modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-16 06:27:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
427 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-16 06:26:18
card
stringlengths
11
1.01M
coleperg/nli-roberta-base-finetuned-for-amazon-review-ratings
coleperg
"2023-03-28T22:19:30Z"
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-03-28T22:05:48Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: nli-roberta-base-finetuned-for-amazon-review-ratings results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: en split: validation args: en metrics: - name: Accuracy type: accuracy value: 0.548 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nli-roberta-base-finetuned-for-amazon-review-ratings This model is a fine-tuned version of [cross-encoder/nli-roberta-base](https://huggingface.co/cross-encoder/nli-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0089 - Meanabsoluteerror: 0.535 - Accuracy: 0.548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Meanabsoluteerror | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:| | 1.1095 | 1.0 | 313 | 1.0089 | 0.535 | 0.548 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
jonatasgrosman/exp_w2v2t_de_unispeech-sat_s75
jonatasgrosman
"2022-07-10T12:02:58Z"
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-07-10T12:02:15Z"
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_de_unispeech-sat_s75 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
vuiseng9/bert-base-uncased-squad
vuiseng9
"2022-01-08T18:08:11Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
This model is developed with transformers v4.10.3. # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-base-uncased-squad WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_eval \ --do_train \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --doc_stride 128 \ --max_seq_length 384 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --eval_steps 250 \ --save_steps 2500 \ --logging_steps 1 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-uncased-squad WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-uncased-squad \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF
mradermacher
"2025-01-29T22:42:06Z"
280
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-01-29T22:14:48Z"
--- base_model: DoppelReflEx/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3-GGUF/resolve/main/MN-12B-Mimicore-WhiteSnake-v2-Experiment-3.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
hgnoi/9y6Y8saIIVIMmkag
hgnoi
"2024-05-26T23:36:17Z"
76
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-26T23:33:59Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dbands/llama-3-8b-instruct_databricks-dolly-15k_4bit
dbands
"2024-04-26T08:13:00Z"
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-04-26T08:09:23Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** dbands - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
WilliamADSP/Reinforce-CartPole1
WilliamADSP
"2023-04-27T16:42:20Z"
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2023-04-27T16:42:10Z"
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
SEBIS/legal_t5_small_trans_sv_de_small_finetuned
SEBIS
"2021-06-23T10:07:30Z"
4
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish Deustch model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2022-03-02T23:29:04Z"
--- language: Swedish Deustch tags: - translation Swedish Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "G. Mäns och kvinnors förmåga att delta på lika villkor i det politiska livet och i beslutsfattandet är en grundläggande förutsättning för en verklig demokrati." --- # legal_t5_small_trans_sv_de_small_finetuned model Model on translating legal text from Swedish to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_de_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_sv_de_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Deustch. ### How to use Here is how to use this model to translate legal text from Swedish to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_de_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_de", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "G. Mäns och kvinnors förmåga att delta på lika villkor i det politiska livet och i beslutsfattandet är en grundläggande förutsättning för en verklig demokrati." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_de_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_de_small_finetuned | 40.240| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
"2022-02-26T07:07:11Z"
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
MNgaix/lora_model
MNgaix
"2025-03-30T13:58:04Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:mistralai/Codestral-22B-v0.1", "base_model:finetune:mistralai/Codestral-22B-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-03-25T15:54:13Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
numerouno00/7201ccdf-8623-43d8-878a-316d599402ae
numerouno00
"2025-04-11T07:10:12Z"
0
0
null
[ "region:us" ]
null
"2025-04-11T06:56:21Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
MrRobotoAI/132
MrRobotoAI
"2025-04-08T15:22:12Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:MrRobotoAI/100", "base_model:merge:MrRobotoAI/100", "base_model:MrRobotoAI/101", "base_model:merge:MrRobotoAI/101", "base_model:MrRobotoAI/102", "base_model:merge:MrRobotoAI/102", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T15:18:47Z"
--- base_model: - MrRobotoAI/100 - MrRobotoAI/102 - MrRobotoAI/101 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [MrRobotoAI/102](https://huggingface.co/MrRobotoAI/102) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/100](https://huggingface.co/MrRobotoAI/100) * [MrRobotoAI/101](https://huggingface.co/MrRobotoAI/101) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/100 parameters: density: 0.3333 weight: 0.9 - model: MrRobotoAI/101 parameters: density: 0.3333 weight: 0.9 - model: MrRobotoAI/102 parameters: density: 0.3333 weight: 0.9 merge_method: ties base_model: MrRobotoAI/102 dtype: float16 ```
Pearush/deepseek_half_nexp_2
Pearush
"2025-02-06T17:40:58Z"
8
0
transformers
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2025-02-06T08:07:55Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lukehg/2025-04-15-09-18-59-OFJ
lukehg
"2025-04-15T09:19:14Z"
0
0
null
[ "region:us" ]
null
"2025-04-15T09:19:14Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
redmojo7/new_model_id
redmojo7
"2024-05-13T01:06:25Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-05-13T01:06:12Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** redmojo7 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bowilleatyou/1ced6261-e0ba-4b49-8c1f-d8ddffcf193e
bowilleatyou
"2025-02-22T22:39:19Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-02-22T20:58:15Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-sbert-auto-reference_4_to_verify_6-fold-4
albertus-sussex
"2025-04-01T02:03:01Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:7290", "loss:TripletLoss", "custom_code", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:Alibaba-NLP/gte-base-en-v1.5", "base_model:finetune:Alibaba-NLP/gte-base-en-v1.5", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-04-01T02:02:28Z"
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:7290 - loss:TripletLoss base_model: Alibaba-NLP/gte-base-en-v1.5 widget: - source_sentence: 'Fuel consumption: city= 20 (mpg); highway= 27 (mpg); combined= 23 (mpg); vehicle range: 460 miles' sentences: - 'Engine: 5.3L V 8 overhead valve ( 9.9 :1 compression ratio ; two valves per cylinder)' - fuel_economy - engine - 11 mpg - source_sentence: $18,895.00 sentences: - engine - $ 51,900 - price - 'Engine: 2.0L Duratec in-linefour-cylinder DOHC and four valves per cylinder' - source_sentence: 2011 Ford E-350 Super Duty Commercial Extended Cargo sentences: - 11 mpg - fuel_economy - 2011 Infiniti G Highlights - model - source_sentence: 23 MPG city / 30 MPG highway sentences: - fuel_economy - 2011 Chevrolet Suburban 1500 LT Sport Utility - model - 21 mpg City / 28 mpg Hwy - source_sentence: 21/26 sentences: - fuel_economy - 2010 Hyundai Genesis Grand Touring Coupe - model - '-' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - silhouette_cosine - silhouette_euclidean model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - task: type: silhouette name: Silhouette dataset: name: Unknown type: unknown metrics: - type: silhouette_cosine value: 0.9661810994148254 name: Silhouette Cosine - type: silhouette_euclidean value: 0.8312028646469116 name: Silhouette Euclidean - type: silhouette_cosine value: 0.9656964540481567 name: Silhouette Cosine - type: silhouette_euclidean value: 0.8298556208610535 name: Silhouette Euclidean --- # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("albertus-sussex/veriscrape-sbert-auto-reference_4_to_verify_6-fold-4") # Run inference sentences = [ '21/26', '-', '2010 Hyundai Genesis Grand Touring Coupe', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **0.9662** | | silhouette_euclidean | 0.8312 | #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **0.9657** | | silhouette_euclidean | 0.8299 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 7,290 training samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 11.17 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.14 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.88 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.55 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.47 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:-----------------------------------------------------|:-------------------------------------------------|:--------------------------------------|:--------------------------|:--------------------------| | <code>2010 Dodge Ram 1500 Crew Cab Highlights</code> | <code>2011 GMC Canyon SLT Crew Cab Pickup</code> | <code>$35,300</code> | <code>model</code> | <code>price</code> | | <code>17 mpg</code> | <code>18 mpg</code> | <code>$17,450</code> | <code>fuel_economy</code> | <code>price</code> | | <code>2011 FORD EXPEDITION EL TECH SPECS</code> | <code>2011 Ford Escape XLS Sport Utility</code> | <code>11 MPG City / 15 MPG Hwy</code> | <code>model</code> | <code>fuel_economy</code> | * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 810 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 810 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 11.12 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.23 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.38 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.65 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.46 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|:--------------------------|:--------------------------| | <code>20/27</code> | <code>MPG City / MPG Hwy</code> | <code>5-Cyl, 2.5 Liter</code> | <code>fuel_economy</code> | <code>engine</code> | | <code>Vortec 6.0L Variable Valve Timing V8 SFI</code> | <code>Engine: 3.7L VTEC V-6 OHC with variable valve timing and four valves per cylinder</code> | <code>Fuel consumption: city= 12 (mpg); highway= 19 (mpg); combined= 15 (mpg); vehicle range: 261 miles</code> | <code>engine</code> | <code>fuel_economy</code> | | <code>2011 Subaru Forester 2.5XT Touring Sport Utility</code> | <code>2011 Ford Transit Connect XL (100A) Cargo</code> | <code>11 mpg</code> | <code>model</code> | <code>fuel_economy</code> | * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:| | -1 | -1 | - | - | 0.7543 | 0.3544 | | 1.0 | 57 | 0.3359 | 0.0 | 1.0 | 0.9656 | | 2.0 | 114 | 0.0 | 0.0 | 1.0 | 0.9662 | | 3.0 | 171 | 0.0 | 0.0 | 1.0 | 0.9662 | | 4.0 | 228 | 0.0 | 0.0 | 1.0 | 0.9662 | | 5.0 | 285 | 0.0 | 0.0 | 1.0 | 0.9662 | | -1 | -1 | - | - | 1.0 | 0.9657 | ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 4.0.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.5.2 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
RichardErkhov/qgallouedec_-_tiny-MistralForCausalLM-0.1-mlx
RichardErkhov
"2025-02-28T21:45:41Z"
0
0
null
[ "region:us" ]
null
"2025-02-28T21:45:10Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tiny-MistralForCausalLM-0.1 - MLX - Model creator: https://huggingface.co/qgallouedec/ - Original model: https://huggingface.co/qgallouedec/tiny-MistralForCausalLM-0.1/ # Quick start for LLMs Install `mlx-lm`: ``` pip install mlx-lm ``` You can use `mlx-lm` from the command line. For example: ``` mlx_lm.generate --model qgallouedec_-_tiny-MistralForCausalLM-0.1-mlx --prompt "hello" ``` This will download a model from the Hugging Face Hub and generate text using the given prompt. To chat with an LLM use: ```bash mlx_lm.chat ``` This will give you a chat REPL that you can use to interact with the LLM. The chat context is preserved during the lifetime of the REPL. For a full list of options run `--help` on the command of your interest, for example: ``` mlx_lm.chat --help ``` Original model description: --- library_name: transformers tags: - trl --- # Tiny MistralForCausalLM This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library.
