modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-23 18:27:52
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 492
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-23 18:25:26
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Best000/679a47bb-4a1a-4fdd-a604-9595de9aea29 | Best000 | 2025-01-31T11:13:44Z | 9 | 0 | peft | [
"peft",
"safetensors",
"gpt_neo",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/gpt-neo-125m",
"base_model:adapter:EleutherAI/gpt-neo-125m",
"license:mit",
"region:us"
] | null | 2025-01-31T11:12:36Z | ---
library_name: peft
license: mit
base_model: EleutherAI/gpt-neo-125m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 679a47bb-4a1a-4fdd-a604-9595de9aea29
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d42d05d70d1177b5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d42d05d70d1177b5_train_data.json
type:
field_instruction: problem
field_output: generated_solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/679a47bb-4a1a-4fdd-a604-9595de9aea29
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d42d05d70d1177b5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 71fc9dbd-6b0f-4a30-b082-173afe1f7f81
wandb_project: Birthday-SN56-15-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 71fc9dbd-6b0f-4a30-b082-173afe1f7f81
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 679a47bb-4a1a-4fdd-a604-9595de9aea29
This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2563
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 1.3890 |
| 5.1623 | 0.0049 | 13 | 1.3465 |
| 5.2261 | 0.0098 | 26 | 1.2803 |
| 5.1446 | 0.0147 | 39 | 1.2563 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nathanialhunt/ee9aa00c-d243-4594-bbf2-d29b3bfe8f2b | nathanialhunt | 2025-01-31T11:13:36Z | 9 | 0 | peft | [
"peft",
"safetensors",
"gpt_neo",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/gpt-neo-125m",
"base_model:adapter:EleutherAI/gpt-neo-125m",
"license:mit",
"region:us"
] | null | 2025-01-31T11:12:34Z | ---
library_name: peft
license: mit
base_model: EleutherAI/gpt-neo-125m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ee9aa00c-d243-4594-bbf2-d29b3bfe8f2b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d42d05d70d1177b5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d42d05d70d1177b5_train_data.json
type:
field_instruction: problem
field_output: generated_solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nathanialhunt/ee9aa00c-d243-4594-bbf2-d29b3bfe8f2b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d42d05d70d1177b5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 71fc9dbd-6b0f-4a30-b082-173afe1f7f81
wandb_project: Birthday-SN56-24-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 71fc9dbd-6b0f-4a30-b082-173afe1f7f81
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# ee9aa00c-d243-4594-bbf2-d29b3bfe8f2b
This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2540
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 1.3890 |
| 5.159 | 0.0049 | 13 | 1.3432 |
| 5.2167 | 0.0098 | 26 | 1.2783 |
| 5.1372 | 0.0147 | 39 | 1.2540 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
cgaege/model | cgaege | 2025-01-31T11:13:15Z | 24 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-31T11:12:17Z | ---
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** cgaege
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-f16-GGUF | roleplaiapp | 2025-01-31T11:12:33Z | 212 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"deekseekr1",
"f16",
"fuseo1",
"llama-cpp",
"preview",
"qwq",
"skyt1",
"text-generation",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-31T11:08:07Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- deekseekr1
- f16
- fuseo1
- gguf
- llama-cpp
- preview
- qwq
- skyt1
- text-generation
---
# roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-f16-GGUF
**Repo:** `roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-f16-GGUF`
**Original Model:** `FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview`
**Quantized File:** `FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-bf16/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-bf16-00001-of-00002.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `f16`
## Overview
This is a GGUF f16 quantized version of FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
clarxus/74bb7c38-8fb8-4b4f-9c6d-e5ab6d1fe242 | clarxus | 2025-01-31T11:12:02Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-7b-v1.3",
"base_model:adapter:lmsys/vicuna-7b-v1.3",
"region:us"
] | null | 2025-01-31T10:55:41Z | ---
library_name: peft
base_model: lmsys/vicuna-7b-v1.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 74bb7c38-8fb8-4b4f-9c6d-e5ab6d1fe242
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-7b-v1.3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3f8d0d09c2790588_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3f8d0d09c2790588_train_data.json
type:
field_input: entities
field_instruction: intent
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: clarxus/74bb7c38-8fb8-4b4f-9c6d-e5ab6d1fe242
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/3f8d0d09c2790588_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 1f90a4ba-fe05-46a7-a1bb-1e279be1741b
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 1f90a4ba-fe05-46a7-a1bb-1e279be1741b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 74bb7c38-8fb8-4b4f-9c6d-e5ab6d1fe242
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5521
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0060 | 1 | 2.4310 |
| 2.2066 | 0.0541 | 9 | 2.0199 |
| 1.0756 | 0.1081 | 18 | 0.9353 |
| 0.8032 | 0.1622 | 27 | 0.7257 |
| 0.6559 | 0.2162 | 36 | 0.6367 |
| 0.6319 | 0.2703 | 45 | 0.6004 |
| 0.5696 | 0.3243 | 54 | 0.5816 |
| 0.5789 | 0.3784 | 63 | 0.5656 |
| 0.6445 | 0.4324 | 72 | 0.5597 |
| 0.6286 | 0.4865 | 81 | 0.5553 |
| 0.5705 | 0.5405 | 90 | 0.5526 |
| 0.587 | 0.5946 | 99 | 0.5521 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
blood34/e4af7e34-6545-4a7f-ac56-5f48f551d222 | blood34 | 2025-01-31T11:10:49Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:adapter:EleutherAI/pythia-410m-deduped",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T11:02:01Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e4af7e34-6545-4a7f-ac56-5f48f551d222
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7ccfb23153eb4e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c7ccfb23153eb4e2_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: blood34/e4af7e34-6545-4a7f-ac56-5f48f551d222
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/c7ccfb23153eb4e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b112a2de-aff0-4f32-ba1f-4285c58878e4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b112a2de-aff0-4f32-ba1f-4285c58878e4
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e4af7e34-6545-4a7f-ac56-5f48f551d222
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.4868 | 0.0868 | 200 | 1.0924 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/1a86e5c6-bbbe-46ad-bf05-187ec82d0853 | mrferr3t | 2025-01-31T11:08:54Z | 9 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:adapter:EleutherAI/pythia-410m-deduped",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T11:05:08Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1a86e5c6-bbbe-46ad-bf05-187ec82d0853
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7ccfb23153eb4e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c7ccfb23153eb4e2_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/1a86e5c6-bbbe-46ad-bf05-187ec82d0853
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 99
micro_batch_size: 2
mlflow_experiment_name: /tmp/c7ccfb23153eb4e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b112a2de-aff0-4f32-ba1f-4285c58878e4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b112a2de-aff0-4f32-ba1f-4285c58878e4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 1a86e5c6-bbbe-46ad-bf05-187ec82d0853
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 99
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 9.3751 | 0.0002 | 1 | 2.4215 |
| 5.6137 | 0.0109 | 50 | 1.3772 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
NalDice/askvox-llama3.3-70b-4bit | NalDice | 2025-01-31T11:08:16Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-01-31T11:02:44Z | ---
base_model: unsloth/llama-3.3-70b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** NalDice
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.3-70b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
minhnguyennnnnn/ad48f848-5d3e-488d-8102-8e3db34e21a7 | minhnguyennnnnn | 2025-01-31T11:08:03Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T10:59:46Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ad48f848-5d3e-488d-8102-8e3db34e21a7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0d5d976991e3a752_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0d5d976991e3a752_train_data.json
type:
field_input: rational_answer
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: minhnguyennnnnn/ad48f848-5d3e-488d-8102-8e3db34e21a7
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/0d5d976991e3a752_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 88b86b05-eecb-42b3-b66f-ca78bc5345cc
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 88b86b05-eecb-42b3-b66f-ca78bc5345cc
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# ad48f848-5d3e-488d-8102-8e3db34e21a7
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3804 | 0.2315 | 200 | 0.4475 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
arcwarden46/9b672075-9c55-4cfe-9318-80467e4b8158 | arcwarden46 | 2025-01-31T11:07:31Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:adapter:EleutherAI/pythia-410m-deduped",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T11:02:01Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9b672075-9c55-4cfe-9318-80467e4b8158
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7ccfb23153eb4e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c7ccfb23153eb4e2_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: arcwarden46/9b672075-9c55-4cfe-9318-80467e4b8158
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/c7ccfb23153eb4e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b112a2de-aff0-4f32-ba1f-4285c58878e4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b112a2de-aff0-4f32-ba1f-4285c58878e4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 9b672075-9c55-4cfe-9318-80467e4b8158
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 9.417 | 0.0009 | 1 | 2.4251 |
| 5.763 | 0.0434 | 50 | 1.2690 |
| 4.9063 | 0.0868 | 100 | 1.0931 |
| 4.3884 | 0.1302 | 150 | 0.9528 |
| 4.1572 | 0.1736 | 200 | 0.9222 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Hypernap/model | Hypernap | 2025-01-31T11:06:08Z | 8 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"phi",
"sentiment-analysis",
"finetuned",
"nlp",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-09-30T17:02:49Z |
---
base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- phi
- sentiment-analysis
- finetuned
- nlp
---
# Sentiment Finetuned Phi-3
- **Developed by:** Hypernap
- **License:** apache-2.0
- **Finetuned from model :** [unsloth/phi-3.5-mini-instruct-bnb-4bit](https://huggingface.co/unsloth/phi-3.5-mini-instruct-bnb-4bit)
This model is a fine-tuned version of the [unsloth/phi-3.5-mini-instruct-bnb-4bit](https://huggingface.co/unsloth/phi-3.5-mini-instruct-bnb-4bit) using a custom sentiment analysis dataset. It was trained with accelerated speed using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## Model Details
This model is a fine-tuned version of the [unsloth/phi-3.5-mini-instruct-bnb-4bit](https://huggingface.co/unsloth/phi-3.5-mini-instruct-bnb-4bit) optimized for sentiment analysis tasks. The original Phi-3 model is a powerful language model, and this fine-tuned version further enhances its capabilities for tasks involving sentiment detection, classification and inference.
**Intended Use:**
This model is intended for use in tasks such as:
* **Sentiment Analysis:** Classifying the sentiment of text as positive, negative, or neutral.
* **Customer Feedback Analysis:** Analyzing reviews and feedback for sentiment.
* **Social Media Monitoring:** Detecting the sentiment of posts and comments.
* **Text Classification:** General text classification involving sentiment labels.
* **Opinion Mining:** Understanding the sentiment within text data.
**Training Details:**
* **Fine-tuning Dataset:** A custom sentiment dataset was used for fine-tuning. (Optional: If your dataset is public, you can include a link or a brief description here.)
* **Training Method:** The model was fine-tuned using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library, which provides optimized training for models.
* **Hardware:** The model was trained using [Specify your hardware if you want].
* **Accelerated Training** Using unsloth led to 2x faster training.
**Model Evaluation:**
* (Optional) Provide links to evaluation metrics or example outputs if you have them available. You can include metrics like:
* Accuracy
* Precision, Recall and F1 scores
* Qualitative analysis of the outputs
**Limitations:**
* The model's performance may vary on datasets significantly different from the training data.
* It may struggle with sarcasm or nuanced expressions of sentiment.
* The model is optimized for sentiment analysis tasks, it is not suitable as a generic language model.
**Further Information:**
* If you have a repository where you keep your training code, datasets, or other relevant information, you can link it here.
**Acknowledgements:**
* [Unsloth](https://github.com/unslothai/unsloth) for the optimized training library.
* Hugging Face for the TRL library and model hosting.
