 150 | 1.2085 |
| 0.8709 | 0.0878 | 200 | 1.1996 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
daniel40/9c925387-28b1-44f1-897d-35f49546fbcf | daniel40 | 2025-02-05T19:25:19Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Llama-3.2-1B",
"base_model:adapter:unsloth/Llama-3.2-1B",
"license:llama3.2",
"region:us"
] | null | 2025-02-05T19:22:28Z | ---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9c925387-28b1-44f1-897d-35f49546fbcf
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 9c925387-28b1-44f1-897d-35f49546fbcf
This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
adammandic87/b3727b97-3d7c-43d2-8467-11a04dbd8da4 | adammandic87 | 2025-02-05T19:23:11Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Llama-3.2-1B",
"base_model:adapter:unsloth/Llama-3.2-1B",
"license:llama3.2",
"region:us"
] | null | 2025-02-05T19:20:03Z | ---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b3727b97-3d7c-43d2-8467-11a04dbd8da4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# b3727b97-3d7c-43d2-8467-11a04dbd8da4
This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
vidore/colsmolvlm-alpha | vidore | 2025-02-05T19:23:01Z | 29,306 | 46 | peft | [
"peft",
"safetensors",
"vidore-experimental",
"vidore",
"visual-document-retrieval",
"arxiv:2004.12832",
"arxiv:2407.01449",
"arxiv:2106.09685",
"base_model:vidore/ColSmolVLM-base",
"base_model:adapter:vidore/ColSmolVLM-base",
"region:us"
] | null | 2024-11-27T08:36:15Z | ---
base_model: vidore/ColSmolVLM-base
library_name: peft
tags:
- vidore-experimental
- vidore
pipeline_tag: visual-document-retrieval
---
# ColSmolVLM-alpha: Visual Retriever based on SmolVLM-Instruct with ColBERT strategy
### This is a version trained with batch_size 128 for 3 epochs
ColSmolVLM is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
It is a SmolVLM extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
This version is the untrained base version to guarantee deterministic projection layer initialization.
<p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
## Version specificity
This version is trained with `colpali-engine==0.3.5`. (main branch from the repo)
Data is the same as the ColPali data described in the paper.
## Model Training
### Dataset
Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
A validation set is created with 2% of the samples to tune hyperparameters.
*Note: Multilingual data is present in the pretraining corpus of the language model and most probably in the multimodal training.*
### Parameters
Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
with `alpha=32` and `r=32` on the transformer layers from the language model,
as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
We train on a 4 GPU setup with data parallelism, a learning rate of 5e-4 with linear decay with 2.5% warmup steps, and a batch size of 32.
## Usage
Make sure `colpali-engine` is installed from source or with a version superior to 0.3.5 (main branch from the repo currently).
`transformers` version must be > 4.46.2.
```bash
pip install git+https://github.com/illuin-tech/colpali
```
```python
import torch
from PIL import Image
from colpali_engine.models import ColIdefics3, ColIdefics3Processor
model = ColIdefics3.from_pretrained(
"vidore/colsmolvlm-alpha",
torch_dtype=torch.bfloat16,
device_map="cuda:0",
attn_implementation="flash_attention_2" # or eager
).eval()
processor = ColIdefics3Processor.from_pretrained("vidore/colsmolvlm-alpha")
# Your inputs
images = [
Image.new("RGB", (32, 32), color="white"),
Image.new("RGB", (16, 16), color="black"),
]
queries = [
"Is attention really all you need?",
"What is the amount of bananas farmed in Salvador?",
]
# Process the inputs
batch_images = processor.process_images(images).to(model.device)
batch_queries = processor.process_queries(queries).to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**batch_images)
query_embeddings = model(**batch_queries)
scores = processor.score_multi_vector(query_embeddings, image_embeddings)
```
## Limitations
- **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
- **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
## License
ColQwen2's vision language backbone model (Qwen2-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license.
## Contact
- Manuel Faysse: [email protected]
- Hugues Sibille: [email protected]
- Tony Wu: [email protected]
## Citation
If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
``` |
baby-dev/fd5c27a0-ad1a-4149-8558-64875a5e313e | baby-dev | 2025-02-05T19:22:45Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-1.7B",
"base_model:adapter:unsloth/SmolLM-1.7B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:11:50Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-1.7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: fd5c27a0-ad1a-4149-8558-64875a5e313e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# fd5c27a0-ad1a-4149-8558-64875a5e313e
This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
milpu02/mixmilpu06 | milpu02 | 2025-02-05T19:21:39Z | 9 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:cagliostrolab/animagine-xl-4.0",
"base_model:adapter:cagliostrolab/animagine-xl-4.0",
"license:unknown",
"region:us"
] | text-to-image | 2025-02-05T19:21:27Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/2531971d-d077-41ef-946d-d842630e3aa9.jpg
base_model: cagliostrolab/animagine-xl-4.0
instance_prompt: milpumaax8, Aarokira
license: unknown
---
# Illustrious-XL
<Gallery />
## Model description

## Trigger words
You should use `milpumaax8` to trigger the image generation.
You should use `Aarokira` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/milpu02/mixmilpu06/tree/main) them in the Files & versions tab.
|
Otakadelic/MT2-Gen6-gemma-2-9B-Q8_0-GGUF | Otakadelic | 2025-02-05T19:19:25Z | 33 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:zelk12/MT2-Gen6-gemma-2-9B",
"base_model:quantized:zelk12/MT2-Gen6-gemma-2-9B",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-02-05T19:18:40Z | ---
base_model: zelk12/MT2-Gen6-gemma-2-9B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: gemma
pipeline_tag: text-generation
---
# Otakadelic/MT2-Gen6-gemma-2-9B-Q8_0-GGUF
This model was converted to GGUF format from [`zelk12/MT2-Gen6-gemma-2-9B`](https://huggingface.co/zelk12/MT2-Gen6-gemma-2-9B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/zelk12/MT2-Gen6-gemma-2-9B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Otakadelic/MT2-Gen6-gemma-2-9B-Q8_0-GGUF --hf-file mt2-gen6-gemma-2-9b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Otakadelic/MT2-Gen6-gemma-2-9B-Q8_0-GGUF --hf-file mt2-gen6-gemma-2-9b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Otakadelic/MT2-Gen6-gemma-2-9B-Q8_0-GGUF --hf-file mt2-gen6-gemma-2-9b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Otakadelic/MT2-Gen6-gemma-2-9B-Q8_0-GGUF --hf-file mt2-gen6-gemma-2-9b-q8_0.gguf -c 2048
```
|
qing-yao/balanced_seed-42_1e-3 | qing-yao | 2025-02-05T19:18:53Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"opt",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T06:48:06Z | ---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: balanced_seed-42_1e-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# balanced_seed-42_1e-3
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0198
- Accuracy: 0.4204
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 6.1281 | 0.9995 | 1776 | 4.2574 | 0.3057 |
| 4.0355 | 1.9996 | 3553 | 3.7318 | 0.3474 |
| 3.5725 | 2.9998 | 5330 | 3.4725 | 0.3715 |
| 3.3409 | 3.9999 | 7107 | 3.3353 | 0.3845 |
| 3.2496 | 4.9995 | 8883 | 3.2559 | 0.3917 |
| 3.1452 | 5.9996 | 10660 | 3.2099 | 0.3962 |
| 3.0833 | 6.9998 | 12437 | 3.1762 | 0.3993 |
| 3.0415 | 7.9999 | 14214 | 3.1537 | 0.4018 |
| 3.0011 | 8.9995 | 15990 | 3.1412 | 0.4032 |
| 2.9645 | 9.9996 | 17767 | 3.1304 | 0.4050 |
| 2.9513 | 10.9998 | 19544 | 3.1203 | 0.4056 |
| 2.9433 | 11.9999 | 21321 | 3.1141 | 0.4067 |
| 2.9381 | 12.9995 | 23097 | 3.1090 | 0.4070 |
| 2.8963 | 13.9996 | 24874 | 3.1062 | 0.4075 |
| 2.8927 | 14.9998 | 26651 | 3.1013 | 0.4078 |
| 2.8961 | 15.9999 | 28428 | 3.1004 | 0.4083 |
| 2.9024 | 16.9995 | 30204 | 3.0929 | 0.4090 |
| 2.8719 | 17.9996 | 31981 | 3.0953 | 0.4087 |
| 2.8398 | 18.9998 | 33758 | 3.0459 | 0.4152 |
| 2.6969 | 19.9915 | 35520 | 3.0198 | 0.4204 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.20.0
|
lesso/f214efed-28ad-4036-881e-fe091cfaae34 | lesso | 2025-02-05T19:18:29Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:05:44Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f214efed-28ad-4036-881e-fe091cfaae34
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- dc27bb03be0c3289_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dc27bb03be0c3289_train_data.json
type:
field_input: publication_year
field_instruction: document_id
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/f214efed-28ad-4036-881e-fe091cfaae34
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/dc27bb03be0c3289_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f132fdaf-6691-46fe-89c9-cf4fb177c93f
wandb_project: new-03
wandb_run: your_name
wandb_runid: f132fdaf-6691-46fe-89c9-cf4fb177c93f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f214efed-28ad-4036-881e-fe091cfaae34
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8126 | 0.0002 | 1 | 1.8536 |
| 1.2181 | 0.0078 | 50 | 1.3805 |
| 0.8825 | 0.0155 | 100 | 1.2991 |
