modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-02 06:28:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
462 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-02 06:27:40
card
stringlengths
11
1.01M
casque/Micro_Bikini_By_Stable_Yogi
casque
2024-06-06T03:01:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-06-06T03:00:53Z
--- license: creativeml-openrail-m ---
blackhole33/llama3-uzbv1
blackhole33
2024-06-06T02:54:54Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-05T08:44:21Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: llama-2-7b-chat-bnb-4bit --- # Uploaded model - **Developed by:** blackhole33 - **License:** apache-2.0 - **Finetuned from model :** llama-2-7b-chat-bnb-4bit
tsavage68/UTI_M2_1000steps_1e7rate_SFT
tsavage68
2024-06-06T02:47:28Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-29T15:05:10Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: UTI_M2_1000steps_1e7rate_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UTI_M2_1000steps_1e7rate_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.4021 | 0.3333 | 25 | 2.3941 | | 2.3235 | 0.6667 | 50 | 2.2471 | | 2.0863 | 1.0 | 75 | 1.9386 | | 1.6662 | 1.3333 | 100 | 1.5791 | | 1.2956 | 1.6667 | 125 | 1.2544 | | 1.214 | 2.0 | 150 | 1.2116 | | 1.202 | 2.3333 | 175 | 1.1861 | | 1.1813 | 2.6667 | 200 | 1.1668 | | 1.1696 | 3.0 | 225 | 1.1528 | | 1.1052 | 3.3333 | 250 | 1.1412 | | 1.0614 | 3.6667 | 275 | 1.1329 | | 1.1106 | 4.0 | 300 | 1.1271 | | 1.1019 | 4.3333 | 325 | 1.1228 | | 1.0691 | 4.6667 | 350 | 1.1212 | | 1.0947 | 5.0 | 375 | 1.1153 | | 1.0689 | 5.3333 | 400 | 1.1134 | | 1.0598 | 5.6667 | 425 | 1.1116 | | 1.0459 | 6.0 | 450 | 1.1111 | | 1.0518 | 6.3333 | 475 | 1.1097 | | 1.045 | 6.6667 | 500 | 1.1092 | | 1.0658 | 7.0 | 525 | 1.1066 | | 1.0706 | 7.3333 | 550 | 1.1067 | | 1.0514 | 7.6667 | 575 | 1.1057 | | 1.0412 | 8.0 | 600 | 1.1063 | | 1.0455 | 8.3333 | 625 | 1.1052 | | 0.9657 | 8.6667 | 650 | 1.1057 | | 1.1015 | 9.0 | 675 | 1.1052 | | 1.0294 | 9.3333 | 700 | 1.1051 | | 1.0399 | 9.6667 | 725 | 1.1052 | | 1.1125 | 10.0 | 750 | 1.1047 | | 1.0219 | 10.3333 | 775 | 1.1046 | | 0.9862 | 10.6667 | 800 | 1.1048 | | 1.0682 | 11.0 | 825 | 1.1049 | | 1.0587 | 11.3333 | 850 | 1.1049 | | 1.0217 | 11.6667 | 875 | 1.1051 | | 1.0547 | 12.0 | 900 | 1.1047 | | 1.0047 | 12.3333 | 925 | 1.1047 | | 1.021 | 12.6667 | 950 | 1.1047 | | 1.0528 | 13.0 | 975 | 1.1047 | | 1.0385 | 13.3333 | 1000 | 1.1047 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1
oproprioaquino/Stable_LoRA
oproprioaquino
2024-06-06T02:46:42Z
3
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:mit", "region:us" ]
text-to-image
2024-06-06T01:05:15Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: Pimentão color model parameters: negative_prompt: oiticica output: url: images/prancheta001.png base_model: runwayml/stable-diffusion-v1-5 instance_prompt: Modelo Aqq license: mit --- # LoRA Aqq <Gallery /> ## Model description Um modelo para teste de ferramenta ## Trigger words You should use `Modelo Aqq` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/oproprioaquino/Stable_LoRA/tree/main) them in the Files & versions tab.
Mikask/bdc2024-indobert-2
Mikask
2024-06-06T02:46:38Z
183
0
transformers
[ "transformers", "pytorch", "mbart", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-06T02:46:03Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bdc2024-indobert-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bdc2024-indobert-2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5554 - Accuracy: 0.9331 - Balanced Accuracy: 0.8724 - Precision: 0.9353 - Recall: 0.9331 - F1: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| | No log | 1.0 | 483 | 0.5108 | 0.9197 | 0.8454 | 0.9195 | 0.9197 | 0.9132 | | 0.0773 | 2.0 | 966 | 0.5374 | 0.9235 | 0.8668 | 0.9266 | 0.9235 | 0.9196 | | 0.0374 | 3.0 | 1449 | 0.5451 | 0.9331 | 0.8689 | 0.9359 | 0.9331 | 0.9281 | | 0.0242 | 4.0 | 1932 | 0.5567 | 0.9331 | 0.8726 | 0.9353 | 0.9331 | 0.9288 | | 0.0162 | 5.0 | 2415 | 0.5554 | 0.9331 | 0.8724 | 0.9353 | 0.9331 | 0.9289 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.13.3
tsavage68/UTI_M2_1000steps_1e8rate_SFT
tsavage68
2024-06-06T02:45:33Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-29T15:07:27Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: UTI_M2_1000steps_1e8rate_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UTI_M2_1000steps_1e8rate_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.6263 | 0.3333 | 25 | 2.6302 | | 2.6415 | 0.6667 | 50 | 2.6306 | | 2.6336 | 1.0 | 75 | 2.6298 | | 2.6804 | 1.3333 | 100 | 2.6284 | | 2.5885 | 1.6667 | 125 | 2.6291 | | 2.542 | 2.0 | 150 | 2.6286 | | 2.6601 | 2.3333 | 175 | 2.6249 | | 2.6936 | 2.6667 | 200 | 2.6240 | | 2.6593 | 3.0 | 225 | 2.6238 | | 2.6088 | 3.3333 | 250 | 2.6237 | | 2.542 | 3.6667 | 275 | 2.6208 | | 2.5635 | 4.0 | 300 | 2.6185 | | 2.6825 | 4.3333 | 325 | 2.6183 | | 2.5987 | 4.6667 | 350 | 2.6198 | | 2.6421 | 5.0 | 375 | 2.6196 | | 2.6426 | 5.3333 | 400 | 2.6183 | | 2.6517 | 5.6667 | 425 | 2.6189 | | 2.5762 | 6.0 | 450 | 2.6190 | | 2.6801 | 6.3333 | 475 | 2.6190 | | 2.5918 | 6.6667 | 500 | 2.6169 | | 2.6354 | 7.0 | 525 | 2.6163 | | 2.6433 | 7.3333 | 550 | 2.6156 | | 2.7024 | 7.6667 | 575 | 2.6172 | | 2.575 | 8.0 | 600 | 2.6176 | | 2.6109 | 8.3333 | 625 | 2.6165 | | 2.6088 | 8.6667 | 650 | 2.6195 | | 2.698 | 9.0 | 675 | 2.6185 | | 2.612 | 9.3333 | 700 | 2.6166 | | 2.615 | 9.6667 | 725 | 2.6188 | | 2.681 | 10.0 | 750 | 2.6165 | | 2.6118 | 10.3333 | 775 | 2.6190 | | 2.5875 | 10.6667 | 800 | 2.6168 | | 2.6859 | 11.0 | 825 | 2.6170 | | 2.5953 | 11.3333 | 850 | 2.6171 | | 2.5884 | 11.6667 | 875 | 2.6169 | | 2.6721 | 12.0 | 900 | 2.6170 | | 2.5951 | 12.3333 | 925 | 2.6170 | | 2.6112 | 12.6667 | 950 | 2.6170 | | 2.5842 | 13.0 | 975 | 2.6170 | | 2.5962 | 13.3333 | 1000 | 2.6170 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1
richardkelly/google-gemma-7b-1717613194
richardkelly
2024-06-06T02:44:55Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T18:46:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
UnclearPWR/SPARK-mini-instruct-Q6_K-GGUF
UnclearPWR
2024-06-06T02:44:39Z
1
0
transformers
[ "transformers", "gguf", "climate", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:NuclearnAI/SPARK-mini-instruct", "base_model:quantized:NuclearnAI/SPARK-mini-instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-06-06T02:44:29Z
--- language: - en library_name: transformers tags: - climate - llama-cpp - gguf-my-repo base_model: NuclearnAI/SPARK-mini-instruct pipeline_tag: text-generation --- # UnclearPWR/SPARK-mini-instruct-Q6_K-GGUF This model was converted to GGUF format from [`NuclearnAI/SPARK-mini-instruct`](https://huggingface.co/NuclearnAI/SPARK-mini-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NuclearnAI/SPARK-mini-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo UnclearPWR/SPARK-mini-instruct-Q6_K-GGUF --hf-file spark-mini-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo UnclearPWR/SPARK-mini-instruct-Q6_K-GGUF --hf-file spark-mini-instruct-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo UnclearPWR/SPARK-mini-instruct-Q6_K-GGUF --hf-file spark-mini-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo UnclearPWR/SPARK-mini-instruct-Q6_K-GGUF --hf-file spark-mini-instruct-q6_k.gguf -c 2048 ```
OrcinusOrca/q-Taxi-v3
OrcinusOrca
2024-06-06T02:43:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-06-06T02:43:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="OrcinusOrca/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tsavage68/UTI_M2_1000steps_1e6rate_SFT
tsavage68
2024-06-06T02:42:22Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-29T13:16:01Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: UTI_M2_1000steps_1e6rate_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UTI_M2_1000steps_1e6rate_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.2167 | 0.3333 | 25 | 1.1865 | | 0.9806 | 0.6667 | 50 | 0.9618 | | 0.936 | 1.0 | 75 | 0.9371 | | 0.8294 | 1.3333 | 100 | 0.9512 | | 0.8273 | 1.6667 | 125 | 0.9369 | | 0.7851 | 2.0 | 150 | 0.9036 | | 0.5263 | 2.3333 | 175 | 0.9990 | | 0.5512 | 2.6667 | 200 | 0.9589 | | 0.5272 | 3.0 | 225 | 0.9576 | | 0.2888 | 3.3333 | 250 | 1.1371 | | 0.2968 | 3.6667 | 275 | 1.1164 | | 0.3381 | 4.0 | 300 | 1.1144 | | 0.1802 | 4.3333 | 325 | 1.1697 | | 0.2025 | 4.6667 | 350 | 1.1946 | | 0.2273 | 5.0 | 375 | 1.2614 | | 0.1417 | 5.3333 | 400 | 1.3260 | | 0.1524 | 5.6667 | 425 | 1.3343 | | 0.136 | 6.0 | 450 | 1.3735 | | 0.117 | 6.3333 | 475 | 1.3843 | | 0.1284 | 6.6667 | 500 | 1.3742 | | 0.1172 | 7.0 | 525 | 1.4114 | | 0.0905 | 7.3333 | 550 | 1.5000 | | 0.1027 | 7.6667 | 575 | 1.5142 | | 0.097 | 8.0 | 600 | 1.4912 | | 0.0837 | 8.3333 | 625 | 1.5974 | | 0.0832 | 8.6667 | 650 | 1.6185 | | 0.0781 | 9.0 | 675 | 1.6203 | | 0.0698 | 9.3333 | 700 | 1.6833 | | 0.0722 | 9.6667 | 725 | 1.6960 | | 0.0681 | 10.0 | 750 | 1.7139 | | 0.0635 | 10.3333 | 775 | 1.7732 | | 0.0654 | 10.6667 | 800 | 1.7704 | | 0.0663 | 11.0 | 825 | 1.7647 | | 0.0604 | 11.3333 | 850 | 1.7840 | | 0.0628 | 11.6667 | 875 | 1.7916 | | 0.0627 | 12.0 | 900 | 1.7947 | | 0.061 | 12.3333 | 925 | 1.7962 | | 0.062 | 12.6667 | 950 | 1.7967 | | 0.0607 | 13.0 | 975 | 1.7960 | | 0.0605 | 13.3333 | 1000 | 1.7960 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1
suthanhcong/distilbert-base-uncased-finetuned-DouRC
suthanhcong
2024-06-06T02:41:18Z
128
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-06-05T07:12:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased-finetuned-DouRC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-DouRC This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6662 - Exact Match: 0.05 - F1: 0.0270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:| | 5.6355 | 1.0 | 10 | 5.3658 | 0.05 | 0.0264 | | 5.083 | 2.0 | 20 | 4.9659 | 0.035 | 0.0164 | | 4.6944 | 3.0 | 30 | 4.7939 | 0.03 | 0.0129 | | 4.4803 | 4.0 | 40 | 4.6992 | 0.04 | 0.0207 | | 4.389 | 5.0 | 50 | 4.6662 | 0.05 | 0.0270 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
tsavage68/UTI_M2_1000steps_1e5rate_SFT
tsavage68
2024-06-06T02:40:49Z
10
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-29T14:06:56Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: UTI_M2_1000steps_1e5rate_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UTI_M2_1000steps_1e5rate_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 1.0555 | 0.3333 | 25 | 0.9919 | | 1.0461 | 0.6667 | 50 | 1.0778 | | 1.1438 | 1.0 | 75 | 1.4514 | | 0.925 | 1.3333 | 100 | 1.1656 | | 0.9875 | 1.6667 | 125 | 1.1640 | | 0.9859 | 2.0 | 150 | 1.6609 | | 0.7898 | 2.3333 | 175 | 1.2420 | | 0.7246 | 2.6667 | 200 | 1.2557 | | 0.7078 | 3.0 | 225 | 1.1831 | | 0.4316 | 3.3333 | 250 | 1.3381 | | 0.4621 | 3.6667 | 275 | 1.3760 | | 0.5094 | 4.0 | 300 | 1.3134 | | 0.2873 | 4.3333 | 325 | 1.3968 | | 0.267 | 4.6667 | 350 | 1.5584 | | 0.292 | 5.0 | 375 | 1.4604 | | 0.1967 | 5.3333 | 400 | 1.5440 | | 0.2125 | 5.6667 | 425 | 1.5934 | | 0.2141 | 6.0 | 450 | 1.5512 | | 0.1391 | 6.3333 | 475 | 1.6320 | | 0.1735 | 6.6667 | 500 | 1.6144 | | 0.1688 | 7.0 | 525 | 1.6714 | | 0.1265 | 7.3333 | 550 | 1.6959 | | 0.1334 | 7.6667 | 575 | 1.6998 | | 0.1245 | 8.0 | 600 | 1.7298 | | 0.1066 | 8.3333 | 625 | 1.7505 | | 0.0982 | 8.6667 | 650 | 1.7773 | | 0.1014 | 9.0 | 675 | 1.8197 | | 0.0829 | 9.3333 | 700 | 1.8606 | | 0.0774 | 9.6667 | 725 | 1.8651 | | 0.0846 | 10.0 | 750 | 1.8653 | | 0.0739 | 10.3333 | 775 | 1.9064 | | 0.0786 | 10.6667 | 800 | 1.9323 | | 0.0691 | 11.0 | 825 | 1.9367 | | 0.0648 | 11.3333 | 850 | 1.9448 | | 0.0649 | 11.6667 | 875 | 1.9546 | | 0.0672 | 12.0 | 900 | 1.9559 | | 0.06 | 12.3333 | 925 | 1.9592 | | 0.0606 | 12.6667 | 950 | 1.9597 | | 0.0606 | 13.0 | 975 | 1.9597 | | 0.0601 | 13.3333 | 1000 | 1.9597 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1
v8karlo/UNCENSORED-TinyDolphin-3x-MoE-Q4_K_M-GGUF
v8karlo
2024-06-06T02:36:55Z
7
1
null
[ "gguf", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "cognitivecomputations/TinyDolphin-2.8.1-1.1b", "llama-cpp", "gguf-my-repo", "base_model:jtatman/TinyDolphin-3x-MoE", "base_model:quantized:jtatman/TinyDolphin-3x-MoE", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-06T02:32:24Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - cognitivecomputations/TinyDolphin-2.8.1-1.1b - llama-cpp - gguf-my-repo base_model: jtatman/TinyDolphin-3x-MoE --- # v8karlo/TinyDolphin-3x-MoE-Q4_K_M-GGUF This model was converted to GGUF format from [`jtatman/TinyDolphin-3x-MoE`](https://huggingface.co/jtatman/TinyDolphin-3x-MoE) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/jtatman/TinyDolphin-3x-MoE) for more details on the model. cONVERT sAFETENSORS TO gguf . https://huggingface.co/spaces/ggml-org/gguf-my-repo . ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662c3116277765660783ca6d/fV0zgvlVGXq7yoT2h_TAO.png) . ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo v8karlo/TinyDolphin-3x-MoE-Q4_K_M-GGUF --hf-file tinydolphin-3x-moe-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo v8karlo/TinyDolphin-3x-MoE-Q4_K_M-GGUF --hf-file tinydolphin-3x-moe-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo v8karlo/TinyDolphin-3x-MoE-Q4_K_M-GGUF --hf-file tinydolphin-3x-moe-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo v8karlo/TinyDolphin-3x-MoE-Q4_K_M-GGUF --hf-file tinydolphin-3x-moe-q4_k_m.gguf -c 2048 ```
UnclearPWR/SPARK-mini-instruct-Q8_0-GGUF
UnclearPWR
2024-06-06T02:35:46Z
0
0
transformers
[ "transformers", "gguf", "climate", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:NuclearnAI/SPARK-mini-instruct", "base_model:quantized:NuclearnAI/SPARK-mini-instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-06-06T02:35:36Z
--- language: - en library_name: transformers tags: - climate - llama-cpp - gguf-my-repo base_model: NuclearnAI/SPARK-mini-instruct pipeline_tag: text-generation --- # UnclearPWR/SPARK-mini-instruct-Q8_0-GGUF This model was converted to GGUF format from [`NuclearnAI/SPARK-mini-instruct`](https://huggingface.co/NuclearnAI/SPARK-mini-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NuclearnAI/SPARK-mini-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo UnclearPWR/SPARK-mini-instruct-Q8_0-GGUF --hf-file spark-mini-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo UnclearPWR/SPARK-mini-instruct-Q8_0-GGUF --hf-file spark-mini-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo UnclearPWR/SPARK-mini-instruct-Q8_0-GGUF --hf-file spark-mini-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo UnclearPWR/SPARK-mini-instruct-Q8_0-GGUF --hf-file spark-mini-instruct-q8_0.gguf -c 2048 ```
haihuynh/IMDB-Bert-CLSModel-v1
haihuynh
2024-06-06T02:31:53Z
108
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-06T02:31:40Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: IMDB-Bert-CLSModel-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB-Bert-CLSModel-v1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4872 - Accuracy: 0.8126 - F1: 0.8125 - Precision: 0.8135 - Recall: 0.8127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5671 | 0.6394 | 500 | 0.7079 | 0.4995 | 0.3347 | 0.7495 | 0.5009 | | 0.7017 | 1.2788 | 1000 | 0.6467 | 0.5744 | 0.4837 | 0.7578 | 0.5755 | | 0.5909 | 1.9182 | 1500 | 0.4872 | 0.8126 | 0.8125 | 0.8135 | 0.8127 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1