* [Optional] If you have used a specific dataset, give credit to the original creators.
|
robiual-awal/20abf7d0-4633-41d6-b038-a8b7f57c84ee | robiual-awal | 2025-01-31T11:05:29Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:adapter:EleutherAI/pythia-410m-deduped",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T11:02:47Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 20abf7d0-4633-41d6-b038-a8b7f57c84ee
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7ccfb23153eb4e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c7ccfb23153eb4e2_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiual-awal/20abf7d0-4633-41d6-b038-a8b7f57c84ee
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: constant
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/c7ccfb23153eb4e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b112a2de-aff0-4f32-ba1f-4285c58878e4
wandb_project: Birthday-SN56-29-Gradients-On-Demand
wandb_run: your_name
wandb_runid: b112a2de-aff0-4f32-ba1f-4285c58878e4
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 20abf7d0-4633-41d6-b038-a8b7f57c84ee
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0750
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 2.3973 |
| 5.4772 | 0.0109 | 50 | 1.3241 |
| 4.6595 | 0.0217 | 100 | 1.1514 |
| 4.5177 | 0.0326 | 150 | 1.0966 |
| 4.2382 | 0.0434 | 200 | 1.0750 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
daniel40/afb9b564-f486-4102-a6ed-4cc544158032 | daniel40 | 2025-01-31T11:05:28Z | 6 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-Math-7B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-Math-7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T11:02:34Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-Math-7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: afb9b564-f486-4102-a6ed-4cc544158032
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-Math-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0ff473b612eed7bf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0ff473b612eed7bf_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: daniel40/afb9b564-f486-4102-a6ed-4cc544158032
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/0ff473b612eed7bf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 79066811-ed4b-4161-8d28-804ae5e605ea
wandb_project: Birthday-SN56-27-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 79066811-ed4b-4161-8d28-804ae5e605ea
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# afb9b564-f486-4102-a6ed-4cc544158032
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1988
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0009 | 1 | 1.5160 |
| 1.3804 | 0.0120 | 13 | 0.7042 |
| 0.6456 | 0.0241 | 26 | 0.3317 |
| 0.436 | 0.0361 | 39 | 0.1988 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiulawaldev/9d16be82-86f2-4010-a6fb-e1c9d6835403 | robiulawaldev | 2025-01-31T11:04:39Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:adapter:EleutherAI/pythia-410m-deduped",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T11:02:47Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9d16be82-86f2-4010-a6fb-e1c9d6835403
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7ccfb23153eb4e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c7ccfb23153eb4e2_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiulawaldev/9d16be82-86f2-4010-a6fb-e1c9d6835403
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/c7ccfb23153eb4e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b112a2de-aff0-4f32-ba1f-4285c58878e4
wandb_project: Birthday-SN56-35-Gradients-On-Demand
wandb_run: your_name
wandb_runid: b112a2de-aff0-4f32-ba1f-4285c58878e4
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 9d16be82-86f2-4010-a6fb-e1c9d6835403
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4280
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 2.3780 |
| 4.3033 | 0.0014 | 13 | 1.8024 |
| 3.5385 | 0.0028 | 26 | 1.5537 |
| 3.0839 | 0.0042 | 39 | 1.4280 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
kostiantynk-out/5c716269-8375-4329-9eb5-7592134f77ef | kostiantynk-out | 2025-01-31T11:03:32Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:adapter:EleutherAI/pythia-410m-deduped",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T11:01:43Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5c716269-8375-4329-9eb5-7592134f77ef
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7ccfb23153eb4e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c7ccfb23153eb4e2_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kostiantynk-out/5c716269-8375-4329-9eb5-7592134f77ef
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/c7ccfb23153eb4e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b112a2de-aff0-4f32-ba1f-4285c58878e4
wandb_project: Birthday-SN56-10-Gradients-On-Demand
wandb_run: your_name
wandb_runid: b112a2de-aff0-4f32-ba1f-4285c58878e4
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 5c716269-8375-4329-9eb5-7592134f77ef
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5458
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 2.4197 |
| 9.2462 | 0.0028 | 13 | 1.9513 |
| 7.5015 | 0.0056 | 26 | 1.6375 |
| 6.6061 | 0.0085 | 39 | 1.5458 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
hrasto/llamas3_childes_l | hrasto | 2025-01-31T11:02:40Z | 23 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-31T10:04:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q5_K_S-GGUF | roleplaiapp | 2025-01-31T11:01:29Z | 15 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"5-bit",
"Q5_K_S",
"deekseekr1",
"fuseo1",
"llama-cpp",
"preview",
"qwq",
"skyt1",
"text-generation",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-31T11:00:04Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- 5-bit
- Q5_K_S
- deekseekr1
- fuseo1
- gguf
- llama-cpp
- preview
- qwq
- skyt1
- text-generation
---
# roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q5_K_S-GGUF
**Repo:** `roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q5_K_S-GGUF`
**Original Model:** `FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview`
**Quantized File:** `FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q5_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q5_K_S`
## Overview
This is a GGUF Q5_K_S quantized version of FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
nttx/451e28b6-82c8-434e-8dd4-eb29e23ad167 | nttx | 2025-01-31T11:01:16Z | 8 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-2b-it",
"base_model:adapter:unsloth/gemma-2b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T10:53:22Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-2b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 451e28b6-82c8-434e-8dd4-eb29e23ad167
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b4a69513993621b7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4a69513993621b7_train_data.json
type:
field_input: output
field_instruction: instruction
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/451e28b6-82c8-434e-8dd4-eb29e23ad167
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/b4a69513993621b7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c093f3d1-4356-46fe-b57f-880a4041af51
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c093f3d1-4356-46fe-b57f-880a4041af51
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 451e28b6-82c8-434e-8dd4-eb29e23ad167
This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0920
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1988 | 0.1161 | 200 | 2.0920 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
cilooor/9976dbdb-6c0d-419b-832a-7c3a1626f96d | cilooor | 2025-01-31T10:59:24Z | 9 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-1.5B",
"base_model:adapter:unsloth/Qwen2-1.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T10:48:04Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9976dbdb-6c0d-419b-832a-7c3a1626f96d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: true
chat_template: llama3
data_processes: 24
dataset_prepared_path: null
datasets:
- data_files:
- 35e8b0d0959cde6a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35e8b0d0959cde6a_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: 4
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: cilooor/9976dbdb-6c0d-419b-832a-7c3a1626f96d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 7.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.07
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 0.3
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/35e8b0d0959cde6a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 32
train_batch_size: 8
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 9976dbdb-6c0d-419b-832a-7c3a1626f96d
This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17333
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0 | 0.0064 | 1 | nan |
| 0.0 | 0.3177 | 50 | nan |
| 0.0 | 0.6354 | 100 | nan |
| 0.0 | 0.9531 | 150 | nan |
| 0.0 | 1.2708 | 200 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiual-awal/cfdc5bfc-e997-446c-bf4a-57225c9828c0 | robiual-awal | 2025-01-31T10:57:58Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:heegyu/WizardVicuna2-13b-hf",
"base_model:adapter:heegyu/WizardVicuna2-13b-hf",
"region:us"
] | null | 2025-01-31T10:48:05Z | ---
library_name: peft
base_model: heegyu/WizardVicuna2-13b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cfdc5bfc-e997-446c-bf4a-57225c9828c0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: heegyu/WizardVicuna2-13b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e87de6c43674e82c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e87de6c43674e82c_train_data.json
type:
field_input: ingredients
field_instruction: method
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiual-awal/cfdc5bfc-e997-446c-bf4a-57225c9828c0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: constant
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/e87de6c43674e82c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f139e0f5-a17c-4821-9823-884d644ea1bb
wandb_project: Birthday-SN56-30-Gradients-On-Demand
wandb_run: your_name
wandb_runid: f139e0f5-a17c-4821-9823-884d644ea1bb
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# cfdc5bfc-e997-446c-bf4a-57225c9828c0
This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0006 | 1 | 2.8758 |
| 1.0574 | 0.0324 | 50 | 1.0707 |
| 0.9616 | 0.0647 | 100 | 1.0250 |
| 1.0195 | 0.0971 | 150 | 1.0122 |
| 0.9827 | 0.1294 | 200 | 1.0008 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/aa61abc6-5b04-4ba6-95a8-39ac40fdad2a | mrferr3t | 2025-01-31T10:57:27Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:heegyu/WizardVicuna2-13b-hf",
"base_model:adapter:heegyu/WizardVicuna2-13b-hf",
"region:us"
] | null | 2025-01-31T10:52:39Z | ---
library_name: peft
base_model: heegyu/WizardVicuna2-13b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: aa61abc6-5b04-4ba6-95a8-39ac40fdad2a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: heegyu/WizardVicuna2-13b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e87de6c43674e82c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e87de6c43674e82c_train_data.json
type:
field_input: ingredients
field_instruction: method
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/aa61abc6-5b04-4ba6-95a8-39ac40fdad2a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 99
micro_batch_size: 2
mlflow_experiment_name: /tmp/e87de6c43674e82c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f139e0f5-a17c-4821-9823-884d644ea1bb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f139e0f5-a17c-4821-9823-884d644ea1bb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# aa61abc6-5b04-4ba6-95a8-39ac40fdad2a
This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0810
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 99
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.5137 | 0.0006 | 1 | 2.9600 |
| 0.8605 | 0.0324 | 50 | 1.0810 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
daniel40/1c0692cc-5d58-4b2c-a7c1-152960cde2b0 | daniel40 | 2025-01-31T10:55:33Z | 5 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:elyza/Llama-3-ELYZA-JP-8B",
"base_model:adapter:elyza/Llama-3-ELYZA-JP-8B",
"license:llama3",
"region:us"
] | null | 2025-01-31T10:53:36Z | ---
library_name: peft
license: llama3
base_model: elyza/Llama-3-ELYZA-JP-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1c0692cc-5d58-4b2c-a7c1-152960cde2b0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: elyza/Llama-3-ELYZA-JP-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ec4da503e0b78c02_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ec4da503e0b78c02_train_data.json
type:
field_input: Category
field_instruction: Resume_str
field_output: Resume_html
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: daniel40/1c0692cc-5d58-4b2c-a7c1-152960cde2b0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/ec4da503e0b78c02_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3b179f40-3440-4abe-be6f-d304b9501d33
wandb_project: Birthday-SN56-28-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3b179f40-3440-4abe-be6f-d304b9501d33
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 1c0692cc-5d58-4b2c-a7c1-152960cde2b0
This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0037 | 1 | 1.4218 |
| 1.2281 | 0.0479 | 13 | 0.3763 |
| 0.4243 | 0.0959 | 26 | 0.2314 |
| 0.2714 | 0.1438 | 39 | 0.2008 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
LaughingLogits/AP-MAE-SC2-15B | LaughingLogits | 2025-01-31T10:55:12Z | 16 | 0 | transformers | [
"transformers",
"safetensors",
"ap_mae",
"endpoints_compatible",
"region:us"
] | null | 2024-08-04T20:39:43Z | ---
library_name: transformers
tags: []
---
# AP-MAE-SC2-15B
This Model is currently anonymized during the paper review process.
The AP-MAE transformer model design and configuration is available in the reproduction package attached to the submission
This version of AP-MAE is trained on attention heads generated by StarCoder2-15B during inference. The inference task used for generating attention outputs is FiM token prediction for a random 3-10 length masked section of Java code, with exactly 256 tokens of surrounding context.