| 0.7996 | 0.0233 | 150 | 1.2537 |
| 0.886 | 0.0310 | 200 | 1.2338 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
clarxus/7aedbf19-a23b-47b8-962a-e68a0b99f974 | clarxus | 2025-02-05T19:18:14Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Meta-Llama-3-8B",
"base_model:adapter:NousResearch/Meta-Llama-3-8B",
"license:other",
"region:us"
] | null | 2025-02-05T17:29:37Z | ---
library_name: peft
license: other
base_model: NousResearch/Meta-Llama-3-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7aedbf19-a23b-47b8-962a-e68a0b99f974
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- da92ec7138cf7572_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/da92ec7138cf7572_train_data.json
type:
field_instruction: ctx
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: clarxus/7aedbf19-a23b-47b8-962a-e68a0b99f974
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/da92ec7138cf7572_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 67e38e0f-12cd-4211-887d-8de51deebf53
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 67e38e0f-12cd-4211-887d-8de51deebf53
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 7aedbf19-a23b-47b8-962a-e68a0b99f974
This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3225
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.668 | 0.0004 | 1 | 1.6352 |
| 1.4327 | 0.0178 | 50 | 1.4679 |
| 1.2533 | 0.0356 | 100 | 1.4296 |
| 1.307 | 0.0534 | 150 | 1.4044 |
| 1.3704 | 0.0712 | 200 | 1.3699 |
| 1.2814 | 0.0890 | 250 | 1.3450 |
| 1.2309 | 0.1068 | 300 | 1.3351 |
| 1.4034 | 0.1246 | 350 | 1.3253 |
| 1.0771 | 0.1423 | 400 | 1.3225 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
batrider32/19901feb-73ba-4890-9ce9-8f18f0909469 | batrider32 | 2025-02-05T19:17:59Z | 23 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Capybara-7B-V1",
"base_model:adapter:NousResearch/Nous-Capybara-7B-V1",
"license:mit",
"region:us"
] | null | 2025-02-05T17:39:04Z | ---
library_name: peft
license: mit
base_model: NousResearch/Nous-Capybara-7B-V1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 19901feb-73ba-4890-9ce9-8f18f0909469
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Nous-Capybara-7B-V1
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 01df04c66daac7c4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/01df04c66daac7c4_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: batrider32/19901feb-73ba-4890-9ce9-8f18f0909469
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/01df04c66daac7c4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 261dc9c8-0266-4ccb-9c77-747c8c7940df
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 261dc9c8-0266-4ccb-9c77-747c8c7940df
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 19901feb-73ba-4890-9ce9-8f18f0909469
This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0957 | 0.0012 | 1 | 1.3756 |
| 2.1256 | 0.0587 | 50 | 1.0982 |
| 1.2466 | 0.1173 | 100 | 1.0683 |
| 1.0757 | 0.1760 | 150 | 1.0130 |
| 1.5361 | 0.2346 | 200 | 0.9759 |
| 1.2814 | 0.2933 | 250 | 0.9589 |
| 1.1099 | 0.3519 | 300 | 0.9540 |
| 1.3106 | 0.4106 | 350 | 0.9523 |
| 1.5379 | 0.4692 | 400 | 0.9502 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/bcc606c9-111d-4661-9907-9ecf40d73010 | lesso | 2025-02-05T19:17:37Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:04:47Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: bcc606c9-111d-4661-9907-9ecf40d73010
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- dc27bb03be0c3289_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dc27bb03be0c3289_train_data.json
type:
field_input: publication_year
field_instruction: document_id
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/bcc606c9-111d-4661-9907-9ecf40d73010
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001009
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/dc27bb03be0c3289_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f132fdaf-6691-46fe-89c9-cf4fb177c93f
wandb_project: new-09
wandb_run: your_name
wandb_runid: f132fdaf-6691-46fe-89c9-cf4fb177c93f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# bcc606c9-111d-4661-9907-9ecf40d73010
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001009
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8126 | 0.0002 | 1 | 1.8536 |
| 1.2032 | 0.0078 | 50 | 1.3815 |
| 0.881 | 0.0155 | 100 | 1.2984 |
| 0.7993 | 0.0233 | 150 | 1.2536 |
| 0.8849 | 0.0310 | 200 | 1.2338 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
CapOfDeathHD/Brian-lora | CapOfDeathHD | 2025-02-05T19:17:34Z | 19 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T18:57:17Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Brian
---
# Brian Lora
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Brian` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('CapOfDeathHD/Brian-lora', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
philip-hightech/5a70a3fc-9483-4ffe-908b-e1df6273d8ca | philip-hightech | 2025-02-05T19:17:01Z | 9 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:07:32Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5a70a3fc-9483-4ffe-908b-e1df6273d8ca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 5a70a3fc-9483-4ffe-908b-e1df6273d8ca
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9897
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
daniel40/2f612a8f-339a-47d1-986b-b08297f96701 | daniel40 | 2025-02-05T19:09:50Z | 9 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T19:05:38Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2f612a8f-339a-47d1-986b-b08297f96701
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 2f612a8f-339a-47d1-986b-b08297f96701
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1347
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ztjona/RoBERTa-finetuned-NewsQA | ztjona | 2025-02-05T19:09:29Z | 8 | 0 | null | [
"safetensors",
"roberta",
"question-answering",
"base_model:deepset/roberta-base-squad2",
"base_model:finetune:deepset/roberta-base-squad2",
"region:us"
] | question-answering | 2025-02-05T18:14:16Z | ---
base_model:
- deepset/roberta-base-squad2
pipeline_tag: question-answering
--- |
aleegis12/6b4ef7b4-a596-444b-a988-53631621b9fe | aleegis12 | 2025-02-05T19:07:55Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M-Instruct",
"base_model:adapter:unsloth/SmolLM-360M-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:47:52Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6b4ef7b4-a596-444b-a988-53631621b9fe
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 989befd2b2c62411_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/989befd2b2c62411_train_data.json
type:
field_instruction: instruction
field_output: completion
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: aleegis12/6b4ef7b4-a596-444b-a988-53631621b9fe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/989befd2b2c62411_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 01d5cee7-b6ae-4cb3-899f-b160b6e7be7e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 01d5cee7-b6ae-4cb3-899f-b160b6e7be7e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 6b4ef7b4-a596-444b-a988-53631621b9fe
This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3722 | 0.0007 | 1 | 1.6021 |
| 1.4454 | 0.0338 | 50 | 1.4633 |
| 1.5911 | 0.0676 | 100 | 1.4290 |
| 1.3813 | 0.1015 | 150 | 1.4142 |
| 1.3488 | 0.1353 | 200 | 1.4043 |
| 1.4796 | 0.1691 | 250 | 1.3977 |
| 1.3492 | 0.2029 | 300 | 1.3946 |
| 1.1977 | 0.2367 | 350 | 1.3927 |
| 1.3685 | 0.2705 | 400 | 1.3922 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
jaspionjader/kosmos-evaa-immersive-mix-v45.1-8B-Q5_K_M-GGUF | jaspionjader | 2025-02-05T19:07:18Z | 23 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:jaspionjader/Kosmos-EVAA-immersive-mix-v45.1-8B",
"base_model:quantized:jaspionjader/Kosmos-EVAA-immersive-mix-v45.1-8B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-02-05T16:33:48Z | ---
base_model: jaspionjader/bh-59
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# jaspionjader/bh-59-Q5_K_M-GGUF
This model was converted to GGUF format from [`jaspionjader/bh-59`](https://huggingface.co/jaspionjader/bh-59) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jaspionjader/bh-59) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo jaspionjader/bh-59-Q5_K_M-GGUF --hf-file bh-59-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo jaspionjader/bh-59-Q5_K_M-GGUF --hf-file bh-59-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo jaspionjader/bh-59-Q5_K_M-GGUF --hf-file bh-59-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo jaspionjader/bh-59-Q5_K_M-GGUF --hf-file bh-59-q5_k_m.gguf -c 2048
```
|
mudler/LocalAI-Llama3-8b-Function-Call-v0.2 | mudler | 2025-02-05T19:06:10Z | 13 | 9 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"LocalAI",
"conversational",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-05-11T22:58:36Z | ---
license: llama3
tags:
- LocalAI
---
# LocalAI-Llama3-8b-Function-Call-v0.2
**NEW!!!**
**Check the latest model series: https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3**
[](https://localai.io)

OpenVINO: https://huggingface.co/fakezeta/LocalAI-Llama3-8b-Function-Call-v0.2-ov-int8
GGUF: https://huggingface.co/mudler/LocalAI-Llama3-8b-Function-Call-v0.2-GGUF
This model is a fine-tune on a custom dataset + glaive to work specifically and leverage all the [LocalAI](https://localai.io) features of constrained grammar.