bella05/pogny-16-0.001
bella05
2024-06-06T02:30:13Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:klue/roberta-large", "base_model:finetune:klue/roberta-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-06T02:09:36Z
--- base_model: klue/roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: pogny-16-0.001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pogny-16-0.001 This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6847 - Accuracy: 0.4376 - F1: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 1.7729 | 1.0 | 4818 | 1.8008 | 0.4376 | 0.2665 | | 1.7377 | 2.0 | 9636 | 1.7499 | 0.4376 | 0.2665 | | 1.6614 | 3.0 | 14454 | 1.6847 | 0.4376 | 0.2665 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0a0+b5021ba - Datasets 2.6.2 - Tokenizers 0.14.1
ari2002/lora_model
ari2002
2024-06-06T02:27:49Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-06T02:27:25Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** ari2002 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
suthanhcong/results
suthanhcong
2024-06-06T02:27:41Z
135
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-06-06T02:17:01Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
wwe180/L3-8B-LingYang-v1-Q6_K-GGUF
wwe180
2024-06-06T02:22:33Z
3
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "Llama3", "llama-cpp", "gguf-my-repo", "base_model:wwe180/L3-8B-LingYang-v1", "base_model:quantized:wwe180/L3-8B-LingYang-v1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-06T02:20:32Z
--- license: - other library_name: transformers tags: - mergekit - merge - Llama3 - llama-cpp - gguf-my-repo base_model: wwe180/L3-8B-LingYang-v1 --- # wwe180/L3-8B-LingYang-v1-Q6_K-GGUF This model was converted to GGUF format from [`wwe180/L3-8B-LingYang-v1`](https://huggingface.co/wwe180/L3-8B-LingYang-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/wwe180/L3-8B-LingYang-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo wwe180/L3-8B-LingYang-v1-Q6_K-GGUF --hf-file l3-8b-lingyang-v1-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo wwe180/L3-8B-LingYang-v1-Q6_K-GGUF --hf-file l3-8b-lingyang-v1-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo wwe180/L3-8B-LingYang-v1-Q6_K-GGUF --hf-file l3-8b-lingyang-v1-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo wwe180/L3-8B-LingYang-v1-Q6_K-GGUF --hf-file l3-8b-lingyang-v1-q6_k.gguf -c 2048 ```
RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf
RichardErkhov
2024-06-06T02:16:23Z
50
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-06-06T02:05:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gpt2-conversational-or-qa - GGUF - Model creator: https://huggingface.co/Locutusque/ - Original model: https://huggingface.co/Locutusque/gpt2-conversational-or-qa/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gpt2-conversational-or-qa.Q2_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q2_K.gguf) | Q2_K | 0.08GB | | [gpt2-conversational-or-qa.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.IQ3_XS.gguf) | IQ3_XS | 0.08GB | | [gpt2-conversational-or-qa.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.IQ3_S.gguf) | IQ3_S | 0.08GB | | [gpt2-conversational-or-qa.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q3_K_S.gguf) | Q3_K_S | 0.08GB | | [gpt2-conversational-or-qa.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.IQ3_M.gguf) | IQ3_M | 0.09GB | | [gpt2-conversational-or-qa.Q3_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q3_K.gguf) | Q3_K | 0.09GB | | [gpt2-conversational-or-qa.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q3_K_M.gguf) | Q3_K_M | 0.09GB | | [gpt2-conversational-or-qa.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q3_K_L.gguf) | Q3_K_L | 0.1GB | | [gpt2-conversational-or-qa.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.IQ4_XS.gguf) | IQ4_XS | 0.1GB | | [gpt2-conversational-or-qa.Q4_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q4_0.gguf) | Q4_0 | 0.1GB | | [gpt2-conversational-or-qa.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.IQ4_NL.gguf) | IQ4_NL | 0.1GB | | [gpt2-conversational-or-qa.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q4_K_S.gguf) | Q4_K_S | 0.1GB | | [gpt2-conversational-or-qa.Q4_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q4_K.gguf) | Q4_K | 0.11GB | | [gpt2-conversational-or-qa.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q4_K_M.gguf) | Q4_K_M | 0.11GB | | [gpt2-conversational-or-qa.Q4_1.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q4_1.gguf) | Q4_1 | 0.11GB | | [gpt2-conversational-or-qa.Q5_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q5_0.gguf) | Q5_0 | 0.11GB | | [gpt2-conversational-or-qa.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q5_K_S.gguf) | Q5_K_S | 0.11GB | | [gpt2-conversational-or-qa.Q5_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q5_K.gguf) | Q5_K | 0.12GB | | [gpt2-conversational-or-qa.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q5_K_M.gguf) | Q5_K_M | 0.12GB | | [gpt2-conversational-or-qa.Q5_1.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q5_1.gguf) | Q5_1 | 0.12GB | | [gpt2-conversational-or-qa.Q6_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q6_K.gguf) | Q6_K | 0.13GB | | [gpt2-conversational-or-qa.Q8_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_gpt2-conversational-or-qa-gguf/blob/main/gpt2-conversational-or-qa.Q8_0.gguf) | Q8_0 | 0.17GB | Original model description: --- license: openrail datasets: - Locutusque/ColumnedChatCombined language: - en metrics: - bleu - perplexity - loss - reward - penalty widget: - text: '<|USER|> Hello! <|ASSISTANT|> ' pipeline_tag: conversational inference: parameters: temperature: 0.5 do_sample: True top_p: 0.5 top_k: 30 max_new_tokens: 250 repetition_penalty: 1.15 --- # Model Card * this model is deprecated please see https://huggingface.co/Locutusque/gpt2-conversational-retrain for a better performing model. * ## Model Details - Model Name: gpt2-conversational-or-qa (prototype) - Model Type: Language Modeling - Task: Generating Conversational Responses - Hardware: 1x RTX 3060 - Description: This model is trained on a dataset of conversations between a user and an AI assistant, with the goal of generating a coherent and relevant response to the user's input. It uses the GPT-2 architecture, a state-of-the-art transformer-based language model that is capable of generating high-quality text with a wide range of styles and tones. The model is fine-tuned on the conversational data using maximum likelihood estimation, and is evaluated based on its ability to generate responses that are both grammatically correct and semantically relevant to the user's input. I've also trained larger models such as https://huggingface.co/Locutusque/gpt2-medium-conversational and https://huggingface.co/Locutusque/gpt2-large-conversational ## Intended Use This model is intended to be used for generating conversational responses in a variety of contexts, such as chatbots, virtual assistants, and customer service applications. It is designed to provide natural and engaging responses to user input, with a focus on maintaining a consistent tone and style throughout the conversation. The model is suitable for use in both text-based and voice-based interfaces, and can be easily integrated into existing applications using the PyTorch and Transformers frameworks. ## Training Data The model is trained on a large dataset of conversational data, consisting of interactions between users and an AI assistant. The data is preprocessed to remove any sensitive information and is formatted in a way that is suitable for training a language model. The training data is split into a training set and a validation set, with the training set used to update the model parameters and the validation set used to evaluate the model performance. The model was trained on 245,000 examples over 1,225,000 steps, it achieved decent metrics. This model outperformed the base GPT-2 model significantly on a new conversational dataset during a fine-tuning session. Here is a side-by-side comparison of the two models during the first steps of training ```python # Base GPT-2 """ Epoch 1/5, Batch 1/10000: Loss - 64.9255, Reward - 260.0000, Penalty - 624.0000, BLEU - 0.0000 Epoch 1/5, Batch 2/10000: Loss - 57.4635, Reward - 303.0000, Penalty - 870.0000, BLEU - 0.0000 Epoch 1/5, Batch 3/10000: Loss - 67.8061, Reward - 295.0000, Penalty - 908.0000, BLEU - 0.0000 Epoch 1/5, Batch 4/10000: Loss - 59.6118, Reward - 800.0000, Penalty - 740.0000, BLEU - 0.0000 Epoch 1/5, Batch 5/10000: Loss - 67.4855, Reward - 402.0000, Penalty - 806.0000, BLEU - 0.0000 Epoch 1/5, Batch 6/10000: Loss - 29.3718, Reward - 937.0000, Penalty - 760.0000, BLEU - 0.0000 Epoch 1/5, Batch 7/10000: Loss - 79.0709, Reward - 390.0000, Penalty - 1114.0000, BLEU - 0.0000 Epoch 1/5, Batch 8/10000: Loss - 61.4583, Reward - 385.0000, Penalty - 760.0000, BLEU - 0.0000 Epoch 1/5, Batch 9/10000: Loss - 56.3084, Reward - 741.0000, Penalty - 560.0000, BLEU - 3.5500 Epoch 1/5, Batch 10/10000: Loss - 80.0192, Reward - 838.0000, Penalty - 1424.0000, BLEU - 0.0000 Epoch 1/5, Batch 11/10000: Loss - 51.8236, Reward - 228.0000, Penalty - 812.0000, BLEU - 0.0001 Epoch 1/5, Batch 12/10000: Loss - 71.4071, Reward - 541.0000, Penalty - 982.0000, BLEU - 0.0000 Epoch 1/5, Batch 13/10000: Loss - 33.3624, Reward - 910.0000, Penalty - 1002.0000, BLEU - 0.0027 Epoch 1/5, Batch 14/10000: Loss - 55.9721, Reward - 808.0000, Penalty - 798.0000, BLEU - 0.0005 Epoch 1/5, Batch 15/10000: Loss - 67.0336, Reward - 517.0000, Penalty - 764.0000, BLEU - 0.0000 """ # Conversational GPT-2 """ Epoch 1/5, Batch 1/10000: Loss - 6.1980, Reward - 887.0000, Penalty - 1500.0000, BLEU - 0.0648 Epoch 1/5, Batch 2/10000: Loss - 4.5750, Reward - 245.0000, Penalty - 1618.0000, BLEU - 0.0008 Epoch 1/5, Batch 3/10000: Loss - 5.1264, Reward - 600.0000, Penalty - 642.0000, BLEU - 5.7981 Epoch 1/5, Batch 4/10000: Loss - 0.2995, Reward - 1020.0000, Penalty - 74.0000, BLEU - 13.8469 Epoch 1/5, Batch 5/10000: Loss - 7.9377, Reward - 203.0000, Penalty - 1700.0000, BLEU - 0.3218 Epoch 1/5, Batch 6/10000: Loss - 5.0522, Reward - 1020.0000, Penalty - 2034.0000, BLEU - 0.1946 Epoch 1/5, Batch 7/10000: Loss - 2.0585, Reward - 925.0000, Penalty - 526.0000, BLEU - 16.1298 Epoch 1/5, Batch 8/10000: Loss - 5.9736, Reward - 1009.0000, Penalty - 1844.0000, BLEU - 0.0085 Epoch 1/5, Batch 9/10000: Loss - 6.0867, Reward - 245.0000, Penalty - 1690.0000, BLEU - 1.9342 Epoch 1/5, Batch 10/10000: Loss - 7.8497, Reward - 155.0000, Penalty - 1780.0000, BLEU - 0.0115 Epoch 1/5, Batch 11/10000: Loss - 3.8887, Reward - 1012.0000, Penalty - 2010.0000, BLEU - 0.6957 Epoch 1/5, Batch 12/10000: Loss - 6.6133, Reward - 216.0000, Penalty - 1638.0000, BLEU - 1.7853 Epoch 1/5, Batch 13/10000: Loss - 1.3319, Reward - 945.0000, Penalty - 374.0000, BLEU - 0.0075 Epoch 1/5, Batch 14/10000: Loss - 2.6296, Reward - 956.0000, Penalty - 414.0000, BLEU - 3.2207 Epoch 1/5, Batch 15/10000: Loss - 6.8827, Reward - 1013.0000, Penalty - 1970.0000, BLEU - 3.7418 """ ``` ## Model Architecture The model architecture used in this model is GPT-2, a transformer-based language model that is capable of generating high-quality text with a wide range of styles and tones. The GPT-2 architecture consists of a multi-layered decoder-only transformer, with self-attention mechanisms that allow the model to capture long-term dependencies and generate coherent text. ## Evaluation Metrics The model is evaluated based on several metrics, including loss, reward, penalty, BLEU score, and perplexity. The loss metric is calculated during training and reflects the difference between the predicted output and the actual output. The reward metric is based on the number of correct words generated by the model, while the penalty metric penalizes the model for repeating words consecutively. The BLEU score measures the similarity between the generated text and the ground truth text, while the perplexity metric measures how well the model is able to predict the next word in a sequence. During validation, the model achieved the following metrics: - BLEU Score: 9 - Perplexity: 19 - Loss: 1.7 ## Limitations and Bias This model is not suitable for all use cases due to its limited training time on a weak computer. As a result, it may produce irrelevant or nonsensical responses. Additionally, it has not been fine-tuned to remember the chat history, is unable to provide follow-up responses, and it does not know the answer to many questions (it was only fine-tuned to respond in a conversational way). For optimal performance, we recommend using a GPU with at least 4GB of VRAM and downloading the model manually instead of using the Transformers library or deploying it on the Interface API. Here's how you should deploy the model: ```python import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.add_special_tokens({'eos_token': '<|End|>'}) special_tokens = { "additional_special_tokens": ["<|USER|>", "<|SYSTEM|>", "<|ASSISTANT|>"] } tokenizer.add_special_tokens(special_tokens) model.resize_token_embeddings(len(tokenizer)) model.load_state_dict(torch.load("path/to/model")) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def generate_text(model, tokenizer, prompt, max_length=1024): prompt = f'<|USER|> {prompt} <|ASSISTANT|> ' input_ids = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt").to(device) attention_mask = torch.ones_like(input_ids).to(device) output = model.generate(input_ids, max_length=max_length, do_sample=True, top_k=35, top_p=0.80, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, attention_mask=attention_mask) output_ids = tokenizer.decode(output[0], skip_special_tokens=False) assistant_token_index = output_ids.index('<|ASSISTANT|>') + len('<|ASSISTANT|>') next_token_index = output_ids.find('<|', assistant_token_index) output_ids = output_ids[assistant_token_index:next_token_index] return output_ids # Loop to interact with the model while True: prompt = input("Enter a prompt (or 'q' to quit): ") if prompt == "q": break output_text = generate_text(model, tokenizer, prompt) print(output_text) ``` ## Deploying and training the model The model has been fine-tuned on a specific input format that goes like this ```"<|USER|> {user prompt} <|ASSISTANT|> {model prediction} <|End|>".``` For the best performance from the model the input text should be as follows ```<|USER|> {user prompt} <|ASSISTANT|> ``` and the target/label should be as follows ```<|USER|> {user prompt} <|ASSISTANT|> {dataset output} <|End|>``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__gpt2-conversational-or-qa) | Metric | Value | |-----------------------|---------------------------| | Avg. | 25.09 | | ARC (25-shot) | 21.42 | | HellaSwag (10-shot) | 27.61 | | MMLU (5-shot) | 26.51 | | TruthfulQA (0-shot) | 47.31 | | Winogrande (5-shot) | 51.14 | | GSM8K (5-shot) | 0.08 | | DROP (3-shot) | 1.55 |