# Usage:
```
from ap_mae import APMAE
model = APMAE.from_pretrained(
"LaughingLogits/AP-MAE-SC2-15B"
)
``` |
alchemist69/8c7e69d5-948b-485d-a961-c122d98c83da | alchemist69 | 2025-01-31T10:54:32Z | 9 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"base_model:adapter:facebook/opt-1.3b",
"license:other",
"region:us"
] | null | 2025-01-31T10:21:50Z | ---
library_name: peft
license: other
base_model: facebook/opt-1.3b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8c7e69d5-948b-485d-a961-c122d98c83da
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-1.3b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 07482fde303d400d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/07482fde303d400d_train_data.json
type:
field_input: head
field_instruction: relation
field_output: tail
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: alchemist69/8c7e69d5-948b-485d-a961-c122d98c83da
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/07482fde303d400d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 8c7e69d5-948b-485d-a961-c122d98c83da
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.1822 | 0.0001 | 1 | 3.9490 |
| 1.9512 | 0.0054 | 50 | 2.2525 |
| 2.413 | 0.0109 | 100 | 1.3108 |
| 2.5112 | 0.0163 | 150 | 0.9324 |
| 2.9385 | 0.0217 | 200 | 0.5557 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
batrider32/4f267d40-ba6b-49ab-b8e6-d970a3c9edc6 | batrider32 | 2025-01-31T10:53:32Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-2-7b",
"base_model:adapter:unsloth/llama-2-7b",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T10:23:24Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/llama-2-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4f267d40-ba6b-49ab-b8e6-d970a3c9edc6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-2-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 90e7595490c9c359_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/90e7595490c9c359_train_data.json
type:
field_input: Context
field_instruction: Question
field_output: Answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: batrider32/4f267d40-ba6b-49ab-b8e6-d970a3c9edc6
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/90e7595490c9c359_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 96f498e0-433b-497f-9217-797c42fe68c0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 96f498e0-433b-497f-9217-797c42fe68c0
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 4f267d40-ba6b-49ab-b8e6-d970a3c9edc6
This model is a fine-tuned version of [unsloth/llama-2-7b](https://huggingface.co/unsloth/llama-2-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3194
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.292 | 0.1125 | 200 | 0.3194 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
dixedus/e9bc50c5-eb3a-418b-a324-63494495a1b6 | dixedus | 2025-01-31T10:53:06Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-2-7b",
"base_model:adapter:unsloth/llama-2-7b",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T10:09:36Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/llama-2-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e9bc50c5-eb3a-418b-a324-63494495a1b6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-2-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 90e7595490c9c359_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/90e7595490c9c359_train_data.json
type:
field_input: Context
field_instruction: Question
field_output: Answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/e9bc50c5-eb3a-418b-a324-63494495a1b6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/90e7595490c9c359_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 96f498e0-433b-497f-9217-797c42fe68c0
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: 96f498e0-433b-497f-9217-797c42fe68c0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e9bc50c5-eb3a-418b-a324-63494495a1b6
This model is a fine-tuned version of [unsloth/llama-2-7b](https://huggingface.co/unsloth/llama-2-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0011 | 1 | 2.3854 |
| 1.7252 | 0.0101 | 9 | 1.1801 |
| 0.4464 | 0.0202 | 18 | 0.4427 |
| 0.4004 | 0.0304 | 27 | 0.4017 |
| 0.3786 | 0.0405 | 36 | 0.3725 |
| 0.3623 | 0.0506 | 45 | 0.3516 |
| 0.3217 | 0.0607 | 54 | 0.3377 |
| 0.3226 | 0.0708 | 63 | 0.3276 |
| 0.2732 | 0.0810 | 72 | 0.3245 |
| 0.3439 | 0.0911 | 81 | 0.3177 |
| 0.3153 | 0.1012 | 90 | 0.3159 |
| 0.3049 | 0.1113 | 99 | 0.3156 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
havinash-ai/f0646650-653a-4fd5-892e-04b5872918ae | havinash-ai | 2025-01-31T10:53:00Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:heegyu/WizardVicuna2-13b-hf",
"base_model:adapter:heegyu/WizardVicuna2-13b-hf",
"region:us"
] | null | 2025-01-31T10:47:41Z | ---
library_name: peft
base_model: heegyu/WizardVicuna2-13b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f0646650-653a-4fd5-892e-04b5872918ae
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: heegyu/WizardVicuna2-13b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e87de6c43674e82c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e87de6c43674e82c_train_data.json
type:
field_input: ingredients
field_instruction: method
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: havinash-ai/f0646650-653a-4fd5-892e-04b5872918ae
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/e87de6c43674e82c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f139e0f5-a17c-4821-9823-884d644ea1bb
wandb_project: Birthday-SN56-9-Gradients-On-Demand
wandb_run: your_name
wandb_runid: f139e0f5-a17c-4821-9823-884d644ea1bb
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f0646650-653a-4fd5-892e-04b5872918ae
This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1685
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0006 | 1 | 2.9599 |
| 2.2942 | 0.0084 | 13 | 1.4337 |
| 1.3588 | 0.0168 | 26 | 1.2259 |
| 1.1435 | 0.0252 | 39 | 1.1685 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
llm-jp/llm-jp-3-7.2b-instruct | llm-jp | 2025-01-31T10:50:54Z | 34 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"ja",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-12-02T02:02:31Z | ---
license: apache-2.0
language:
- en
- ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
library_name: transformers
inference: false
---
# llm-jp-3-7.2b-instruct
This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
For LLM-jp-3 models with different parameters, please refer to [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) and [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731).
Checkpoints format: Hugging Face Transformers
## Required Libraries and Their Versions
- torch>=2.3.0
- transformers>=4.40.1
- tokenizers>=0.19.1
- accelerate>=0.29.3
- flash-attn>=2.5.8
## Usage
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-7.2b-instruct")
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-7.2b-instruct", device_map="auto", torch_dtype=torch.bfloat16)
chat = [
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
{"role": "user", "content": "自然言語処理とは何か"},
]
tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
tokenized_input,
max_new_tokens=100,
do_sample=True,
top_p=0.95,
temperature=0.7,
repetition_penalty=1.05,
)[0]
print(tokenizer.decode(output))
```
## Model Details
- **Model type:** Transformer-based Language Model
- **Total seen tokens:** 2.1T
|Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters|
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|1.8b|24|2048|16|4096|407,498,752|1,459,718,144|
|3.7b|28|3072|24|4096|611,248,128|3,171,068,928|
|7.2b|32|4096|32|4096|814,997,504|6,476,271,616|
|13b|40|5120|40|4096|1,018,746,880|12,688,184,320|
|172b|96|12288|96|4096|2,444,992,512|169,947,181,056|
## Tokenizer
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
## Datasets
### Pre-training
The models have been pre-trained using a blend of the following datasets.
| Language | Dataset | Tokens|
|:---|:---|---:|
|Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B
||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
|English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
|Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
|Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
|Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
### Instruction tuning
The models have been fine-tuned on the following datasets.
| Language | Dataset | description |
|:---|:---|:---|
|Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset |
| |[answer-carefully-002](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed instruction dataset focusing on LLMs' safety |
| |ichikara-instruction-format| A small amount of instruction dataset edited from ichikara-instruction, with some constraints on the output format. |
| |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. |
| |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. |
| |[wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)| A synthetic instruction dataset. |
| |[Synthetic-JP-EN-Coding-Dataset-567k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-567k)| A synthetic instruction dataset. We used sampled one.|
|English |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used sampled one. |
## Evaluation
### llm-jp-eval (v1.3.1)
We evaluated the models using 100 examples from the dev split.
| Model name | average | EL | FA | HE | MC | MR | MT | NLI | QA | RC |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| [llm-jp-3-1.8b](https://huggingface.co/llm-jp/llm-jp-3-1.8b) | 0.3767 | 0.3725 | 0.1948 | 0.2350 | 0.2500 | 0.0900 | 0.7730 | 0.3080 | 0.4629 | 0.7040 |
| [llm-jp-3-1.8b-instruct](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct) | 0.4596 | 0.4280 | 0.1987 | 0.3250 | 0.3300 | 0.4200 | 0.7900 | 0.3520 | 0.4698 | 0.8224 |
| [llm-jp-3-3.7b](https://huggingface.co/llm-jp/llm-jp-3-3.7b) | 0.4231 | 0.3812 | 0.2440 | 0.2200 | 0.1900 | 0.3600 | 0.7947 | 0.3800 | 0.4688 | 0.7694 |
| [llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct) | 0.5188 | 0.4191 | 0.2504 | 0.3400 | 0.5000 | 0.5800 | 0.8166 | 0.4500 | 0.4881 | 0.8247 |
| [llm-jp-3-7.2b](https://huggingface.co/llm-jp/llm-jp-3-7.2b) | 0.5057 | 0.4062 | 0.2678 | 0.3450 | 0.5800 | 0.4300 | 0.8083 | 0.3480 | 0.5528 | 0.8136 |
| [llm-jp-3-7.2b-instruct](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct) | 0.5888 | 0.4282 | 0.2659 | 0.4350 | 0.8900 | 0.5800 | 0.8250 | 0.4860 | 0.5565 | 0.8330 |
| [llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) | 0.5802 | 0.5570 | 0.2593 | 0.4600 | 0.7000 | 0.6300 | 0.8292 | 0.3460 | 0.5937 | 0.8469 |
| [llm-jp-3-13b-instruct](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct) | 0.6168 | 0.5408 | 0.2757 | 0.4950 | 0.9200 | 0.7100 | 0.8317 | 0.4640 | 0.4642 | 0.8500 |
### Japanese MT Bench
We evaluated the models using `gpt-4-0613`. Please see the [codes](https://github.com/llm-jp/llm-leaderboard/tree/main) for details.
| Model name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| [llm-jp-3-1.8b-instruct](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct) | 4.93 | 1.50 | 4.70 | 7.80 | 1.55 | 2.60 | 7.80 | 6.10 | 7.40 |
| [llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct) | 5.50 | 1.95 | 4.05 | 8.25 | 2.25 | 4.00 | 8.80 | 7.25 | 7.45 |
| [llm-jp-3-7.2b-instruct](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct) | 5.70 | 2.95 | 5.60 | 7.95 | 2.80 | 3.90 | 8.40 | 6.15 | 7.85 |
| [llm-jp-3-13b-instruct](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct) | 6.47 | 3.15 | 7.05 | 9.15 | 3.75 | 5.40 | 8.30 | 7.50 | 7.45 |
## Risks and Limitations
The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
## Send Questions to
llm-jp(at)nii.ac.jp
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Model Card Authors
*The names are listed in alphabetical order.*
Hirokazu Kiyomaru and Takashi Kodama.