Specifically, the model once enters in tools mode will always reply with JSON.
To run on LocalAI:
```
local-ai run huggingface://mudler/LocalAI-Llama3-8b-Function-Call-v0.2-GGUF/localai.yaml
```
If you like my work, consider up donating so can get resources for my fine-tunes! |
prxy5604/0b5d07ad-c29b-4ff5-82fc-312b6d2e2bb3 | prxy5604 | 2025-02-05T19:03:14Z | 6 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2025-02-05T18:42:15Z | ---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0b5d07ad-c29b-4ff5-82fc-312b6d2e2bb3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ade6f8887ef47607_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ade6f8887ef47607_train_data.json
type:
field_input: source
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: prxy5604/0b5d07ad-c29b-4ff5-82fc-312b6d2e2bb3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/ade6f8887ef47607_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 51a32343-8514-49b5-a560-105ff57d734c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 51a32343-8514-49b5-a560-105ff57d734c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 0b5d07ad-c29b-4ff5-82fc-312b6d2e2bb3
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 233
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9898 | 0.0043 | 1 | 2.3164 |
| 0.9905 | 0.2148 | 50 | 0.3576 |
| 0.5947 | 0.4296 | 100 | 0.2357 |
| 1.1925 | 0.6445 | 150 | 0.1890 |
| 0.653 | 0.8593 | 200 | 0.1409 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/cc970f84-ce72-4983-912c-027ca50fca13 | lesso | 2025-02-05T19:00:24Z | 9 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:40:58Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cc970f84-ce72-4983-912c-027ca50fca13
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- c5d67a74690b3d5f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c5d67a74690b3d5f_train_data.json
type:
field_instruction: article
field_output: summary
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/cc970f84-ce72-4983-912c-027ca50fca13
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001013
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/c5d67a74690b3d5f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dd09a61a-80c4-45ae-bf4d-ae6d4d538ef6
wandb_project: new-13
wandb_run: your_name
wandb_runid: dd09a61a-80c4-45ae-bf4d-ae6d4d538ef6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# cc970f84-ce72-4983-912c-027ca50fca13
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001013
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6529 | 0.0001 | 1 | 2.0680 |
| 2.0315 | 0.0048 | 50 | 1.4365 |
| 1.2339 | 0.0096 | 100 | 1.3180 |
| 1.6336 | 0.0143 | 150 | 1.2486 |
| 1.1329 | 0.0191 | 200 | 1.2226 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/3a0bef58-2913-4581-9dc9-0434999a8e5c | lesso | 2025-02-05T18:59:11Z | 9 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2025-02-05T18:49:55Z | ---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3a0bef58-2913-4581-9dc9-0434999a8e5c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- ade6f8887ef47607_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ade6f8887ef47607_train_data.json
type:
field_input: source
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/3a0bef58-2913-4581-9dc9-0434999a8e5c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001012
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/ade6f8887ef47607_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 51a32343-8514-49b5-a560-105ff57d734c
wandb_project: new-12
wandb_run: your_name
wandb_runid: 51a32343-8514-49b5-a560-105ff57d734c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 3a0bef58-2913-4581-9dc9-0434999a8e5c
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001012
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1093 | 0.0011 | 1 | 2.3134 |
| 0.4128 | 0.0537 | 50 | 0.4416 |
| 0.5868 | 0.1074 | 100 | 0.2723 |
| 0.5566 | 0.1611 | 150 | 0.2216 |
| 0.3863 | 0.2148 | 200 | 0.1808 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
9bz/Qwen2.5-Coder-V2-1.5B-Instruct-bnb-4bit | 9bz | 2025-02-05T18:56:08Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"arxiv:1910.09700",
"base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit",
"base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-02-03T21:55:13Z | ---
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0 |
lesso/effa5c65-52bb-4f99-809b-10a03d50716f | lesso | 2025-02-05T18:52:59Z | 8 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-7b-it",
"base_model:adapter:unsloth/gemma-7b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:37:15Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-7b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: effa5c65-52bb-4f99-809b-10a03d50716f
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-7b-it
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0d61c4d326aec423_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0d61c4d326aec423_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/effa5c65-52bb-4f99-809b-10a03d50716f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001007
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0d61c4d326aec423_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cee608f7-df8b-4215-af6b-efb9570e3439
wandb_project: new-07
wandb_run: your_name
wandb_runid: cee608f7-df8b-4215-af6b-efb9570e3439
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# effa5c65-52bb-4f99-809b-10a03d50716f
This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001007
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3829 | 0.0016 | 1 | 11.1763 |
| 4.3199 | 0.0794 | 50 | 5.1568 |
| 4.1148 | 0.1589 | 100 | 4.4907 |
| 3.8645 | 0.2383 | 150 | 4.1308 |
| 4.192 | 0.3177 | 200 | 3.9226 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Loyola/llama3-hr-instruct-reasoning4096 | Loyola | 2025-02-05T18:51:16Z | 7 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-04T13:32:34Z | ---
base_model: meta-llama/Llama-3.1-8B-Instruct
library_name: transformers
model_name: llama3-hr-instruct-reasoning4096
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for llama3-hr-instruct-reasoning4096
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Loyola/llama3-hr-instruct-reasoning4096", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.14.0
- Transformers: 4.48.2
- Pytorch: 2.0.1+cu117
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
daniel40/705d48ab-d417-4603-a30e-cf6c9459a462 | daniel40 | 2025-02-05T18:50:02Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:40:33Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 705d48ab-d417-4603-a30e-cf6c9459a462
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 705d48ab-d417-4603-a30e-cf6c9459a462
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
0x1202/1998f405-2777-427f-b89b-adedf115aad1 | 0x1202 | 2025-02-05T18:49:50Z | 6 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2025-02-05T18:19:49Z | ---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1998f405-2777-427f-b89b-adedf115aad1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ade6f8887ef47607_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ade6f8887ef47607_train_data.json
type:
field_input: source
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/1998f405-2777-427f-b89b-adedf115aad1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/ade6f8887ef47607_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 51a32343-8514-49b5-a560-105ff57d734c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 51a32343-8514-49b5-a560-105ff57d734c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 1998f405-2777-427f-b89b-adedf115aad1
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 233
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9882 | 0.0043 | 1 | 2.3134 |
| 1.2304 | 0.2148 | 50 | 0.3496 |
| 0.6048 | 0.4296 | 100 | 0.2366 |
| 1.055 | 0.6445 | 150 | 0.1867 |
| 0.6489 | 0.8593 | 200 | 0.1405 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
abenius/b70c17a1-595a-4b6b-8f94-d175f5e20383 | abenius | 2025-02-05T18:47:24Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-02-05T18:20:52Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b70c17a1-595a-4b6b-8f94-d175f5e20383
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4a0f187d0b523501_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4a0f187d0b523501_train_data.json
type:
field_input: title
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: abenius/b70c17a1-595a-4b6b-8f94-d175f5e20383