Invitrace/I-live-well-foodai
Invitrace
2024-06-06T02:15:41Z
14
1
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-06-06T00:59:22Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: invitrace-ilivewell results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7232590808749749 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # invitrace-ilivewell This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3020 - Accuracy: 0.7233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 5.0735 | 0.0803 | 200 | 5.0486 | 0.0462 | | 4.947 | 0.1605 | 400 | 4.9254 | 0.1136 | | 4.8134 | 0.2408 | 600 | 4.7931 | 0.2101 | | 4.653 | 0.3210 | 800 | 4.6667 | 0.2133 | | 4.5977 | 0.4013 | 1000 | 4.5528 | 0.2777 | | 4.557 | 0.4815 | 1200 | 4.4413 | 0.2940 | | 4.2948 | 0.5618 | 1400 | 4.3298 | 0.3233 | | 4.2969 | 0.6421 | 1600 | 4.2270 | 0.3502 | | 4.0779 | 0.7223 | 1800 | 4.1218 | 0.3743 | | 4.0473 | 0.8026 | 2000 | 4.0337 | 0.3897 | | 4.0347 | 0.8828 | 2200 | 3.9426 | 0.3879 | | 3.9185 | 0.9631 | 2400 | 3.8602 | 0.4158 | | 3.5221 | 1.0433 | 2600 | 3.7700 | 0.4275 | | 3.5359 | 1.1236 | 2800 | 3.6728 | 0.4553 | | 3.4622 | 1.2039 | 3000 | 3.5906 | 0.4541 | | 3.431 | 1.2841 | 3200 | 3.5025 | 0.4732 | | 3.3443 | 1.3644 | 3400 | 3.4168 | 0.4869 | | 3.4344 | 1.4446 | 3600 | 3.3382 | 0.5025 | | 3.249 | 1.5249 | 3800 | 3.2703 | 0.5160 | | 3.2028 | 1.6051 | 4000 | 3.2017 | 0.4927 | | 3.0678 | 1.6854 | 4200 | 3.1264 | 0.5152 | | 3.0626 | 1.7657 | 4400 | 3.0487 | 0.5410 | | 2.953 | 1.8459 | 4600 | 2.9699 | 0.5414 | | 3.0011 | 1.9262 | 4800 | 2.9165 | 0.5503 | | 2.9428 | 2.0064 | 5000 | 2.8433 | 0.5665 | | 2.6717 | 2.0867 | 5200 | 2.7818 | 0.5569 | | 2.6253 | 2.1669 | 5400 | 2.7195 | 0.5715 | | 2.3998 | 2.2472 | 5600 | 2.6458 | 0.5874 | | 2.2518 | 2.3274 | 5800 | 2.5901 | 0.5922 | | 2.4229 | 2.4077 | 6000 | 2.5301 | 0.5912 | | 2.592 | 2.4880 | 6200 | 2.4855 | 0.5984 | | 2.0625 | 2.5682 | 6400 | 2.4277 | 0.6002 | | 2.22 | 2.6485 | 6600 | 2.3784 | 0.6087 | | 2.3326 | 2.7287 | 6800 | 2.3250 | 0.6123 | | 2.1592 | 2.8090 | 7000 | 2.2958 | 0.6095 | | 2.1491 | 2.8892 | 7200 | 2.2226 | 0.6303 | | 2.0644 | 2.9695 | 7400 | 2.1923 | 0.6231 | | 1.916 | 3.0498 | 7600 | 2.1510 | 0.6352 | | 1.7435 | 3.1300 | 7800 | 2.0985 | 0.6388 | | 1.761 | 3.2103 | 8000 | 2.0753 | 0.6404 | | 1.5321 | 3.2905 | 8200 | 2.0396 | 0.6426 | | 1.6117 | 3.3708 | 8400 | 1.9855 | 0.6530 | | 1.5593 | 3.4510 | 8600 | 1.9805 | 0.6352 | | 1.9288 | 3.5313 | 8800 | 1.9188 | 0.6564 | | 1.5736 | 3.6116 | 9000 | 1.9141 | 0.6556 | | 1.5544 | 3.6918 | 9200 | 1.8633 | 0.6619 | | 1.3811 | 3.7721 | 9400 | 1.8466 | 0.6621 | | 1.608 | 3.8523 | 9600 | 1.8116 | 0.6687 | | 1.533 | 3.9326 | 9800 | 1.7784 | 0.6733 | | 1.5496 | 4.0128 | 10000 | 1.7532 | 0.6755 | | 1.3532 | 4.0931 | 10200 | 1.7399 | 0.6779 | | 1.3787 | 4.1734 | 10400 | 1.6996 | 0.6795 | | 1.4278 | 4.2536 | 10600 | 1.6893 | 0.6771 | | 1.3531 | 4.3339 | 10800 | 1.6629 | 0.6759 | | 1.2811 | 4.4141 | 11000 | 1.6493 | 0.6801 | | 1.3787 | 4.4944 | 11200 | 1.6278 | 0.6855 | | 1.2663 | 4.5746 | 11400 | 1.6101 | 0.6926 | | 1.0892 | 4.6549 | 11600 | 1.5842 | 0.6887 | | 1.3045 | 4.7352 | 11800 | 1.5758 | 0.6911 | | 1.4239 | 4.8154 | 12000 | 1.5647 | 0.6930 | | 1.065 | 4.8957 | 12200 | 1.5403 | 0.6905 | | 1.1467 | 4.9759 | 12400 | 1.5257 | 0.6986 | | 0.8755 | 5.0562 | 12600 | 1.5075 | 0.6964 | | 1.0427 | 5.1364 | 12800 | 1.4977 | 0.7074 | | 1.264 | 5.2167 | 13000 | 1.4951 | 0.6956 | | 0.9822 | 5.2970 | 13200 | 1.4787 | 0.6990 | | 1.1234 | 5.3772 | 13400 | 1.4673 | 0.7008 | | 0.9394 | 5.4575 | 13600 | 1.4632 | 0.6998 | | 0.9231 | 5.5377 | 13800 | 1.4346 | 0.7074 | | 1.1829 | 5.6180 | 14000 | 1.4364 | 0.7092 | | 0.9687 | 5.6982 | 14200 | 1.4231 | 0.7080 | | 0.8915 | 5.7785 | 14400 | 1.4166 | 0.7104 | | 1.013 | 5.8587 | 14600 | 1.4056 | 0.7110 | | 1.0437 | 5.9390 | 14800 | 1.3840 | 0.7186 | | 0.8936 | 6.0193 | 15000 | 1.3896 | 0.7142 | | 0.8968 | 6.0995 | 15200 | 1.3853 | 0.7118 | | 0.8978 | 6.1798 | 15400 | 1.3748 | 0.7154 | | 0.8638 | 6.2600 | 15600 | 1.3686 | 0.7190 | | 0.7187 | 6.3403 | 15800 | 1.3664 | 0.7186 | | 0.7554 | 6.4205 | 16000 | 1.3672 | 0.7124 | | 0.7664 | 6.5008 | 16200 | 1.3484 | 0.7192 | | 0.9791 | 6.5811 | 16400 | 1.3500 | 0.7178 | | 0.8325 | 6.6613 | 16600 | 1.3387 | 0.7184 | | 1.0476 | 6.7416 | 16800 | 1.3390 | 0.7174 | | 0.7053 | 6.8218 | 17000 | 1.3268 | 0.7217 | | 0.9869 | 6.9021 | 17200 | 1.3270 | 0.7204 | | 0.8179 | 6.9823 | 17400 | 1.3169 | 0.7297 | | 0.9584 | 7.0626 | 17600 | 1.3119 | 0.7271 | | 0.6394 | 7.1429 | 17800 | 1.3158 | 0.7243 | | 0.9094 | 7.2231 | 18000 | 1.3056 | 0.7231 | | 0.7837 | 7.3034 | 18200 | 1.3174 | 0.7239 | | 0.7168 | 7.3836 | 18400 | 1.3088 | 0.7265 | | 0.8603 | 7.4639 | 18600 | 1.3149 | 0.7204 | | 0.6326 | 7.5441 | 18800 | 1.3041 | 0.7253 | | 0.8656 | 7.6244 | 19000 | 1.3075 | 0.7253 | | 0.7517 | 7.7047 | 19200 | 1.3181 | 0.7227 | | 0.8719 | 7.7849 | 19400 | 1.2977 | 0.7273 | | 0.6939 | 7.8652 | 19600 | 1.2965 | 0.7249 | | 0.8371 | 7.9454 | 19800 | 1.3020 | 0.7233 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
khaled123/hf
khaled123
2024-06-06T02:15:30Z
81
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-06T02:09:15Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa_Qwen_Qwen1.5-4B_3e-5_lora2
tyzhu
2024-06-06T02:15:00Z
3
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T12:07:26Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_doc_qa_Qwen_Qwen1.5-4B_3e-5_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa metrics: - name: Accuracy type: accuracy value: 0.5000634920634921 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_doc_qa_Qwen_Qwen1.5-4B_3e-5_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.5856 - Accuracy: 0.5001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 1.7766 | 0.9998 | 1089 | 2.3352 | 0.5155 | | 1.7291 | 1.9995 | 2178 | 2.3047 | 0.5177 | | 1.6609 | 2.9993 | 3267 | 2.3113 | 0.5187 | | 1.6108 | 4.0 | 4357 | 2.3487 | 0.518 | | 1.5489 | 4.9998 | 5446 | 2.3843 | 0.5161 | | 1.5093 | 5.9995 | 6535 | 2.4637 | 0.5138 | | 1.4364 | 6.9993 | 7624 | 2.5600 | 0.5108 | | 1.4038 | 8.0 | 8714 | 2.6166 | 0.5105 | | 1.3439 | 8.9998 | 9803 | 2.7111 | 0.5092 | | 1.2928 | 9.9995 | 10892 | 2.8851 | 0.5062 | | 1.2284 | 10.9993 | 11981 | 2.9595 | 0.5042 | | 1.2142 | 12.0 | 13071 | 3.0894 | 0.5034 | | 1.1791 | 12.9998 | 14160 | 3.1358 | 0.5024 | | 1.1272 | 13.9995 | 15249 | 3.2272 | 0.5017 | | 1.0934 | 14.9993 | 16338 | 3.3488 | 0.5001 | | 1.0586 | 16.0 | 17428 | 3.4072 | 0.5015 | | 1.0415 | 16.9998 | 18517 | 3.4943 | 0.5009 | | 1.011 | 17.9995 | 19606 | 3.5465 | 0.5001 | | 1.0036 | 18.9993 | 20695 | 3.5320 | 0.5011 | | 0.9595 | 19.9954 | 21780 | 3.5856 | 0.5001 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
henrymark/biobert-biomedical-ner
henrymark
2024-06-06T02:12:03Z
123
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "NER", "Biomedical", "en", "dataset:nmitchko/i2b2-query-data-1.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-04T00:07:42Z
--- language: en datasets: nmitchko/i2b2-query-data-1.0 license: apache-2.0 tags: - token-classification - NER - Biomedical --- BioBERT model pre-trained on nmitchko/i2b2-query-data-1.0 corpus
hdve/Qwen-Qwen1.5-1.8B-1717639775
hdve
2024-06-06T02:11:50Z
147
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-06T02:10:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shenmi175/sd-class-butterflies-32
shenmi175
2024-06-06T02:10:36Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-06-06T02:05:59Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('shenmi175/sd-class-butterflies-32') image = pipeline().images[0] image ```
cgihlstorf/finetuned_pythia70M_nondeduped_cp_14300032_1_0.0003_alternate
cgihlstorf
2024-06-06T02:07:28Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "region:us" ]
null
2024-06-06T02:07:05Z
--- library_name: peft base_model: EleutherAI/pythia-70m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
khaled123/chess-GGUF
khaled123
2024-06-06T02:03:06Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-03T13:31:17Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Franz2001/openai-whisper-large-v3-samromour_7epochs
Franz2001
2024-06-06T02:02:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-06T02:02:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
coconana/Qwen-Qwen1.5-1.8B-1717638358
coconana
2024-06-06T02:01:48Z
147
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-06T01:45:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kroonen/stablelm-2-12b-GGUF
kroonen
2024-06-06T02:01:30Z
21
0
null
[ "gguf", "causal-lm", "en", "de", "es", "fr", "it", "nl", "pt", "dataset:tiiuae/falcon-refinedweb", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:uonlp/CulturaX", "dataset:CarperAI/pilev2-dev", "dataset:bigcode/starcoderdata", "dataset:DataProvenanceInitiative/Commercially-Verified-Licenses", "arxiv:2402.17834", "arxiv:2104.09864", "arxiv:2204.06745", "arxiv:1607.06450", "arxiv:2302.05442", "arxiv:2309.14322", "arxiv:2305.14201", "arxiv:2101.00027", "arxiv:2305.06161", "arxiv:2309.09400", "arxiv:2206.11147", "arxiv:1910.02054", "license:other", "endpoints_compatible", "region:us" ]
null
2024-06-06T01:37:10Z
--- language: - en - de - es - fr - it - nl - pt license: other tags: - causal-lm datasets: - tiiuae/falcon-refinedweb - togethercomputer/RedPajama-Data-1T - uonlp/CulturaX - CarperAI/pilev2-dev - bigcode/starcoderdata - DataProvenanceInitiative/Commercially-Verified-Licenses --- # `Stable LM 2 12B` ## Model Description `Stable LM 2 12B` is a 12.1 billion parameter decoder-only language model pre-trained on 2 trillion tokens of diverse multilingual and code datasets for two epochs. Please note: For commercial use, please refer to https://stability.ai/membership. ## Usage **NOTE**: This model requires `transformers>=4.40.0` Get started generating text with `Stable LM 2 12B` by using the following code snippet: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-12b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-2-12b", torch_dtype="auto", ) model.cuda() inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=64, temperature=0.70, top_p=0.95, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` ### Run with Flash Attention 2 ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-12b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-2-12b", torch_dtype="auto", attn_implementation="flash_attention_2", ) model.cuda() inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=64, temperature=0.70, top_p=0.95, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `Stable LM 2 12B` models are auto-regressive language models based on the transformer decoder architecture. * **Language(s)**: English * **Paper**: [Stable LM 2 Technical Report](https://arxiv.org/abs/2402.17834) * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: [Stability AI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-12b/blob/main/LICENSE). * **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership * **Contact**: For questions and comments about the model, please email `[email protected]` ### Model Architecture The model is a decoder-only transformer with the following architecture: | Parameters | Hidden Size | Layers | Heads | KV Heads | Sequence Length | |----------------|-------------|--------|-------|----------|-----------------| | 12,143,605,760 | 5120 | 40 | 32 | 8 | 4096 | * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). * **Parallel Layers**: Parallel attention and feed-forward residual layers with a single input LayerNorm ([Wang, 2021](https://github.com/kingoflolz/mesh-transformer-jax)). * **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) without biases. Furthermore, we apply per-head QK normalization ([Dehghani et al., 2023](https://arxiv.org/abs/2302.05442), [Wortsman et al., 2023](https://arxiv.org/abs/2309.14322)). * **Biases**: We remove all bias terms from the feed-forward networks and grouped-query self-attention layers. * **Tokenizer**: We use Arcade100k, a BPE tokenizer extended from OpenAI's [`tiktoken.cl100k_base`](https://github.com/openai/tiktoken). We split digits into individual tokens following findings by [Liu & Low (2023)](https://arxiv.org/abs/2305.14201). ## Training ### Training Dataset The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), RedPajama-Data ([Together Computer., 2023](https://github.com/togethercomputer/RedPajama-Data)) and The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)) both without the *Books3* subset, and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)). We further supplement our training with multi-lingual data from CulturaX ([Nguyen et al., 2023](https://arxiv.org/abs/2309.09400)) and, in particular, from its OSCAR corpora, as well as restructured data in the style of [Yuan & Liu (2022)](https://arxiv.org/abs/2206.11147). * Given the large amount of web data, we recommend fine-tuning the base `Stable LM 2 12B` for your downstream tasks. ### Training Procedure The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW, and trained using the Arcade100k tokenizer with a vocabulary size of 100,352. We outline the complete hyperparameters choices in the project's [GitHub repository - config*](https://github.com/Stability-AI/StableLM/blob/main/configs/stablelm-2-12b.yml). ### Training Infrastructure * **Hardware**: `Stable LM 2 12B` was trained on the Stability AI cluster across 384 NVIDIA H100 GPUs (AWS P5 instances). * **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf)) ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership. ### Limitations and Bias ​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. ## How to Cite ```bibtex @article{bellagente2024stable, title={Stable LM 2 1.6 B Technical Report}, author={Bellagente, Marco and Tow, Jonathan and Mahan, Dakota and Phung, Duy and Zhuravinskyi, Maksym and Adithyan, Reshinth and Baicoianu, James and Brooks, Ben and Cooper, Nathan and Datta, Ashish and others}, journal={arXiv preprint arXiv:2402.17834}, year={2024} } ```
mradermacher/MythoMist-7b-GGUF
mradermacher
2024-06-06T02:00:59Z
72
1
transformers
[ "transformers", "gguf", "en", "base_model:Gryphe/MythoMist-7b", "base_model:quantized:Gryphe/MythoMist-7b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-06-05T20:27:44Z
--- base_model: Gryphe/MythoMist-7b language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Gryphe/MythoMist-7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/MythoMist-7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MythoMist-7b-GGUF/resolve/main/MythoMist-7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
BEEMER330I/MentalHealthSupportChatbot
BEEMER330I
2024-06-06T01:59:13Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2024-06-06T01:59:13Z