irishprancer/f3868368-4ed2-4e70-9fad-73bfd308451c
irishprancer
"2025-02-23T01:14:13Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-02-22T20:06:47Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ThilinaGunathilaka/fine-tune-sinhala-bert-v3
ThilinaGunathilaka
"2025-03-19T04:40:03Z"
0
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "sinhala", "masked-language-model", "sinhala-news", "si", "base_model:Ransaka/sinhala-bert-medium-v2", "base_model:finetune:Ransaka/sinhala-bert-medium-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2025-03-19T04:01:44Z"
--- library_name: transformers tags: - sinhala - bert - masked-language-model - sinhala-news license: apache-2.0 language: - si metrics: - perplexity base_model: - Ransaka/sinhala-bert-medium-v2 --- # Model Card for Sinhala-BERT Fine-Tuned MLM This model is a fine-tuned version of `Ransaka/sinhala-bert-medium-v2` on the Sinhala News Corpus dataset for Masked Language Modeling (MLM). ## Model Details ### Model Description This Sinhala-BERT model was fine-tuned specifically for the Sinhala language to improve its capabilities in Masked Language Modeling. It leverages the architecture of BERT and was further optimized on the Sinhala News Corpus dataset, aiming to achieve better contextual language understanding for Sinhala text. - **Developed by:** [Thilina Gunathilaka] - **Model type:** Transformer-based Language Model (BERT) - **Language(s) (NLP):** Sinhala (si) - **License:** Apache-2.0 - **Finetuned from model [optional]:** [Ransaka/sinhala-bert-medium-v2](https://huggingface.co/Ransaka/sinhala-bert-medium-v2) ### Model Sources [optional] - **Repository:** [Your Hugging Face Repository URL] - **Dataset:** [TestData-CrossLingualDocumentSimilarityMeasurement](https://github.com/UdeshAthukorala/TestData-CrossLingualDocumentSimilarityMeasurement) ## Uses ### Direct Use This model can directly be used for: - Masked Language Modeling (filling missing words or predicting masked tokens) - Feature extraction for Sinhala text ### Downstream Use [optional] This model can be fine-tuned further for various downstream NLP tasks in Sinhala, such as: - Text Classification - Named Entity Recognition (NER) - Sentiment Analysis ### Out-of-Scope Use - This model is specifically trained for Sinhala. Performance on other languages is likely poor. - Not suitable for tasks unrelated to textual data. ## Bias, Risks, and Limitations Like any language model, this model may inherit biases from its training data. It's recommended to assess model predictions for biases before deployment in critical applications. ### Recommendations - Evaluate model biases before deployment. - Ensure fair and transparent use of this model in sensitive contexts. ## How to Get Started with the Model Use the code below to get started with this model: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name") model = AutoModelForMaskedLM.from_pretrained("your-username/your-model-name") ``` ## Training Details ### Training Data The model was trained on the Sinhala News Corpus dataset, comprising Sinhala news articles. ### Training Procedure - **Tokenization**: Sinhala-specific tokenization and text normalization - **Max Sequence Length**: 128 - **MLM Probability**: 15% #### Training Hyperparameters - **Epochs:** 25 - **Batch Size:** 2 (Gradient accumulation steps: 2) - **Optimizer:** AdamW - **Learning Rate:** 3e-5 - **Mixed Precision:** FP32 ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data Sinhala News Corpus dataset test split was used. #### Metrics - **Perplexity:** Used to measure language modeling capability. - **Loss (Cross-Entropy):** Lower is better. ### Results The final evaluation metrics obtained: | Metric | Value | |---------------|-------| | Perplexity | [15.95] | | Validation Loss | [2.77] | #### Summary The model achieved strong MLM results on the Sinhala News Corpus dataset, demonstrating improved language understanding. ## Environmental Impact Carbon emissions were not explicitly tracked. For estimation, refer to [Machine Learning Impact calculator](https://mlco2.github.io/impact). - **Hardware Type:** GPU (Tesla T4) - **Hours used:** [Approximate training hours] - **Cloud Provider:** Kaggle - **Compute Region:** [Region used, e.g., us-central] - **Carbon Emitted:** [Estimated CO2 emissions] ## Technical Specifications ### Model Architecture and Objective Transformer-based BERT architecture optimized for Masked Language Modeling tasks. ### Compute Infrastructure #### Hardware - NVIDIA Tesla T4 GPU #### Software - Python 3.10 - Transformers library by Hugging Face - PyTorch ## Citation [optional] If you use this model, please cite it as: ```bibtex @misc{yourusername2024sinhalabert, author = {Your Name}, title = {Sinhala-BERT Fine-Tuned on Sinhala News Corpus}, year = {2024}, publisher = {Hugging Face}, journal = {Hugging Face Model Hub}, howpublished = {\url{https://huggingface.co/your-username/your-model-name}} } ``` ## Model Card Authors - [Thilina Gunathilaka]
ih9511/gemma2-2b_medical_translation_en_ko
ih9511
"2025-02-19T15:40:10Z"
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-19T15:32:30Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
auxyus/be580158-4613-45ca-831c-b6c1fe0ff9de
auxyus
"2025-01-25T03:22:59Z"
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-mistral", "base_model:adapter:echarlaix/tiny-random-mistral", "license:apache-2.0", "region:us" ]
null
"2025-01-25T03:21:02Z"
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-mistral tags: - axolotl - generated_from_trainer model-index: - name: be580158-4613-45ca-831c-b6c1fe0ff9de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-mistral bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2fbd62eeb0e4156f_train_data.json ds_type: json format: custom path: /workspace/input_data/2fbd62eeb0e4156f_train_data.json type: field_instruction: q field_output: a format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: auxyus/be580158-4613-45ca-831c-b6c1fe0ff9de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2fbd62eeb0e4156f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 991a9506-1420-4238-891e-e06832d29892 wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: 991a9506-1420-4238-891e-e06832d29892 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # be580158-4613-45ca-831c-b6c1fe0ff9de This model is a fine-tuned version of [echarlaix/tiny-random-mistral](https://huggingface.co/echarlaix/tiny-random-mistral) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 10.3753 | | 41.4824 | 0.0030 | 9 | 10.3742 | | 41.4896 | 0.0061 | 18 | 10.3713 | | 41.4673 | 0.0091 | 27 | 10.3676 | | 41.459 | 0.0121 | 36 | 10.3629 | | 41.4357 | 0.0152 | 45 | 10.3574 | | 41.4135 | 0.0182 | 54 | 10.3516 | | 41.3975 | 0.0213 | 63 | 10.3466 | | 41.3763 | 0.0243 | 72 | 10.3432 | | 41.3687 | 0.0273 | 81 | 10.3412 | | 41.3772 | 0.0304 | 90 | 10.3404 | | 41.362 | 0.0334 | 99 | 10.3403 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF
mradermacher
"2025-03-31T12:59:39Z"
0
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "JoPmt/Trismal-HyperAmocles-7B-Base-Ties", "Locutusque/NeuralHyperion-2.0-Mistral-7B", "en", "base_model:JoPmt/Trismal-NeurAmoclion-7B-Base-Ties", "base_model:quantized:JoPmt/Trismal-NeurAmoclion-7B-Base-Ties", "endpoints_compatible", "region:us" ]
null
"2025-03-31T12:08:45Z"
--- base_model: JoPmt/Trismal-NeurAmoclion-7B-Base-Ties language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - JoPmt/Trismal-HyperAmocles-7B-Base-Ties - Locutusque/NeuralHyperion-2.0-Mistral-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/JoPmt/Trismal-NeurAmoclion-7B-Base-Ties <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Trismal-NeurAmoclion-7B-Base-Ties-GGUF/resolve/main/Trismal-NeurAmoclion-7B-Base-Ties.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jslowik/distilbert-base-uncased-finetuned-emotion
jslowik
"2022-07-14T15:05:25Z"
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-07-14T15:01:13Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9262423473736914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2156 - Accuracy: 0.9265 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.814 | 1.0 | 250 | 0.3075 | 0.907 | 0.9048 | | 0.2481 | 2.0 | 500 | 0.2156 | 0.9265 | 0.9262 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
damgomz/fp_bs4_lr1e4_x8
damgomz
"2024-07-10T01:56:47Z"
107
0
transformers
[ "transformers", "safetensors", "albert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-07-06T10:29:48Z"
--- language: en tags: - fill-mask kwargs: timestamp: '2024-07-10T03:56:44' project_name: fp_bs4_lr1e4_x8_emissions_tracker run_id: f31826d8-c584-437c-a294-0a7f1c2ae386 duration: 188231.78425216675 emissions: 0.1416076810173383 emissions_rate: 7.52304833001169e-07 cpu_power: 42.5 gpu_power: 0.0 ram_power: 15.0 cpu_energy: 2.2221763482497714 gpu_energy: 0 ram_energy: 0.7842923258195307 energy_consumed: 3.0064686740693056 country_name: Switzerland country_iso_code: CHE region: .nan cloud_provider: .nan cloud_region: .nan os: Linux-5.14.0-70.30.1.el9_0.x86_64-x86_64-with-glibc2.34 python_version: 3.10.4 codecarbon_version: 2.3.4 cpu_count: 6 cpu_model: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz gpu_count: .nan gpu_model: .nan longitude: .nan latitude: .nan ram_total_size: 40 tracking_mode: machine on_cloud: N pue: 1.0 --- ## Environmental Impact (CODE CARBON DEFAULT) | Metric | Value | |--------------------------|---------------------------------| | Duration (in seconds) | 188231.78425216675 | | Emissions (Co2eq in kg) | 0.1416076810173383 | | CPU power (W) | 42.5 | | GPU power (W) | [No GPU] | | RAM power (W) | 15.0 | | CPU energy (kWh) | 2.2221763482497714 | | GPU energy (kWh) | [No GPU] | | RAM energy (kWh) | 0.7842923258195307 | | Consumed energy (kWh) | 3.0064686740693056 | | Country name | Switzerland | | Cloud provider | nan | | Cloud region | nan | | CPU count | 6 | | CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz | | GPU count | nan | | GPU model | nan | ## Environmental Impact (for one core) | Metric | Value | |--------------------------|---------------------------------| | CPU energy (kWh) | 0.36234618468542096 | | Emissions (Co2eq in kg) | 0.0737241154987653 | ## Note 5 juillet 2024 ! ## My Config | Config | Value | |--------------------------|-----------------| | checkpoint | albert-base-v2 | | model_name | fp_bs4_lr1e4_x8 | | sequence_length | 400 | | num_epoch | 6 | | learning_rate | 0.0001 | | batch_size | 4 | | weight_decay | 0.0 | | warm_up_prop | 0.0 | | drop_out_prob | 0.1 | | packing_length | 100 | | train_test_split | 0.2 | | num_steps | 165344 | ## Training and Testing steps Epoch | Train Loss | Test Loss ---|---|--- | 0.0 | 13.577518 | 16.454822 | | 0.5 | 4.348466 | 8.290026 | | 1.0 | 7.080169 | 7.084954 | | 1.5 | 7.062799 | 7.041789 | | 2.0 | 7.035213 | 7.043707 | | 2.5 | 7.042095 | 7.035433 | | 3.0 | 7.019162 | 7.022437 | | 3.5 | 7.003615 | 7.009589 | | 4.0 | 6.991288 | 6.997943 | | 4.5 | 6.990645 | 6.999312 | | 5.0 | 6.996278 | 6.999325 | | 5.5 | 6.988248 | 6.996825 | | 6.0 | 6.977846 | 6.984195 |
mergekit-community/mergekit-passthrough-bwvduuf
mergekit-community
"2025-04-05T20:27:47Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:mergekit-community/mergekit-passthrough-gujurtn", "base_model:merge:mergekit-community/mergekit-passthrough-gujurtn", "base_model:mergekit-community/mergekit-slerp-wzipxtu", "base_model:merge:mergekit-community/mergekit-slerp-wzipxtu", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-05T20:20:31Z"
--- base_model: - mergekit-community/mergekit-slerp-wzipxtu - mergekit-community/mergekit-passthrough-gujurtn library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * [mergekit-community/mergekit-slerp-wzipxtu](https://huggingface.co/mergekit-community/mergekit-slerp-wzipxtu) * [mergekit-community/mergekit-passthrough-gujurtn](https://huggingface.co/mergekit-community/mergekit-passthrough-gujurtn) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: passthrough dtype: bfloat16 slices: - sources: - model: mergekit-community/mergekit-passthrough-gujurtn layer_range: [0,40] - sources: - model: mergekit-community/mergekit-slerp-wzipxtu layer_range: [40,71] ```
fluidapp/meta-llama-3-8b-instruct-gguf
fluidapp
"2024-07-02T20:51:28Z"
6
0
null
[ "gguf", "license:llama3", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2024-05-20T22:24:28Z"
--- license: llama3 --- Fork of https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF (Using llama.cpp commit ffe6665 for quantization.)