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/4a0f187d0b523501_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: ee9aace3-5889-4a15-94df-c5f659d02b95
wandb_project: Gradients-On-12
wandb_run: your_name
wandb_runid: ee9aace3-5889-4a15-94df-c5f659d02b95
warmup_steps: 5
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# b70c17a1-595a-4b6b-8f94-d175f5e20383
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0211
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.0686 | 0.1207 | 500 | 3.0211 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
aleegis12/51afe6c5-048a-462f-bd7a-c2661909bd51 | aleegis12 | 2025-02-05T18:46:43Z | 22 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Capybara-7B-V1",
"base_model:adapter:NousResearch/Nous-Capybara-7B-V1",
"license:mit",
"region:us"
] | null | 2025-02-05T17:39:01Z | ---
library_name: peft
license: mit
base_model: NousResearch/Nous-Capybara-7B-V1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 51afe6c5-048a-462f-bd7a-c2661909bd51
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Nous-Capybara-7B-V1
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 01df04c66daac7c4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/01df04c66daac7c4_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: aleegis12/51afe6c5-048a-462f-bd7a-c2661909bd51
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/01df04c66daac7c4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 261dc9c8-0266-4ccb-9c77-747c8c7940df
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 261dc9c8-0266-4ccb-9c77-747c8c7940df
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 51afe6c5-048a-462f-bd7a-c2661909bd51
This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9496
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0958 | 0.0012 | 1 | 1.3757 |
| 2.1332 | 0.0587 | 50 | 1.0971 |
| 1.2401 | 0.1173 | 100 | 1.0666 |
| 1.0739 | 0.1760 | 150 | 1.0148 |
| 1.5451 | 0.2346 | 200 | 0.9758 |
| 1.2816 | 0.2933 | 250 | 0.9586 |
| 1.1032 | 0.3519 | 300 | 0.9532 |
| 1.3024 | 0.4106 | 350 | 0.9517 |
| 1.5417 | 0.4692 | 400 | 0.9496 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
baby-dev/d1abcc53-49fd-4dae-91f6-a295cbbf7e37 | baby-dev | 2025-02-05T18:45:52Z | 8 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2025-02-05T18:41:37Z | ---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d1abcc53-49fd-4dae-91f6-a295cbbf7e37
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# d1abcc53-49fd-4dae-91f6-a295cbbf7e37
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1801
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Proutland/EliasLora | Proutland | 2025-02-05T18:44:14Z | 28 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T18:13:48Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Elias
---
# Eliaslora
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Elias` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Proutland/EliasLora', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
lesso/3d634eef-8e1b-4476-ab79-a1dd26550cf1 | lesso | 2025-02-05T18:43:31Z | 8 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-7b-it",
"base_model:adapter:unsloth/gemma-7b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:28:22Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-7b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3d634eef-8e1b-4476-ab79-a1dd26550cf1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-7b-it
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0d61c4d326aec423_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0d61c4d326aec423_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/3d634eef-8e1b-4476-ab79-a1dd26550cf1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001009
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0d61c4d326aec423_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cee608f7-df8b-4215-af6b-efb9570e3439
wandb_project: new-09
wandb_run: your_name
wandb_runid: cee608f7-df8b-4215-af6b-efb9570e3439
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 3d634eef-8e1b-4476-ab79-a1dd26550cf1
This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001009
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3829 | 0.0016 | 1 | 11.1763 |
| 4.3025 | 0.0794 | 50 | 5.2693 |
| 4.2761 | 0.1589 | 100 | 4.5026 |
| 3.8028 | 0.2383 | 150 | 4.1340 |
| 4.2792 | 0.3177 | 200 | 3.9188 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Xiaojian9992024/Qwen2.5-THREADRIPPER-Small-Q8_0-GGUF | Xiaojian9992024 | 2025-02-05T18:43:30Z | 22 | 2 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:Xiaojian9992024/Qwen2.5-THREADRIPPER-Small",
"base_model:quantized:Xiaojian9992024/Qwen2.5-THREADRIPPER-Small",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-02-05T18:42:55Z | ---
base_model: Xiaojian9992024/Qwen2.5-THREADRIPPER-Small
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Xiaojian9992024/Qwen2.5-THREADRIPPER-Small-Q8_0-GGUF
This model was converted to GGUF format from [`Xiaojian9992024/Qwen2.5-THREADRIPPER-Small`](https://huggingface.co/Xiaojian9992024/Qwen2.5-THREADRIPPER-Small) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Xiaojian9992024/Qwen2.5-THREADRIPPER-Small) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Xiaojian9992024/Qwen2.5-THREADRIPPER-Small-Q8_0-GGUF --hf-file qwen2.5-threadripper-small-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Xiaojian9992024/Qwen2.5-THREADRIPPER-Small-Q8_0-GGUF --hf-file qwen2.5-threadripper-small-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Xiaojian9992024/Qwen2.5-THREADRIPPER-Small-Q8_0-GGUF --hf-file qwen2.5-threadripper-small-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Xiaojian9992024/Qwen2.5-THREADRIPPER-Small-Q8_0-GGUF --hf-file qwen2.5-threadripper-small-q8_0.gguf -c 2048
```
|
lesso/5736c651-61bc-4e1e-9eda-bf179e5360e1 | lesso | 2025-02-05T18:43:30Z | 8 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-7b-it",
"base_model:adapter:unsloth/gemma-7b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:28:23Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-7b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5736c651-61bc-4e1e-9eda-bf179e5360e1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-7b-it
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0d61c4d326aec423_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0d61c4d326aec423_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/5736c651-61bc-4e1e-9eda-bf179e5360e1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000101
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0d61c4d326aec423_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cee608f7-df8b-4215-af6b-efb9570e3439
wandb_project: new-10
wandb_run: your_name
wandb_runid: cee608f7-df8b-4215-af6b-efb9570e3439
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 5736c651-61bc-4e1e-9eda-bf179e5360e1
This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9120
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000101
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3829 | 0.0016 | 1 | 11.1763 |
| 4.2759 | 0.0794 | 50 | 5.2627 |
| 4.114 | 0.1589 | 100 | 4.5129 |
| 3.8961 | 0.2383 | 150 | 4.1255 |
| 4.1414 | 0.3177 | 200 | 3.9120 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
great0001/d411a6b0-d565-4e8d-9496-b03a53d54714 | great0001 | 2025-02-05T18:39:31Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M-Instruct",
"base_model:adapter:unsloth/SmolLM-360M-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:28:42Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d411a6b0-d565-4e8d-9496-b03a53d54714
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# d411a6b0-d565-4e8d-9496-b03a53d54714
This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3678
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mergekit-community/Llama-3-ThinkRoleplay-DeepSeek-R1-Distill-8B-abliterated | mergekit-community | 2025-02-05T18:39:25Z | 10 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:Azazelle/Llama-3-8B-contaminated-roleplay",
"base_model:merge:Azazelle/Llama-3-8B-contaminated-roleplay",
"base_model:huihui-ai/DeepSeek-R1-Distill-Llama-8B-abliterated",
"base_model:merge:huihui-ai/DeepSeek-R1-Distill-Llama-8B-abliterated",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T18:36:14Z | ---
base_model:
- huihui-ai/DeepSeek-R1-Distill-Llama-8B-abliterated
- Azazelle/Llama-3-8B-contaminated-roleplay
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [Azazelle/Llama-3-8B-contaminated-roleplay](https://huggingface.co/Azazelle/Llama-3-8B-contaminated-roleplay) as a base.