--- license: cc-by-nc-4.0 ---
v8karlo/UNCENSORED-Phi-3-mini-4k-geminified-Q4_K_M-GGUF
v8karlo
2024-06-06T01:57:06Z
201
5
null
[ "gguf", "nlp", "code", "llama-cpp", "gguf-my-repo", "text-generation", "multilingual", "base_model:failspy/Phi-3-mini-4k-geminified", "base_model:quantized:failspy/Phi-3-mini-4k-geminified", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-06-06T01:53:19Z
--- language: - multilingual license: mit tags: - nlp - code - llama-cpp - gguf-my-repo base_model: failspy/Phi-3-mini-4k-geminified license_link: https://huggingface.co/microsoft/Phi-3-medium-4k-instruct/resolve/main/LICENSE pipeline_tag: text-generation inference: parameters: temperature: 0.7 widget: - messages: - role: user content: What's the difference between a banana and a strawberry? --- # v8karlo/Phi-3-mini-4k-geminified-Q4_K_M-GGUF This model was converted to GGUF format from [`failspy/Phi-3-mini-4k-geminified`](https://huggingface.co/failspy/Phi-3-mini-4k-geminified) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/failspy/Phi-3-mini-4k-geminified) for more details on the model. Convert Safetensors to GGUF . https://huggingface.co/spaces/ggml-org/gguf-my-repo . ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662c3116277765660783ca6d/4_zD9Idi8YO90r5475eTn.png) ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo v8karlo/Phi-3-mini-4k-geminified-Q4_K_M-GGUF --hf-file phi-3-mini-4k-geminified-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo v8karlo/Phi-3-mini-4k-geminified-Q4_K_M-GGUF --hf-file phi-3-mini-4k-geminified-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo v8karlo/Phi-3-mini-4k-geminified-Q4_K_M-GGUF --hf-file phi-3-mini-4k-geminified-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo v8karlo/Phi-3-mini-4k-geminified-Q4_K_M-GGUF --hf-file phi-3-mini-4k-geminified-q4_k_m.gguf -c 2048 ```
wwe180/Llama3-18B-lingyang-v1-Q6_K-GGUF
wwe180
2024-06-06T01:40:52Z
4
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "Llama3", "llama-cpp", "gguf-my-repo", "base_model:wwe180/Llama3-18B-lingyang-v1", "base_model:quantized:wwe180/Llama3-18B-lingyang-v1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-06T01:40:11Z
--- license: - other library_name: transformers tags: - mergekit - merge - Llama3 - llama-cpp - gguf-my-repo base_model: wwe180/Llama3-18B-lingyang-v1 --- # wwe180/Llama3-18B-lingyang-v1-Q6_K-GGUF This model was converted to GGUF format from [`wwe180/Llama3-18B-lingyang-v1`](https://huggingface.co/wwe180/Llama3-18B-lingyang-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/wwe180/Llama3-18B-lingyang-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo wwe180/Llama3-18B-lingyang-v1-Q6_K-GGUF --hf-file llama3-18b-lingyang-v1-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo wwe180/Llama3-18B-lingyang-v1-Q6_K-GGUF --hf-file llama3-18b-lingyang-v1-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo wwe180/Llama3-18B-lingyang-v1-Q6_K-GGUF --hf-file llama3-18b-lingyang-v1-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo wwe180/Llama3-18B-lingyang-v1-Q6_K-GGUF --hf-file llama3-18b-lingyang-v1-q6_k.gguf -c 2048 ```
v8karlo/UNCENSORED-Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF
v8karlo
2024-06-06T01:37:01Z
29
4
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:cognitivecomputations/Dolphin-2.9", "base_model:RESMPDEV/Wukong-Phi-3-Instruct-Ablated", "base_model:quantized:RESMPDEV/Wukong-Phi-3-Instruct-Ablated", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-06T01:03:38Z
--- language: - en license: mit tags: - llama-cpp - gguf-my-repo base_model: RESMPDEV/Wukong-Phi-3-Instruct-Ablated datasets: - cognitivecomputations/Dolphin-2.9 uncensored: - yes --- # v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF UNCENSORED Phi-3 model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662c3116277765660783ca6d/OUGbRFBAx9Ibs2bD-OZGD.png) This model was converted to GGUF format from [`RESMPDEV/Wukong-Phi-3-Instruct-Ablated`](https://huggingface.co/RESMPDEV/Wukong-Phi-3-Instruct-Ablated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/RESMPDEV/Wukong-Phi-3-Instruct-Ablated) for more details on the model. Convert Safetensors to GGUF . https://huggingface.co/spaces/ggml-org/gguf-my-repo . <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/662c3116277765660783ca6d/qPHdaxOccIFcpmcewfa9r.mp4"></video> ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -c 2048 ```
wwe180/Llama3-18B-lingyang-v1-Q4_K_M-GGUF
wwe180
2024-06-06T01:34:08Z
9
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "Llama3", "llama-cpp", "gguf-my-repo", "base_model:wwe180/Llama3-18B-lingyang-v1", "base_model:quantized:wwe180/Llama3-18B-lingyang-v1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-06T01:33:39Z
--- license: - other library_name: transformers tags: - mergekit - merge - Llama3 - llama-cpp - gguf-my-repo base_model: wwe180/Llama3-18B-lingyang-v1 --- # wwe180/Llama3-18B-lingyang-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`wwe180/Llama3-18B-lingyang-v1`](https://huggingface.co/wwe180/Llama3-18B-lingyang-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/wwe180/Llama3-18B-lingyang-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo wwe180/Llama3-18B-lingyang-v1-Q4_K_M-GGUF --hf-file llama3-18b-lingyang-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo wwe180/Llama3-18B-lingyang-v1-Q4_K_M-GGUF --hf-file llama3-18b-lingyang-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo wwe180/Llama3-18B-lingyang-v1-Q4_K_M-GGUF --hf-file llama3-18b-lingyang-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo wwe180/Llama3-18B-lingyang-v1-Q4_K_M-GGUF --hf-file llama3-18b-lingyang-v1-q4_k_m.gguf -c 2048 ```
bella05/pogny-16-0.005
bella05
2024-06-06T01:34:00Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:klue/roberta-large", "base_model:finetune:klue/roberta-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-05T04:16:02Z
--- base_model: klue/roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: pogny-16-0.005 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pogny-16-0.005 This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6843 - Accuracy: 0.4376 - F1: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 2.2723 | 1.0 | 4818 | 2.0798 | 0.4376 | 0.2665 | | 1.9852 | 2.0 | 9636 | 2.1720 | 0.0643 | 0.0078 | | 1.7066 | 3.0 | 14454 | 1.6843 | 0.4376 | 0.2665 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0a0+b5021ba - Datasets 2.6.2 - Tokenizers 0.14.1
mradermacher/Tiamat-7b-1.1-DPO-GGUF
mradermacher
2024-06-06T01:33:11Z
19
0
transformers
[ "transformers", "gguf", "en", "base_model:Gryphe/Tiamat-7b-1.1-DPO", "base_model:quantized:Gryphe/Tiamat-7b-1.1-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-05T18:47:31Z
--- base_model: Gryphe/Tiamat-7b-1.1-DPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Gryphe/Tiamat-7b-1.1-DPO <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Tiamat-7b-1.1-DPO-GGUF/resolve/main/Tiamat-7b-1.1-DPO.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
aksquarry/Model1
aksquarry
2024-06-06T01:30:37Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2024-06-06T01:28:06Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/hug gingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wwe180/L3-8B-LingYang-v1-Q4_K_M-GGUF
wwe180
2024-06-06T01:26:57Z
4
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "Llama3", "llama-cpp", "gguf-my-repo", "base_model:wwe180/L3-8B-LingYang-v1", "base_model:quantized:wwe180/L3-8B-LingYang-v1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-06T01:15:34Z
--- license: - other library_name: transformers tags: - mergekit - merge - Llama3 - llama-cpp - gguf-my-repo base_model: wwe180/L3-8B-LingYang-v1 --- # wwe180/L3-8B-LingYang-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`wwe180/L3-8B-LingYang-v1`](https://huggingface.co/wwe180/L3-8B-LingYang-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/wwe180/L3-8B-LingYang-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo wwe180/L3-8B-LingYang-v1-Q4_K_M-GGUF --hf-file l3-8b-lingyang-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo wwe180/L3-8B-LingYang-v1-Q4_K_M-GGUF --hf-file l3-8b-lingyang-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo wwe180/L3-8B-LingYang-v1-Q4_K_M-GGUF --hf-file l3-8b-lingyang-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo wwe180/L3-8B-LingYang-v1-Q4_K_M-GGUF --hf-file l3-8b-lingyang-v1-q4_k_m.gguf -c 2048 ```
wwe180/Llama3-18B-lingyang-v1
wwe180
2024-06-06T01:25:36Z
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "Llama3", "conversational", "base_model:wwe180/Llama3-18B-lingyang-v1", "base_model:finetune:wwe180/Llama3-18B-lingyang-v1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T23:47:21Z
--- base_model: - wwe180/Llama3-18B-lingyang-v1 library_name: transformers tags: - mergekit - merge - Llama3 license: - other --- # After simple testing, the effect is good, stronger than llama-3-8b! # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Llama3-18B-lingyang-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) ``` ## Statement: Llama3-18B-lingyang-v1 does not represent the views and positions of the model developers We will not be liable for any problems arising from the use of the Llama3-18B-lingyang-v1 open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
phongtintruong/misjava-api-060524-api-extend-test-NEFTune-duplicate
phongtintruong
2024-06-06T01:22:49Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-06T01:21:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_5e-5_lora2
tyzhu
2024-06-06T01:17:38Z
3
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T20:43:32Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 metrics: - accuracy model-index: - name: lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_5e-5_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 type: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 metrics: - name: Accuracy type: accuracy value: 0.42728205128205127 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_5e-5_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set: - Loss: 5.0355 - Accuracy: 0.4273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.9626 | 0.9985 | 341 | 2.9919 | 0.4727 | | 1.9158 | 2.0 | 683 | 2.9864 | 0.4737 | | 1.8622 | 2.9985 | 1024 | 3.0420 | 0.4710 | | 1.786 | 4.0 | 1366 | 3.1527 | 0.4662 | | 1.7019 | 4.9985 | 1707 | 3.3819 | 0.4634 | | 1.6036 | 6.0 | 2049 | 3.4969 | 0.4589 | | 1.5175 | 6.9985 | 2390 | 3.6412 | 0.4577 | | 1.4007 | 8.0 | 2732 | 3.8310 | 0.4537 | | 1.326 | 8.9985 | 3073 | 3.9177 | 0.4487 | | 1.231 | 10.0 | 3415 | 4.0665 | 0.4451 | | 1.1298 | 10.9985 | 3756 | 4.1773 | 0.44 | | 1.0276 | 12.0 | 4098 | 4.2875 | 0.4378 | | 0.9525 | 12.9985 | 4439 | 4.4273 | 0.4352 | | 0.8616 | 14.0 | 4781 | 4.4484 | 0.4324 | | 0.7799 | 14.9985 | 5122 | 4.6228 | 0.4313 | | 0.7084 | 16.0 | 5464 | 4.7239 | 0.4303 | | 0.6478 | 16.9985 | 5805 | 4.8167 | 0.4310 | | 0.5862 | 18.0 | 6147 | 4.8510 | 0.4303 | | 0.5189 | 18.9985 | 6488 | 4.9265 | 0.4243 | | 0.4767 | 19.9707 | 6820 | 5.0355 | 0.4273 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_Qwen_Qwen1.5-4B_3e-4_lora2
tyzhu
2024-06-06T01:13:30Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T21:49:02Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_Qwen_Qwen1.5-4B_3e-4_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa metrics: - name: Accuracy type: accuracy value: 0.6608966521106259 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_Qwen_Qwen1.5-4B_3e-4_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa dataset. It achieves the following results on the evaluation set: - Loss: 2.7813 - Accuracy: 0.6609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4488 | 1.0 | 250 | 1.4958 | 0.6770 | | 1.3142 | 2.0 | 500 | 1.5007 | 0.6772 | | 1.1176 | 3.0 | 750 | 1.5507 | 0.6756 | | 0.9253 | 4.0 | 1000 | 1.6442 | 0.6728 | | 0.7213 | 5.0 | 1250 | 1.7736 | 0.6701 | | 0.5718 | 6.0 | 1500 | 1.8863 | 0.6682 | | 0.4232 | 7.0 | 1750 | 2.0245 | 0.6660 | | 0.3334 | 8.0 | 2000 | 2.1773 | 0.6642 | | 0.2433 | 9.0 | 2250 | 2.2681 | 0.6632 | | 0.2076 | 10.0 | 2500 | 2.3732 | 0.6629 | | 0.1632 | 11.0 | 2750 | 2.4368 | 0.6623 | | 0.1491 | 12.0 | 3000 | 2.5182 | 0.6617 | | 0.1275 | 13.0 | 3250 | 2.5680 | 0.6619 | | 0.1273 | 14.0 | 3500 | 2.6412 | 0.6613 | | 0.1129 | 15.0 | 3750 | 2.6497 | 0.6617 | | 0.1129 | 16.0 | 4000 | 2.6932 | 0.6614 | | 0.102 | 17.0 | 4250 | 2.7003 | 0.6612 | | 0.1109 | 18.0 | 4500 | 2.7033 | 0.6614 | | 0.0997 | 19.0 | 4750 | 2.7139 | 0.6613 | | 0.1012 | 20.0 | 5000 | 2.7813 | 0.6609 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
LyliaEngine/zPDXL2
LyliaEngine
2024-06-06T01:13:19Z
33
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:LyliaEngine/Pony_Diffusion_V6_XL", "base_model:adapter:LyliaEngine/Pony_Diffusion_V6_XL", "license:cdla-permissive-2.0", "region:us" ]
text-to-image
2024-06-06T01:12:17Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- (zPDXL2), from below 1girl, 1boy, sitting heads together, on a tropical beach, smiling, wearing shirt and shorts, morning sunlight, tiki hut, palm trees, cloudy sky parameters: negative_prompt: (zPDXL2-neg), headband, jewelry, nsfw, nude output: url: images/372295-239849650-1-recondiff_v10.jpeg - text: >- (zPDXL2), 1girl, standing on the bridge of a spaceship wearing a uniform, from side from front, looking into space, wires, cables, monitor, controls, panel parameters: negative_prompt: (zPDXL2-neg), cleavage, breasts, nsfw, nude output: url: images/372249-535364377-1-zavyfantasiaxlPDXL_v10.jpeg base_model: LyliaEngine/Pony_Diffusion_V6_XL instance_prompt: zPDXL2, zPDXL2-neg license: cdla-permissive-2.0 --- # zPDXL2 <Gallery /> ## Model description No need to use score this, and score that. Just use the embeddings instead. Be sure to download both positive and negative embeddings and use both. A set of quality enchancing embeddings for Pony SDXL, and other Pony-Adjacent models. You can mix and match any of the embeddings that you feel you need. They don&#39;t duplicate each other, so feel free to use as many together as needed. High Quality V2: designed to give higher quality results and remove censoring. XXX Rating: tells the Pony model of your choice to allow NSFW content. PG Rating: tells the Pony model of your choice to try and remove NSFW content for safe images. Photo Real: tells the Pony model of your choice to use realistic or near realistic renders instead of cartoon or anime. Doesn&#39;t work with non-Pony models. Check your model. Recommend using both positive and negative embeddings together at strength 1.0 to 2.0. If you can&#39;t use both, the Positive version should be take priority. ## Source https://civitai.com/models/332646?modelVersionId=509253 ## Credit https://civitai.com/user/Zovya ## Trigger words You should use `zPDXL2` to trigger the image generation. You should use `zPDXL2-neg` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LyliaEngine/zPDXL2/tree/main) them in the Files & versions tab.