SHENMU007/neunit_BASE_V9.5.11
SHENMU007
"2023-09-11T08:56:39Z"
76
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
"2023-09-11T07:51:35Z"
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
lesso05/4179621a-24e4-41cf-830f-11a82df0ea04
lesso05
"2025-02-22T12:08:57Z"
0
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
"2025-02-22T10:18:06Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 4179621a-24e4-41cf-830f-11a82df0ea04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 34dd743c8a6d550a_train_data.json ds_type: json format: custom path: /workspace/input_data/34dd743c8a6d550a_train_data.json type: field_input: intent field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso05/4179621a-24e4-41cf-830f-11a82df0ea04 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000205 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/34dd743c8a6d550a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 50 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3c361f26-a666-42f7-9bd4-8137b9a5a8af wandb_project: 05a wandb_run: your_name wandb_runid: 3c361f26-a666-42f7-9bd4-8137b9a5a8af warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4179621a-24e4-41cf-830f-11a82df0ea04 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000205 - train_batch_size: 4 - eval_batch_size: 4 - seed: 50 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.9666 | | 0.4139 | 0.0017 | 50 | 0.4584 | | 0.3428 | 0.0034 | 100 | 0.4148 | | 0.2975 | 0.0051 | 150 | 0.3911 | | 0.2813 | 0.0067 | 200 | 0.3777 | | 0.2527 | 0.0084 | 250 | 0.3653 | | 0.2898 | 0.0101 | 300 | 0.3523 | | 0.2607 | 0.0118 | 350 | 0.3426 | | 0.2339 | 0.0135 | 400 | 0.3364 | | 0.2421 | 0.0152 | 450 | 0.3335 | | 0.2419 | 0.0169 | 500 | 0.3330 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso07/53819473-1981-4fb2-97c6-6fe42f70715c
lesso07
"2025-02-21T22:24:29Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "region:us" ]
null
"2025-02-21T19:05:38Z"
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 53819473-1981-4fb2-97c6-6fe42f70715c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 443df9cfc3ae5ff8_train_data.json ds_type: json format: custom path: /workspace/input_data/443df9cfc3ae5ff8_train_data.json type: field_input: knowledge field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso07/53819473-1981-4fb2-97c6-6fe42f70715c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000207 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/443df9cfc3ae5ff8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 70 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 67c15ec6-50fc-448d-9e7e-bda80cc29799 wandb_project: 07a wandb_run: your_name wandb_runid: 67c15ec6-50fc-448d-9e7e-bda80cc29799 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 53819473-1981-4fb2-97c6-6fe42f70715c This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000207 - train_batch_size: 4 - eval_batch_size: 4 - seed: 70 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.8609 | | 0.8568 | 0.0017 | 50 | 0.5684 | | 0.7281 | 0.0034 | 100 | 0.5408 | | 0.7754 | 0.0051 | 150 | 0.5158 | | 0.7684 | 0.0067 | 200 | 0.5083 | | 0.7892 | 0.0084 | 250 | 0.4876 | | 0.7067 | 0.0101 | 300 | 0.4821 | | 0.7076 | 0.0118 | 350 | 0.4716 | | 0.7213 | 0.0135 | 400 | 0.4655 | | 0.673 | 0.0152 | 450 | 0.4624 | | 0.6611 | 0.0169 | 500 | 0.4619 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
justinwangx/vicuna-robust2-sft-lora
justinwangx
"2023-12-20T05:33:07Z"
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "region:us" ]
null
"2023-12-20T05:31:41Z"
--- tags: - generated_from_trainer model-index: - name: vicuna-robust2-sft-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vicuna-robust2-sft-lora This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0 | 0 | 1.8516 | | No log | 0 | 0 | 1.8678 | | No log | 0 | 0 | 1.9414 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.14.6 - Tokenizers 0.14.1
Neulvo/distilbert-base-uncased-finetuned-imdb
Neulvo
"2022-03-16T06:05:40Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-16T05:13:17Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7071 | 1.0 | 157 | 2.4942 | | 2.5754 | 2.0 | 314 | 2.4235 | | 2.5426 | 3.0 | 471 | 2.4361 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/karlousm-whosnina__
huggingtweets
"2021-06-30T06:12:03Z"
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-03-02T23:29:05Z"
--- language: en thumbnail: https://www.huggingtweets.com/karlousm-whosnina__/1625033518783/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407437739985981444/HOdDoSY4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1396877840763719684/88N2DjSH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nina Thee Pony 🎠 & Karlous</div> <div style="text-align: center; font-size: 14px;">@karlousm-whosnina__</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nina Thee Pony 🎠 & Karlous. | Data | Nina Thee Pony 🎠 | Karlous | | --- | --- | --- | | Tweets downloaded | 3210 | 3207 | | Retweets | 717 | 1736 | | Short tweets | 833 | 175 | | Tweets kept | 1660 | 1296 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qlruxax/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @karlousm-whosnina__'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pprte8vc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pprte8vc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/karlousm-whosnina__') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
abrar0503/h2ogpt-gm
abrar0503
"2025-03-10T10:50:18Z"
89
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-07-12T12:06:46Z"
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico license: apache-2.0 datasets: - OpenAssistant/oasst1 --- # Model Card ## Summary Try our chatbot here: https://gpt-gm.h2o.ai/ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [openlm-research/open_llama_7b_preview_300bt](https://huggingface.co/openlm-research/open_llama_7b_preview_300bt) - Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `torch` libraries installed. ```bash pip install transformers==4.28.1 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2", torch_dtype=torch.float16, trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2", use_fast=False, padding_side="left" ) model = AutoModelForCausalLM.from_pretrained( "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2", torch_dtype=torch.float16, device_map={"": "cuda:0"} ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
mlfoundations-dev/hp_ablations_mistral_scheduler_cosine_warmup0.10_minlr5e-7_dcftv1.2
mlfoundations-dev
"2024-12-05T10:32:09Z"
12
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-04T16:53:53Z"
--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - llama-factory - full - generated_from_trainer model-index: - name: hp_ablations_mistral_scheduler_cosine_warmup0.10_minlr5e-7_dcftv1.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hp_ablations_mistral_scheduler_cosine_warmup0.10_minlr5e-7_dcftv1.2 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mlfoundations-dev/oh-dcft-v1.2_no-curation_gpt-4o-mini dataset. It achieves the following results on the evaluation set: - Loss: 0.0734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_min_lr - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5743 | 0.9976 | 369 | 0.0715 | | 0.4903 | 1.9973 | 738 | 0.0703 | | 0.4057 | 2.9970 | 1107 | 0.0734 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.0.2 - Tokenizers 0.20.3
stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
stefan-it
"2023-10-26T11:08:24Z"
10
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "fr", "base_model:dbmdz/bert-base-historic-multilingual-64k-td-cased", "base_model:finetune:dbmdz/bert-base-historic-multilingual-64k-td-cased", "license:mit", "region:us" ]
token-classification
"2023-10-24T12:54:19Z"
--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-base-historic-multilingual-64k-td-cased widget: - text: Nous recevons le premier numéro d ' un nouveau journal , le Radical - Libéral , qui paraîtra à Genève deux fois la semaine . Son but est de représenter l ' élément national du radicalisme genevois , en d ' autres termes , de défendre la politique intransigeante do M . Carteret , en opposition aux tendances du groupe _ > dont le Genevois est l ' organe . Bétail . --- # Fine-tuned Flair Model on French HIPE-2020 Dataset (HIPE-2022) This Flair model was fine-tuned on the [French HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) NER Dataset using hmBERT 64k as backbone LM. The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found [here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[3e-05, 5e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|--------------|--------------|------------------|-----------------| | `bs8-e10-lr3e-05` | [0.8389][1] | [0.8466][2] | [0.8299][3] | [0.8391][4] | [0.8427][5] | 0.8394 ± 0.0062 | | `bs4-e10-lr3e-05` | [0.8279][6] | [0.8364][7] | [0.8404][8] | [0.8382][9] | [**0.8371**][10] | 0.836 ± 0.0048 | | `bs8-e10-lr5e-05` | [0.8418][11] | [0.8337][12] | [0.831][13] | [0.8346][14] | [0.8352][15] | 0.8353 ± 0.004 | | `bs4-e10-lr5e-05` | [0.831][16] | [0.8239][17] | [0.7784][18] | [0.8313][19] | [0.8191][20] | 0.8167 ± 0.022 | [1]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-hipe2020-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
junn991/gemma2-2b-it-sft-couple
junn991
"2024-11-21T14:55:01Z"
60
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-21T14:52:10Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
olisval/qavito_model
olisval
"2024-10-22T20:52:00Z"
7
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "region:us" ]
null
"2024-10-20T15:16:11Z"
--- base_model: Qwen/Qwen2.5-1.5B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
oliverobenrauch/ai-watchultra