|
roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q3_K_M-GGUF | roleplaiapp | 2025-01-31T10:48:10Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"3-bit",
"32b",
"Q3_K_M",
"deekseekr1",
"fuseo1",
"llama-cpp",
"preview",
"qwq",
"skyt1",
"text-generation",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-31T10:47:09Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 3-bit
- 32b
- Q3_K_M
- deekseekr1
- fuseo1
- gguf
- llama-cpp
- preview
- qwq
- skyt1
- text-generation
---
# roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q3_K_M-GGUF
**Repo:** `roleplaiapp/FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q3_K_M-GGUF`
**Original Model:** `FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview`
**Quantized File:** `FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview-Q3_K_M.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_M`
## Overview
This is a GGUF Q3_K_M quantized version of FuseO1-DeekSeekR1-QwQ-SkyT1-32B-Preview
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
blood34/1e4fbaf9-4670-42f3-b8d7-a8e0456d42b3 | blood34 | 2025-01-31T10:47:52Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-2-7b",
"base_model:adapter:unsloth/llama-2-7b",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T10:16:49Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/llama-2-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1e4fbaf9-4670-42f3-b8d7-a8e0456d42b3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-2-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 90e7595490c9c359_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/90e7595490c9c359_train_data.json
type:
field_input: Context
field_instruction: Question
field_output: Answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: blood34/1e4fbaf9-4670-42f3-b8d7-a8e0456d42b3
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/90e7595490c9c359_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 96f498e0-433b-497f-9217-797c42fe68c0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 96f498e0-433b-497f-9217-797c42fe68c0
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 1e4fbaf9-4670-42f3-b8d7-a8e0456d42b3
This model is a fine-tuned version of [unsloth/llama-2-7b](https://huggingface.co/unsloth/llama-2-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2886 | 0.1125 | 200 | 0.3180 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
daniel40/50d3a381-d2fd-4942-8680-c6936e29fd55 | daniel40 | 2025-01-31T10:45:07Z | 8 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"base_model:adapter:facebook/opt-1.3b",
"license:other",
"region:us"
] | null | 2025-01-31T10:22:26Z | ---
library_name: peft
license: other
base_model: facebook/opt-1.3b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 50d3a381-d2fd-4942-8680-c6936e29fd55
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-1.3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 07482fde303d400d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/07482fde303d400d_train_data.json
type:
field_input: head
field_instruction: relation
field_output: tail
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: daniel40/50d3a381-d2fd-4942-8680-c6936e29fd55
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: constant
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/07482fde303d400d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
wandb_project: Birthday-SN56-31-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 50d3a381-d2fd-4942-8680-c6936e29fd55
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4693
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | 3.5416 |
| 4.6251 | 0.0014 | 50 | 0.9270 |
| 2.8753 | 0.0027 | 100 | 0.6400 |
| 1.9455 | 0.0041 | 150 | 0.5330 |
| 1.6501 | 0.0054 | 200 | 0.4693 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
denbeo/c0250339-cf63-4bba-8749-65ddd25ff65c | denbeo | 2025-01-31T10:39:49Z | 6 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-160m",
"base_model:adapter:EleutherAI/pythia-160m",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T10:36:14Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-160m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: c0250339-cf63-4bba-8749-65ddd25ff65c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0c836c5745e5786f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0c836c5745e5786f_train_data.json
type:
field_instruction: text
field_output: transcription_normalised
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: denbeo/c0250339-cf63-4bba-8749-65ddd25ff65c
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/0c836c5745e5786f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f58be090-bf7e-4790-9191-88ca31e26d50
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f58be090-bf7e-4790-9191-88ca31e26d50
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# c0250339-cf63-4bba-8749-65ddd25ff65c
This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2626
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.0012 | 0.4317 | 200 | 1.2626 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF | ggml-org | 2025-01-31T10:38:51Z | 176 | 0 | transformers | [
"transformers",
"gguf",
"code",
"qwen",
"qwen-coder",
"codeqwen",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:Qwen/Qwen2.5-Coder-0.5B",
"base_model:quantized:Qwen/Qwen2.5-Coder-0.5B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:37:27Z | ---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B/blob/main/LICENSE
language:
- en
base_model: Qwen/Qwen2.5-Coder-0.5B
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- qwen
- qwen-coder
- codeqwen
- llama-cpp
- gguf-my-repo
---
# ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2.5-Coder-0.5B`](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF --hf-file qwen2.5-coder-0.5b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF --hf-file qwen2.5-coder-0.5b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF --hf-file qwen2.5-coder-0.5b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF --hf-file qwen2.5-coder-0.5b-q8_0.gguf -c 2048
```
|
bluesky49/sn21_31JAN_11_30 | bluesky49 | 2025-01-31T10:38:50Z | 24 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-01-31T10:30:10Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
datlaaaaaaa/05407ba9-60a2-41e0-bb8a-eb257e87657d | datlaaaaaaa | 2025-01-31T10:38:43Z | 6 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/pythia-160m",
"base_model:adapter:EleutherAI/pythia-160m",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T10:36:02Z | ---
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-160m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 05407ba9-60a2-41e0-bb8a-eb257e87657d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0c836c5745e5786f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0c836c5745e5786f_train_data.json
type:
field_instruction: text
field_output: transcription_normalised
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: datlaaaaaaa/05407ba9-60a2-41e0-bb8a-eb257e87657d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/0c836c5745e5786f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f58be090-bf7e-4790-9191-88ca31e26d50
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f58be090-bf7e-4790-9191-88ca31e26d50
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 05407ba9-60a2-41e0-bb8a-eb257e87657d
This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.8965 | 0.4317 | 200 | 1.1762 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/6d1f97ab-2e40-4ce5-a565-49eac9acb8bf | Best000 | 2025-01-31T10:38:04Z | 6 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-2b-it",
"base_model:adapter:unsloth/gemma-2b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T10:34:43Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-2b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6d1f97ab-2e40-4ce5-a565-49eac9acb8bf
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b4a69513993621b7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4a69513993621b7_train_data.json
type:
field_input: output
field_instruction: instruction
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/6d1f97ab-2e40-4ce5-a565-49eac9acb8bf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/b4a69513993621b7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c093f3d1-4356-46fe-b57f-880a4041af51
wandb_project: Birthday-SN56-15-Gradients-On-Demand
wandb_run: your_name
wandb_runid: c093f3d1-4356-46fe-b57f-880a4041af51
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 6d1f97ab-2e40-4ce5-a565-49eac9acb8bf
This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9457
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 6.0689 |
| 4.6252 | 0.0038 | 13 | 3.6940 |
| 3.7648 | 0.0075 | 26 | 3.1918 |
| 3.0675 | 0.0113 | 39 | 2.9457 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/dbd4e278-1fd5-4ba2-9085-3b4f276159e4 | Best000 | 2025-01-31T10:37:26Z | 6 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-2b-it",
"base_model:adapter:unsloth/gemma-2b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T10:34:03Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-2b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: dbd4e278-1fd5-4ba2-9085-3b4f276159e4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b4a69513993621b7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4a69513993621b7_train_data.json
type:
field_input: output
field_instruction: instruction
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/dbd4e278-1fd5-4ba2-9085-3b4f276159e4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/b4a69513993621b7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c093f3d1-4356-46fe-b57f-880a4041af51
wandb_project: Birthday-SN56-32-Gradients-On-Demand
wandb_run: your_name
wandb_runid: c093f3d1-4356-46fe-b57f-880a4041af51
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# dbd4e278-1fd5-4ba2-9085-3b4f276159e4
This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1476
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 6.0689 |
| 5.0467 | 0.0038 | 13 | 5.6447 |
| 4.919 | 0.0075 | 26 | 3.8314 |
| 3.6456 | 0.0113 | 39 | 3.1476 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
smorce/Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp-AWQ | smorce | 2025-01-31T10:36:38Z | 18 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"en",
"ja",
"dataset:izumi-lab/wikipedia-ja-20230720",
"base_model:smorce/Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp",
"base_model:quantized:smorce/Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] | text-generation | 2025-01-30T19:45:17Z | ---
license: apache-2.0
language:
- en
- ja
datasets:
- izumi-lab/wikipedia-ja-20230720
base_model:
- smorce/Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp
library_name: transformers
---
# karakuri-lm-32b-thinking-2501-exp-AWQ
[カラクリ様が公開されている karakuri-lm-32b-thinking-2501-exp](https://huggingface.co/karakuri-ai/karakuri-lm-32b-thinking-2501-exp) と [Qwenチームが公開されている Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) をマージし、それを AWQ 4bit で量子化したモデルになります。
キャリブレーション用データセットは [izumi-lab/wikipedia-ja-20230720](https://huggingface.co/datasets/izumi-lab/wikipedia-ja-20230720) を使用しました。<br>
※TFMC/imatrix-dataset-for-japanese-llm ではございません。
量子化前のモデルとマージ設定は以下の通りです:<br>
[Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp](https://huggingface.co/smorce/Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp)
## 作成意図
日本語のReasoningモデルにコーディング能力を付与する目的で作成しました。
## 量子化の設定
```
quant_config = {
"zero_point": True,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM"
}
```
このモデルは崩壊してしまい、失敗でした。 |
shibajustfor/b763e489-8a86-4478-a7a4-9bc307395ffe | shibajustfor | 2025-01-31T10:35:49Z | 6 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"base_model:adapter:facebook/opt-1.3b",
"license:other",
"region:us"
] | null | 2025-01-31T10:21:57Z | ---
library_name: peft
license: other
base_model: facebook/opt-1.3b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b763e489-8a86-4478-a7a4-9bc307395ffe
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-1.3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 07482fde303d400d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/07482fde303d400d_train_data.json
type:
field_input: head
field_instruction: relation
field_output: tail
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: shibajustfor/b763e489-8a86-4478-a7a4-9bc307395ffe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/07482fde303d400d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
wandb_project: Birthday-SN56-39-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# b763e489-8a86-4478-a7a4-9bc307395ffe
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | 3.7376 |
| 12.5855 | 0.0004 | 13 | 1.9450 |
| 8.1372 | 0.0007 | 26 | 1.5056 |
| 6.0118 | 0.0011 | 39 | 1.3243 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Primeness/primeh1v12c2 | Primeness | 2025-01-31T10:33:58Z | 39 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-31T10:01:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
robiulawaldev/329fb5d1-ec3d-4947-af3b-8ac00e7ebbf8 | robiulawaldev | 2025-01-31T10:31:25Z | 6 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"base_model:adapter:facebook/opt-1.3b",
"license:other",
"region:us"
] | null | 2025-01-31T10:22:09Z | ---
library_name: peft
license: other
base_model: facebook/opt-1.3b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 329fb5d1-ec3d-4947-af3b-8ac00e7ebbf8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-1.3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 07482fde303d400d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/07482fde303d400d_train_data.json
type:
field_input: head
field_instruction: relation
field_output: tail
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiulawaldev/329fb5d1-ec3d-4947-af3b-8ac00e7ebbf8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_steps: 55
micro_batch_size: 4
mlflow_experiment_name: /tmp/07482fde303d400d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
wandb_project: Birthday-SN56-37-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 918e0db0-8fbf-4f91-ac15-ea8858c29f95
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 329fb5d1-ec3d-4947-af3b-8ac00e7ebbf8
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 55
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | 2.9942 |
| 4.3188 | 0.0004 | 14 | 1.3851 |
| 3.0073 | 0.0008 | 28 | 0.9632 |
| 1.8619 | 0.0011 | 42 | 0.7833 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
EEKN/my-awesome-model | EEKN | 2025-01-31T10:29:51Z | 16 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-01-31T08:28:53Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
arcwarden46/f72382c8-9a89-40d8-a344-74d0916e69d0 | arcwarden46 | 2025-01-31T10:27:35Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"license:other",
"region:us"
] | null | 2025-01-31T09:20:08Z | ---
library_name: peft
license: other
base_model: huggyllama/llama-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f72382c8-9a89-40d8-a344-74d0916e69d0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: huggyllama/llama-7b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 374d415fa346ac2b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/374d415fa346ac2b_train_data.json
type:
field_input: prompt_setting
field_instruction: prompt
field_output: completion
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: arcwarden46/f72382c8-9a89-40d8-a344-74d0916e69d0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/374d415fa346ac2b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4f915252-86ce-4fac-8a8b-ab5ecbcf4eac
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4f915252-86ce-4fac-8a8b-ab5ecbcf4eac
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f72382c8-9a89-40d8-a344-74d0916e69d0
This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0724 | 0.0005 | 1 | 2.6803 |
| 0.3222 | 0.0251 | 50 | 0.8856 |
| 0.2416 | 0.0502 | 100 | 0.8867 |
| 0.2069 | 0.0754 | 150 | 0.4074 |
| 0.1 | 0.1005 | 200 | 0.3373 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Nexspear/d5664b46-b2f2-47b2-8874-0e902edce97b | Nexspear | 2025-01-31T10:27:10Z | 6 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-7B-Instruct",