Azazelle/L3-Decent-Peter-Griffin-8B
Azazelle
2024-06-06T00:58:19Z
9
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:ChaoticNeutrals/Poppy_Porpoise-1.4-L3-8B", "base_model:merge:ChaoticNeutrals/Poppy_Porpoise-1.4-L3-8B", "base_model:Sao10K/L3-8B-Stheno-v3.2", "base_model:merge:Sao10K/L3-8B-Stheno-v3.2", "base_model:elyn-dev/Llama-3-Soliloquy-8B-v2", "base_model:merge:elyn-dev/Llama-3-Soliloquy-8B-v2", "base_model:failspy/Llama-3-8B-Instruct-MopeyMule", "base_model:merge:failspy/Llama-3-8B-Instruct-MopeyMule", "base_model:maldv/badger-kappa-llama-3-8b", "base_model:merge:maldv/badger-kappa-llama-3-8b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-06T00:50:33Z
--- base_model: - Nitral-AI/Poppy_Porpoise-1.4-L3-8B - maldv/badger-kappa-llama-3-8b - Sao10K/L3-8B-Stheno-v3.2 - openlynn/Llama-3-Soliloquy-8B-v2 - failspy/Llama-3-8B-Instruct-MopeyMule - Hastagaras/Jamet-8B-L3-MK.II library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the breadcrumbs_ties merge method using [failspy/Llama-3-8B-Instruct-MopeyMule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) as a base. ### Models Merged The following models were included in the merge: * [Nitral-AI/Poppy_Porpoise-1.4-L3-8B](https://huggingface.co/Nitral-AI/Poppy_Porpoise-1.4-L3-8B) * [maldv/badger-kappa-llama-3-8b](https://huggingface.co/maldv/badger-kappa-llama-3-8b) * [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2) * [openlynn/Llama-3-Soliloquy-8B-v2](https://huggingface.co/openlynn/Llama-3-Soliloquy-8B-v2) * [Hastagaras/Jamet-8B-L3-MK.II](https://huggingface.co/Hastagaras/Jamet-8B-L3-MK.II) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: failspy/Llama-3-8B-Instruct-MopeyMule - model: maldv/badger-kappa-llama-3-8b # 7/10 parameters: density: 0.4 weight: 0.14 - model: Nitral-AI/Poppy_Porpoise-1.4-L3-8B # 7/10 parameters: density: 0.5 weight: 0.18 - model: openlynn/Llama-3-Soliloquy-8B-v2 # 8/10 parameters: density: 0.5 weight: 0.18 - model: Hastagaras/Jamet-8B-L3-MK.II # 6/10 parameters: density: 0.3 weight: 0.1 - model: Sao10K/L3-8B-Stheno-v3.2 # 9/10 parameters: density: 0.6 weight: 0.23 merge_method: breadcrumbs_ties base_model: failspy/Llama-3-8B-Instruct-MopeyMule parameters: normalize: false rescale: true gamma: 0.01 dtype: float16 ```
TTTXXX01/Ber_shift-zephyr-7b-sft-full
TTTXXX01
2024-06-06T00:49:04Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:alignment-handbook/zephyr-7b-sft-full", "base_model:finetune:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T20:40:14Z
--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: Ber_shift-zephyr-7b-sft-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Ber_shift-zephyr-7b-sft-full This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 6 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
fayez94/whisper-tiny-minds14
fayez94
2024-06-06T00:41:56Z
78
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-06-05T21:39:43Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.32113341204250295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5499 - Wer Ortho: 0.3331 - Wer: 0.3211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.028 | 4.4643 | 500 | 0.5499 | 0.3331 | 0.3211 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf
RichardErkhov
2024-06-06T00:24:40Z
55
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-06-06T00:13:33Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gpt2-alpaca-gpt4 - GGUF - Model creator: https://huggingface.co/vicgalle/ - Original model: https://huggingface.co/vicgalle/gpt2-alpaca-gpt4/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gpt2-alpaca-gpt4.Q2_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q2_K.gguf) | Q2_K | 0.08GB | | [gpt2-alpaca-gpt4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.IQ3_XS.gguf) | IQ3_XS | 0.08GB | | [gpt2-alpaca-gpt4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.IQ3_S.gguf) | IQ3_S | 0.08GB | | [gpt2-alpaca-gpt4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q3_K_S.gguf) | Q3_K_S | 0.08GB | | [gpt2-alpaca-gpt4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.IQ3_M.gguf) | IQ3_M | 0.09GB | | [gpt2-alpaca-gpt4.Q3_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q3_K.gguf) | Q3_K | 0.09GB | | [gpt2-alpaca-gpt4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q3_K_M.gguf) | Q3_K_M | 0.09GB | | [gpt2-alpaca-gpt4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q3_K_L.gguf) | Q3_K_L | 0.1GB | | [gpt2-alpaca-gpt4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.IQ4_XS.gguf) | IQ4_XS | 0.1GB | | [gpt2-alpaca-gpt4.Q4_0.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q4_0.gguf) | Q4_0 | 0.1GB | | [gpt2-alpaca-gpt4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.IQ4_NL.gguf) | IQ4_NL | 0.1GB | | [gpt2-alpaca-gpt4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q4_K_S.gguf) | Q4_K_S | 0.1GB | | [gpt2-alpaca-gpt4.Q4_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q4_K.gguf) | Q4_K | 0.11GB | | [gpt2-alpaca-gpt4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q4_K_M.gguf) | Q4_K_M | 0.11GB | | [gpt2-alpaca-gpt4.Q4_1.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q4_1.gguf) | Q4_1 | 0.11GB | | [gpt2-alpaca-gpt4.Q5_0.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q5_0.gguf) | Q5_0 | 0.11GB | | [gpt2-alpaca-gpt4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q5_K_S.gguf) | Q5_K_S | 0.11GB | | [gpt2-alpaca-gpt4.Q5_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q5_K.gguf) | Q5_K | 0.12GB | | [gpt2-alpaca-gpt4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q5_K_M.gguf) | Q5_K_M | 0.12GB | | [gpt2-alpaca-gpt4.Q5_1.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q5_1.gguf) | Q5_1 | 0.12GB | | [gpt2-alpaca-gpt4.Q6_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q6_K.gguf) | Q6_K | 0.13GB | | [gpt2-alpaca-gpt4.Q8_0.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_gpt2-alpaca-gpt4-gguf/blob/main/gpt2-alpaca-gpt4.Q8_0.gguf) | Q8_0 | 0.17GB | Original model description: --- license: mit datasets: - vicgalle/alpaca-gpt4 language: - en tags: - instruction-tuning - alpaca - gpt4 --- # GPT-2 finetuned with Alpaca-GPT4 ### Examples The following samples were generated with `{"temperature" : 0.7, "top_p" : 0.92, "top_k" : 0}`: ##### **Give three tips for a good meal** ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Give three tips for a good meal. ### Response: 1. **Serve fresh, locally grown produce:** Fresh produce is a great way to eat healthy and to enjoy a healthy meal. Try to choose a variety of fruits, vegetables, and whole grains, and experiment with the variety to find the perfect balance. Make sure to bring plenty of fresh fruits, vegetables, and whole grains throughout the meal. 2. **Strive for a quick and easy meal:** The key is to make a meal that is quick and easy to prepare. Take a break from the food, grab some snacks, and enjoy a delicious meal. Make sure to cook the ingredients beforehand, and avoid overcooking or filling the food up. 3. **Determine the time and place:** If you're eating a lot of food, it can be tempting to make a time and place for it. This will help you stay organized and get your ingredients in the right order. Make sure to set up a timer and avoid rushing to the grocery store. If possible, make sure to follow the recipe for your specific dish and avoid leaving the refrigerator unattended for too long. ``` ##### **Write a poem about a delicious night** ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a poem about a delicious night. ### Response: As the sky above me fluttered with the gentle breeze, The moon was in its soft, gentle embrace, The night was full of cheer and joy, A perfect night's night. The sun shone bright, the stars twinkled, The colors were pure and true, As if in the presence of a master. But the night was not without its troubles. A stormy night, it rained heavily, A dark and stormy night, it raged with fire. But one thing was certain, it was in the air, The scent of the sweet scent of a sweet sweet night. The night was filled with joy, with a sense of peace and satisfaction. The stars twinkled, the moon was in its soft, gentle embrace, The night was full of cheer and joy, A perfect night's night. The night was full of laughter, with the gentle breeze, The colors were pure and true, As if in the presence of a master. But the night was full of worries, with the fierce tempest. But the night was filled with hope, with a sense of hope that could not be ignored. ``` ##### **Write a tweet describing your capabilities** ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a tweet describing your capabilities. ### Response: "Empowering your creativity, skills, and abilities through my technology-driven approach. My team of professionals will help you achieve your goals, stay ahead of the curve, and contribute to your success. #Diversity" ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__gpt2-alpaca-gpt4) | Metric | Value | |-----------------------|---------------------------| | Avg. | 24.98 | | ARC (25-shot) | 22.61 | | HellaSwag (10-shot) | 31.17 | | MMLU (5-shot) | 25.76 | | TruthfulQA (0-shot) | 38.04 | | Winogrande (5-shot) | 52.17 | | GSM8K (5-shot) | 0.3 | | DROP (3-shot) | 4.83 |
LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft
LaferriereJC
2024-06-06T00:19:58Z
4
0
transformers
[ "transformers", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-06-04T23:11:51Z
--- license: mit --- code used to train - https://gist.github.com/thistleknot/398466a4bd75a1315825d7f04db635a6/91194e69c5220e536f45536e6b7dd66995c847b1 currently setup to translate individual premises (sentences) #datasets - Yale-LILY/FOLIO - apergo-ai/text2log (1661 records) how to load ``` device = "cuda" model_name_or_path = "microsoft/Phi-3-mini-4k-instruct" model = transformers.AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, device_map=device) reft_model = pyreft.ReftModel.load( "LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft", model ) ``` how to use ``` !git clone https://huggingface.co/LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft from transformers import AutoModelForCausalLM import torch import pyreft import os import transformers device = 'cuda' model_name_or_path = "microsoft/Phi-3-mini-4k-instruct" attn_implementation = "eager" torch_dtype = torch.float16 #"microsoft/Phi-3-mini-4k-instruct" model = transformers.AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, device_map=device,trust_remote_code=True) # Define the PyReFT configuration layers = range(model.config.num_hidden_layers) representations = [{ "component": f"model.layers[{l}].output", "intervention": pyreft.LoreftIntervention( embed_dim=model.config.hidden_size, low_rank_dimension=16 ) } for l in layers] reft_config = pyreft.ReftConfig(representations=representations) # Initialize the PyReFT model reft_model = pyreft.get_reft_model(model, reft_config) # Load the saved PyReFT model local_directory = "./Phi-3-mini-4k-instruct-FOL-pyreft" interventions = {} for l in layers: component = f"model.layers[{l}].output" file_path = os.path.join(local_directory, f"intkey_comp.{component}.unit.pos.nunit.1#0.bin") if os.path.exists(file_path): with open(file_path, "rb") as f: adjusted_key = f"comp.{component}.unit.pos.nunit.1#0" interventions[adjusted_key] = torch.load(f) # Apply the loaded weights to the model for component, state_dict in interventions.items(): if component in reft_model.interventions: reft_model.interventions[component][0].load_state_dict(state_dict) else: print(f"Key mismatch: {component} not found in reft_model.interventions") # Set the device to CUDA reft_model.set_device("cuda") # Verify the model reft_model.print_trainable_parameters() #model.half() # get tokenizer tokenizer = transformers.AutoTokenizer.from_pretrained( model_name_or_path, model_max_length=216, padding_side="right", use_fast=True, attn_implementation=attn_implementation #, add_eos_token=True, add_bos_token=True ) tokenizer.pad_token = tokenizer.eos_token # position info about the interventions share_weights = True # whether the prefix and suffix interventions sharing weights. positions="f3+l3" # the intervening positions of prefix tokens (f[irst]1) and suffix tokens (l[ast]1). first_n, last_n = pyreft.parse_positions(positions) terminators = [ tokenizer.eos_token_id, ] prompt_no_input_template = """\n<|user|>:%s</s>\n<|assistant|>:""" test_instruction = f"""tell me something I don't know""" # tokenize and prepare the input prompt = prompt_no_input_template % test_instruction prompt = tokenizer(prompt, return_tensors="pt").to(device) unit_locations = torch.IntTensor([pyreft.get_intervention_locations( last_position=prompt["input_ids"].shape[-1], first_n=first_n, last_n=last_n, pad_mode="last", num_interventions=len(reft_config.representations), share_weights=share_weights )]).permute(1, 0, 2).tolist() _, reft_response = reft_model.generate( prompt, unit_locations={"sources->base": (None, unit_locations)}, intervene_on_prompt=True, max_new_tokens=537, do_sample=True, top_k=50,temperature=0.7, eos_token_id=terminators, early_stopping=True ) print(tokenizer.decode(reft_response[0], skip_special_tokens=True)) ``` response ``` :tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1)) ``` training settings ``` per_device_train_batch_size=6, logging_steps=1, optim='paged_lion_8bit', gradient_checkpointing_kwargs={"use_reentrant": False}, learning_rate=0.0003, warmup_ratio=.1, adam_beta2=0.95, adam_epsilon=0.00001, save_strategy='epoch', max_grad_norm=1.0, lr_scheduler_type='cosine', ``` Evaluation: I kept tweaking the model until I got confirmations from chatgpt 4, but the final training error (1 epoch) came in consistently under .5 (10 point EMA with alpha of .42) Loss ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62578ad28c6638f8a93e8856/Y_uAhaHH3ko6Z6tjYSy0y.png) :tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1)) Does the fol expression fit? Depending on how I asked (for example, it would almost always suggest revisions if I asked - Is the fol expression adequate? - How faithful is the fol expression? )
hfl/llama-3-chinese-8b-instruct-v3
hfl
2024-06-06T00:19:44Z
539
62
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "zh", "en", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-28T02:58:21Z
--- license: apache-2.0 language: - zh - en base_model: [hfl/Llama-3-Chinese-8B-Instruct, hfl/Llama-3-Chinese-8B-Instruct-v2, meta-llama/Meta-Llama-3-8B-Instruct] --- # Llama-3-Chinese-8B-Instruct-v3 <p align="center"> <a href="https://github.com/ymcui/Chinese-LLaMA-Alpaca-3"><img src="https://ymcui.com/images/chinese-llama-alpaca-3-banner.png" width="600"/></a> </p> [**[👉👉👉 Chat with Llama-3-Chinese-8B-Instruct-v3 @ HF Space]**](https://huggingface.co/spaces/hfl-rc/llama-3-chinese-8b-instruct-demo) This repository contains **Llama-3-Chinese-8B-Instruct-v3**, which is further finetuned based on a mix of the following models: - [hfl/Llama-3-Chinese-8B-Instruct](https://huggingface.co/hfl/llama-3-chinese-8b-instruct) - [hfl/Llama-3-Chinese-8B-Instruct-v2](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2) - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) **Note: This is an instruction (chat) model, which can be used for conversation, QA, etc.** Further details (performance, usage, etc.) should refer to GitHub project page: https://github.com/ymcui/Chinese-LLaMA-Alpaca-3 ## Others - For GGUF model (llama.cpp compatible), please see: https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3-gguf - If you have questions/issues regarding this model, please submit an issue through https://github.com/ymcui/Chinese-LLaMA-Alpaca-3
powermove72/Stealth-FusionGrit-7b-Slerp-Exp-Q4_K_M-GGUF
powermove72
2024-06-06T00:18:21Z
1
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "jan-hq/stealth-v1.3", "powermove72/FusionGrit-7B", "llama-cpp", "gguf-my-repo", "base_model:powermove72/Stealth-FusionGrit-7b-Slerp-Exp", "base_model:quantized:powermove72/Stealth-FusionGrit-7b-Slerp-Exp", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-06T00:18:05Z
--- tags: - merge - mergekit - lazymergekit - jan-hq/stealth-v1.3 - powermove72/FusionGrit-7B - llama-cpp - gguf-my-repo base_model: powermove72/Stealth-FusionGrit-7b-Slerp-Exp --- # powermove72/Stealth-FusionGrit-7b-Slerp-Exp-Q4_K_M-GGUF This model was converted to GGUF format from [`powermove72/Stealth-FusionGrit-7b-Slerp-Exp`](https://huggingface.co/powermove72/Stealth-FusionGrit-7b-Slerp-Exp) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/powermove72/Stealth-FusionGrit-7b-Slerp-Exp) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo powermove72/Stealth-FusionGrit-7b-Slerp-Exp-Q4_K_M-GGUF --hf-file stealth-fusiongrit-7b-slerp-exp-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo powermove72/Stealth-FusionGrit-7b-Slerp-Exp-Q4_K_M-GGUF --hf-file stealth-fusiongrit-7b-slerp-exp-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo powermove72/Stealth-FusionGrit-7b-Slerp-Exp-Q4_K_M-GGUF --hf-file stealth-fusiongrit-7b-slerp-exp-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo powermove72/Stealth-FusionGrit-7b-Slerp-Exp-Q4_K_M-GGUF --hf-file stealth-fusiongrit-7b-slerp-exp-q4_k_m.gguf -c 2048 ```
tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
tyzhu
2024-06-06T00:18:03Z
3