oliverobenrauch
"2025-01-26T15:01:14Z"
8
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-01-26T14:43:10Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AIWATCHULTRA --- # Ai Watchultra <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AIWATCHULTRA` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('oliverobenrauch/ai-watchultra', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
baby-dev/2-20-03
baby-dev
"2025-02-20T15:52:23Z"
0
0
peft
[ "peft", "safetensors", "opt", "generated_from_trainer", "base_model:facebook/opt-125m", "base_model:adapter:facebook/opt-125m", "region:us" ]
null
"2025-02-20T15:52:19Z"
--- library_name: peft tags: - generated_from_trainer base_model: facebook/opt-125m model-index: - name: outputs/42/baby-dev/2-20-03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: /workspace/input_data/facebook/opt-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a55243159bc593a3_train_data.json ds_type: json format: custom path: /workspace/input_data/a55243159bc593a3_train_data.json type: field_input: Headline field_instruction: Link field_output: Article field_system: Journalists format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true # hub_model_id: baby-dev/2-20-01 # hub_strategy: checkpoint learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 100 micro_batch_size: 4 mlflow_experiment_name: /tmp/a55243159bc593a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: outputs/42/baby-dev/2-20-03 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ec4daa32-dc59-477e-bbec-56cf29bc685f wandb_project: SN56-42 wandb_run: your_name wandb_runid: ec4daa32-dc59-477e-bbec-56cf29bc685f warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # outputs/42/baby-dev/2-20-03 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.6642 | | 10.002 | 0.0070 | 50 | 2.4652 | | 9.6914 | 0.0141 | 100 | 2.3438 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
OduguSusmitha/llama-3-8b-Instruct-bnb-4bit-updated_json
OduguSusmitha
"2024-05-27T11:57:49Z"
10
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-05-27T05:45:25Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** OduguSusmitha - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
heyyai/cybertruck01
heyyai
"2023-05-16T09:30:46Z"
33
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2022-11-21T17:25:12Z"
--- license: creativeml-openrail-m tags: - text-to-image --- ### cybertruck01 Dreambooth model trained by cormacncheese with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
ivangrapher/4d7c2a07-2cb0-4c3b-b93c-70160afc04b0
ivangrapher
"2025-01-15T19:41:09Z"
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
"2025-01-15T19:40:04Z"
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 4d7c2a07-2cb0-4c3b-b93c-70160afc04b0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f9d583cbe4595761_train_data.json ds_type: json format: custom path: /workspace/input_data/f9d583cbe4595761_train_data.json type: field_input: '' field_instruction: Human field_output: Assistant format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: ivangrapher/4d7c2a07-2cb0-4c3b-b93c-70160afc04b0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/f9d583cbe4595761_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 79866d34-ead5-4f60-be5b-3064df991a9d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 79866d34-ead5-4f60-be5b-3064df991a9d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4d7c2a07-2cb0-4c3b-b93c-70160afc04b0 This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 5.6642 | | 45.451 | 0.0049 | 8 | 5.5296 | | 41.0579 | 0.0098 | 16 | 5.3952 | | 44.0469 | 0.0147 | 24 | 5.3897 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MaziyarPanahi/Qwen2.5-14B-YOYO-V5-GGUF
MaziyarPanahi
"2025-03-22T21:21:46Z"
0
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:YOYO-AI/Qwen2.5-14B-YOYO-V5", "base_model:quantized:YOYO-AI/Qwen2.5-14B-YOYO-V5", "region:us", "conversational" ]
text-generation
"2025-03-22T20:44:13Z"
--- base_model: YOYO-AI/Qwen2.5-14B-YOYO-V5 inference: false model_creator: YOYO-AI model_name: Qwen2.5-14B-YOYO-V5-GGUF pipeline_tag: text-generation quantized_by: MaziyarPanahi tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation --- # [MaziyarPanahi/Qwen2.5-14B-YOYO-V5-GGUF](https://huggingface.co/MaziyarPanahi/Qwen2.5-14B-YOYO-V5-GGUF) - Model creator: [YOYO-AI](https://huggingface.co/YOYO-AI) - Original model: [YOYO-AI/Qwen2.5-14B-YOYO-V5](https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-V5) ## Description [MaziyarPanahi/Qwen2.5-14B-YOYO-V5-GGUF](https://huggingface.co/MaziyarPanahi/Qwen2.5-14B-YOYO-V5-GGUF) contains GGUF format model files for [YOYO-AI/Qwen2.5-14B-YOYO-V5](https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-V5). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
lesso06/2bcb2419-2bab-4c72-a65e-a86de11f53e1
lesso06
"2025-01-25T07:28:58Z"
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-7b", "base_model:adapter:unsloth/codegemma-7b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-25T05:22:19Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-7b tags: - axolotl - generated_from_trainer model-index: - name: 2bcb2419-2bab-4c72-a65e-a86de11f53e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-7b bf16: true chat_template: llama3 datasets: - data_files: - be3e88192976f3da_train_data.json ds_type: json format: custom path: /workspace/input_data/be3e88192976f3da_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso06/2bcb2419-2bab-4c72-a65e-a86de11f53e1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/be3e88192976f3da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddb0c49-3e86-4e0d-b36c-1f4a529f37f0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fddb0c49-3e86-4e0d-b36c-1f4a529f37f0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2bcb2419-2bab-4c72-a65e-a86de11f53e1 This model is a fine-tuned version of [unsloth/codegemma-7b](https://huggingface.co/unsloth/codegemma-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5572 | 0.0001 | 1 | 1.5809 | | 1.7794 | 0.0006 | 5 | 1.5626 | | 0.9224 | 0.0012 | 10 | 1.5111 | | 1.2979 | 0.0017 | 15 | 1.4867 | | 1.4685 | 0.0023 | 20 | 1.4747 | | 1.2945 | 0.0029 | 25 | 1.4698 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Roy029/phi-1_5-finetuned-gsm8k
Roy029
"2023-10-09T07:21:18Z"
0
0
null
[ "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
"2023-10-09T07:01:22Z"
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
FelisDwan/UI-TARS-7B-DPO-Q4_K_M-GGUF
FelisDwan
"2025-01-23T04:41:07Z"
132
0
transformers
[ "transformers", "gguf", "multimodal", "gui", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:bytedance-research/UI-TARS-7B-DPO", "base_model:quantized:bytedance-research/UI-TARS-7B-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
"2025-01-23T04:40:43Z"
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - gui - llama-cpp - gguf-my-repo library_name: transformers base_model: bytedance-research/UI-TARS-7B-DPO --- # FelisDwan/UI-TARS-7B-DPO-Q4_K_M-GGUF This model was converted to GGUF format from [`bytedance-research/UI-TARS-7B-DPO`](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo FelisDwan/UI-TARS-7B-DPO-Q4_K_M-GGUF --hf-file ui-tars-7b-dpo-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo FelisDwan/UI-TARS-7B-DPO-Q4_K_M-GGUF --hf-file ui-tars-7b-dpo-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo FelisDwan/UI-TARS-7B-DPO-Q4_K_M-GGUF --hf-file ui-tars-7b-dpo-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo FelisDwan/UI-TARS-7B-DPO-Q4_K_M-GGUF --hf-file ui-tars-7b-dpo-q4_k_m.gguf -c 2048 ```
aayush152/speecht5_finetuned_voxpopuli_nl
aayush152
"2024-05-05T11:52:38Z"
77
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
"2024-05-05T07:43:10Z"
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5285 | 2.9895 | 1000 | 0.4830 | | 0.5076 | 5.9791 | 2000 | 0.4697 | | 0.5048 | 8.9686 | 3000 | 0.4634 | | 0.4996 | 11.9581 | 4000 | 0.4620 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
YYhnit/ChatGLM3-6B
YYhnit
"2025-03-11T22:20:15Z"
0
0
flair
[ "flair", "text-generation", "arxiv:2103.10360", "arxiv:2210.02414", "license:gpl-2.0", "region:us" ]
text-generation
"2025-03-11T22:19:07Z"
--- license: gpl-2.0 pipeline_tag: text-generation library_name: flair --- --- language: - zh - en tags: - glm - chatglm - thudm --- # ChatGLM3-6B <p align="center"> 💻 <a href="https://github.com/THUDM/ChatGLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br> </p> <p align="center"> 👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM/blob/main/resources/WECHAT.md" target="_blank">WeChat</a> </p> <p align="center"> 📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a> </p> ## 介绍 ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性: 1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。 2. **更完整的功能支持:** ChatGLM3-6B 采用了全新设计的 [Prompt 格式](PROMPT.md),除正常的多轮对话外。同时原生支持[工具调用](tool_using/README.md)(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。 3. **更全面的开源序列:** 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究**完全开放**,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。 ## 软件依赖 ```shell pip install protobuf 'transformers>=4.30.2' cpm_kernels 'torch>=2.0' gradio mdtex2html sentencepiece accelerate ``` ## 模型下载 modelscope API下载 ```shell pip install modelscope ``` ```python from modelscope import snapshot_download model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0") ``` git下载 ```shell git lfs install git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git ``` ## 代码调用 可以通过如下代码调用 ChatGLM3-6B 模型来生成对话: ```python from modelscope import AutoTokenizer, AutoModel, snapshot_download model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0") tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda() model = model.eval() response, history = model.chat(tokenizer, "你好", history=[]) print(response) response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history) print(response) ``` 关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM3)。 For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM3). **即使您没有满足要求的 CUDA 设备,对于 Intel CPU 和 GPU 设备,也可以使用 [OpenVINO加速框架](https://github.com/openvinotoolkit) 使用 Intel GPU 或 CPU 或 集成显卡 加速部署ChatGLM3-6B模型**, 我们也在[Github Repo](https://github.com/THUDM/ChatGLM3/blob/main/Intel_device_demo/openvino_demo/README.md) 准备了demo。 ## 协议 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。 ## 引用 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。 ``` @article{zeng2022glm, title={Glm-130b: An open bilingual pre-trained model}, author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, journal={arXiv preprint arXiv:2210.02414}, year={2022} } ``` ``` @inproceedings{du2022glm, title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={320--335}, year={2022} } ```