"base_model:adapter:unsloth/Qwen2-7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T04:46:49Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d5664b46-b2f2-47b2-8874-0e902edce97b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5fb110e3c74c3130_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5fb110e3c74c3130_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/d5664b46-b2f2-47b2-8874-0e902edce97b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/5fb110e3c74c3130_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 5cf40287-99df-483d-bba9-4777509422cc
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 5cf40287-99df-483d-bba9-4777509422cc
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# d5664b46-b2f2-47b2-8874-0e902edce97b
This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 0.7973 |
| 0.7843 | 0.0011 | 9 | 0.7085 |
| 0.5868 | 0.0021 | 18 | 0.6072 |
| 0.5715 | 0.0032 | 27 | 0.5835 |
| 0.594 | 0.0042 | 36 | 0.5704 |
| 0.5997 | 0.0053 | 45 | 0.5625 |
| 0.5675 | 0.0063 | 54 | 0.5570 |
| 0.5488 | 0.0074 | 63 | 0.5535 |
| 0.5726 | 0.0084 | 72 | 0.5510 |
| 0.535 | 0.0095 | 81 | 0.5496 |
| 0.5254 | 0.0105 | 90 | 0.5489 |
| 0.5629 | 0.0116 | 99 | 0.5487 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
krtk00/generic_id_lora | krtk00 | 2025-01-31T10:24:59Z | 6 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-31T10:24:56Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: GENERICID
---
# Generic_Id_Lora
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `GENERICID` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('krtk00/generic_id_lora', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
auxyus/e4bb7e28-e1bd-417f-9388-76144c406720 | auxyus | 2025-01-31T10:20:27Z | 6 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:HuggingFaceH4/zephyr-7b-beta",
"base_model:adapter:HuggingFaceH4/zephyr-7b-beta",
"license:mit",
"region:us"
] | null | 2025-01-31T08:20:40Z | ---
library_name: peft
license: mit
base_model: HuggingFaceH4/zephyr-7b-beta
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e4bb7e28-e1bd-417f-9388-76144c406720
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: HuggingFaceH4/zephyr-7b-beta
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ecd7cec85692169d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ecd7cec85692169d_train_data.json
type:
field_instruction: input_persona
field_output: prompt
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: auxyus/e4bb7e28-e1bd-417f-9388-76144c406720
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/ecd7cec85692169d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 7bdc132e-e198-4b8f-bee8-34caa4c4cbb2
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 7bdc132e-e198-4b8f-bee8-34caa4c4cbb2
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e4bb7e28-e1bd-417f-9388-76144c406720
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7066
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 1.1927 |
| 3.9578 | 0.0020 | 9 | 0.9265 |
| 3.1272 | 0.0040 | 18 | 0.7899 |
| 2.9513 | 0.0061 | 27 | 0.7560 |
| 2.8266 | 0.0081 | 36 | 0.7394 |
| 2.7893 | 0.0101 | 45 | 0.7278 |
| 2.8612 | 0.0121 | 54 | 0.7208 |
| 2.9883 | 0.0142 | 63 | 0.7154 |
| 2.8016 | 0.0162 | 72 | 0.7107 |
| 2.8385 | 0.0182 | 81 | 0.7084 |
| 2.7738 | 0.0202 | 90 | 0.7070 |
| 2.7729 | 0.0223 | 99 | 0.7066 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-IQ4_XS-GGUF | roleplaiapp | 2025-01-31T10:20:16Z | 41 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"IQ4_XS",
"cyberagent",
"deepseek",
"distill",
"iq4",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-31T10:19:43Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- IQ4_XS
- cyberagent
- deepseek
- distill
- gguf
- iq4
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-IQ4_XS-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-IQ4_XS-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-IQ4_XS.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `IQ4_XS`
## Overview
This is a GGUF IQ4_XS quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
lesso17/06c3acb1-7fa6-49cb-94fb-41bee1f3e6c9 | lesso17 | 2025-01-31T10:19:30Z | 14 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:57:00Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 06c3acb1-7fa6-49cb-94fb-41bee1f3e6c9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso17/06c3acb1-7fa6-49cb-94fb-41bee1f3e6c9
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: new-01-29
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 06c3acb1-7fa6-49cb-94fb-41bee1f3e6c9
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0 | 0.3705 | 200 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-IQ3_XS-GGUF | roleplaiapp | 2025-01-31T10:19:00Z | 19 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"IQ3_XS",
"cyberagent",
"deepseek",
"distill",
"iq3",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-31T10:18:32Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- IQ3_XS
- cyberagent
- deepseek
- distill
- gguf
- iq3
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-IQ3_XS-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-IQ3_XS-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-IQ3_XS.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `IQ3_XS`
## Overview
This is a GGUF IQ3_XS quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
fifxus/6024c179-d282-4dcb-864b-5b7a1be5dece | fifxus | 2025-01-31T10:17:43Z | 6 | 0 | peft | [
"peft",
"safetensors",
"gpt_neox",
"axolotl",
"generated_from_trainer",
"base_model:beomi/polyglot-ko-12.8b-safetensors",
"base_model:adapter:beomi/polyglot-ko-12.8b-safetensors",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:18:56Z | ---
library_name: peft
license: apache-2.0
base_model: beomi/polyglot-ko-12.8b-safetensors
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6024c179-d282-4dcb-864b-5b7a1be5dece
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: beomi/polyglot-ko-12.8b-safetensors
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5b40f032b30685c2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5b40f032b30685c2_train_data.json
type:
field_input: Context
field_instruction: Claim
field_output: Inconsistent Context-Span
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: fifxus/6024c179-d282-4dcb-864b-5b7a1be5dece
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/5b40f032b30685c2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 0ab2615f-56b6-4b59-a90d-a16528f4cf17
wandb_project: Gradients-On-10
wandb_run: your_name
wandb_runid: 0ab2615f-56b6-4b59-a90d-a16528f4cf17
warmup_steps: 5
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 6024c179-d282-4dcb-864b-5b7a1be5dece
This model is a fine-tuned version of [beomi/polyglot-ko-12.8b-safetensors](https://huggingface.co/beomi/polyglot-ko-12.8b-safetensors) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2880
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9539 | 0.2117 | 200 | 0.2880 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
myhaaaaaaa/2351c3ba-b2da-44be-ad73-9f4b236f0bb8 | myhaaaaaaa | 2025-01-31T10:15:24Z | 13 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:57:07Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2351c3ba-b2da-44be-ad73-9f4b236f0bb8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: myhaaaaaaa/2351c3ba-b2da-44be-ad73-9f4b236f0bb8
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 2351c3ba-b2da-44be-ad73-9f4b236f0bb8
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1433 | 0.3705 | 200 | 2.3006 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q5_K_S-GGUF | roleplaiapp | 2025-01-31T10:15:21Z | 10 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"5-bit",
"Q5_K_S",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:14:41Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 5-bit
- Q5_K_S
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q5_K_S-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q5_K_S-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q5_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q5_K_S`
## Overview
This is a GGUF Q5_K_S quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
abaddon182/422b120a-54c0-4b41-bb13-cf38e6c01f76 | abaddon182 | 2025-01-31T10:15:07Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T10:14:33Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 422b120a-54c0-4b41-bb13-cf38e6c01f76
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: abaddon182/422b120a-54c0-4b41-bb13-cf38e6c01f76
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 422b120a-54c0-4b41-bb13-cf38e6c01f76
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3382
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3729 | 0.0129 | 1 | 10.3791 |
| 10.3421 | 0.6431 | 50 | 10.3446 |
| 10.3764 | 1.2926 | 100 | 10.3387 |
| 10.3379 | 1.9357 | 150 | 10.3383 |
| 11.0988 | 2.5852 | 200 | 10.3382 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q4_K_S-GGUF | roleplaiapp | 2025-01-31T10:12:33Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"4-bit",
"Q4_K_S",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:11:59Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 4-bit
- Q4_K_S
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q4_K_S-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q4_K_S-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q4_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q4_K_S`
## Overview
This is a GGUF Q4_K_S quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
lesso10/38cac83b-96f1-4d90-b4d5-c34c58ba5cfd | lesso10 | 2025-01-31T10:11:54Z | 8 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/Yarn-Mistral-7b-128k",
"base_model:adapter:NousResearch/Yarn-Mistral-7b-128k",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T08:45:18Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Yarn-Mistral-7b-128k
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 38cac83b-96f1-4d90-b4d5-c34c58ba5cfd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Yarn-Mistral-7b-128k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 248079f476a07bc3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/248079f476a07bc3_train_data.json
type:
field_instruction: problem
field_output: qwq
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso10/38cac83b-96f1-4d90-b4d5-c34c58ba5cfd
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/248079f476a07bc3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e6be45b1-93a3-491a-ac21-d779477a89fc
wandb_project: new-01-29
wandb_run: your_name
wandb_runid: e6be45b1-93a3-491a-ac21-d779477a89fc
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 38cac83b-96f1-4d90-b4d5-c34c58ba5cfd
This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5094
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0988 | 0.0286 | 200 | 0.5094 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nblinh63/5320353f-5fcd-4e5d-a9ac-2f3ef9223543 | nblinh63 | 2025-01-31T10:10:43Z | 13 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:56:59Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5320353f-5fcd-4e5d-a9ac-2f3ef9223543
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nblinh63/5320353f-5fcd-4e5d-a9ac-2f3ef9223543
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 5320353f-5fcd-4e5d-a9ac-2f3ef9223543
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2991
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1476 | 0.3705 | 200 | 2.2991 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
blood34/5612c9d0-ecaf-448c-91eb-c8208541dcc3 | blood34 | 2025-01-31T10:10:23Z | 16 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:57:06Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5612c9d0-ecaf-448c-91eb-c8208541dcc3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: blood34/5612c9d0-ecaf-448c-91eb-c8208541dcc3
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 5612c9d0-ecaf-448c-91eb-c8208541dcc3
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1117
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9628 | 0.7407 | 200 | 2.1117 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/Multi_SFT_8B-GGUF | mradermacher | 2025-01-31T10:10:20Z | 261 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:rl-llm-coders/Multi_SFT_8B",
"base_model:quantized:rl-llm-coders/Multi_SFT_8B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-31T08:27:01Z | ---
base_model: rl-llm-coders/Multi_SFT_8B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/rl-llm-coders/Multi_SFT_8B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Multi_SFT_8B-GGUF/resolve/main/Multi_SFT_8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_S-GGUF | roleplaiapp | 2025-01-31T10:09:55Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"3-bit",
"Q3_K_S",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:09:29Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 3-bit
- Q3_K_S
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_S-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_S-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q3_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_S`
## Overview
This is a GGUF Q3_K_S quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
zkkdinx/DeepSeek-R1-Distill-Qwen-7B-Q3_K_M-GGUF | zkkdinx | 2025-01-31T10:09:54Z | 10 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-31T10:09:35Z | ---
license: mit
library_name: transformers
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
tags:
- llama-cpp
- gguf-my-repo
---
# zkkdinx/DeepSeek-R1-Distill-Qwen-7B-Q3_K_M-GGUF
This model was converted to GGUF format from [`deepseek-ai/DeepSeek-R1-Distill-Qwen-7B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo zkkdinx/DeepSeek-R1-Distill-Qwen-7B-Q3_K_M-GGUF --hf-file deepseek-r1-distill-qwen-7b-q3_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo zkkdinx/DeepSeek-R1-Distill-Qwen-7B-Q3_K_M-GGUF --hf-file deepseek-r1-distill-qwen-7b-q3_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo zkkdinx/DeepSeek-R1-Distill-Qwen-7B-Q3_K_M-GGUF --hf-file deepseek-r1-distill-qwen-7b-q3_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo zkkdinx/DeepSeek-R1-Distill-Qwen-7B-Q3_K_M-GGUF --hf-file deepseek-r1-distill-qwen-7b-q3_k_m.gguf -c 2048
```
|
nhung01/73173035-8276-4be8-85c9-1cf4423ed441 | nhung01 | 2025-01-31T10:09:16Z | 13 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:57:14Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 73173035-8276-4be8-85c9-1cf4423ed441
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhung01/73173035-8276-4be8-85c9-1cf4423ed441
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 73173035-8276-4be8-85c9-1cf4423ed441
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2982
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1398 | 0.3705 | 200 | 2.2982 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_M-GGUF | roleplaiapp | 2025-01-31T10:08:45Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"3-bit",
"Q3_K_M",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:08:15Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 3-bit
- Q3_K_M
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_M-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_M-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q3_K_M.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_M`
## Overview
This is a GGUF Q3_K_M quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
nhoxinh/3dff4aff-496d-4423-9263-42f395c53796 | nhoxinh | 2025-01-31T10:08:26Z | 13 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:57:06Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3dff4aff-496d-4423-9263-42f395c53796
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhoxinh/3dff4aff-496d-4423-9263-42f395c53796
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 3dff4aff-496d-4423-9263-42f395c53796
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1488 | 0.3705 | 200 | 2.2975 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ysaugle/akshay_flux | ysaugle | 2025-01-31T10:07:56Z | 25 | 1 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-31T05:13:35Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: AKSHAY