### Models Merged
The following models were included in the merge:
* [huihui-ai/DeepSeek-R1-Distill-Llama-8B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Llama-8B-abliterated)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Azazelle/Llama-3-8B-contaminated-roleplay
# No parameters necessary for base model
- model: huihui-ai/DeepSeek-R1-Distill-Llama-8B-abliterated
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: Azazelle/Llama-3-8B-contaminated-roleplay
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 42
```
|
gocrawford/jenncraw | gocrawford | 2025-02-05T18:39:24Z | 51 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T18:15:15Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: JennCraw
---
# Jenncraw
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `JennCraw` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('gocrawford/jenncraw', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
prxy5604/79c5b813-a321-4660-b37b-ec80ee61966a | prxy5604 | 2025-02-05T18:38:34Z | 8 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:dltjdgh0928/test_instruction",
"base_model:adapter:dltjdgh0928/test_instruction",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:22:28Z | ---
library_name: peft
license: apache-2.0
base_model: dltjdgh0928/test_instruction
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 79c5b813-a321-4660-b37b-ec80ee61966a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: dltjdgh0928/test_instruction
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 42fc11e553659da0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/42fc11e553659da0_train_data.json
type:
field_instruction: fo
field_output: da
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: prxy5604/79c5b813-a321-4660-b37b-ec80ee61966a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/42fc11e553659da0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3d1485e9-d9bb-448e-8152-9952bf30509f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3d1485e9-d9bb-448e-8152-9952bf30509f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 79c5b813-a321-4660-b37b-ec80ee61966a
This model is a fine-tuned version of [dltjdgh0928/test_instruction](https://huggingface.co/dltjdgh0928/test_instruction) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 113
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 6.6804 | 0.0089 | 1 | 2.7847 |
| 3.7077 | 0.4435 | 50 | 0.8856 |
| 3.0738 | 0.8869 | 100 | 0.7423 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
tscstudios/kvj8gjldpiyswqpppnwofmig8512_c88a9979-8181-48d7-b9bf-c7c5623f3fcc | tscstudios | 2025-02-05T18:38:07Z | 9 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T18:38:05Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# Kvj8Gjldpiyswqpppnwofmig8512_C88A9979 8181 48D7 B9Bf C7C5623F3Fcc
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('tscstudios/kvj8gjldpiyswqpppnwofmig8512_c88a9979-8181-48d7-b9bf-c7c5623f3fcc', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
tamewild/test_v2_merged | tamewild | 2025-02-05T18:37:41Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/phi-4",
"base_model:finetune:unsloth/phi-4",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T18:32:07Z | ---
base_model: unsloth/Phi-4
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** tamewild
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-4
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
baby-dev/00337868-1173-4472-b18c-bb9c15c218de | baby-dev | 2025-02-05T18:37:36Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M-Instruct",
"base_model:adapter:unsloth/SmolLM-360M-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:31:48Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 00337868-1173-4472-b18c-bb9c15c218de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 00337868-1173-4472-b18c-bb9c15c218de
This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3903
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ErrorAI/95c8be77-ebae-4ba8-9422-04257843ea0a | ErrorAI | 2025-02-05T18:35:52Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-7B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Coder-7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:32:43Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 95c8be77-ebae-4ba8-9422-04257843ea0a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7d4a0b73d911aed1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7d4a0b73d911aed1_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: ErrorAI/95c8be77-ebae-4ba8-9422-04257843ea0a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1563
micro_batch_size: 4
mlflow_experiment_name: /tmp/7d4a0b73d911aed1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4371b52f-2e36-4bbe-b8f7-866206dd99f7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4371b52f-2e36-4bbe-b8f7-866206dd99f7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 95c8be77-ebae-4ba8-9422-04257843ea0a
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7676
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 773
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1013 | 1.0 | 773 | 1.7676 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/98adcb71-f1dd-4c89-a6e9-518f70440276 | lesso | 2025-02-05T18:35:21Z | 10 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/codegemma-7b-it",
"base_model:adapter:unsloth/codegemma-7b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:00:06Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/codegemma-7b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 98adcb71-f1dd-4c89-a6e9-518f70440276
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/codegemma-7b-it
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- e2c8d7e566dbbff7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e2c8d7e566dbbff7_train_data.json
type:
field_instruction: Content
field_output: Summary
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/98adcb71-f1dd-4c89-a6e9-518f70440276
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001012
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/e2c8d7e566dbbff7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cebf462e-97f3-4d04-9673-f518514a3a43
wandb_project: new-12
wandb_run: your_name
wandb_runid: cebf462e-97f3-4d04-9673-f518514a3a43
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 98adcb71-f1dd-4c89-a6e9-518f70440276
This model is a fine-tuned version of [unsloth/codegemma-7b-it](https://huggingface.co/unsloth/codegemma-7b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001012
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7581 | 0.0003 | 1 | 1.2526 |
| 0.7727 | 0.0157 | 50 | 0.5893 |
| 0.5583 | 0.0315 | 100 | 0.5384 |
| 0.4782 | 0.0472 | 150 | 0.4917 |
| 0.5438 | 0.0629 | 200 | 0.4707 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiulawaldev/dd838ff8-99b2-4d3b-bd2e-adff43587744 | robiulawaldev | 2025-02-05T18:34:15Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M-Instruct",
"base_model:adapter:unsloth/SmolLM-360M-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:28:44Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: dd838ff8-99b2-4d3b-bd2e-adff43587744
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# dd838ff8-99b2-4d3b-bd2e-adff43587744
This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/37ff49b1-7a8d-497d-b987-3a39395c7fae | mrferr3t | 2025-02-05T18:32:06Z | 6 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2025-02-05T18:22:29Z | ---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 37ff49b1-7a8d-497d-b987-3a39395c7fae
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
auto_find_batch_size: true
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- ade6f8887ef47607_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ade6f8887ef47607_train_data.json
type:
field_input: source
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/37ff49b1-7a8d-497d-b987-3a39395c7fae
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/ade6f8887ef47607_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 51a32343-8514-49b5-a560-105ff57d734c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 51a32343-8514-49b5-a560-105ff57d734c
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 37ff49b1-7a8d-497d-b987-3a39395c7fae
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0010 | 1 | 0.9059 |
| No log | 0.0416 | 40 | 0.6723 |
| No log | 0.0833 | 80 | 0.3300 |
| 1.2944 | 0.1249 | 120 | 0.2327 |
| 1.2944 | 0.1666 | 160 | 0.1953 |
| 0.4461 | 0.2082 | 200 | 0.1795 |
| 0.4461 | 0.2499 | 240 | 0.1596 |
| 0.4461 | 0.2915 | 280 | 0.1495 |
| 0.3172 | 0.3332 | 320 | 0.1446 |
| 0.3172 | 0.3748 | 360 | 0.1309 |
| 0.3091 | 0.4164 | 400 | 0.1307 |
| 0.3091 | 0.4581 | 440 | 0.1199 |
| 0.3091 | 0.4997 | 480 | 0.1221 |
| 0.2537 | 0.5414 | 520 | 0.1126 |
| 0.2537 | 0.5830 | 560 | 0.1156 |
| 0.2476 | 0.6247 | 600 | 0.1073 |
| 0.2476 | 0.6663 | 640 | 0.0984 |
| 0.2476 | 0.7080 | 680 | 0.1069 |