silveroxides/Chroma-GGUF
silveroxides
"2025-04-16T06:12:48Z"
7,934
17
null
[ "gguf", "text-to-image", "base_model:lodestones/Chroma", "base_model:quantized:lodestones/Chroma", "license:apache-2.0", "region:us" ]
text-to-image
"2025-02-24T13:07:36Z"
--- license: apache-2.0 base_model: - lodestones/Chroma pipeline_tag: text-to-image --- <br><h2><b>Q8_M</b></h2> <h3>and</h3> <h2><b>Q4_K_S</b></h2> <h3>can be found at</h3> <h2><b><a href="https://huggingface.co/Clybius/Chroma-GGUF">Clybius/Chroma-GGUF</a></h2></b> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-BF16.gguf">BF16</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/vWu52TewcRCC2WGudOVbB.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q8_0.gguf">Q8_0</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/lxlCKpfkKhYkN7sqfMRqL.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q6_K.gguf">Q6_K</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/vS3T3DICIKgQj66Vo9vRJ.png" height=192 width=192> </div> </div> <br> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q5_1.gguf">Q5_1</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/juyZLbU5ndk-qH0UuSN94.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q5_0.gguf">Q5_0</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/e3DV-W6d8dacODHV6iQxE.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q5_K_S.gguf">Q5_K_S</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/RJMyAod5l9B00W0byua7Q.png" height=192 width=192> </div> </div> <br> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q4_1.gguf">Q4_1</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/PHALUDJ6v7j9e-gCAOrLF.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q4_K_M.gguf">Q4_K_M</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/tkNif9yvI-HDkwe9hFbzP.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q4_0.gguf">Q4_0</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/raF3wPpYjZfJa_SXr1FLq.png" height=192 width=192> </div> </div> <br> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q3_K_L.gguf">Q3_K_L</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/V4PflwbKdHDgdfQJri1ko.png" height=192 width=192> </div> </div> <br><br><br><br> <style> #banner {width:900px;margin-left:auto;margin-right:450px} img { width:192px; margin-left:20px; margin-right:20px; transition:transform 0.25s ease; } img:hover { -webkit-transform:scale(3); /* or some other value */ transform:scale(3); } </style>
nhung01/1299c256-1e34-4312-b825-32098a805008
nhung01
"2025-01-25T12:41:00Z"
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-25T12:09:44Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 1299c256-1e34-4312-b825-32098a805008 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c0265fc94ea38360_train_data.json ds_type: json format: custom path: /workspace/input_data/c0265fc94ea38360_train_data.json type: field_input: input field_instruction: question field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/1299c256-1e34-4312-b825-32098a805008 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c0265fc94ea38360_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 160c4e79-ac5a-4f6f-93a9-af630eb6c0d8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 160c4e79-ac5a-4f6f-93a9-af630eb6c0d8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1299c256-1e34-4312-b825-32098a805008 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.475 | 0.1268 | 200 | 0.4770 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ITT-AF/ITT-42dot_LLM-PLM-1.3B-v3.0
ITT-AF
"2024-02-14T06:32:35Z"
145
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-01-30T15:04:18Z"
--- license: cc-by-nc-4.0 --- # ITT-AF/ITT-42dot_LLM-PLM-1.3B-v3.0 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on an custom dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
genki10/ASAP_FineTuningBERT_AugV14_k5_task1_organization_k5_k5_fold0
genki10
"2025-02-20T02:37:18Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-02-20T02:19:27Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_AugV14_k5_task1_organization_k5_k5_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_AugV14_k5_task1_organization_k5_k5_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8273 - Qwk: 0.4218 - Mse: 0.8273 - Rmse: 0.9096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 8 | 5.9637 | 0.0120 | 5.9637 | 2.4421 | | No log | 2.0 | 16 | 2.6255 | 0.0 | 2.6255 | 1.6203 | | No log | 3.0 | 24 | 1.1015 | 0.0316 | 1.1015 | 1.0495 | | No log | 4.0 | 32 | 0.7837 | 0.3621 | 0.7837 | 0.8853 | | No log | 5.0 | 40 | 0.7147 | 0.4536 | 0.7147 | 0.8454 | | No log | 6.0 | 48 | 0.6219 | 0.4390 | 0.6219 | 0.7886 | | No log | 7.0 | 56 | 0.7127 | 0.4067 | 0.7127 | 0.8442 | | No log | 8.0 | 64 | 0.7120 | 0.5027 | 0.7120 | 0.8438 | | No log | 9.0 | 72 | 0.6521 | 0.4848 | 0.6521 | 0.8075 | | No log | 10.0 | 80 | 0.8328 | 0.4095 | 0.8328 | 0.9126 | | No log | 11.0 | 88 | 0.7633 | 0.4233 | 0.7633 | 0.8736 | | No log | 12.0 | 96 | 0.8018 | 0.3887 | 0.8018 | 0.8954 | | No log | 13.0 | 104 | 0.8270 | 0.4328 | 0.8270 | 0.9094 | | No log | 14.0 | 112 | 0.7459 | 0.4733 | 0.7459 | 0.8637 | | No log | 15.0 | 120 | 0.7150 | 0.4591 | 0.7150 | 0.8456 | | No log | 16.0 | 128 | 0.6959 | 0.4701 | 0.6959 | 0.8342 | | No log | 17.0 | 136 | 0.7889 | 0.4315 | 0.7889 | 0.8882 | | No log | 18.0 | 144 | 0.8963 | 0.3777 | 0.8963 | 0.9467 | | No log | 19.0 | 152 | 0.6896 | 0.4649 | 0.6896 | 0.8304 | | No log | 20.0 | 160 | 0.7278 | 0.4641 | 0.7278 | 0.8531 | | No log | 21.0 | 168 | 0.6946 | 0.4912 | 0.6946 | 0.8334 | | No log | 22.0 | 176 | 0.6924 | 0.4943 | 0.6924 | 0.8321 | | No log | 23.0 | 184 | 0.9489 | 0.3718 | 0.9489 | 0.9741 | | No log | 24.0 | 192 | 0.8311 | 0.3935 | 0.8311 | 0.9116 | | No log | 25.0 | 200 | 0.7381 | 0.4456 | 0.7381 | 0.8591 | | No log | 26.0 | 208 | 0.7380 | 0.4496 | 0.7380 | 0.8591 | | No log | 27.0 | 216 | 0.7915 | 0.4369 | 0.7915 | 0.8897 | | No log | 28.0 | 224 | 0.8273 | 0.4218 | 0.8273 | 0.9096 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Stardragon2099/florencetrial-11e
Stardragon2099
"2024-12-17T05:38:38Z"
105
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-12-17T05:36:20Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stefanylial/Astro_Bin
stefanylial
"2023-07-10T06:41:43Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-07-10T06:41:43Z"
--- license: creativeml-openrail-m ---
mradermacher/sixtyoneeighty-4x7B-v2-GGUF
mradermacher
"2024-12-16T03:32:50Z"
94
0
transformers
[ "transformers", "gguf", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "Open-Orca/Mistral-7B-OpenOrca", "NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story", "S-miguel/The-Trinity-Coder-7B", "chihoonlee10/T3Q-Mistral-Orca-Math-DPO", "en", "base_model:sixtyoneeighty/FNCARL9000", "base_model:quantized:sixtyoneeighty/FNCARL9000", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-04-06T08:43:13Z"
--- base_model: sixtyoneeighty/FNCARL9000 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Open-Orca/Mistral-7B-OpenOrca - NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story - S-miguel/The-Trinity-Coder-7B - chihoonlee10/T3Q-Mistral-Orca-Math-DPO --- ## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/sixtyoneeighty/FNCARL9000 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q2_K.gguf) | Q2_K | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.IQ3_XS.gguf) | IQ3_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q3_K_S.gguf) | Q3_K_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.IQ3_S.gguf) | IQ3_S | 10.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.IQ3_M.gguf) | IQ3_M | 10.7 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q3_K_M.gguf) | Q3_K_M | 11.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q3_K_L.gguf) | Q3_K_L | 12.6 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.IQ4_XS.gguf) | IQ4_XS | 13.1 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q4_K_S.gguf) | Q4_K_S | 13.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q4_K_M.gguf) | Q4_K_M | 14.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q5_K_S.gguf) | Q5_K_S | 16.7 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q5_K_M.gguf) | Q5_K_M | 17.2 | | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q6_K.gguf) | Q6_K | 19.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/sixtyoneeighty-4x7B-v2-GGUF/resolve/main/sixtyoneeighty-4x7B-v2.Q8_0.gguf) | Q8_0 | 25.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ByeByeFlyGuy/ppo-LunarLander-v2
ByeByeFlyGuy
"2024-05-06T22:49:58Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-05-06T22:49:39Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.59 +/- 26.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ArtYac/q-Taxi-v3
ArtYac
"2023-01-19T20:11:41Z"