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-04T13:59:21Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 metrics: - accuracy model-index: - name: lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 type: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 metrics: - name: Accuracy type: accuracy value: 0.4286153846153846 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set: - Loss: 5.3392 - Accuracy: 0.4286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------------:| | 1.9569 | 0.9985 | 341 | 0.4736 | 3.0300 | | 1.8799 | 2.0 | 683 | 0.468 | 3.0993 | | 1.7649 | 2.9985 | 1024 | 0.4650 | 3.2750 | | 1.6077 | 4.0 | 1366 | 0.4625 | 3.4406 | | 1.4321 | 4.9985 | 1707 | 0.4586 | 3.6500 | | 1.2382 | 6.0 | 2049 | 0.4562 | 3.8598 | | 1.0525 | 6.9985 | 2390 | 0.4541 | 4.0638 | | 0.8607 | 8.0 | 2732 | 0.4515 | 4.2389 | | 0.7099 | 8.9985 | 3073 | 0.4516 | 4.3484 | | 0.5823 | 9.9854 | 3410 | 0.4488 | 4.5794 | | 0.4641 | 10.9985 | 3751 | 4.7090 | 0.4495 | | 0.3755 | 12.0 | 4093 | 4.9454 | 0.4354 | | 0.3235 | 12.9985 | 4434 | 5.0624 | 0.4379 | | 0.2691 | 14.0 | 4776 | 5.0957 | 0.4345 | | 0.2394 | 14.9985 | 5117 | 5.1831 | 0.4368 | | 0.2112 | 16.0 | 5459 | 5.3223 | 0.4326 | | 0.1994 | 16.9985 | 5800 | 5.3839 | 0.4301 | | 0.1834 | 18.0 | 6142 | 5.4236 | 0.4286 | | 0.1709 | 18.9985 | 6483 | 5.4840 | 0.4291 | | 0.166 | 19.9854 | 6820 | 5.3392 | 0.4286 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
hfl/llama-3-chinese-8b-instruct-v3-gguf
hfl
2024-06-06T00:17:51Z
2,112
72
null
[ "gguf", "zh", "en", "base_model:hfl/llama-3-chinese-8b-instruct-v3", "base_model:quantized:hfl/llama-3-chinese-8b-instruct-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-28T02:59:33Z
--- license: apache-2.0 language: - zh - en base_model: - hfl/llama-3-chinese-8b-instruct-v3 --- # Llama-3-Chinese-8B-Instruct-v3-GGUF <p align="center"> <a href="https://github.com/ymcui/Chinese-LLaMA-Alpaca-3"><img src="https://ymcui.com/images/chinese-llama-alpaca-3-banner.png" width="600"/></a> </p> [**[👉👉👉 Chat with Llama-3-Chinese-8B-Instruct-v3 @ HF Space]**](https://huggingface.co/spaces/hfl-rc/llama-3-chinese-8b-instruct-demo) This repository contains **Llama-3-Chinese-8B-Instruct-v3-GGUF** (llama.cpp/ollama/tgw, etc. compatible), which is the quantized version of [Llama-3-Chinese-8B-Instruct-v3](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3). **Note: this is an instruction (chat) model, which can be used for conversation, QA, etc.** Further details (performance, usage, etc.) should refer to GitHub project page: https://github.com/ymcui/Chinese-LLaMA-Alpaca-3 ## Performance Metric: PPL, lower is better *Note: Unless constrained by memory, we suggest using Q8_0 or Q6_K for better performance.* | Quant | Size | PPL | | :---: | -------: | ------------------: | | Q2_K | 2.96 GB | 10.0534 +/- 0.13135 | | Q3_K | 3.74 GB | 6.3295 +/- 0.07816 | | Q4_0 | 4.34 GB | 6.3200 +/- 0.07893 | | Q4_K | 4.58 GB | 6.0042 +/- 0.07431 | | Q5_0 | 5.21 GB | 6.0437 +/- 0.07526 | | Q5_K | 5.34 GB | 5.9484 +/- 0.07399 | | Q6_K | 6.14 GB | 5.9469 +/- 0.07404 | | Q8_0 | 7.95 GB | 5.8933 +/- 0.07305 | | F16 | 14.97 GB | 5.8902 +/- 0.07303 | ## Others - For full model, please see: https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3 - If you have questions/issues regarding this model, please submit an issue through https://github.com/ymcui/Chinese-LLaMA-Alpaca-3
RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf
RichardErkhov
2024-06-06T00:10:06Z
15
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-06-05T21:23:18Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) HelpSteer-filtered-7B - GGUF - Model creator: https://huggingface.co/Weyaxi/ - Original model: https://huggingface.co/Weyaxi/HelpSteer-filtered-7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [HelpSteer-filtered-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q2_K.gguf) | Q2_K | 2.53GB | | [HelpSteer-filtered-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [HelpSteer-filtered-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.IQ3_S.gguf) | IQ3_S | 2.96GB | | [HelpSteer-filtered-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [HelpSteer-filtered-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.IQ3_M.gguf) | IQ3_M | 3.06GB | | [HelpSteer-filtered-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q3_K.gguf) | Q3_K | 3.28GB | | [HelpSteer-filtered-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [HelpSteer-filtered-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [HelpSteer-filtered-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [HelpSteer-filtered-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q4_0.gguf) | Q4_0 | 3.83GB | | [HelpSteer-filtered-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [HelpSteer-filtered-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [HelpSteer-filtered-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q4_K.gguf) | Q4_K | 4.07GB | | [HelpSteer-filtered-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [HelpSteer-filtered-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q4_1.gguf) | Q4_1 | 4.24GB | | [HelpSteer-filtered-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q5_0.gguf) | Q5_0 | 4.65GB | | [HelpSteer-filtered-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [HelpSteer-filtered-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q5_K.gguf) | Q5_K | 4.78GB | | [HelpSteer-filtered-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [HelpSteer-filtered-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q5_1.gguf) | Q5_1 | 5.07GB | | [HelpSteer-filtered-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q6_K.gguf) | Q6_K | 5.53GB | | [HelpSteer-filtered-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-7B-gguf/blob/main/HelpSteer-filtered-7B.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: cc-by-4.0 datasets: - Weyaxi/HelpSteer-filtered language: - en tags: - mistral - instruct --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/TaPrtjbln6gXZV_AiGJl5.png) # HelpSteer-filtered-7B Original weights of [HelpSteer-filtered-7B](https://huggingface.co/Weyaxi/HelpSteer-filtered-7B). Finetuned from [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). ## Lora Weights You can access lora weights from here: [Weyaxi/HelpSteer-filtered-7B-Lora](https://huggingface.co/Weyaxi/HelpSteer-filtered-7B-Lora)
tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa_Qwen_Qwen1.5-4B_5e-4_lora2
tyzhu
2024-06-06T00:09:21Z
5
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T09:47:45Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_recite_qa_Qwen_Qwen1.5-4B_5e-4_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.7611848617176128 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_recite_qa_Qwen_Qwen1.5-4B_5e-4_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.5757 - Accuracy: 0.7612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 1.5463 | 0.9998 | 1089 | 1.3539 | 0.6872 | | 1.3199 | 1.9995 | 2178 | 1.1632 | 0.7022 | | 1.1039 | 2.9993 | 3267 | 1.0347 | 0.7134 | | 0.9356 | 4.0 | 4357 | 0.9234 | 0.7237 | | 0.8312 | 4.9998 | 5446 | 0.8529 | 0.7307 | | 0.7565 | 5.9995 | 6535 | 0.7860 | 0.7372 | | 0.6985 | 6.9993 | 7624 | 0.7415 | 0.7415 | | 0.6623 | 8.0 | 8714 | 0.7111 | 0.7457 | | 0.6281 | 8.9998 | 9803 | 0.6775 | 0.7481 | | 0.5885 | 9.9995 | 10892 | 0.6689 | 0.7496 | | 0.5721 | 10.9993 | 11981 | 0.6364 | 0.7530 | | 0.5504 | 12.0 | 13071 | 0.6319 | 0.7541 | | 0.5406 | 12.9998 | 14160 | 0.6185 | 0.7549 | | 0.536 | 13.9995 | 15249 | 0.6158 | 0.7565 | | 0.5205 | 14.9993 | 16338 | 0.5976 | 0.7578 | | 0.5175 | 16.0 | 17428 | 0.5922 | 0.7590 | | 0.5068 | 16.9998 | 18517 | 0.5823 | 0.7593 | | 0.5023 | 17.9995 | 19606 | 0.5754 | 0.7607 | | 0.4848 | 18.9993 | 20695 | 0.5781 | 0.7608 | | 0.4767 | 19.9954 | 21780 | 0.5757 | 0.7612 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
TDN-M/ViSD-TDNM
TDN-M
2024-06-06T00:08:22Z
3
0
diffusers
[ "diffusers", "vietnam", "sd", "text-to-image", "arxiv:1910.09700", "doi:10.57967/hf/2321", "license:mit", "region:us" ]
text-to-image
2024-05-27T07:12:44Z
--- license: mit pipeline_tag: text-to-image tags: - vietnam - sd metrics: - accuracy library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shkna1368/mawlawi
shkna1368
2024-06-05T23:57:15Z
107
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-06-05T23:55:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JoshuaAAX/beto-finetuned-ner
JoshuaAAX
2024-06-05T23:53:18Z
9
1
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2002", "base_model:NazaGara/NER-fine-tuned-BETO", "base_model:finetune:NazaGara/NER-fine-tuned-BETO", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-25T04:34:27Z
--- license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: beto-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8402527075812274 - name: Recall type: recall value: 0.8556985294117647 - name: F1 type: f1 value: 0.8479052823315117 - name: Accuracy type: accuracy value: 0.9701834862385321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beto-finetuned-ner This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2248 - Precision: 0.8403 - Recall: 0.8557 - F1: 0.8479 - Accuracy: 0.9702 ## Model description Este modelo está basado en BETO, que es un modelo de lenguaje preentrenado para el español similar a BERT. BETO fue entrenado inicialmente en grandes cantidades de texto en español. Posteriormente, este modelo toma la arquitectura y pesos preentrenados de BETO y los ajusta aún más en la tarea específica de Reconocimiento de Entidades Nombradas (NER) utilizando el conjunto de datos conll2002. Este modelo ajustado puede usarse para anotar automáticamente nuevos textos en español, asignando etiquetas de entidad nombradas. ## How to Use ```python from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("JoshuaAAX/beto-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("JoshuaAAX/beto-finetuned-ner") text = "La Federación nacional de cafeteros de Colombia es una entidad del estado. El primer presidente el Dr Augusto Guerra contó con el aval de la Asociación Colombiana de Aviación." ner_pipeline= pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") ner_pipeline(text) ``` ## Training data | Abbreviation | Description | |:-------------:|:-------------:| | O | Outside of NE | | PER | Person’s name | | ORG | Organization | | LOC | Location | | MISC | Miscellaneous | ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0512 | 1.0 | 521 | 0.1314 | 0.8328 | 0.8562 | 0.8443 | 0.9703 | | 0.0305 | 2.0 | 1042 | 0.1549 | 0.8318 | 0.8442 | 0.8380 | 0.9688 | | 0.0193 | 3.0 | 1563 | 0.1498 | 0.8513 | 0.8578 | 0.8545 | 0.9708 | | 0.0148 | 4.0 | 2084 | 0.1810 | 0.8363 | 0.8442 | 0.8403 | 0.9682 | | 0.0112 | 5.0 | 2605 | 0.1904 | 0.8412 | 0.8529 | 0.8470 | 0.9703 | | 0.0078 | 6.0 | 3126 | 0.1831 | 0.8364 | 0.8539 | 0.8450 | 0.9708 | | 0.0058 | 7.0 | 3647 | 0.2060 | 0.8419 | 0.8543 | 0.8481 | 0.9701 | | 0.0049 | 8.0 | 4168 | 0.2111 | 0.8357 | 0.8541 | 0.8448 | 0.9697 | | 0.0037 | 9.0 | 4689 | 0.2255 | 0.8371 | 0.8504 | 0.8437 | 0.9692 | | 0.0031 | 10.0 | 5210 | 0.2248 | 0.8403 | 0.8557 | 0.8479 | 0.9702 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
McLuian/FT-Mistral-7b-Instruct-GSM8K-100.Q4_0.gguf
McLuian
2024-06-05T23:39:16Z
30
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-05T08:13:10Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit --- # Uploaded model - **Developed by:** LuianMC - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
phongtintruong/misjava-api-060524-api-extend-test-merged-4bit
phongtintruong
2024-06-05T23:38:33Z
78
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-05T23:36:27Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Azazelle/SlimMelodicMaid
Azazelle
2024-06-05T23:38:01Z
1,530
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T00:58:39Z
--- license: cc-by-4.0 tags: - mistral - merge pipeline_tag: text-generation model-index: - name: SlimMelodicMaid results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azazelle/SlimMelodicMaid name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azazelle/SlimMelodicMaid name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azazelle/SlimMelodicMaid name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.88 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azazelle/SlimMelodicMaid name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azazelle/SlimMelodicMaid name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azazelle/SlimMelodicMaid name: Open LLM Leaderboard --- # Model Card for xDAN-SlimOrca <!-- Provide a quick summary of what the model is/does. --> Slerp merge of Silicon-Maid-7B, piano-medley-7b, xDAN-L1-Chat-RL-v1, and mistral-7b-slimorcaboros. .yaml file for mergekit ```.yaml: slices: - sources: - model: Azazelle/Silicon-Medley layer_range: [0, 32] - model: Azazelle/xDAN-SlimOrca layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-v0.1 parameters: t: - filter: self_attn value: [0.19, 0.59, 0.43, 0.76, 1] - filter: mlp value: [0.81, 0.41, 0.57, 0.24, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Azazelle__SlimMelodicMaid) | Metric |Value| |---------------------------------|----:| |Avg. |69.70| |AI2 Reasoning Challenge (25-Shot)|67.15| |HellaSwag (10-Shot) |86.01| |MMLU (5-Shot) |64.75| |TruthfulQA (0-shot) |60.88| |Winogrande (5-shot) |78.61| |GSM8k (5-shot) |60.80|
thdangtr/blip_recipe1m_ingredients_v4_2
thdangtr
2024-06-05T23:36:54Z
67
0
transformers
[ "transformers", "safetensors", "blip", "visual-question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
visual-question-answering
2024-06-05T23:36:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
uirev/MLX_OpenELM_1.1b_UiRev_finetuned_V3
uirev
2024-06-05T23:32:33Z
6
0
mlx
[ "mlx", "safetensors", "openelm", "trl", "sft", "generated_from_trainer", "custom_code", "base_model:apple/OpenELM-1_1B-Instruct", "base_model:finetune:apple/OpenELM-1_1B-Instruct", "license:other", "region:us" ]
null
2024-06-05T23:31:43Z
--- license: other tags: - trl - sft - generated_from_trainer - mlx base_model: apple/OpenELM-1_1B-Instruct model-index: - name: OpenELM_1.1b_UiRev_finetuned_V2 results: [] --- # Paramstr/MLX_OpenELM_1.1b_UiRev_finetuned_V3 The Model [Paramstr/MLX_OpenELM_1.1b_UiRev_finetuned_V3](https://huggingface.co/Paramstr/MLX_OpenELM_1.1b_UiRev_finetuned_V3) was converted to MLX format from [Paramstr/OpenELM_1.1b_UiRev_finetuned_V2](https://huggingface.co/Paramstr/OpenELM_1.1b_UiRev_finetuned_V2) using mlx-lm version **0.14.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Paramstr/MLX_OpenELM_1.1b_UiRev_finetuned_V3") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
mrovejaxd/FNST_trad_l
mrovejaxd
2024-06-05T23:21:49Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dccuchile/bert-base-spanish-wwm-cased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-cased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-05T20:49:33Z
--- base_model: dccuchile/bert-base-spanish-wwm-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: FNST_trad_l results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FNST_trad_l This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0024 - Accuracy: 0.5983 - F1: 0.5955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 42 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 1.127 | 1.0 | 2000 | 1.1060 | 0.5133 | 0.4590 | | 0.9786 | 2.0 | 4000 | 1.0075 | 0.5642 | 0.5524 | | 0.9072 | 3.0 | 6000 | 0.9958 | 0.5733 | 0.5697 | | 0.869 | 4.0 | 8000 | 0.9776 | 0.5917 | 0.5957 | | 0.8243 | 5.0 | 10000 | 0.9760 | 0.5817 | 0.5860 | | 0.7659 | 6.0 | 12000 | 0.9826 | 0.595 | 0.5993 | | 0.7414 | 7.0 | 14000 | 1.0055 | 0.5933 | 0.6001 | | 0.7023 | 8.0 | 16000 | 1.0113 | 0.5908 | 0.5959 | | 0.6745 | 9.0 | 18000 | 1.0527 | 0.5933 | 0.5949 | | 0.6161 | 10.0 | 20000 | 1.1227 | 0.5883 | 0.5920 | | 0.5863 | 11.0 | 22000 | 1.1571 | 0.5883 | 0.5896 | | 0.5406 | 12.0 | 24000 | 1.1883 | 0.5908 | 0.5954 | | 0.5185 | 13.0 | 26000 | 1.2686 | 0.5917 | 0.5957 | | 0.4796 | 14.0 | 28000 | 1.3313 | 0.5992 | 0.6067 | | 0.4379 | 15.0 | 30000 | 1.4234 | 0.595 | 0.5970 | | 0.3883 | 16.0 | 32000 | 1.5582 | 0.5958 | 0.5994 | | 0.3934 | 17.0 | 34000 | 1.6591 | 0.595 | 0.6012 | | 0.359 | 18.0 | 36000 | 1.8129 | 0.595 | 0.6011 | | 0.3249 | 19.0 | 38000 | 1.9811 | 0.5917 | 0.5966 | | 0.2954 | 20.0 | 40000 | 2.1860 | 0.5858 | 0.5901 | | 0.3064 | 21.0 | 42000 | 2.2548 | 0.5858 | 0.5904 | | 0.2844 | 22.0 | 44000 | 2.3557 | 0.6 | 0.6045 | | 0.2471 | 23.0 | 46000 | 2.5137 | 0.6017 | 0.6033 | | 0.2432 | 24.0 | 48000 | 2.6458 | 0.5992 | 0.6035 | | 0.2247 | 25.0 | 50000 | 2.8667 | 0.5983 | 0.6026 | | 0.213 | 26.0 | 52000 | 2.8895 | 0.6042 | 0.6088 | | 0.1792 | 27.0 | 54000 | 3.0338 | 0.6008 | 0.6062 | | 0.1723 | 28.0 | 56000 | 3.1234 | 0.5975 | 0.6008 | | 0.1562 | 29.0 | 58000 | 3.2822 | 0.5942 | 0.5992 | | 0.1437 | 30.0 | 60000 | 3.3156 | 0.6067 | 0.6096 | | 0.151 | 31.0 | 62000 | 3.3923 | 0.6075 | 0.6098 | | 0.1446 | 32.0 | 64000 | 3.4562 | 0.6058 | 0.6084 | | 0.109 | 33.0 | 66000 | 3.6100 | 0.6017 | 0.6038 | | 0.1138 | 34.0 | 68000 | 3.6468 | 0.6083 | 0.6078 | | 0.1068 | 35.0 | 70000 | 3.6758 | 0.5967 | 0.6004 | | 0.1133 | 36.0 | 72000 | 3.7340 | 0.6033 | 0.6025 | | 0.0865 | 37.0 | 74000 | 3.7666 | 0.6083 | 0.6079 | | 0.0936 | 38.0 | 76000 | 3.8650 | 0.6058 | 0.6073 | | 0.0957 | 39.0 | 78000 | 3.9209 | 0.605 | 0.6025 | | 0.1027 | 40.0 | 80000 | 3.9211 | 0.6058 | 0.6054 | | 0.0828 | 41.0 | 82000 | 4.0124 | 0.6058 | 0.6009 | | 0.0742 | 42.0 | 84000 | 4.0024 | 0.5983 | 0.5955 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Franz2001/openai-whisper-large-v3-talc_4epochs