---
# Akshay_Flux
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `AKSHAY` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('ysaugle/akshay_flux', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
nhung02/164e2166-9045-49a0-801e-d1f4224a02e5 | nhung02 | 2025-01-31T10:07:39Z | 13 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:57:10Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 164e2166-9045-49a0-801e-d1f4224a02e5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhung02/164e2166-9045-49a0-801e-d1f4224a02e5
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 164e2166-9045-49a0-801e-d1f4224a02e5
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2970
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1351 | 0.3705 | 200 | 2.2970 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_L-GGUF | roleplaiapp | 2025-01-31T10:07:30Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"3-bit",
"Q3_K_L",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:06:58Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 3-bit
- Q3_K_L
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_L-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q3_K_L-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q3_K_L.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_L`
## Overview
This is a GGUF Q3_K_L quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
cunghoctienganh/983ec172-27bf-4fb1-a811-a6cdae0125ef | cunghoctienganh | 2025-01-31T10:06:06Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-1.5B",
"base_model:adapter:unsloth/Qwen2-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:53:55Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 983ec172-27bf-4fb1-a811-a6cdae0125ef
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 35e8b0d0959cde6a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35e8b0d0959cde6a_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: cunghoctienganh/983ec172-27bf-4fb1-a811-a6cdae0125ef
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/35e8b0d0959cde6a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 983ec172-27bf-4fb1-a811-a6cdae0125ef
This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4442
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.5216 | 0.3177 | 200 | 4.4442 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
thaffggg/8cd9e8d3-f604-4f79-8400-04ab2fef028f | thaffggg | 2025-01-31T10:05:49Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-1.5B",
"base_model:adapter:unsloth/Qwen2-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:53:54Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8cd9e8d3-f604-4f79-8400-04ab2fef028f
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 35e8b0d0959cde6a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35e8b0d0959cde6a_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: thaffggg/8cd9e8d3-f604-4f79-8400-04ab2fef028f
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/35e8b0d0959cde6a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 8cd9e8d3-f604-4f79-8400-04ab2fef028f
This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.5295 | 0.3177 | 200 | 4.4460 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
batrider32/37cdf396-a2e6-4150-84e0-175a6ca14c24 | batrider32 | 2025-01-31T10:05:47Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"license:other",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:20:23Z | ---
library_name: peft
license: other
base_model: huggyllama/llama-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 37cdf396-a2e6-4150-84e0-175a6ca14c24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: huggyllama/llama-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 374d415fa346ac2b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/374d415fa346ac2b_train_data.json
type:
field_input: prompt_setting
field_instruction: prompt
field_output: completion
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: batrider32/37cdf396-a2e6-4150-84e0-175a6ca14c24
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/374d415fa346ac2b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4f915252-86ce-4fac-8a8b-ab5ecbcf4eac
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4f915252-86ce-4fac-8a8b-ab5ecbcf4eac
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 37cdf396-a2e6-4150-84e0-175a6ca14c24
This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2986 | 0.0502 | 200 | 0.3840 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
minhtrannnn/e042205c-657a-456a-96ea-14cbcefd0741 | minhtrannnn | 2025-01-31T10:04:58Z | 12 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-1.5B",
"base_model:adapter:unsloth/Qwen2-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:53:53Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e042205c-657a-456a-96ea-14cbcefd0741
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 35e8b0d0959cde6a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35e8b0d0959cde6a_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: minhtrannnn/e042205c-657a-456a-96ea-14cbcefd0741
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/35e8b0d0959cde6a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# e042205c-657a-456a-96ea-14cbcefd0741
This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.5475 | 0.3177 | 200 | 4.4440 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q6_K-GGUF | roleplaiapp | 2025-01-31T10:04:32Z | 12 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"6-bit",
"Q6_K",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:03:45Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 6-bit
- Q6_K
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q6_K-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q6_K-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q6_K.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q6_K`
## Overview
This is a GGUF Q6_K quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
altomek/RE-70B-AS3D | altomek | 2025-01-31T10:04:01Z | 17 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"conversational",
"en",
"base_model:SicariusSicariiStuff/Negative_LLAMA_70B",
"base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B",
"base_model:SillyTilly/Meta-Llama-3.1-70B",
"base_model:merge:SillyTilly/Meta-Llama-3.1-70B",
"base_model:SillyTilly/Meta-Llama-3.1-70B-Instruct",
"base_model:merge:SillyTilly/Meta-Llama-3.1-70B-Instruct",
"base_model:unsloth/Llama-3.3-70B-Instruct",
"base_model:merge:unsloth/Llama-3.3-70B-Instruct",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-18T22:29:13Z | ---
language:
- en
license: llama3
library_name: transformers
tags:
- merge
base_model:
- SillyTilly/Meta-Llama-3.1-70B
- SillyTilly/Meta-Llama-3.1-70B-Instruct
- unsloth/Llama-3.3-70B-Instruct
- SicariusSicariiStuff/Negative_LLAMA_70B
---
#
<img src=https://huggingface.co/altomek/RE-70B-AS3D/resolve/main/RE.png>
<a href="https://www.youtube.com/watch?v=kYje-wdAUsg" title="i_o - Audio Dust" target="_blank">intro music...</a>
## Llama RE-70B-AS3D
I desired a model that would unlock full Llama personality but still could follow instructions.
This is first interesting result from the voyage...
### Ingridients
- [Llama-3.1-70B](https://huggingface.co/SillyTilly/Meta-Llama-3.1-70B)
- [Llama-3.1-70B-Instruct](https://huggingface.co/SillyTilly/Meta-Llama-3.1-70B-Instruct)
- [Llama-3.3-70B-Instruct](https://huggingface.co/unsloth/Llama-3.3-70B-Instruct)
- [Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B)
### Settings
Use Llama 3 template.
### Quants
- [GGUF](https://huggingface.co/altomek/RE-70B-AS3D-GGUF) --> UPLOADING!
- [3 BPW](https://huggingface.co/altomek/RE-70B-AS3D-3bpw-EXL2)
- [3.5 BPW](https://huggingface.co/altomek/RE-70B-AS3D-3.5bpw-EXL2)
- [3.75 BPW](https://huggingface.co/altomek/RE-70B-AS3D-3.75bpw-EXL2)
- [4 BPW](https://huggingface.co/altomek/RE-70B-AS3D-4bpw-EXL2)
- [4.25 BPW](https://huggingface.co/altomek/RE-70B-AS3D-4.25bpw-EXL2)
|
dixedus/a1101d62-5d31-4897-8377-98ec4b2ea042 | dixedus | 2025-01-31T10:03:28Z | 16 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T09:57:01Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: a1101d62-5d31-4897-8377-98ec4b2ea042
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 347a92d23534ee1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/347a92d23534ee1f_train_data.json
type:
field_instruction: user
field_output: assistant
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/a1101d62-5d31-4897-8377-98ec4b2ea042
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/347a92d23534ee1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: 0d4b8f4b-e49b-43b6-999c-7c75ab8cf01a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# a1101d62-5d31-4897-8377-98ec4b2ea042
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0868
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0074 | 1 | 3.7154 |
| 3.5719 | 0.0667 | 9 | 3.5388 |
| 3.1662 | 0.1333 | 18 | 2.8673 |
| 2.6375 | 0.2 | 27 | 2.5019 |
| 2.3038 | 0.2667 | 36 | 2.3341 |
| 2.462 | 0.3333 | 45 | 2.2360 |
| 2.3586 | 0.4 | 54 | 2.1743 |
| 2.1036 | 0.4667 | 63 | 2.1324 |
| 2.1387 | 0.5333 | 72 | 2.1069 |
| 2.1381 | 0.6 | 81 | 2.0938 |
| 2.1019 | 0.6667 | 90 | 2.0883 |
| 2.073 | 0.7333 | 99 | 2.0868 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q2_K-GGUF | roleplaiapp | 2025-01-31T10:03:01Z | 14 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"2-bit",
"Q2_K",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T10:02:37Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 2-bit
- Q2_K
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q2_K-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf-Q2_K-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-Q2_K.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q2_K`
## Overview
This is a GGUF Q2_K quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
hrasto/llamas3_childes_h | hrasto | 2025-01-31T10:02:55Z | 22 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-31T09:03:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nhunglaaaaaaa/0c932d44-fd3f-4eda-a317-7fc576a3a224 | nhunglaaaaaaa | 2025-01-31T10:01:52Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-1.5B",
"base_model:adapter:unsloth/Qwen2-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-31T09:53:48Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0c932d44-fd3f-4eda-a317-7fc576a3a224
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 35e8b0d0959cde6a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35e8b0d0959cde6a_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhunglaaaaaaa/0c932d44-fd3f-4eda-a317-7fc576a3a224
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/35e8b0d0959cde6a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 0c932d44-fd3f-4eda-a317-7fc576a3a224
This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4426
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.5229 | 0.3177 | 200 | 4.4426 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/63fd0687-b8b1-4c7a-8105-b12ea67aac4c | mrferr3t | 2025-01-31T09:59:21Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-1.5B",
"base_model:adapter:unsloth/Qwen2-1.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-01-31T09:58:11Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 63fd0687-b8b1-4c7a-8105-b12ea67aac4c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 35e8b0d0959cde6a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35e8b0d0959cde6a_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/63fd0687-b8b1-4c7a-8105-b12ea67aac4c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 99
micro_batch_size: 2
mlflow_experiment_name: /tmp/35e8b0d0959cde6a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3f4aa02-ae98-4a61-ba48-31b55d8d8ffe
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 63fd0687-b8b1-4c7a-8105-b12ea67aac4c
This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.2161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 99
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.671 | 0.0016 | 1 | 5.5637 |
| 4.4602 | 0.0794 | 50 | 4.2161 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-IQ4_XS-GGUF | roleplaiapp | 2025-01-31T09:57:47Z | 27 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"IQ4_XS",
"cyberagent",
"deepseek",
"distill",
"iq4",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-31T09:56:45Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- IQ4_XS
- cyberagent
- deepseek
- distill
- gguf
- iq4
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-IQ4_XS-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-IQ4_XS-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-IQ4_XS.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `IQ4_XS`
## Overview
This is a GGUF IQ4_XS quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
friendshipkim/1b_instruct-ver2 | friendshipkim | 2025-01-31T09:56:51Z | 12 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-31T09:35:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
sleepdeprived3/Mistral-Small-24B-Instruct-2501_EXL2_8bpw_H8 | sleepdeprived3 | 2025-01-31T09:56:44Z | 17 | 0 | vllm | [
"vllm",
"safetensors",
"mistral",
"text-generation",
"transformers",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"zh",
"ja",
"ru",
"ko",
"base_model:mistralai/Mistral-Small-24B-Base-2501",
"base_model:quantized:mistralai/Mistral-Small-24B-Base-2501",
"license:apache-2.0",
"text-generation-inference",
"8-bit",
"exl2",
"region:us"
] | text-generation | 2025-01-31T08:30:35Z | ---
language:
- en
- fr
- de
- es
- it
- pt
- zh
- ja
- ru
- ko
license: apache-2.0
library_name: vllm
inference: false
base_model:
- mistralai/Mistral-Small-24B-Base-2501
extra_gated_description: >-
If you want to learn more about how we process your personal data, please read
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
tags:
- transformers
---
# Model Card for Mistral-Small-24B-Instruct-2501
Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models!
This model is an instruction-fine-tuned version of the base model: [Mistral-Small-24B-Base-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501).
Mistral Small can be deployed locally and is exceptionally "knowledge-dense", fitting in a single RTX 4090 or a 32GB RAM MacBook once quantized.
Perfect for:
- Fast response conversational agents.
- Low latency function calling.
- Subject matter experts via fine-tuning.
- Local inference for hobbyists and organizations handling sensitive data.
For enterprises that need specialized capabilities (increased context, particular modalities, domain specific knowledge, etc.), we will be releasing commercial models beyond what Mistral AI contributes to the community.
This release demonstrates our commitment to open source, serving as a strong base model.
Learn more about Mistral Small in our [blog post](https://mistral.ai/news/mistral-small-3/).
Model developper: Mistral AI Team
## Key Features
- **Multilingual:** Supports dozens of languages, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch, and Polish.
- **Agent-Centric:** Offers best-in-class agentic capabilities with native function calling and JSON outputting.
- **Advanced Reasoning:** State-of-the-art conversational and reasoning capabilities.
- **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes.
- **Context Window:** A 32k context window.
- **System Prompt:** Maintains strong adherence and support for system prompts.
- **Tokenizer:** Utilizes a Tekken tokenizer with a 131k vocabulary size.
## Benchmark results
### Human evaluated benchmarks
| Category | Gemma-2-27B | Qwen-2.5-32B | Llama-3.3-70B | Gpt4o-mini |
|----------|-------------|--------------|---------------|------------|
| Mistral is better | 0.536 | 0.496 | 0.192 | 0.200 |
| Mistral is slightly better | 0.196 | 0.184 | 0.164 | 0.204 |
| Ties | 0.052 | 0.060 | 0.236 | 0.160 |
| Other is slightly better | 0.060 | 0.088 | 0.112 | 0.124 |
| Other is better | 0.156 | 0.172 | 0.296 | 0.312 |
**Note**:
- We conducted side by side evaluations with an external third-party vendor, on a set of over 1k proprietary coding and generalist prompts.