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-01-19T20:11:37Z"
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.38 +/- 2.80 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ArtYac/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
farenassr/my-autotrain-llm-2
farenassr
"2024-05-13T14:05:43Z"
0
0
transformers
[ "transformers", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-13T14:05:20Z"
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
nhung01/9c9bad96-2819-4093-8dbd-17e9abe4d905
nhung01
"2025-01-12T17:39:24Z"
10
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-12T17:31:18Z"
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: 9c9bad96-2819-4093-8dbd-17e9abe4d905 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 724497f4649e38f0_train_data.json ds_type: json format: custom path: /workspace/input_data/724497f4649e38f0_train_data.json type: field_instruction: issue field_output: post_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/9c9bad96-2819-4093-8dbd-17e9abe4d905 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/724497f4649e38f0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8a17b501-74b5-418a-b3cb-dda3108803a4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8a17b501-74b5-418a-b3cb-dda3108803a4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9c9bad96-2819-4093-8dbd-17e9abe4d905 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.4616 | 0.8457 | 200 | 3.2849 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TalentoTechIA/Martin
TalentoTechIA
"2025-01-21T01:21:38Z"
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-01-21T01:11:41Z"
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: Martin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Martin This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0169 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1315 | 3.8462 | 500 | 0.0169 | 0.9925 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
crumb/d38a14-32h-16d
crumb
"2024-08-30T11:45:04Z"
113
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-08-30T11:44:25Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-simcse-university-reference_5_to_verify_5-fold-7
albertus-sussex
"2025-03-28T14:14:25Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-03-28T14:14:01Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
texanrangee/be3fbad2-0982-4d68-a70e-d38184258cb7
texanrangee
"2025-02-27T03:17:39Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-02-27T02:19:33Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tscstudios/iwal7zawwerd8k7vjzyubn9guup1_aaf61d1c-7e2c-4c3b-a8ec-f17c2bd97360
tscstudios
"2025-03-14T03:47:15Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-03-14T03:47:12Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Iwal7Zawwerd8K7Vjzyubn9Guup1_Aaf61D1C 7E2C 4C3B A8Ec F17C2Bd97360 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tscstudios/iwal7zawwerd8k7vjzyubn9guup1_aaf61d1c-7e2c-4c3b-a8ec-f17c2bd97360', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
xueyj/task-1-Qwen-Qwen1.5-7B
xueyj
"2025-02-03T12:39:06Z"
2,207
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "region:us" ]
null
"2025-01-03T05:44:49Z"
--- base_model: Qwen/Qwen1.5-7B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
varun-v-rao/bert-base-cased-mnli-model9
varun-v-rao
"2024-01-19T14:26:31Z"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-01-19T13:00:06Z"
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-mnli-model9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-mnli-model9 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4753 - Accuracy: 0.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 95 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4636 | 1.0 | 6136 | 0.4446 | 0.8293 | | 0.3553 | 2.0 | 12272 | 0.4408 | 0.8334 | | 0.2627 | 3.0 | 18408 | 0.4753 | 0.8367 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
huggingtweets/brandi_love
huggingtweets
"2023-04-14T10:32:39Z"
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-04-14T10:32:31Z"
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1609624979296948225/DituWr39_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brandi Love ®</div> <div style="text-align: center; font-size: 14px;">@brandi_love</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brandi Love ®. | Data | Brandi Love ® | | --- | --- | | Tweets downloaded | 2627 | | Retweets | 607 | | Short tweets | 223 | | Tweets kept | 1797 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/j2qmrzxs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandi_love's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rd9gf4dw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rd9gf4dw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brandi_love') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
QuantFactory/HuatuoGPT-o1-7B-GGUF
QuantFactory
"2025-01-03T07:08:44Z"
656
4
null
[ "gguf", "medical", "text-generation", "en", "zh", "dataset:FreedomIntelligence/medical-o1-reasoning-SFT", "dataset:FreedomIntelligence/medical-o1-verifiable-problem", "arxiv:2412.18925", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-01-03T06:29:50Z"
--- license: apache-2.0 datasets: - FreedomIntelligence/medical-o1-reasoning-SFT - FreedomIntelligence/medical-o1-verifiable-problem language: - en - zh base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: text-generation tags: - medical --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/HuatuoGPT-o1-7B-GGUF This is quantized version of [FreedomIntelligence/HuatuoGPT-o1-7B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) created using llama.cpp # Original Model Card <div align="center"> <h1> HuatuoGPT-o1-7B </h1> </div> <div align="center"> <a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a> </div> # <span>Introduction</span> **HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. For more information, visit our GitHub repository: [https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1). # <span>Model Info</span> | | Backbone | Supported Languages | Link | | -------------------- | ------------ | ----- | --------------------------------------------------------------------- | | **HuatuoGPT-o1-8B** | LLaMA-3.1-8B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) | | **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) | | **HuatuoGPT-o1-7B** | Qwen2.5-7B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) | | **HuatuoGPT-o1-72B** | Qwen2.5-72B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) | # <span>Usage</span> You can use HuatuoGPT-o1-7B in the same way as `Qwen2.5-7B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B",torch_dtype="auto",device_map="auto") tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B") input_text = "How to stop a cough?" messages = [{"role": "user", "content": input_text}] inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True ), return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=2048) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as: ``` ## Thinking [Reasoning process] ## Final Response [Output] ``` # <span>📖 Citation</span> ``` @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang}, year={2024}, eprint={2412.18925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.18925}, } ```
RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf
RichardErkhov
"2024-10-29T16:11:34Z"
75
0
null
[ "gguf", "arxiv:2407.10671", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-10-29T15:47:49Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-0.5B-Instruct-with-new-merges-serialization - GGUF - Model creator: https://huggingface.co/pcuenq/ - Original model: https://huggingface.co/pcuenq/Qwen2.5-0.5B-Instruct-with-new-merges-serialization/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q2_K.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q2_K.gguf) | Q2_K | 0.32GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K_S.gguf) | Q3_K_S | 0.32GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K.gguf) | Q3_K | 0.33GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K_M.gguf) | Q3_K_M | 0.33GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q3_K_L.gguf) | Q3_K_L | 0.34GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.IQ4_XS.gguf) | IQ4_XS | 0.33GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_0.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_0.gguf) | Q4_0 | 0.33GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.IQ4_NL.gguf) | IQ4_NL | 0.33GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_K_S.gguf) | Q4_K_S | 0.36GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_K.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_K.gguf) | Q4_K | 0.37GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_K_M.gguf) | Q4_K_M | 0.37GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_1.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q4_1.gguf) | Q4_1 | 0.35GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_0.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_0.gguf) | Q5_0 | 0.37GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_K_S.gguf) | Q5_K_S | 0.38GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_K.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_K.gguf) | Q5_K | 0.39GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_K_M.gguf) | Q5_K_M | 0.39GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_1.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q5_1.gguf) | Q5_1 | 0.39GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q6_K.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q6_K.gguf) | Q6_K | 0.47GB | | [Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q8_0.gguf](https://huggingface.co/RichardErkhov/pcuenq_-_Qwen2.5-0.5B-Instruct-with-new-merges-serialization-gguf/blob/main/Qwen2.5-0.5B-Instruct-with-new-merges-serialization.Q8_0.gguf) | Q8_0 | 0.49GB | Original model description: --- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-0.5B tags: - chat library_name: transformers --- # Qwen2.5-0.5B-Instruct ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the instruction-tuned 0.5B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 0.49B - Number of Paramaters (Non-Embedding): 0.36B - Number of Layers: 24 - Number of Attention Heads (GQA): 14 for Q and 2 for KV - Context Length: Full 32,768 tokens and generation 8192 tokens For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-0.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