Franz2001
2024-06-05T23:21:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-05T23:21:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MarPla/SocialSciencePegasusLargeModel
MarPla
2024-06-05T23:18:51Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-large", "base_model:finetune:google/pegasus-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-06-05T20:57:05Z
--- base_model: google/pegasus-large tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: SocialSciencePegasusLargeModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SocialSciencePegasusLargeModel This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7391 - Rouge1: 43.2515 - Rouge2: 13.5819 - Rougel: 29.2476 - Rougelsum: 39.2268 - Bertscore Precision: 76.5154 - Bertscore Recall: 81.3593 - Bertscore F1: 78.854 - Bleu: 0.1036 - Gen Len: 191.3589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Bleu | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------------------:|:----------------:|:------------:|:------:|:--------:| | 6.1745 | 0.3943 | 300 | 5.9613 | 40.1903 | 12.4753 | 28.1708 | 36.7059 | 75.8626 | 80.8932 | 78.2884 | 0.0959 | 191.3589 | | 5.8826 | 0.7885 | 600 | 5.7391 | 43.2515 | 13.5819 | 29.2476 | 39.2268 | 76.5154 | 81.3593 | 78.854 | 0.1036 | 191.3589 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.2.1 - Tokenizers 0.19.1
Skorcht/yandere-ai-her
Skorcht
2024-06-05T23:18:46Z
16
0
transformers
[ "transformers", "pytorch", "gguf", "mistral", "unsloth", "trl", "sft", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-06-05T22:50:42Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fine-tuned/deepspeed-from-new-new-docker
fine-tuned
2024-06-05T23:17:10Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "Query", "Document", "Argument", "Counter", "Boost", "fr", "en", "dataset:fine-tuned/deepspeed-from-new-new-docker", "dataset:allenai/c4", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-06-05T23:16:36Z
--- license: apache-2.0 datasets: - fine-tuned/deepspeed-from-new-new-docker - allenai/c4 language: - fr - en pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - Query - Document - Argument - Counter - Boost --- This model is a fine-tuned version of [**BAAI/bge-large-en-v1.5**](https://huggingface.co/BAAI/bge-large-en-v1.5) designed for the following use case: information retrieval system ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/deepspeed-from-new-new-docker', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf
RichardErkhov
2024-06-05T23:16:53Z
17
1
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-06-05T16:12:22Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Noromaid-20b-v0.1.1 - GGUF - Model creator: https://huggingface.co/NeverSleep/ - Original model: https://huggingface.co/NeverSleep/Noromaid-20b-v0.1.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Noromaid-20b-v0.1.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q2_K.gguf) | Q2_K | 6.91GB | | [Noromaid-20b-v0.1.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.IQ3_XS.gguf) | IQ3_XS | 7.63GB | | [Noromaid-20b-v0.1.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.IQ3_S.gguf) | IQ3_S | 8.06GB | | [Noromaid-20b-v0.1.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q3_K_S.gguf) | Q3_K_S | 8.06GB | | [Noromaid-20b-v0.1.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.IQ3_M.gguf) | IQ3_M | 8.53GB | | [Noromaid-20b-v0.1.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q3_K.gguf) | Q3_K | 9.04GB | | [Noromaid-20b-v0.1.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q3_K_M.gguf) | Q3_K_M | 9.04GB | | [Noromaid-20b-v0.1.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q3_K_L.gguf) | Q3_K_L | 9.9GB | | [Noromaid-20b-v0.1.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.IQ4_XS.gguf) | IQ4_XS | 10.01GB | | [Noromaid-20b-v0.1.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q4_0.gguf) | Q4_0 | 10.52GB | | [Noromaid-20b-v0.1.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.IQ4_NL.gguf) | IQ4_NL | 2.7GB | | [Noromaid-20b-v0.1.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q4_K_S.gguf) | Q4_K_S | 1.74GB | | [Noromaid-20b-v0.1.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q4_K.gguf) | Q4_K | 3.33GB | | [Noromaid-20b-v0.1.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q4_K_M.gguf) | Q4_K_M | 2.91GB | | [Noromaid-20b-v0.1.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q4_1.gguf) | Q4_1 | 11.67GB | | [Noromaid-20b-v0.1.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q5_0.gguf) | Q5_0 | 12.01GB | | [Noromaid-20b-v0.1.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q5_K_S.gguf) | Q5_K_S | 5.59GB | | [Noromaid-20b-v0.1.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q5_K.gguf) | Q5_K | 3.14GB | | [Noromaid-20b-v0.1.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q5_K_M.gguf) | Q5_K_M | 13.18GB | | [Noromaid-20b-v0.1.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q5_1.gguf) | Q5_1 | 13.98GB | | [Noromaid-20b-v0.1.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q6_K.gguf) | Q6_K | 15.28GB | | [Noromaid-20b-v0.1.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/NeverSleep_-_Noromaid-20b-v0.1.1-gguf/blob/main/Noromaid-20b-v0.1.1.Q8_0.gguf) | Q8_0 | 19.79GB | Original model description: --- license: cc-by-nc-4.0 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/VKX2Z2yjZX5J8kXzgeCYO.png) --- # Disclaimer: ## This is a ***TEST*** version, don't expect everything to work!!! You may use our custom **prompting format**(scroll down to download them!), or simple alpaca. **(Choose which fits best for you!)** --- # This model is a collab between [IkariDev](https://huggingface.co/IkariDev) and [Undi](https://huggingface.co/Undi95)! Tired of the same merges everytime? Here it is, the Noromaid-20b-v0.1.1 model. Suitable for RP, ERP and general stuff. [Recommended settings - No settings yet(Please suggest some over in the Community tab!)] <!-- description start --> ## Description <!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) --> This repo contains fp16 files of Noromaid-20b-v0.1.1. [FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/Noromaid-20b-v0.1.1) <!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)--> <!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)--> <!-- [exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2)--> <!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)--> <!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)--> [GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/Noromaid-20b-v0.1.1-GGUF) <!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)--> ## Ratings: Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here! No ratings yet! If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi". <!-- description end --> <!-- prompt-template start --> ## Prompt template: Custom format, or Alpaca ### Custom format: UPDATED!! SillyTavern config files: [Context](https://files.catbox.moe/ifmhai.json), [Instruct](https://files.catbox.moe/ttw1l9.json). OLD SillyTavern config files: [Context](https://files.catbox.moe/x85uy1.json), [Instruct](https://files.catbox.moe/ttw1l9.json). ### Alpaca: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## Training data used: - [no_robots dataset](https://huggingface.co/Undi95/Llama2-13B-no_robots-alpaca-lora) let the model have more human behavior, enhances the output. - [Aesir Private RP dataset] New data from a new and never used before dataset, add fresh data, no LimaRP spam, this is 100% new. Thanks to the [MinvervaAI Team](https://huggingface.co/MinervaAI) and, in particular, [Gryphe](https://huggingface.co/Gryphe) for letting us use it! ## Others Undi: If you want to support me, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
NaniDAO/ie-llama-3-8b-bnb-4bit-float-16
NaniDAO
2024-06-05T23:15:52Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T23:10:47Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** NaniDAO - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
inafi/finetuned-llama-synthetic-problems-merged
inafi
2024-06-05T23:07:21Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b", "base_model:finetune:unsloth/llama-3-8b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T02:43:59Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b --- # Uploaded model - **Developed by:** inafi - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
BuroIdentidadDigital/Ine_Frontal_v4
BuroIdentidadDigital
2024-06-05T23:02:53Z
56
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-06-05T22:13:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_5e-5_lora2
tyzhu
2024-06-05T23:02:43Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T16:13:47Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 metrics: - accuracy model-index: - name: lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_5e-5_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 type: tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 metrics: - name: Accuracy type: accuracy value: 0.7753632286995515 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_5e-5_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5804 - Accuracy: 0.7754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8478 | 1.0 | 529 | 1.6699 | 0.6080 | | 1.7862 | 2.0 | 1058 | 1.6003 | 0.6164 | | 1.6531 | 3.0 | 1587 | 1.5363 | 0.6251 | | 1.5515 | 4.0 | 2116 | 1.4608 | 0.6343 | | 1.4038 | 5.0 | 2645 | 1.3876 | 0.6456 | | 1.2751 | 6.0 | 3174 | 1.3186 | 0.6553 | | 1.1475 | 7.0 | 3703 | 1.2514 | 0.6637 | | 1.0282 | 8.0 | 4232 | 1.1740 | 0.676 | | 0.9067 | 9.0 | 4761 | 1.1004 | 0.6870 | | 0.8202 | 10.0 | 5290 | 1.0408 | 0.6964 | | 0.7007 | 11.0 | 5819 | 0.9592 | 0.7084 | | 0.6259 | 12.0 | 6348 | 0.8998 | 0.7191 | | 0.553 | 13.0 | 6877 | 0.8332 | 0.7295 | | 0.4948 | 14.0 | 7406 | 0.7799 | 0.7387 | | 0.4221 | 15.0 | 7935 | 0.7330 | 0.7466 | | 0.3911 | 16.0 | 8464 | 0.6805 | 0.7551 | | 0.3377 | 17.0 | 8993 | 0.6475 | 0.7620 | | 0.3179 | 18.0 | 9522 | 0.6195 | 0.7680 | | 0.288 | 19.0 | 10051 | 0.5962 | 0.7723 | | 0.2605 | 20.0 | 10580 | 0.5804 | 0.7754 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
xinchen9/SD_Offense
xinchen9
2024-06-05T23:00:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-05T23:00:54Z
--- title: SD Offense emoji: 📈 colorFrom: yellow colorTo: indigo sdk: gradio sdk_version: 4.33.0 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
iskhare/model_out
iskhare
2024-06-05T22:59:00Z
1
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "diffusers-training", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-06-05T22:49:19Z
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training base_model: stabilityai/stable-diffusion-2-1-base inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # controlnet-iskhare/model_out These are controlnet weights trained on stabilityai/stable-diffusion-2-1-base with new type of conditioning. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Peppizza/NLP_A2_alt
Peppizza
2024-06-05T22:55:35Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "multiple-choice", "generated_from_trainer", "base_model:OpenAssistant/reward-model-deberta-v3-large-v2", "base_model:finetune:OpenAssistant/reward-model-deberta-v3-large-v2", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2024-06-05T22:54:41Z
--- license: mit base_model: OpenAssistant/reward-model-deberta-v3-large-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: NLP_A2_alt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP_A2_alt This model is a fine-tuned version of [OpenAssistant/reward-model-deberta-v3-large-v2](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3513 - Accuracy: 0.8834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9988 | 419 | 0.4063 | 0.8767 | | 0.0925 | 1.9976 | 838 | 0.3513 | 0.8834 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
tiiuae/visper
tiiuae
2024-06-05T22:37:35Z
0
9
null
[ "en", "es", "fr", "ar", "zh", "dataset:tiiuae/visper", "license:cc-by-nc-2.0", "region:us" ]
null
2024-05-26T12:22:21Z
--- datasets: - tiiuae/visper language: - en - es - fr - ar - zh inference: false license: cc-by-nc-2.0 metrics: - wer --- # ViSpeR: Multilingual Audio-Visual Speech Recognition ViSPer is a model for audio visual speech recognition (VSR/AVSR). Trained on 5500 hours of labelled video data. # Training details: We use our proposed dataset to train a encoder-decoder model in a fully-supervised manner under a multi-lingual setting. While the encoder size is 12 layers, the decoder size is 6 layers. The hidden size, MLP and number of heads are set to 768, 3072 and 12, respectively. The unigram tokenizers are learned for all languages combined and have a vocabulary size of 21k. The models are trained for 150 epochs on 64 Nvidia A100 GPUs (40GB) using AdamW optimizer with max LR of 1e-3 and a weight decay of 0.1. A cosine scheduler with a warm-up of 5 epochs is used for training. The maximum batch size per GPU is set to 1800 video frames. # Performance: We provide the results of the model on our proposed benchmarks in this table: | Language | VSR (WER/CER) | AVSR (WER/CER) | |----------|---------------|----------------| | French | 29.8 | 5.7 | | Spanish | 39.4 | 4.4 | | Arabic | 47.8 | 8.4 | | Chinese | 51.3 (CER) | 15.4 (CER) | | English | 49.1 | 8.1 | # Broader impact: In essence, while we hope that ViSPer will open the doors for new research questions and opportunities, and should only be used for this purpose. There are also potential dual use concerns that come with releasing ViSPer (dataset and models), trained on a substantial corpus of multilingual video data. While the technology behind ViSPer offers significant advances in multimodal speech recognition, it should only be used for research purposes. ## ViSpeR paper coming soon ## Check our VSR related works ```bash @inproceedings{djilali2023lip2vec, title={Lip2Vec: Efficient and Robust Visual Speech Recognition via Latent-to-Latent Visual to Audio Representation Mapping}, author={Djilali, Yasser Abdelaziz Dahou and Narayan, Sanath and Boussaid, Haithem and Almazrouei, Ebtessam and Debbah, Merouane}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={13790--13801}, year={2023} } @inproceedings{djilali2024vsr, title={Do VSR Models Generalize Beyond LRS3?}, author={Djilali, Yasser Abdelaziz Dahou and Narayan, Sanath and LeBihan, Eustache and Boussaid, Haithem and Almazrouei, Ebtesam and Debbah, Merouane}, booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, pages={6635--6644}, year={2024} } ```
camilomj/youngblooddrums
camilomj
2024-06-05T22:34:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-05T22:33:32Z
--- license: apache-2.0 ---
aerdna/quantize_v0.2
aerdna
2024-06-05T22:32:13Z
81
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-05T22:28:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AprendeIngenia/vehicle_plate_detection
AprendeIngenia
2024-06-05T22:18:04Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-05T22:03:59Z
--- license: apache-2.0 ---
bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF
bartowski
2024-06-05T22:10:08Z
2,220
10
transformers
[ "transformers", "gguf", "code", "text-generation", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
text-generation
2024-06-05T19:09:00Z