| 0.2129 | 0.7496 | 720 | 0.1014 |
| 0.2129 | 0.7913 | 760 | 0.0912 |
| 0.1875 | 0.8329 | 800 | 0.0920 |
| 0.1875 | 0.8745 | 840 | 0.0915 |
| 0.1875 | 0.9162 | 880 | 0.0922 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
antimage88/693f8f58-1733-4d0d-8449-cd2a9fe5f38b | antimage88 | 2025-02-05T18:31:18Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-1.7B-Instruct",
"base_model:adapter:unsloth/SmolLM2-1.7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:04:44Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-1.7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 693f8f58-1733-4d0d-8449-cd2a9fe5f38b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM2-1.7B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5f212321670d5d4c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5f212321670d5d4c_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: antimage88/693f8f58-1733-4d0d-8449-cd2a9fe5f38b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/5f212321670d5d4c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 986966cb-3c4c-4b10-a74c-6315b04fc713
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 986966cb-3c4c-4b10-a74c-6315b04fc713
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 693f8f58-1733-4d0d-8449-cd2a9fe5f38b
This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 337
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6052 | 0.0030 | 1 | 1.8155 |
| 1.6604 | 0.1484 | 50 | 1.4918 |
| 1.4906 | 0.2967 | 100 | 1.4147 |
| 1.4451 | 0.4451 | 150 | 1.3642 |
| 1.3923 | 0.5935 | 200 | 1.3278 |
| 1.4482 | 0.7418 | 250 | 1.3078 |
| 1.4791 | 0.8902 | 300 | 1.2953 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
cimol/de3a36ea-3e96-4c55-b6f2-17cfdf156163 | cimol | 2025-02-05T18:30:44Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Hermes-3-Llama-3.1-8B",
"base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B",
"region:us"
] | null | 2025-02-05T16:27:13Z | ---
library_name: peft
base_model: unsloth/Hermes-3-Llama-3.1-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: de3a36ea-3e96-4c55-b6f2-17cfdf156163
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Hermes-3-Llama-3.1-8B
bf16: true
chat_template: llama3
data_processes: 24
dataset_prepared_path: null
datasets:
- data_files:
- cb0718283a3dcb0e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cb0718283a3dcb0e_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 4
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: cimol/de3a36ea-3e96-4c55-b6f2-17cfdf156163
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 7.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.04
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/cb0718283a3dcb0e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 32
train_batch_size: 8
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c00bf7ed-9f09-4b70-bef5-b35166416a69
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c00bf7ed-9f09-4b70-bef5-b35166416a69
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# de3a36ea-3e96-4c55-b6f2-17cfdf156163
This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5936
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 17333
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5195 | 0.0001 | 1 | 1.1938 |
| 1.1077 | 0.0055 | 50 | 0.7179 |
| 0.9501 | 0.0109 | 100 | 0.6286 |
| 1.2016 | 0.0164 | 150 | 0.5962 |
| 1.0451 | 0.0219 | 200 | 0.5936 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/98455502-4a39-4c6c-8d00-86ec8e2e3861 | lesso | 2025-02-05T18:29:33Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-3B-Instruct",
"license:other",
"region:us"
] | null | 2025-02-05T18:13:51Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 98455502-4a39-4c6c-8d00-86ec8e2e3861
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-3B-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 7c168a5ba6db1084_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7c168a5ba6db1084_train_data.json
type:
field_instruction: topic
field_output: argument
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/98455502-4a39-4c6c-8d00-86ec8e2e3861
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001007
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/7c168a5ba6db1084_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: da9bd6ad-9ce3-4a9a-8e0a-ba7f1337fc43
wandb_project: new-07
wandb_run: your_name
wandb_runid: da9bd6ad-9ce3-4a9a-8e0a-ba7f1337fc43
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 98455502-4a39-4c6c-8d00-86ec8e2e3861
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3639
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001007
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.4817 | 0.0003 | 1 | 4.7725 |
| 2.604 | 0.0139 | 50 | 2.7295 |
| 2.2677 | 0.0278 | 100 | 2.4914 |
| 2.2242 | 0.0417 | 150 | 2.4384 |
| 2.3808 | 0.0556 | 200 | 2.3639 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
SupremoUGH/image-classification-model | SupremoUGH | 2025-02-05T18:25:06Z | 16 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"vision",
"en",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-02-05T17:02:26Z | ---
language: en
tags:
- image-classification
- vision
model-index:
- name: ViT Image Classification Model
sources:
- https://huggingface.co/SupremoUGH/image-classification-model
results:
- task:
name: image-classification
type: image-classification
metrics:
- name: Accuracy
value: 98.0%
type: float
library_name: transformers
license: mit
---
# Image Classification Model (ViT)
This is an image classification model based on **Vision Transformer (ViT)**, fine-tuned on the **MNIST** dataset. The model is designed to classify images into one of 10 possible classes (digits 0-9). The code is compatible with Hugging Face's inference providers and can be easily deployed.
## Model Details
- **Model Type**: Vision Transformer (ViT)
- **Base Model**: `google/vit-base-patch16-224`
- **Task**: Image Classification
- **Dataset**: MNIST (handwritten digits)
- **Labels**: 10 classes (0-9)
## How to Use
### Install Requirements
Make sure you have the following dependencies installed:
```bash
pip3 install requirements.txt
```
### Run unit tests
```bash
python3 -m unittest discover -s tests
```
|
MinaMila/mistral_instbase_GermanCredit_5ep_42 | MinaMila | 2025-02-05T18:24:55Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-02-05T16:00:06Z | ---
base_model: unsloth/mistral-7b-instruct-v0.3
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** MinaMila
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
lesso/36f00761-830b-4664-8818-778d0b9d1645 | lesso | 2025-02-05T18:22:12Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b-Instruct",
"base_model:adapter:unsloth/llama-3-8b-Instruct",
"license:llama3",
"region:us"
] | null | 2025-02-05T18:06:05Z | ---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 36f00761-830b-4664-8818-778d0b9d1645
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-3-8b-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0864faa44b3c224c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0864faa44b3c224c_train_data.json
type:
field_instruction: label
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/36f00761-830b-4664-8818-778d0b9d1645
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001011
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0864faa44b3c224c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1
wandb_project: new-11
wandb_run: your_name
wandb_runid: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 36f00761-830b-4664-8818-778d0b9d1645
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9678
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001011
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3647 | 0.0015 | 1 | 2.5788 |
| 2.4899 | 0.0726 | 50 | 2.1420 |
| 1.7869 | 0.1451 | 100 | 2.0448 |
| 1.8 | 0.2177 | 150 | 1.9863 |
| 2.1935 | 0.2903 | 200 | 1.9678 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
baby-dev/1d85a9cc-ef78-4cc9-933b-b83dd9e3c9ca | baby-dev | 2025-02-05T18:20:42Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-3B-Instruct",
"license:other",
"region:us"
] | null | 2025-02-05T18:13:57Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1d85a9cc-ef78-4cc9-933b-b83dd9e3c9ca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 1d85a9cc-ef78-4cc9-933b-b83dd9e3c9ca
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6118
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Faitlesses/23 | Faitlesses | 2025-02-05T18:20:04Z | 168 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] | text-to-image | 2025-02-05T18:19:40Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/698D67D5-4AAB-4C86-B5E8-904E03DA8CC3.jpg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
---
# 56
<Gallery />
## Download model
Weights for this model are available in Safetensors format.
[Download](/Faitlesses/23/tree/main) them in the Files & versions tab.