- Evaluators were tasked with selecting their preferred model response from anonymized generations produced by Mistral Small 3 vs another model.
- We are aware that in some cases the benchmarks on human judgement starkly differ from publicly available benchmarks, but have taken extra caution in verifying a fair evaluation. We are confident that the above benchmarks are valid.
### Publicly accesible benchmarks
**Reasoning & Knowledge**
| Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 |
|------------|---------------|--------------|---------------|---------------|-------------|
| mmlu_pro_5shot_cot_instruct | 0.663 | 0.536 | 0.666 | 0.683 | 0.617 |
| gpqa_main_cot_5shot_instruct | 0.453 | 0.344 | 0.531 | 0.404 | 0.377 |
**Math & Coding**
| Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 |
|------------|---------------|--------------|---------------|---------------|-------------|
| humaneval_instruct_pass@1 | 0.848 | 0.732 | 0.854 | 0.909 | 0.890 |
| math_instruct | 0.706 | 0.535 | 0.743 | 0.819 | 0.761 |
**Instruction following**
| Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 |
|------------|---------------|--------------|---------------|---------------|-------------|
| mtbench_dev | 8.35 | 7.86 | 7.96 | 8.26 | 8.33 |
| wildbench | 52.27 | 48.21 | 50.04 | 52.73 | 56.13 |
| arena_hard | 0.873 | 0.788 | 0.840 | 0.860 | 0.897 |
| ifeval | 0.829 | 0.8065 | 0.8835 | 0.8401 | 0.8499 |
**Note**:
- Performance accuracy on all benchmarks were obtained through the same internal evaluation pipeline - as such, numbers may vary slightly from previously reported performance
([Qwen2.5-32B-Instruct](https://qwenlm.github.io/blog/qwen2.5/), [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct), [Gemma-2-27B-IT](https://huggingface.co/google/gemma-2-27b-it)).
- Judge based evals such as Wildbench, Arena hard and MTBench were based on gpt-4o-2024-05-13.
### Basic Instruct Template (V7-Tekken)
```
<s>[SYSTEM_PROMPT]<system prompt>[/SYSTEM_PROMPT][INST]<user message>[/INST]<assistant response></s>[INST]<user message>[/INST]
```
*`<system_prompt>`, `<user message>` and `<assistant response>` are placeholders.*
***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth***
## Usage
The model can be used with the following frameworks;
- [`vllm`](https://github.com/vllm-project/vllm): See [here](#vLLM)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#Transformers)
### vLLM
We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.
**Note 1**: We recommond using a relatively low temperature, such as `temperature=0.15`.
**Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend the following
system prompt:
```
system_prompt = """You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.
Your knowledge base was last updated on 2023-10-01. The current date is 2025-01-30.
When you're not sure about some information, you say that you don't have the information and don't make up anything.
If the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")"""
```
**_Installation_**
Make sure you install [`vLLM >= 0.6.4`](https://github.com/vllm-project/vllm/releases/tag/v0.6.4):
```
pip install --upgrade vllm
```
Also make sure you have [`mistral_common >= 1.5.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.2) installed:
```
pip install --upgrade mistral_common
```
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
#### Server
We recommand that you use Mistral-Small-24B-Instruct-2501 in a server/client setting.
1. Spin up a server:
```
vllm serve mistralai/Mistral-Small-24B-Instruct-2501 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice
```
**Note:** Running Mistral-Small-24B-Instruct-2501 on GPU requires ~55 GB of GPU RAM in bf16 or fp16.
2. To ping the client you can use a simple Python snippet.
```py
import requests
import json
from datetime import datetime, timedelta
url = "http://<your-server>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
model = "mistralai/Mistral-Small-24B-Instruct-2501"
messages = [
{
"role": "system",
"content": "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
},
{
"role": "user",
"content": "Give me 5 non-formal ways to say 'See you later' in French."
},
]
data = {"model": model, "messages": messages}
response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["content"])
# Sure, here are five non-formal ways to say "See you later" in French:
#
# 1. À plus tard
# 2. À plus
# 3. Salut
# 4. À toute
# 5. Bisous
#
# ```
# /\_/\
# ( o.o )
# > ^ <
# ```
```
### Function calling
Mistral-Small-24-Instruct-2501 is excellent at function / tool calling tasks via vLLM. *E.g.:*
<details>
<summary>Example</summary>
```py
import requests
import json
from huggingface_hub import hf_hub_download
from datetime import datetime, timedelta
url = "http://<your-url>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
model = "mistralai/Mistral-Small-24B-Instruct-2501"
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to find the weather for, e.g. 'San Francisco'",
},
"state": {
"type": "string",
"description": "The state abbreviation, e.g. 'CA' for California",
},
"unit": {
"type": "string",
"description": "The unit for temperature",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["city", "state", "unit"],
},
},
},
{
"type": "function",
"function": {
"name": "rewrite",
"description": "Rewrite a given text for improved clarity",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The input text to rewrite",
}
},
},
},
},
]
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.",
},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "bbc5b7ede",
"type": "function",
"function": {
"name": "rewrite",
"arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}',
},
}
],
},
{
"role": "tool",
"content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}',
"tool_call_id": "bbc5b7ede",
"name": "rewrite",
},
{
"role": "assistant",
"content": "---\n\nOpenAI is a FOR-profit company.",
},
{
"role": "user",
"content": "Can you tell me what the temperature will be in Dallas, in Fahrenheit?",
},
]
data = {"model": model, "messages": messages, "tools": tools}
response = requests.post(url, headers=headers, data=json.dumps(data))
import ipdb; ipdb.set_trace()
print(response.json()["choices"][0]["message"]["tool_calls"])
# [{'id': '8PdihwL6d', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}'}}]
```
</details>
#### Offline
```py
from vllm import LLM
from vllm.sampling_params import SamplingParams
from datetime import datetime, timedelta
SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."
messages = [
{
"role": "system",
"content": SYSTEM_PROMPT
},
{
"role": "user",
"content": user_prompt
},
]
# note that running this model on GPU requires over 60 GB of GPU RAM
llm = LLM(model=model_name, tokenizer_mode="mistral", tensor_parallel_size=8)
sampling_params = SamplingParams(max_tokens=512, temperature=0.15)
outputs = llm.chat(messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
# Sure, here are five non-formal ways to say "See you later" in French:
#
# 1. À plus tard
# 2. À plus
# 3. Salut
# 4. À toute
# 5. Bisous
#
# ```
# /\_/\
# ( o.o )
# > ^ <
# ```
```
### Transformers
If you want to use Hugging Face transformers to generate text, you can do something like this.
```py
from transformers import pipeline
import torch
messages = [
{"role": "user", "content": "Give me 5 non-formal ways to say 'See you later' in French."},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Instruct-2501", max_new_tokens=256, torch_dtype=torch.bfloat16)
chatbot(messages)
```
### Ollama
[Ollama](https://github.com/ollama/ollama) can run this model locally on MacOS, Windows and Linux.
```
ollama run mistral-small
```
4-bit quantization (aliased to default):
```
ollama run mistral-small:24b-instruct-2501-q4_K_M
```
8-bit quantization:
```
ollama run mistral-small:24b-instruct-2501-q8_0
```
FP16:
```
ollama run mistral-small:24b-instruct-2501-fp16
``` |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-IQ3_XS-GGUF | roleplaiapp | 2025-01-31T09:56:00Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"IQ3_XS",
"cyberagent",
"deepseek",
"distill",
"iq3",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-31T09:55:07Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- IQ3_XS
- cyberagent
- deepseek
- distill
- gguf
- iq3
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-IQ3_XS-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-IQ3_XS-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-IQ3_XS.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `IQ3_XS`
## Overview
This is a GGUF IQ3_XS quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
fakezeta/DeepSeek-R1-Distill-Llama-8B-ov-int8 | fakezeta | 2025-01-31T09:51:04Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"openvino",
"llama",
"text-generation",
"openvino-export",
"conversational",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-31T09:50:03Z | ---
license: mit
library_name: transformers
tags:
- openvino
- openvino-export
pipeline_tag: text-generation
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
---
This model was converted to OpenVINO from [`deepseek-ai/DeepSeek-R1-Distill-Llama-8B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) using [optimum-intel](https://github.com/huggingface/optimum-intel)
via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import OVModelForCausalLM
model_id = "fakezeta/DeepSeek-R1-Distill-Llama-8B-openvino"
model = OVModelForCausalLM.from_pretrained(model_id)
```
|
Denn231/internal_clf_v1 | Denn231 | 2025-01-31T09:51:00Z | 15 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-01-31T09:50:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q5_K_M-GGUF | roleplaiapp | 2025-01-31T09:48:51Z | 8 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"5-bit",
"Q5_K_M",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T09:47:25Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- 5-bit
- Q5_K_M
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q5_K_M-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q5_K_M-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-Q5_K_M.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q5_K_M`
## Overview
This is a GGUF Q5_K_M quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q4_K_S-GGUF | roleplaiapp | 2025-01-31T09:46:42Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"4-bit",
"Q4_K_S",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T09:45:31Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- 4-bit
- Q4_K_S
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q4_K_S-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q4_K_S-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-Q4_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q4_K_S`
## Overview
This is a GGUF Q4_K_S quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
Denn231/external_clf_v1 | Denn231 | 2025-01-31T09:46:24Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-01-31T09:43:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q4_K_M-GGUF | roleplaiapp | 2025-01-31T09:44:47Z | 28 | 0 | transformers | [
"transformers",
"gguf",
"32b",
"4-bit",
"Q4_K_M",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T09:43:30Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32b
- 4-bit
- Q4_K_M
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q4_K_M-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q4_K_M-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-Q4_K_M.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q4_K_M`
## Overview
This is a GGUF Q4_K_M quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q3_K_S-GGUF | roleplaiapp | 2025-01-31T09:42:47Z | 6 | 0 | transformers | [
"transformers",
"gguf",
"3-bit",
"32b",
"Q3_K_S",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T09:41:57Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 3-bit
- 32b
- Q3_K_S
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q3_K_S-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q3_K_S-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-Q3_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_S`
## Overview
This is a GGUF Q3_K_S quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
amarsaikhan/food_classifier_2025_01_31_00_04 | amarsaikhan | 2025-01-31T09:42:20Z | 190 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-01-31T06:05:12Z | ---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: food_classifier_2025_01_31_00_04
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# food_classifier_2025_01_31_00_04
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4920
- Accuracy: 0.8763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 2048
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.9401 | 1.0 | 37 | 3.1519 | 0.7044 |
| 1.5951 | 2.0 | 74 | 1.1581 | 0.7973 |
| 0.916 | 3.0 | 111 | 0.7583 | 0.8228 |
| 0.7189 | 4.0 | 148 | 0.6624 | 0.8371 |
| 0.5926 | 5.0 | 185 | 0.6070 | 0.8476 |
| 0.5456 | 6.0 | 222 | 0.5709 | 0.8553 |
| 0.4675 | 7.0 | 259 | 0.5564 | 0.8572 |
| 0.4246 | 8.0 | 296 | 0.5465 | 0.8602 |
| 0.3732 | 9.0 | 333 | 0.5401 | 0.8627 |
| 0.333 | 10.0 | 370 | 0.5197 | 0.8671 |
| 0.3067 | 11.0 | 407 | 0.5077 | 0.8712 |
| 0.2872 | 12.0 | 444 | 0.5090 | 0.8702 |
| 0.2537 | 13.0 | 481 | 0.5066 | 0.8761 |
| 0.2496 | 14.0 | 518 | 0.5004 | 0.8750 |
| 0.2282 | 15.0 | 555 | 0.4920 | 0.8763 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.21.0
|
roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q3_K_M-GGUF | roleplaiapp | 2025-01-31T09:41:14Z | 11 | 0 | transformers | [
"transformers",
"gguf",
"3-bit",