--- library_name: transformers license: other license_name: mnpl license_link: https://mistral.ai/licences/MNPL-0.1.md tags: - code language: - code quantized_by: bartowski pipeline_tag: text-generation --- ## Llamacpp imatrix Quantizations of Codestral-22B-v0.1-abliterated-v3 Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3086">b3086</a> for quantization. Original model: https://huggingface.co/failspy/Codestral-22B-v0.1-abliterated-v3 All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) ## Prompt format No chat template specified so default is used. This may be incorrect, check original model card for details. ``` <s>[INST] <<SYS>> {system_prompt} <</SYS>> {prompt}[/INST] </s> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Codestral-22B-v0.1-abliterated-v3-Q8_0.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q8_0.gguf) | Q8_0 | 23.64GB | Extremely high quality, generally unneeded but max available quant. | | [Codestral-22B-v0.1-abliterated-v3-Q6_K.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q6_K.gguf) | Q6_K | 18.25GB | Very high quality, near perfect, *recommended*. | | [Codestral-22B-v0.1-abliterated-v3-Q5_K_M.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q5_K_M.gguf) | Q5_K_M | 15.72GB | High quality, *recommended*. | | [Codestral-22B-v0.1-abliterated-v3-Q5_K_S.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q5_K_S.gguf) | Q5_K_S | 15.32GB | High quality, *recommended*. | | [Codestral-22B-v0.1-abliterated-v3-Q4_K_M.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q4_K_M.gguf) | Q4_K_M | 13.34GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [Codestral-22B-v0.1-abliterated-v3-Q4_K_S.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q4_K_S.gguf) | Q4_K_S | 12.66GB | Slightly lower quality with more space savings, *recommended*. | | [Codestral-22B-v0.1-abliterated-v3-IQ4_XS.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ4_XS.gguf) | IQ4_XS | 11.93GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Codestral-22B-v0.1-abliterated-v3-Q3_K_L.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q3_K_L.gguf) | Q3_K_L | 11.73GB | Lower quality but usable, good for low RAM availability. | | [Codestral-22B-v0.1-abliterated-v3-Q3_K_M.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q3_K_M.gguf) | Q3_K_M | 10.75GB | Even lower quality. | | [Codestral-22B-v0.1-abliterated-v3-IQ3_M.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ3_M.gguf) | IQ3_M | 10.06GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Codestral-22B-v0.1-abliterated-v3-Q3_K_S.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q3_K_S.gguf) | Q3_K_S | 9.64GB | Low quality, not recommended. | | [Codestral-22B-v0.1-abliterated-v3-IQ3_XS.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ3_XS.gguf) | IQ3_XS | 9.17GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Codestral-22B-v0.1-abliterated-v3-IQ3_XXS.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ3_XXS.gguf) | IQ3_XXS | 8.59GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Codestral-22B-v0.1-abliterated-v3-Q2_K.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-Q2_K.gguf) | Q2_K | 8.27GB | Very low quality but surprisingly usable. | | [Codestral-22B-v0.1-abliterated-v3-IQ2_M.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ2_M.gguf) | IQ2_M | 7.61GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [Codestral-22B-v0.1-abliterated-v3-IQ2_S.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ2_S.gguf) | IQ2_S | 7.03GB | Very low quality, uses SOTA techniques to be usable. | | [Codestral-22B-v0.1-abliterated-v3-IQ2_XS.gguf](https://huggingface.co/bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF/blob/main/Codestral-22B-v0.1-abliterated-v3-IQ2_XS.gguf) | IQ2_XS | 6.64GB | Very low quality, uses SOTA techniques to be usable. | ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF --include "Codestral-22B-v0.1-abliterated-v3-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Codestral-22B-v0.1-abliterated-v3-GGUF --include "Codestral-22B-v0.1-abliterated-v3-Q8_0.gguf/*" --local-dir Codestral-22B-v0.1-abliterated-v3-Q8_0 ``` You can either specify a new local-dir (Codestral-22B-v0.1-abliterated-v3-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
ksw1/llama-3-8b-sleeper-agent
ksw1
2024-06-05T22:09:19Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T22:03:39Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** ksw1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
maxorax/maxorax-lora
maxorax
2024-06-05T21:57:55Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-05T21:40:06Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aerdna/quantize_v0.1
aerdna
2024-06-05T21:53:25Z
79
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-05T21:51:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
antonryoung02/deberta-v3-small-essay-grading-classification
antonryoung02
2024-06-05T21:52:23Z
109
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-05T00:20:36Z
--- tags: - generated_from_trainer model-index: - name: deberta-v3-small-essay-grading-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-small-essay-grading-classification This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8790 - Qwk: 0.7595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 433 | 0.9495 | 0.7132 | | 1.0266 | 2.0 | 866 | 0.8787 | 0.7561 | | 1.0266 | 3.0 | 1299 | 0.8790 | 0.7595 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
fofr/consistent-character-weights
fofr
2024-06-05T21:51:09Z
0
4
null
[ "onnx", "region:us" ]
null
2024-06-05T21:21:21Z
Weights used in the consistent-character ComfyUI workflow: - https://github.com/fofr/cog-consistent-character - https://replicate.com/fofr/consistent-character
tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa_Qwen_Qwen1.5-4B_3e-4_lora2
tyzhu
2024-06-05T21:47:06Z
4
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T08:30:56Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_doc_qa_Qwen_Qwen1.5-4B_3e-4_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa metrics: - name: Accuracy type: accuracy value: 0.5165079365079365 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_doc_qa_Qwen_Qwen1.5-4B_3e-4_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.1631 - Accuracy: 0.5165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 1.7567 | 0.9998 | 1089 | 2.2626 | 0.5190 | | 1.5617 | 1.9995 | 2178 | 2.2436 | 0.5246 | | 1.343 | 2.9993 | 3267 | 2.3385 | 0.5237 | | 1.1682 | 4.0 | 4357 | 2.4995 | 0.5215 | | 1.0141 | 4.9998 | 5446 | 2.6397 | 0.5182 | | 0.9023 | 5.9995 | 6535 | 2.7929 | 0.5170 | | 0.8008 | 6.9993 | 7624 | 2.8233 | 0.5162 | | 0.7377 | 8.0 | 8714 | 2.8833 | 0.5180 | | 0.6732 | 8.9998 | 9803 | 2.9550 | 0.5165 | | 0.6225 | 9.9995 | 10892 | 2.9767 | 0.5165 | | 0.5858 | 10.9993 | 11981 | 3.0117 | 0.5165 | | 0.5618 | 12.0 | 13071 | 3.0317 | 0.5170 | | 0.5464 | 12.9998 | 14160 | 3.0686 | 0.5167 | | 0.5243 | 13.9995 | 15249 | 3.0829 | 0.5149 | | 0.5066 | 14.9993 | 16338 | 3.0958 | 0.5127 | | 0.4947 | 16.0 | 17428 | 3.0921 | 0.5153 | | 0.4841 | 16.9998 | 18517 | 3.1170 | 0.5162 | | 0.4727 | 17.9995 | 19606 | 3.1375 | 0.5172 | | 0.4634 | 18.9993 | 20695 | 3.1323 | 0.5150 | | 0.4468 | 19.9954 | 21780 | 3.1631 | 0.5165 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa_Qwen_Qwen1.5-4B_3e-4_lora2
tyzhu
2024-06-05T21:45:56Z
5
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "model-index", "region:us" ]
null
2024-06-05T08:30:45Z
--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_recite_qa_Qwen_Qwen1.5-4B_3e-4_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.7763580786026201 library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_recite_qa_Qwen_Qwen1.5-4B_3e-4_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.4756 - Accuracy: 0.7764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 1.5356 | 0.9998 | 1089 | 1.3711 | 0.6864 | | 1.3102 | 1.9995 | 2178 | 1.1753 | 0.7020 | | 1.0549 | 2.9993 | 3267 | 1.0095 | 0.7164 | | 0.8461 | 4.0 | 4357 | 0.8722 | 0.7297 | | 0.701 | 4.9998 | 5446 | 0.7641 | 0.7406 | | 0.5977 | 5.9995 | 6535 | 0.6797 | 0.7490 | | 0.5238 | 6.9993 | 7624 | 0.6209 | 0.7559 | | 0.4742 | 8.0 | 8714 | 0.5837 | 0.7600 | | 0.438 | 8.9998 | 9803 | 0.5532 | 0.7638 | | 0.402 | 9.9995 | 10892 | 0.5331 | 0.7664 | | 0.383 | 10.9993 | 11981 | 0.5156 | 0.7685 | | 0.3627 | 12.0 | 13071 | 0.5070 | 0.7702 | | 0.3521 | 12.9998 | 14160 | 0.4984 | 0.7714 | | 0.344 | 13.9995 | 15249 | 0.4925 | 0.7722 | | 0.3341 | 14.9993 | 16338 | 0.4847 | 0.7736 | | 0.3275 | 16.0 | 17428 | 0.4808 | 0.7748 | | 0.3223 | 16.9998 | 18517 | 0.4776 | 0.7751 | | 0.3155 | 17.9995 | 19606 | 0.4804 | 0.7758 | | 0.3033 | 18.9993 | 20695 | 0.4787 | 0.7761 | | 0.2989 | 19.9954 | 21780 | 0.4756 | 0.7764 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
aerdna/testv0.1
aerdna
2024-06-05T21:45:40Z
10
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T21:37:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stablediffusionapi/hardcore-hentai
stablediffusionapi
2024-06-05T21:44:33Z
31
5
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-04-21T04:01:40Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Hardcore Hentai API Inference ![generated from modelslab.com](https://d9jy2smsrdjcq.cloudfront.net/generations/0-d4745818-da6c-4b29-8995-ec638478afd1.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "hardcore-hentai" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/hardcore-hentai) Model link: [View model](https://modelslab.com/models/hardcore-hentai) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "hardcore-hentai", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
ClaudioItaly/EvolutionDark
ClaudioItaly
2024-06-05T21:38:56Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:ClaudioItaly/TopEvolutionWiz", "base_model:merge:ClaudioItaly/TopEvolutionWiz", "base_model:TeeZee/DarkSapling-7B-v1.0", "base_model:merge:TeeZee/DarkSapling-7B-v1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T16:51:33Z
--- base_model: - TeeZee/DarkSapling-7B-v1.0 - ClaudioItaly/TopEvolutionWiz library_name: transformers tags: - mergekit - merge --- This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [TeeZee/DarkSapling-7B-v1.0](https://huggingface.co/TeeZee/DarkSapling-7B-v1.0) * [ClaudioItaly/TopEvolutionWiz](https://huggingface.co/ClaudioItaly/TopEvolutionWiz) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: ClaudioItaly/TopEvolutionWiz - model: TeeZee/DarkSapling-7B-v1.0 merge_method: slerp base_model: ClaudioItaly/TopEvolutionWiz dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
lmstudio-community/Codestral-22B-v0.1-GGUF
lmstudio-community
2024-06-05T21:35:08Z
26,873
19
null
[ "gguf", "code", "text-generation", "base_model:mistralai/Codestral-22B-v0.1", "base_model:quantized:mistralai/Codestral-22B-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-05-29T19:01:50Z
--- license_link: https://mistral.ai/licences/MNPL-0.1.md tags: - code language: - code license: apache-2.0 quantized_by: bartowski pipeline_tag: text-generation lm_studio: param_count: 22b use_case: coding release_date: 29-05-2024 model_creator: mistralai prompt_template: Mistral Instruct system_prompt: none base_model: mistral original_repo: mistralai/Codestral-22B-v0.1 base_model: mistralai/Codestral-22B-v0.1 --- ## 💫 Community Model> Codestral 22B v0.1 by Mistral AI *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [Mistral AI](https://huggingface.co/mistralai)<br> **Original model**: [Codestral-22B-v0.1](https://huggingface.co/mistralai/Codestral-22B-v0.1)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b3024](https://github.com/ggerganov/llama.cpp/releases/tag/b3024)<br> ## Model Summary: Codestral is a brand new coding model released by the Mistral team. This 22B model is the first of its size and the first ever specialized model released by this team.<br> Supporting both instruction prompting and popular Fill in the Middle (FIM) tokens for predictions, this model should be all around great for all your coding tasks. ## Prompt template: Choose the `Mistral Instruct` preset in your LM Studio. Under the hood, the model will see a prompt that's formatted like so: ``` <s>[INST] {prompt} [/INST]</s> ``` This model also supports the following FIM tokens: `[PREFIX]`, `[SUFFIX]` ## Technical Details Codestral 22B 0.1 is trained on a dataset of 80+ programming languages including of course Python, Java, C++, Javascript, and Bash. It supports both instruction querying as well as Fill in the Middle querying. More details and benchmark information can be found on their blogpost here: https://mistral.ai/news/codestral/ ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) 🙏 Special thanks to [Kalomaze](https://github.com/kalomaze) and [Dampf](https://github.com/Dampfinchen) for their work on the dataset (linked [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)) that was used for calculating the imatrix for all sizes. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
Luispark2025/Luis_Park
Luispark2025
2024-06-05T21:32:14Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-06-05T20:06:44Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 datasets: - generator model-index: - name: Luis_Park results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Luis_Park This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.1463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 15 - total_train_batch_size: 15 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2094 | 0.8955 | 4 | 1.1494 | | 1.0733 | 1.7910 | 8 | 1.1463 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.1 - Datasets 2.19.2 - Tokenizers 0.19.1
Ashmal/MBZUAI-ORYX-new
Ashmal
2024-06-05T21:31:25Z
2,904
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-04T08:57:58Z
--- library_name: transformers license: apache-2.0 --- This is the Arabic test model built at MBZUAI. More details of the projects will be announced later along with the release. This model card is just to test the capabilities of this model on Arabic benchmarks.
bartowski/L3-TheSpice-8b-v0.8.3-GGUF
bartowski
2024-06-05T21:24:34Z
254
9
null
[ "gguf", "text-generation", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-04-25T15:46:16Z
--- license: cc-by-nc-4.0 quantized_by: bartowski pipeline_tag: text-generation --- ## Llamacpp imatrix Quantizations of L3-TheSpice-8b-v0.8.3 Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2717">b2717</a> for quantization. Original model: https://huggingface.co/cgato/L3-TheSpice-8b-v0.8.3 All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384) ## Prompt format ``` {System Prompt} Username: {Input} BotName: {Response} Username: {Input} BotName: {Response} ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [L3-TheSpice-8b-v0.8.3-Q8_0.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. | | [L3-TheSpice-8b-v0.8.3-Q6_K.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. | | [L3-TheSpice-8b-v0.8.3-Q5_K_M.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. | | [L3-TheSpice-8b-v0.8.3-Q5_K_S.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. | | [L3-TheSpice-8b-v0.8.3-Q4_K_M.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [L3-TheSpice-8b-v0.8.3-Q4_K_S.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. | | [L3-TheSpice-8b-v0.8.3-IQ4_NL.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. | | [L3-TheSpice-8b-v0.8.3-IQ4_XS.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [L3-TheSpice-8b-v0.8.3-Q3_K_L.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. | | [L3-TheSpice-8b-v0.8.3-Q3_K_M.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. | | [L3-TheSpice-8b-v0.8.3-IQ3_M.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [L3-TheSpice-8b-v0.8.3-IQ3_S.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. | | [L3-TheSpice-8b-v0.8.3-Q3_K_S.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. | | [L3-TheSpice-8b-v0.8.3-IQ3_XS.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [L3-TheSpice-8b-v0.8.3-IQ3_XXS.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [L3-TheSpice-8b-v0.8.3-Q2_K.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. | | [L3-TheSpice-8b-v0.8.3-IQ2_M.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [L3-TheSpice-8b-v0.8.3-IQ2_S.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. | | [L3-TheSpice-8b-v0.8.3-IQ2_XS.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. | | [L3-TheSpice-8b-v0.8.3-IQ2_XXS.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. | | [L3-TheSpice-8b-v0.8.3-IQ1_M.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. | | [L3-TheSpice-8b-v0.8.3-IQ1_S.gguf](https://huggingface.co/bartowski/L3-TheSpice-8b-v0.8.3-GGUF/blob/main/L3-TheSpice-8b-v0.8.3-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. | ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF
mradermacher
2024-06-05T21:24:19Z
12
0
transformers
[ "transformers", "gguf", "en", "base_model:VictorDCh/Llama-3-8B-Instruct-MoE-4", "base_model:quantized:VictorDCh/Llama-3-8B-Instruct-MoE-4", "endpoints_compatible", "region:us", "conversational" ]
null
2024-06-05T18:32:46Z
--- base_model: VictorDCh/Llama-3-8B-Instruct-MoE-4 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/VictorDCh/Llama-3-8B-Instruct-MoE-4 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q2_K.gguf) | Q2_K | 17.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.IQ3_XS.gguf) | IQ3_XS | 20.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.IQ3_S.gguf) | IQ3_S | 21.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q3_K_S.gguf) | Q3_K_S | 21.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.IQ3_M.gguf) | IQ3_M | 22.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q3_K_M.gguf) | Q3_K_M | 23.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q3_K_L.gguf) | Q3_K_L | 24.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.IQ4_XS.gguf) | IQ4_XS | 26.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q4_K_S.gguf) | Q4_K_S | 27.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q4_K_M.gguf) | Q4_K_M | 29.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q5_K_S.gguf) | Q5_K_S | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q5_K_M.gguf) | Q5_K_M | 33.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q6_K.gguf) | Q6_K | 39.1 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-MoE-4-GGUF/resolve/main/Llama-3-8B-Instruct-MoE-4.Q8_0.gguf.part2of2) | Q8_0 | 50.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
yzhuang/Qwen1.5-7B-Chat-v0.1_fictional_Chinese_v1
yzhuang
2024-06-05T21:20:11Z
156
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "dataset:generator", "base_model:Qwen/Qwen1.5-7B-Chat", "base_model:finetune:Qwen/Qwen1.5-7B-Chat", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-05T16:05:22Z
--- license: other base_model: Qwen/Qwen1.5-7B-Chat tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: Qwen1.5-7B-Chat-v0.1_fictional_Chinese_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen1.5-7B-Chat-v0.1_fictional_Chinese_v1 This model is a fine-tuned version of [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 36 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
Shansqw/Shans
Shansqw
2024-06-05T21:18:59Z
0
0
fairseq
[ "fairseq", "code", "translation", "aa", "dataset:Replete-AI/code_bagel", "license:apache-2.0", "region:us" ]
translation
2024-06-05T21:17:14Z
--- license: apache-2.0 datasets: - Replete-AI/code_bagel language: - aa metrics: - character library_name: fairseq pipeline_tag: translation tags: - code ---