|
tscstudios/kvj8gjldpiyswqpppnwofmig8512_0b21941e-3c0f-4cb1-92f5-263aa983dafe | tscstudios | 2025-02-05T18:19:47Z | 9 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-02-05T18:19:45Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# Kvj8Gjldpiyswqpppnwofmig8512_0B21941E 3C0F 4Cb1 92F5 263Aa983Dafe
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('tscstudios/kvj8gjldpiyswqpppnwofmig8512_0b21941e-3c0f-4cb1-92f5-263aa983dafe', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
jebish7/llama3.2-full | jebish7 | 2025-02-05T18:17:41Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-02-05T17:12:10Z | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dimasik2987/70935a03-5775-49fd-87c7-32902a2f5212 | dimasik2987 | 2025-02-05T18:13:51Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b-Instruct",
"base_model:adapter:unsloth/llama-3-8b-Instruct",
"license:llama3",
"region:us"
] | null | 2025-02-05T17:58:23Z | ---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 70935a03-5775-49fd-87c7-32902a2f5212
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-3-8b-Instruct
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0864faa44b3c224c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0864faa44b3c224c_train_data.json
type:
field_instruction: label
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: dimasik2987/70935a03-5775-49fd-87c7-32902a2f5212
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0864faa44b3c224c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1
wandb_project: cold6
wandb_run: your_name
wandb_runid: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 70935a03-5775-49fd-87c7-32902a2f5212
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3427 | 0.0029 | 1 | 2.5774 |
| 2.1071 | 0.1451 | 50 | 2.0482 |
| 2.0946 | 0.2903 | 100 | 1.9842 |
| 1.9532 | 0.4354 | 150 | 1.9557 |
| 1.6823 | 0.5806 | 200 | 1.9391 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/1d5be5f0-8615-46db-92bd-f4ce372092c5 | lesso | 2025-02-05T18:12:48Z | 7 | 0 | peft | [
"peft",
"safetensors",
"dbrx",
"axolotl",
"generated_from_trainer",
"base_model:katuni4ka/tiny-random-dbrx",
"base_model:adapter:katuni4ka/tiny-random-dbrx",
"region:us"
] | null | 2025-02-05T17:58:04Z | ---
library_name: peft
base_model: katuni4ka/tiny-random-dbrx
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1d5be5f0-8615-46db-92bd-f4ce372092c5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: katuni4ka/tiny-random-dbrx
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0a30047102b434d7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0a30047102b434d7_train_data.json
type:
field_instruction: query
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/1d5be5f0-8615-46db-92bd-f4ce372092c5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00010017
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0a30047102b434d7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0be2cc61-00d1-4153-9960-910acde865cc
wandb_project: new-17
wandb_run: your_name
wandb_runid: 0be2cc61-00d1-4153-9960-910acde865cc
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 1d5be5f0-8615-46db-92bd-f4ce372092c5
This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00010017
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 23.0 | 0.0000 | 1 | 11.5 |
| 23.0 | 0.0018 | 50 | 11.5 |
| 23.0 | 0.0036 | 100 | 11.5 |
| 23.0 | 0.0055 | 150 | 11.5 |
| 23.0 | 0.0073 | 200 | 11.5 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nathanialhunt/7201cc97-b8f6-44c7-8f66-a3c4370ad5bb | nathanialhunt | 2025-02-05T18:11:55Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-1.7B-Instruct",
"base_model:adapter:unsloth/SmolLM2-1.7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:05:41Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-1.7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7201cc97-b8f6-44c7-8f66-a3c4370ad5bb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 7201cc97-b8f6-44c7-8f66-a3c4370ad5bb
This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2478
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
adammandic87/d5947c3a-0c74-4628-9fae-67ed78069bd1 | adammandic87 | 2025-02-05T18:09:29Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-1.7B-Instruct",
"base_model:adapter:unsloth/SmolLM2-1.7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:05:36Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-1.7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d5947c3a-0c74-4628-9fae-67ed78069bd1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# d5947c3a-0c74-4628-9fae-67ed78069bd1
This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3390
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
baby-dev/bb909f28-e00a-4002-8ddf-35c21fa2c2cb | baby-dev | 2025-02-05T18:08:55Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-1.7B-Instruct",
"base_model:adapter:unsloth/SmolLM2-1.7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T18:05:03Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-1.7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: bb909f28-e00a-4002-8ddf-35c21fa2c2cb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# bb909f28-e00a-4002-8ddf-35c21fa2c2cb
This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nbninh/ef588566-fb36-4db1-9172-ad4a87ddfed0 | nbninh | 2025-02-05T18:08:51Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"license:other",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-02-05T16:52:41Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen1.5-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ef588566-fb36-4db1-9172-ad4a87ddfed0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen1.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e5b56e23ba3d3819_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e5b56e23ba3d3819_train_data.json
type:
field_input: ''
field_instruction: repo_name
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nbninh/ef588566-fb36-4db1-9172-ad4a87ddfed0
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/e5b56e23ba3d3819_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ee954201-708b-4a7e-a2f6-25ec08ffedb2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ee954201-708b-4a7e-a2f6-25ec08ffedb2
warmup_steps: 50
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# ef588566-fb36-4db1-9172-ad4a87ddfed0
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 285
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9044 | 1.0 | 285 | 1.0017 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
shibajustfor/c97c201d-bd18-4efb-8fb1-79b3b4b7f01e | shibajustfor | 2025-02-05T18:08:40Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b-Instruct",
"base_model:adapter:unsloth/llama-3-8b-Instruct",
"license:llama3",
"region:us"
] | null | 2025-02-05T18:02:21Z | ---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: c97c201d-bd18-4efb-8fb1-79b3b4b7f01e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# c97c201d-bd18-4efb-8fb1-79b3b4b7f01e
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0312
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/9a4450ba-7c32-4c32-b126-26b472e74be9 | mrferr3t | 2025-02-05T18:06:45Z | 22 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Capybara-7B-V1",
"base_model:adapter:NousResearch/Nous-Capybara-7B-V1",
"license:mit",
"region:us"
] | null | 2025-02-05T17:42:18Z | ---
library_name: peft
license: mit
base_model: NousResearch/Nous-Capybara-7B-V1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9a4450ba-7c32-4c32-b126-26b472e74be9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Nous-Capybara-7B-V1
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 01df04c66daac7c4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/01df04c66daac7c4_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/9a4450ba-7c32-4c32-b126-26b472e74be9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/01df04c66daac7c4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 261dc9c8-0266-4ccb-9c77-747c8c7940df
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 261dc9c8-0266-4ccb-9c77-747c8c7940df
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 9a4450ba-7c32-4c32-b126-26b472e74be9
This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1099
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 1.2723 |
| No log | 0.0114 | 40 | 1.2370 |
| No log | 0.0227 | 80 | 1.0504 |
| 1.164 | 0.0341 | 120 | 0.9932 |
| 1.164 | 0.0455 | 160 | 0.9648 |
| 1.0065 | 0.0569 | 200 | 0.9527 |
| 1.0065 | 0.0682 | 240 | 0.9454 |
| 1.0065 | 0.0796 | 280 | 0.9404 |
| 0.9572 | 0.0910 | 320 | 0.9369 |
| 0.9572 | 0.1024 | 360 | 0.9351 |
| 0.9375 | 0.1137 | 400 | 0.9329 |
| 0.9375 | 0.1251 | 440 | 0.9306 |
| 0.9375 | 0.1365 | 480 | 0.9277 |
| 0.924 | 0.1479 | 520 | 0.9279 |
| 0.924 | 0.1592 | 560 | 0.9268 |
| 0.9345 | 0.1706 | 600 | 0.9266 |
| 0.9345 | 0.1820 | 640 | 0.9256 |
| 0.9345 | 0.1933 | 680 | 0.9271 |
| 0.9338 | 0.2047 | 720 | 0.9239 |
| 0.9338 | 0.2161 | 760 | 0.9229 |
| 0.9254 | 0.2275 | 800 | 0.9212 |
| 0.9254 | 0.2388 | 840 | 0.9205 |
| 0.9254 | 0.2502 | 880 | 0.9200 |
| 0.9243 | 0.2616 | 920 | 0.9201 |
| 0.9243 | 0.2730 | 960 | 0.9214 |
| 0.9212 | 0.2843 | 1000 | 0.9215 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/2cbbc550-3122-4230-8aa8-a83b2350f748 | lesso | 2025-02-05T18:02:17Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-02-05T18:00:52Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2cbbc550-3122-4230-8aa8-a83b2350f748
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- e89f96913218f8de_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e89f96913218f8de_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/2cbbc550-3122-4230-8aa8-a83b2350f748
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/e89f96913218f8de_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a5f829a5-85bb-442f-a490-e8bbfde3b08d
wandb_project: new-04
wandb_run: your_name
wandb_runid: a5f829a5-85bb-442f-a490-e8bbfde3b08d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 2cbbc550-3122-4230-8aa8-a83b2350f748
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3110
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3744 | 0.0002 | 1 | 10.3783 |
| 10.347 | 0.0109 | 50 | 10.3466 |
| 10.3309 | 0.0217 | 100 | 10.3301 |
| 10.3147 | 0.0326 | 150 | 10.3154 |
| 10.3093 | 0.0434 | 200 | 10.3110 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/fbb8e6cd-8b54-49b4-a720-f73b86915043 | Best000 | 2025-02-05T18:00:43Z | 6 | 0 | peft | [
"peft",
"safetensors",
"dbrx",
"axolotl",
"generated_from_trainer",
"base_model:katuni4ka/tiny-random-dbrx",
"base_model:adapter:katuni4ka/tiny-random-dbrx",