"32b",
"Q3_K_M",
"cyberagent",
"deepseek",
"distill",
"japanese",
"llama-cpp",
"qwen",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-31T09:40:13Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 3-bit
- 32b
- Q3_K_M
- cyberagent
- deepseek
- distill
- gguf
- japanese
- llama-cpp
- qwen
- text-generation
---
# roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q3_K_M-GGUF
**Repo:** `roleplaiapp/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf-Q3_K_M-GGUF`
**Original Model:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf`
**Quantized File:** `cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-Q3_K_M.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_M`
## Overview
This is a GGUF Q3_K_M quantized version of cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
lesso10/cb7264b5-d439-4f61-b4be-dc1dff101087 | lesso10 | 2025-01-31T09:40:19Z | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T09:39:05Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cb7264b5-d439-4f61-b4be-dc1dff101087
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso10/cb7264b5-d439-4f61-b4be-dc1dff101087
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: new-01-29
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# cb7264b5-d439-4f61-b4be-dc1dff101087
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3779
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3736 | 0.6436 | 200 | 10.3779 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nat-hunt/d931f3f2-4874-45e2-a822-77750c90ca54 | nat-hunt | 2025-01-31T09:38:26Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T09:38:03Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d931f3f2-4874-45e2-a822-77750c90ca54
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nat-hunt/d931f3f2-4874-45e2-a822-77750c90ca54
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: Birthday-SN56-4-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# d931f3f2-4874-45e2-a822-77750c90ca54
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3776
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0032 | 1 | 10.3794 |
| 10.3771 | 0.0418 | 13 | 10.3788 |
| 10.3768 | 0.0837 | 26 | 10.3780 |
| 10.3731 | 0.1255 | 39 | 10.3776 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nttx/91ab1cb8-cd3b-4314-b2aa-2c9e76d512e1 | nttx | 2025-01-31T09:38:12Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T09:37:47Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 91ab1cb8-cd3b-4314-b2aa-2c9e76d512e1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/91ab1cb8-cd3b-4314-b2aa-2c9e76d512e1
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 91ab1cb8-cd3b-4314-b2aa-2c9e76d512e1
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3753
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 156
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3777 | 0.9968 | 155 | 10.3753 |
| 18.171 | 1.0048 | 156 | 10.3753 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiulawaldev/b804fc6d-0baa-4563-8bf8-775b2a8a74cb | robiulawaldev | 2025-01-31T09:37:46Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T09:37:23Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b804fc6d-0baa-4563-8bf8-775b2a8a74cb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiulawaldev/b804fc6d-0baa-4563-8bf8-775b2a8a74cb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_steps: 55
micro_batch_size: 2
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: Birthday-SN56-36-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# b804fc6d-0baa-4563-8bf8-775b2a8a74cb
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3552
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 55
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0016 | 1 | 10.3792 |
| 10.3779 | 0.0225 | 14 | 10.3762 |
| 10.3729 | 0.0451 | 28 | 10.3701 |
| 10.3618 | 0.0676 | 42 | 10.3552 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
shibajustfor/b0092ca9-0510-42eb-b7a6-1e347e0d6efa | shibajustfor | 2025-01-31T09:37:45Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T09:37:25Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b0092ca9-0510-42eb-b7a6-1e347e0d6efa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: shibajustfor/b0092ca9-0510-42eb-b7a6-1e347e0d6efa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: Birthday-SN56-11-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# b0092ca9-0510-42eb-b7a6-1e347e0d6efa
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3777
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0032 | 1 | 10.3794 |
| 10.3771 | 0.0418 | 13 | 10.3788 |
| 10.3769 | 0.0837 | 26 | 10.3781 |
| 10.3731 | 0.1255 | 39 | 10.3777 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
baby-dev/d54a57e0-d2d7-44c1-879a-158c9e383012 | baby-dev | 2025-01-31T09:37:44Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:fxmarty/tiny-llama-fast-tokenizer",
"base_model:adapter:fxmarty/tiny-llama-fast-tokenizer",
"region:us"
] | null | 2025-01-31T09:37:19Z | ---
library_name: peft
base_model: fxmarty/tiny-llama-fast-tokenizer
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d54a57e0-d2d7-44c1-879a-158c9e383012
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fee8d932af6f9203_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fee8d932af6f9203_train_data.json
type:
field_instruction: abstract
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: baby-dev/d54a57e0-d2d7-44c1-879a-158c9e383012
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/fee8d932af6f9203_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
wandb_project: SN56-41
wandb_run: your_name
wandb_runid: 1cfdf75e-d1c9-419a-b338-98971e8ecff0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# d54a57e0-d2d7-44c1-879a-158c9e383012
This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3750
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3773 | 0.0032 | 1 | 10.3794 |
| 10.3595 | 0.0805 | 25 | 10.3782 |
| 10.3734 | 0.1609 | 50 | 10.3765 |
| 10.3685 | 0.2414 | 75 | 10.3753 |
| 10.3867 | 0.3218 | 100 | 10.3750 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
lesso07/8437c70e-7cb2-42e9-8781-87e2c0558b05 | lesso07 | 2025-01-31T09:36:07Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-7b-hf",
"base_model:adapter:NousResearch/CodeLlama-7b-hf",
"region:us"
] | null | 2025-01-31T08:16:34Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-7b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8437c70e-7cb2-42e9-8781-87e2c0558b05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a80f531073244c9f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a80f531073244c9f_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso07/8437c70e-7cb2-42e9-8781-87e2c0558b05
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/a80f531073244c9f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 846f22c8-74e1-47e8-9e98-11b3498ed786
wandb_project: new-01-29
wandb_run: your_name
wandb_runid: 846f22c8-74e1-47e8-9e98-11b3498ed786
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 8437c70e-7cb2-42e9-8781-87e2c0558b05
This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2515
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 9.3849 | 0.0327 | 200 | 2.2515 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/cad4ab75-0c0c-4c0c-b709-2a2f44411751 | mrferr3t | 2025-01-31T09:35:09Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"license:other",
"region:us"
] | null | 2025-01-31T09:27:03Z | ---
library_name: peft
license: other
base_model: huggyllama/llama-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cad4ab75-0c0c-4c0c-b709-2a2f44411751
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: huggyllama/llama-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 374d415fa346ac2b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/374d415fa346ac2b_train_data.json
type:
field_input: prompt_setting
field_instruction: prompt
field_output: completion
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/cad4ab75-0c0c-4c0c-b709-2a2f44411751
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 99
micro_batch_size: 2
mlflow_experiment_name: /tmp/374d415fa346ac2b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4f915252-86ce-4fac-8a8b-ab5ecbcf4eac
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4f915252-86ce-4fac-8a8b-ab5ecbcf4eac
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# cad4ab75-0c0c-4c0c-b709-2a2f44411751
This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 99
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8875 | 0.0001 | 1 | 2.6115 |
| 0.2348 | 0.0063 | 50 | 0.4933 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Tarek07/Progenitor-V1.2-LLaMa-70B | Tarek07 | 2025-01-31T09:34:24Z | 140 | 1 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2408.07990",
"base_model:EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1",
"base_model:merge:EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1",
"base_model:Sao10K/70B-L3.3-Cirrus-x1",
"base_model:merge:Sao10K/70B-L3.3-Cirrus-x1",
"base_model:Sao10K/L3.1-70B-Hanami-x1",
"base_model:merge:Sao10K/L3.1-70B-Hanami-x1",
"base_model:SicariusSicariiStuff/Negative_LLAMA_70B",
"base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B",
"base_model:TheDrummer/Anubis-70B-v1",
"base_model:merge:TheDrummer/Anubis-70B-v1",
"base_model:nbeerbower/Llama-3.1-Nemotron-lorablated-70B",
"base_model:merge:nbeerbower/Llama-3.1-Nemotron-lorablated-70B",
"license:llama3.3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-28T07:21:07Z | ---
base_model:
- TheDrummer/Anubis-70B-v1
- Sao10K/L3.1-70B-Hanami-x1
- EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1
- nbeerbower/Llama-3.1-Nemotron-lorablated-70B
- SicariusSicariiStuff/Negative_LLAMA_70B
- Sao10K/70B-L3.3-Cirrus-x1
library_name: transformers
tags:
- mergekit
- merge
license: llama3.3
---
Through my wanderings around huggingface I came across a model merging method I had not seen before and decided to test it out using the ingredients from my Progenitor merges. I am not sure if it's because of SicariusSicariiStuff/Negative_LLAMA_70B as the pivot model, but it seems a lot 'hornier'. Its style is nice, but I am not sure if it outright beats Progenitor 1.1 (techinically it is the same incredients only mixed differently.)
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [nbeerbower/Llama-3.1-Nemotron-lorablated-70B](https://huggingface.co/nbeerbower/Llama-3.1-Nemotron-lorablated-70B) as a base.
### Models Merged
The following models were included in the merge:
* [TheDrummer/Anubis-70B-v1](https://huggingface.co/TheDrummer/Anubis-70B-v1)
* [Sao10K/L3.1-70B-Hanami-x1](https://huggingface.co/Sao10K/L3.1-70B-Hanami-x1)
* [EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1](https://huggingface.co/EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1)
* [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B)
* [Sao10K/70B-L3.3-Cirrus-x1](https://huggingface.co/Sao10K/70B-L3.3-Cirrus-x1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
# Pivot model
- model: SicariusSicariiStuff/Negative_LLAMA_70B
# Target models
- model: Sao10K/70B-L3.3-Cirrus-x1
- model: Sao10K/L3.1-70B-Hanami-x1
- model: TheDrummer/Anubis-70B-v1
- model: EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1
merge_method: sce
base_model: nbeerbower/Llama-3.1-Nemotron-lorablated-70B
parameters:
select_topk: 1.0
dtype: bfloat16
```
|
NikolayKozloff/DeepSeek-R1-Distill-Qwen-14B-Multilingual-Q4_K_M-GGUF | NikolayKozloff | 2025-01-31T09:34:16Z | 278 | 1 | null | [
"gguf",
"reasoning",
"llama-cpp",
"gguf-my-repo",
"am",
"ar",
"bn",
"zh",
"cs",
"nl",
"en",
"fr",
"de",
"el",
"ha",
"he",
"hi",
"id",
"it",
"ja",
"jv",
"km",
"ko",
"lo",
"ms",
"mr",
"fa",
"pl",
"pt",
"ro",
"ru",
"es",
"sw",
"sv",
"tl",
"ta",
"te",
"th",
"tr",
"uk",
"ur",
"vi",
"dataset:lightblue/reasoning-multilingual-R1-Llama-70B-train",
"base_model:lightblue/DeepSeek-R1-Distill-Qwen-14B-Multilingual",
"base_model:quantized:lightblue/DeepSeek-R1-Distill-Qwen-14B-Multilingual",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-31T09:33:36Z | ---
language:
- am
- ar
- bn
- zh
- cs
- nl
- en
- fr
- de
- el
- ha
- he
- hi
- id
- it
- ja
- jv
- km
- ko
- lo
- ms
- mr
- fa
- pl
- pt
- ro
- ru
- es
- sw
- sv
- tl
- ta
- te
- th
- tr
- uk
- ur
- vi
license: apache-2.0
datasets:
- lightblue/reasoning-multilingual-R1-Llama-70B-train
tags:
- reasoning
- llama-cpp
- gguf-my-repo
base_model: lightblue/DeepSeek-R1-Distill-Qwen-14B-Multilingual
---
# NikolayKozloff/DeepSeek-R1-Distill-Qwen-14B-Multilingual-Q4_K_M-GGUF
This model was converted to GGUF format from [`lightblue/DeepSeek-R1-Distill-Qwen-14B-Multilingual`](https://huggingface.co/lightblue/DeepSeek-R1-Distill-Qwen-14B-Multilingual) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/lightblue/DeepSeek-R1-Distill-Qwen-14B-Multilingual) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo NikolayKozloff/DeepSeek-R1-Distill-Qwen-14B-Multilingual-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-multilingual-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo NikolayKozloff/DeepSeek-R1-Distill-Qwen-14B-Multilingual-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-multilingual-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo NikolayKozloff/DeepSeek-R1-Distill-Qwen-14B-Multilingual-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-multilingual-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo NikolayKozloff/DeepSeek-R1-Distill-Qwen-14B-Multilingual-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-multilingual-q4_k_m.gguf -c 2048
```
|
Subsets and Splits