"region:us"
] | null | 2025-02-05T17:58:30Z | ---
library_name: peft
base_model: katuni4ka/tiny-random-dbrx
tags:
- axolotl
- generated_from_trainer
model-index:
- name: fbb8e6cd-8b54-49b4-a720-f73b86915043
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# fbb8e6cd-8b54-49b4-a720-f73b86915043
This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/61415241-5c2d-45f8-bdbe-25c730a21e06 | lesso | 2025-02-05T18:00:19Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:53:06Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 61415241-5c2d-45f8-bdbe-25c730a21e06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 4a0f187d0b523501_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4a0f187d0b523501_train_data.json
type:
field_input: title
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/61415241-5c2d-45f8-bdbe-25c730a21e06
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/4a0f187d0b523501_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ee9aace3-5889-4a15-94df-c5f659d02b95
wandb_project: new-04
wandb_run: your_name
wandb_runid: ee9aace3-5889-4a15-94df-c5f659d02b95
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 61415241-5c2d-45f8-bdbe-25c730a21e06
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8475 | 0.0002 | 1 | 5.1437 |
| 3.4459 | 0.0121 | 50 | 3.3723 |
| 2.6063 | 0.0241 | 100 | 3.1282 |
| 3.7746 | 0.0362 | 150 | 3.0617 |
| 2.3282 | 0.0483 | 200 | 3.0396 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
0x1202/f9896282-8f4f-4d92-a0e1-3698ee72ab87 | 0x1202 | 2025-02-05T17:58:10Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"license:other",
"region:us"
] | null | 2025-02-05T17:10:34Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen1.5-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f9896282-8f4f-4d92-a0e1-3698ee72ab87
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen1.5-7B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e5b56e23ba3d3819_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e5b56e23ba3d3819_train_data.json
type:
field_input: ''
field_instruction: repo_name
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/f9896282-8f4f-4d92-a0e1-3698ee72ab87
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/e5b56e23ba3d3819_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ee954201-708b-4a7e-a2f6-25ec08ffedb2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ee954201-708b-4a7e-a2f6-25ec08ffedb2
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f9896282-8f4f-4d92-a0e1-3698ee72ab87
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0181
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 143
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9784 | 0.0070 | 1 | 1.1685 |
| 0.946 | 0.3509 | 50 | 1.0318 |
| 1.0628 | 0.7018 | 100 | 1.0181 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
shibajustfor/729854bc-aaa2-4bbc-b7e9-63c50cc4722e | shibajustfor | 2025-02-05T17:54:52Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:51:16Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 729854bc-aaa2-4bbc-b7e9-63c50cc4722e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 729854bc-aaa2-4bbc-b7e9-63c50cc4722e
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/TinyAlpaca-i1-GGUF | mradermacher | 2025-02-05T17:54:39Z | 358 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:mlabonne/TinyAlpaca",
"base_model:quantized:mlabonne/TinyAlpaca",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | 2025-02-05T17:02:40Z | ---
base_model: mlabonne/TinyAlpaca
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/mlabonne/TinyAlpaca
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/TinyAlpaca-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ1_M.gguf) | i1-IQ1_M | 0.4 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ2_S.gguf) | i1-IQ2_S | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ2_M.gguf) | i1-IQ2_M | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.5 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q2_K.gguf) | i1-Q2_K | 0.5 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.6 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ3_S.gguf) | i1-IQ3_S | 0.6 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ3_M.gguf) | i1-IQ3_M | 0.6 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.6 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.7 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q4_0.gguf) | i1-Q4_0 | 0.7 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q4_1.gguf) | i1-Q4_1 | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/TinyAlpaca-i1-GGUF/resolve/main/TinyAlpaca.i1-Q6_K.gguf) | i1-Q6_K | 1.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
daniel40/e41791f8-5135-4de5-9729-f4a6c04143df | daniel40 | 2025-02-05T17:54:11Z | 22 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Capybara-7B-V1",
"base_model:adapter:NousResearch/Nous-Capybara-7B-V1",
"license:mit",
"region:us"
] | null | 2025-02-05T17:40:23Z | ---
library_name: peft
license: mit
base_model: NousResearch/Nous-Capybara-7B-V1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e41791f8-5135-4de5-9729-f4a6c04143df
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# e41791f8-5135-4de5-9729-f4a6c04143df
This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0446
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/e39b3b25-94d3-4040-b0cd-069ca4afcb3c | lesso | 2025-02-05T17:53:07Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:46:03Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e39b3b25-94d3-4040-b0cd-069ca4afcb3c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 4a0f187d0b523501_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4a0f187d0b523501_train_data.json
type:
field_input: title
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/e39b3b25-94d3-4040-b0cd-069ca4afcb3c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001013
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/4a0f187d0b523501_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ee9aace3-5889-4a15-94df-c5f659d02b95
wandb_project: new-13
wandb_run: your_name
wandb_runid: ee9aace3-5889-4a15-94df-c5f659d02b95
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e39b3b25-94d3-4040-b0cd-069ca4afcb3c
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0407
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001013
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8475 | 0.0002 | 1 | 5.1437 |
| 3.4066 | 0.0121 | 50 | 3.3781 |
| 2.6165 | 0.0241 | 100 | 3.1314 |
| 3.7548 | 0.0362 | 150 | 3.0649 |
| 2.337 | 0.0483 | 200 | 3.0407 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
botenius/2c581266-f14f-4a62-b8df-ee5fce706110 | botenius | 2025-02-05T17:52:54Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"license:other",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-02-05T16:52:29Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen1.5-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2c581266-f14f-4a62-b8df-ee5fce706110
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen1.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e5b56e23ba3d3819_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e5b56e23ba3d3819_train_data.json
type:
field_input: ''
field_instruction: repo_name
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: botenius/2c581266-f14f-4a62-b8df-ee5fce706110
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/e5b56e23ba3d3819_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: ee954201-708b-4a7e-a2f6-25ec08ffedb2
wandb_project: Gradients-On-13
wandb_run: your_name
wandb_runid: ee954201-708b-4a7e-a2f6-25ec08ffedb2
warmup_steps: 5
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 2c581266-f14f-4a62-b8df-ee5fce706110
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0218
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8928 | 0.8772 | 500 | 1.0218 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso/b0b54be9-2837-409f-9c19-abd09d2ca4b5 | lesso | 2025-02-05T17:52:52Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:45:50Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b0b54be9-2837-409f-9c19-abd09d2ca4b5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 4a0f187d0b523501_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4a0f187d0b523501_train_data.json
type:
field_input: title
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/b0b54be9-2837-409f-9c19-abd09d2ca4b5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001009
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/4a0f187d0b523501_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ee9aace3-5889-4a15-94df-c5f659d02b95
wandb_project: new-09
wandb_run: your_name
wandb_runid: ee9aace3-5889-4a15-94df-c5f659d02b95
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# b0b54be9-2837-409f-9c19-abd09d2ca4b5
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001009
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8475 | 0.0002 | 1 | 5.1437 |
| 3.4738 | 0.0121 | 50 | 3.3735 |
| 2.5911 | 0.0241 | 100 | 3.1307 |
| 3.765 | 0.0362 | 150 | 3.0617 |
| 2.3597 | 0.0483 | 200 | 3.0391 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
baby-dev/cdc3a99f-933e-4d62-83ce-2e5d9f17245e | baby-dev | 2025-02-05T17:50:36Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:46:23Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cdc3a99f-933e-4d62-83ce-2e5d9f17245e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# cdc3a99f-933e-4d62-83ce-2e5d9f17245e
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1472
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
havinash-ai/823e64e3-4bef-4b54-afd2-6eeb76ac5646 | havinash-ai | 2025-02-05T17:49:43Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-02-05T17:48:01Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 823e64e3-4bef-4b54-afd2-6eeb76ac5646
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 823e64e3-4bef-4b54-afd2-6eeb76ac5646
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.2275
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
shibajustfor/5f33a8d5-b6f4-464c-b4b4-2cab1c169b62 | shibajustfor | 2025-02-05T17:49:33Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-0.5B",
"base_model:adapter:unsloth/Qwen2.5-0.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-02-05T17:45:57Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-0.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5f33a8d5-b6f4-464c-b4b4-2cab1c169b62
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
# 5f33a8d5-b6f4-464c-b4b4-2cab1c169b62
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Subsets and Splits