adooo/bigmodels
adooo
"2023-06-27T03:20:33Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-05-04T08:37:52Z"
--- license: openrail --- <img src="https://huggingface.co/adooo/bigmodels/resolve/main/NSX-1-EzBackground-pruned.png">NSX-1-EzBackground-pruned<br>
oussfr12/AJF
oussfr12
"2025-01-26T17:06:38Z"
8
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-01-26T16:40:11Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AJF --- # Ajf <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AJF` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('oussfr12/AJF', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/Llama-2-7b-sft-spin-4k-GGUF
mradermacher
"2024-12-13T07:15:18Z"
31
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "dpo", "en", "base_model:AmberYifan/Llama-2-7b-sft-spin-4k", "base_model:quantized:AmberYifan/Llama-2-7b-sft-spin-4k", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-12-13T06:49:00Z"
--- base_model: AmberYifan/Llama-2-7b-sft-spin-4k language: - en library_name: transformers model_name: Llama-2-7b-sft-spin-4k quantized_by: mradermacher tags: - generated_from_trainer - trl - dpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/AmberYifan/Llama-2-7b-sft-spin-4k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-sft-spin-4k-GGUF/resolve/main/Llama-2-7b-sft-spin-4k.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
pythainlp/thaitts-onnx
pythainlp
"2024-01-24T06:11:35Z"
0
0
null
[ "onnx", "th", "license:apache-2.0", "region:us" ]
null
"2024-01-24T06:08:57Z"
--- license: apache-2.0 language: - th --- # thaitts-onnx Thai Text-to-speech by ONNX runtime See model: [https://github.com/PyThaiNLP/thaitts-onnx](https://github.com/PyThaiNLP/thaitts-onnx)
ProbeX/Model-J__SupViT__model_idx_0195
ProbeX
"2025-04-15T09:09:21Z"
0
0
null
[ "safetensors", "vit", "region:us" ]
null
"2025-04-15T09:09:07Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
davidschulte/ESM_moroco_moroco
davidschulte
"2025-03-28T12:31:25Z"
25
0
null
[ "safetensors", "embedding_space_map", "BaseLM:bert-base-multilingual-uncased", "dataset:universityofbucharest/moroco", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "region:us" ]
null
"2024-12-02T16:33:35Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
adolf669/segformer-finetuned-sidewalk-10k-steps
adolf669
"2024-11-24T11:50:09Z"
188
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "image-segmentation", "vision", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
"2024-11-23T10:19:24Z"
--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: segformer-finetuned-sidewalk-10k-steps results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-finetuned-sidewalk-10k-steps This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.5890 - Mean Iou: 0.3100 - Mean Accuracy: 0.3785 - Overall Accuracy: 0.8340 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.7750 - Accuracy Flat-sidewalk: 0.9476 - Accuracy Flat-crosswalk: 0.7198 - Accuracy Flat-cyclinglane: 0.8649 - Accuracy Flat-parkingdriveway: 0.2833 - Accuracy Flat-railtrack: nan - Accuracy Flat-curb: 0.4461 - Accuracy Human-person: 0.6623 - Accuracy Human-rider: 0.0 - Accuracy Vehicle-car: 0.9432 - Accuracy Vehicle-truck: 0.0 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.0 - Accuracy Vehicle-motorcycle: 0.0 - Accuracy Vehicle-bicycle: 0.7612 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0 - Accuracy Construction-building: 0.8657 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.5605 - Accuracy Construction-fenceguardrail: 0.5325 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: nan - Accuracy Construction-stairs: 0.0 - Accuracy Object-pole: 0.3362 - Accuracy Object-trafficsign: 0.0 - Accuracy Object-trafficlight: 0.0 - Accuracy Nature-vegetation: 0.8960 - Accuracy Nature-terrain: 0.8673 - Accuracy Sky: 0.9590 - Accuracy Void-ground: 0.0 - Accuracy Void-dynamic: 0.3077 - Accuracy Void-static: 0.3834 - Accuracy Void-unclear: 0.0 - Iou Unlabeled: nan - Iou Flat-road: 0.6597 - Iou Flat-sidewalk: 0.8220 - Iou Flat-crosswalk: 0.6669 - Iou Flat-cyclinglane: 0.7094 - Iou Flat-parkingdriveway: 0.2634 - Iou Flat-railtrack: nan - Iou Flat-curb: 0.2962 - Iou Human-person: 0.4612 - Iou Human-rider: 0.0 - Iou Vehicle-car: 0.8019 - Iou Vehicle-truck: 0.0 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0 - Iou Vehicle-motorcycle: 0.0 - Iou Vehicle-bicycle: 0.4166 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0 - Iou Construction-building: 0.6806 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.4268 - Iou Construction-fenceguardrail: 0.4087 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: nan - Iou Construction-stairs: 0.0 - Iou Object-pole: 0.2241 - Iou Object-trafficsign: 0.0 - Iou Object-trafficlight: 0.0 - Iou Nature-vegetation: 0.8381 - Iou Nature-terrain: 0.7739 - Iou Sky: 0.9036 - Iou Void-ground: 0.0 - Iou Void-dynamic: 0.2473 - Iou Void-static: 0.3211 - Iou Void-unclear: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 3407 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: polynomial - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| | 2.6262 | 1.0 | 107 | 1.8030 | 0.1150 | 0.1631 | 0.6678 | nan | 0.4682 | 0.9266 | 0.0 | 0.1510 | 0.0020 | nan | 0.0000 | 0.0 | 0.0 | 0.8961 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7523 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9321 | 0.7060 | 0.3833 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3811 | 0.6887 | 0.0 | 0.1495 | 0.0020 | nan | 0.0000 | 0.0 | 0.0 | 0.4861 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4729 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6066 | 0.5402 | 0.3543 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8747 | 2.0 | 214 | 1.5625 | 0.1290 | 0.1774 | 0.6759 | nan | 0.5144 | 0.9502 | 0.0 | 0.2435 | 0.0107 | nan | 0.0000 | 0.0 | 0.0 | 0.8290 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8706 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6522 | 0.8882 | 0.7181 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4081 | 0.6930 | 0.0 | 0.2399 | 0.0106 | nan | 0.0000 | 0.0 | 0.0 | 0.6241 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5101 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5405 | 0.4174 | 0.6840 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4981 | 3.0 | 321 | 1.2528 | 0.1500 | 0.2000 | 0.7230 | nan | 0.7317 | 0.9017 | 0.0 | 0.5385 | 0.0352 | nan | 0.0 | 0.0 | 0.0 | 0.9288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7741 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8453 | 0.8460 | 0.7985 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4742 | 0.7460 | 0.0 | 0.4950 | 0.0322 | nan | 0.0 | 0.0 | 0.0 | 0.5423 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5264 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6792 | 0.5807 | 0.7242 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3616 | 4.0 | 428 | 1.1121 | 0.1538 | 0.2064 | 0.7329 | nan | 0.6492 | 0.9195 | 0.0 | 0.6889 | 0.0578 | nan | 0.0 | 0.0 | 0.0 | 0.9435 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7840 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0008 | 0.0 | 0.0 | 0.8478 | 0.8760 | 0.8387 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4697 | 0.7686 | 0.0 | 0.5062 | 0.0538 | nan | 0.0 | 0.0 | 0.0 | 0.5448 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5363 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0008 | 0.0 | 0.0 | 0.6882 | 0.5835 | 0.7687 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2402 | 5.0 | 535 | 0.9807 | 0.1617 | 0.2044 | 0.7432 | nan | 0.6175 | 0.9496 | 0.0 | 0.6074 | 0.0402 | nan | 0.0 | 0.0 | 0.0 | 0.9149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9186 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8532 | 0.7998 | 0.8388 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5019 | 0.7449 | 0.0 | 0.5470 | 0.0378 | nan | 0.0 | 0.0 | 0.0 | 0.6501 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5055 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7337 | 0.6708 | 0.7837 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1318 | 6.0 | 642 | 1.0385 | 0.1477 | 0.2019 | 0.7068 | nan | 0.4984 | 0.9470 | 0.0 | 0.7702 | 0.0691 | nan | 0.0 | 0.0 | 0.0 | 0.9543 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8840 | 0.0 | 0.0178 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6212 | 0.8926 | 0.8047 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4191 | 0.7292 | 0.0 | 0.5835 | 0.0601 | nan | 0.0 | 0.0 | 0.0 | 0.6061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5407 | 0.0 | 0.0177 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.5770 | 0.4410 | 0.7513 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0574 | 7.0 | 749 | 0.9046 | 0.1690 | 0.2127 | 0.7531 | nan | 0.6171 | 0.9520 | 0.0115 | 0.7032 | 0.0985 | nan | 0.0020 | 0.0 | 0.0 | 0.9373 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8779 | 0.0 | 0.0486 | 0.0 | 0.0 | nan | 0.0 | 0.0169 | 0.0 | 0.0 | 0.8670 | 0.8317 | 0.8423 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4908 | 0.7535 | 0.0115 | 0.6164 | 0.0845 | nan | 0.0020 | 0.0 | 0.0 | 0.6419 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5622 | 0.0 | 0.0479 | 0.0 | 0.0 | nan | 0.0 | 0.0166 | 0.0 | 0.0 | 0.7327 | 0.6574 | 0.7922 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9759 | 8.0 | 856 | 0.8881 | 0.1756 | 0.2189 | 0.7547 | nan | 0.5985 | 0.9566 | 0.1262 | 0.7070 | 0.0835 | nan | 0.0258 | 0.0 | 0.0 | 0.9402 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8847 | 0.0 | 0.1283 | 0.0001 | 0.0 | nan | 0.0 | 0.0597 | 0.0 | 0.0 | 0.8756 | 0.7936 | 0.8249 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5068 | 0.7552 | 0.1260 | 0.5858 | 0.0748 | nan | 0.0248 | 0.0 | 0.0 | 0.6569 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5553 | 0.0 | 0.1171 | 0.0001 | 0.0 | nan | 0.0 | 0.0558 | 0.0 | 0.0 | 0.7294 | 0.6463 | 0.7841 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9478 | 9.0 | 963 | 0.8427 | 0.1792 | 0.2281 | 0.7627 | nan | 0.6444 | 0.9385 | 0.1576 | 0.8233 | 0.1084 | nan | 0.0637 | 0.0 | 0.0 | 0.9471 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9072 | 0.0 | 0.1206 | 0.0010 | 0.0 | nan | 0.0 | 0.0478 | 0.0 | 0.0 | 0.8482 | 0.8364 | 0.8557 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.5283 | 0.7850 | 0.1503 | 0.5470 | 0.0989 | nan | 0.0594 | 0.0 | 0.0 | 0.6174 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5622 | 0.0 | 0.1114 | 0.0010 | 0.0 | nan | 0.0 | 0.0438 | 0.0 | 0.0 | 0.7500 | 0.6754 | 0.8027 | 0.0 | 0.0 | 0.0001 | 0.0 | | 0.9357 | 10.0 | 1070 | 0.8261 | 0.1919 | 0.2394 | 0.7663 | nan | 0.7330 | 0.9060 | 0.2756 | 0.7705 | 0.0660 | nan | 0.1561 | 0.0018 | 0.0 | 0.9329 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | 0.0 | 0.8534 | 0.0 | 0.2518 | 0.0002 | 0.0 | nan | 0.0 | 0.0967 | 0.0 | 0.0 | 0.9051 | 0.8362 | 0.8711 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.5551 | 0.7720 | 0.2581 | 0.6407 | 0.0623 | nan | 0.1264 | 0.0018 | 0.0 | 0.6682 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | 0.0 | 0.5674 | 0.0 | 0.2233 | 0.0002 | 0.0 | nan | 0.0 | 0.0776 | 0.0 | 0.0 | 0.7281 | 0.6464 | 0.8107 | 0.0 | 0.0 | 0.0002 | 0.0 | | 0.8472 | 11.0 | 1177 | 0.7976 | 0.2078 | 0.2573 | 0.7708 | nan | 0.6694 | 0.9321 | 0.6020 | 0.7892 | 0.0857 | nan | 0.1836 | 0.0318 | 0.0 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8658 | 0.0 | 0.4413 | 0.0004 | 0.0 | nan | 0.0 | 0.1099 | 0.0 | 0.0 | 0.8505 | 0.8369 | 0.9076 | 0.0 | 0.0 | 0.0022 | 0.0 | nan | 0.5349 | 0.7639 | 0.5201 | 0.6244 | 0.0777 | nan | 0.1394 | 0.0313 | 0.0 | 0.6994 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5838 | 0.0 | 0.3358 | 0.0004 | 0.0 | nan | 0.0 | 0.0885 | 0.0 | 0.0 | 0.7588 | 0.6643 | 0.8232 | 0.0 | 0.0 | 0.0022 | 0.0 | | 0.8613 | 12.0 | 1284 | 0.7624 | 0.2053 | 0.2580 | 0.7782 | nan | 0.7226 | 0.9281 | 0.1215 | 0.7176 | 0.1899 | nan | 0.3386 | 0.0810 | 0.0 | 0.9500 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0216 | 0.0 | 0.0 | 0.8083 | 0.0 | 0.5341 | 0.0030 | 0.0 | nan | 0.0 | 0.2061 | 0.0 | 0.0 | 0.8630 | 0.8930 | 0.8579 | 0.0 | 0.0 | 0.0188 | 0.0 | nan | 0.5747 | 0.7922 | 0.1206 | 0.6327 | 0.1671 | nan | 0.2062 | 0.0747 | 0.0 | 0.6546 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0214 | 0.0 | 0.0 | 0.6156 | 0.0 | 0.3586 | 0.0030 | 0.0 | nan | 0.0 | 0.1199 | 0.0 | 0.0 | 0.7451 | 0.6452 | 0.8198 | 0.0 | 0.0 | 0.0183 | 0.0 | | 0.7847 | 13.0 | 1391 | 0.7713 | 0.2170 | 0.2694 | 0.7725 | nan | 0.6374 | 0.9509 | 0.6615 | 0.5478 | 0.1946 | nan | 0.3358 | 0.2063 | 0.0 | 0.9425 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0670 | 0.0 | 0.0 | 0.8683 | 0.0 | 0.4287 | 0.0321 | 0.0 | nan | 0.0 | 0.1353 | 0.0 | 0.0 | 0.8484 | 0.8816 | 0.8796 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.5472 | 0.7772 | 0.5301 | 0.4776 | 0.1689 | nan | 0.2091 | 0.1927 | 0.0 | 0.6819 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0665 | 0.0 | 0.0 | 0.6125 | 0.0 | 0.3472 | 0.0320 | 0.0 | nan | 0.0 | 0.1017 | 0.0 | 0.0 | 0.7452 | 0.6313 | 0.8206 | 0.0 | 0.0 | 0.0039 | 0.0 | | 0.8041 | 14.0 | 1498 | 0.7236 | 0.2310 | 0.2877 | 0.7880 | nan | 0.6190 | 0.9472 | 0.5927 | 0.8157 | 0.1877 | nan | 0.3897 | 0.3524 | 0.0 | 0.9307 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1085 | 0.0 | 0.0 | 0.7989 | 0.0 | 0.5597 | 0.0130 | 0.0 | nan | 0.0 | 0.1964 | 0.0 | 0.0 | 0.9106 | 0.8640 | 0.9053 | 0.0 | 0.0 | 0.0136 | 0.0 | nan | 0.5518 | 0.7940 | 0.4508 | 0.6548 | 0.1720 | nan | 0.2188 | 0.3054 | 0.0 | 0.7232 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1064 | 0.0 | 0.0 | 0.6219 | 0.0 | 0.3678 | 0.0129 | 0.0 | nan | 0.0 | 0.1153 | 0.0 | 0.0 | 0.7713 | 0.6756 | 0.8352 | 0.0 | 0.0 | 0.0133 | 0.0 | | 0.74 | 15.0 | 1605 | 0.7429 | 0.2275 | 0.2771 | 0.7791 | nan | 0.6285 | 0.9519 | 0.4719 | 0.6291 | 0.1591 | nan | 0.3397 | 0.4511 | 0.0 | 0.9334 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1813 | 0.0 | 0.0 | 0.8426 | 0.0 | 0.4337 | 0.0407 | 0.0 | nan | 0.0 | 0.1488 | 0.0 | 0.0 | 0.9095 | 0.8395 | 0.9037 | 0.0 | 0.0 | 0.0042 | 0.0 | nan | 0.5371 | 0.7690 | 0.4183 | 0.5169 | 0.1449 | nan | 0.2088 | 0.3547 | 0.0 | 0.7256 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1607 | 0.0 | 0.0 | 0.6329 | 0.0 | 0.3753 | 0.0401 | 0.0 | nan | 0.0 | 0.1064 | 0.0 | 0.0 | 0.7613 | 0.6850 | 0.8378 | 0.0 | 0.0 | 0.0042 | 0.0 | | 0.7184 | 16.0 | 1712 | 0.6646 | 0.2439 | 0.2964 | 0.8029 | nan | 0.7431 | 0.9484 | 0.4972 | 0.8103 | 0.2001 | nan | 0.3258 | 0.4629 | 0.0 | 0.9401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1821 | 0.0 | 0.0 | 0.8279 | 0.0 | 0.6112 | 0.0110 | 0.0 | nan | 0.0 | 0.2345 | 0.0 | 0.0 | 0.8917 | 0.8616 | 0.9063 | 0.0 | 0.0 | 0.0313 | 0.0 | nan | 0.6165 | 0.8048 | 0.4637 | 0.6925 | 0.1798 | nan | 0.2280 | 0.3680 | 0.0 | 0.7181 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1722 | 0.0 | 0.0 | 0.6472 | 0.0 | 0.3937 | 0.0109 | 0.0 | nan | 0.0 | 0.1451 | 0.0 | 0.0 | 0.7831 | 0.7086 | 0.8424 | 0.0 | 0.0 | 0.0293 | 0.0 | | 0.7496 | 17.0 | 1819 | 0.7000 | 0.2385 | 0.2948 | 0.7852 | nan | 0.6870 | 0.9552 | 0.5478 | 0.8104 | 0.2046 | nan | 0.3326 | 0.5163 | 0.0 | 0.9477 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1966 | 0.0 | 0.0 | 0.8765 | 0.0 | 0.5327 | 0.0835 | 0.0 | nan | 0.0 | 0.2037 | 0.0 | 0.0 | 0.7682 | 0.8842 | 0.8746 | 0.0 | 0.0 | 0.0112 | 0.0 | nan | 0.6047 | 0.7973 | 0.4943 | 0.6625 | 0.1800 | nan | 0.2414 | 0.3971 | 0.0 | 0.7056 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1848 | 0.0 | 0.0 | 0.6271 | 0.0 | 0.4151 | 0.0821 | 0.0 | nan | 0.0 | 0.1296 | 0.0 | 0.0 | 0.7041 | 0.5693 | 0.8255 | 0.0 | 0.0 | 0.0103 | 0.0 | | 0.6723 | 18.0 | 1926 | 0.6689 | 0.2487 | 0.3028 | 0.8022 | nan | 0.7140 | 0.9462 | 0.5937 | 0.8259 | 0.1957 | nan | 0.3702 | 0.5214 | 0.0 | 0.9200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2293 | 0.0 | 0.0 | 0.8539 | 0.0 | 0.4865 | 0.1947 | 0.0 | nan | 0.0 | 0.1763 | 0.0 | 0.0 | 0.9082 | 0.8340 | 0.9089 | 0.0 | 0.0 | 0.0120 | 0.0 | nan | 0.5970 | 0.8087 | 0.4665 | 0.6640 | 0.1781 | nan | 0.2503 | 0.3889 | 0.0 | 0.7549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2088 | 0.0 | 0.0 | 0.6258 | 0.0 | 0.3857 | 0.1777 | 0.0 | nan | 0.0 | 0.1182 | 0.0 | 0.0 | 0.7836 | 0.6927 | 0.8458 | 0.0 | 0.0 | 0.0116 | 0.0 | | 0.6711 | 19.0 | 2033 | 0.7171 | 0.2410 | 0.2989 | 0.7914 | nan | 0.6550 | 0.9565 | 0.2743 | 0.8302 | 0.1406 | nan | 0.2934 | 0.6023 | 0.0 | 0.9349 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2585 | 0.0 | 0.0 | 0.8100 | 0.0 | 0.6473 | 0.1674 | 0.0 | nan | 0.0 | 0.2790 | 0.0 | 0.0 | 0.8745 | 0.8440 | 0.9106 | 0.0 | 0.0 | 0.0875 | 0.0 | nan | 0.5597 | 0.7818 | 0.2558 | 0.6593 | 0.1321 | nan | 0.1980 | 0.3907 | 0.0 | 0.7384 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2201 | 0.0 | 0.0 | 0.6550 | 0.0 | 0.4454 | 0.1541 | 0.0 | nan | 0.0 | 0.1459 | 0.0 | 0.0 | 0.7737 | 0.6716 | 0.8494 | 0.0 | 0.0 | 0.0804 | 0.0 | | 0.6843 | 20.0 | 2140 | 0.6734 | 0.2490 | 0.3017 | 0.7990 | nan | 0.6756 | 0.9455 | 0.4783 | 0.7881 | 0.2300 | nan | 0.3708 | 0.5272 | 0.0 | 0.9268 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3415 | 0.0 | 0.0 | 0.8824 | 0.0 | 0.5309 | 0.1064 | 0.0 | nan | 0.0 | 0.1958 | 0.0 | 0.0 | 0.8984 | 0.8616 | 0.8828 | 0.0 | 0.0 | 0.0131 | 0.0 | nan | 0.5749 | 0.8016 | 0.4521 | 0.6371 | 0.2040 | nan | 0.2474 | 0.4068 | 0.0 | 0.7496 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2855 | 0.0 | 0.0 | 0.6350 | 0.0 | 0.3958 | 0.1030 | 0.0 | nan | 0.0 | 0.1338 | 0.0 | 0.0 | 0.7849 | 0.6948 | 0.8482 | 0.0 | 0.0 | 0.0127 | 0.0 | | 0.6635 | 21.0 | 2247 | 0.6890 | 0.2588 | 0.3264 | 0.7921 | nan | 0.8326 | 0.8628 | 0.5588 | 0.8419 | 0.2679 | nan | 0.3243 | 0.6557 | 0.0 | 0.9472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3776 | 0.0 | 0.0 | 0.7708 | 0.0 | 0.5574 | 0.1780 | 0.0 | nan | 0.0 | 0.3384 | 0.0 | 0.0 | 0.9255 | 0.8385 | 0.8964 | 0.0 | 0.0 | 0.2726 | 0.0 | nan | 0.5749 | 0.7876 | 0.4791 | 0.6054 | 0.2392 | nan | 0.1911 | 0.4287 | 0.0 | 0.7368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2660 | 0.0 | 0.0 | 0.6472 | 0.0 | 0.3842 | 0.1686 | 0.0 | nan | 0.0 | 0.2159 | 0.0 | 0.0 | 0.7949 | 0.7123 | 0.8570 | 0.0 | 0.0 | 0.1917 | 0.0 | | 0.6789 | 22.0 | 2354 | 0.6569 | 0.2518 | 0.3098 | 0.8048 | nan | 0.6906 | 0.9488 | 0.2921 | 0.8276 | 0.2066 | nan | 0.3660 | 0.7073 | 0.0 | 0.9234 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2937 | 0.0 | 0.0 | 0.8247 | 0.0 | 0.6251 | 0.1025 | 0.0 | nan | 0.0 | 0.2306 | 0.0 | 0.0 | 0.9155 | 0.8941 | 0.8789 | 0.0 | 0.0 | 0.1853 | 0.0 | nan | 0.5897 | 0.7929 | 0.2851 | 0.7088 | 0.1866 | nan | 0.2519 | 0.3796 | 0.0 | 0.7649 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2501 | 0.0 | 0.0 | 0.6571 | 0.0 | 0.4087 | 0.0996 | 0.0 | nan | 0.0 | 0.1627 | 0.0 | 0.0 | 0.7933 | 0.7197 | 0.8451 | 0.0 | 0.0 | 0.1610 | 0.0 | | 0.6454 | 23.0 | 2461 | 0.6744 | 0.2605 | 0.3209 | 0.8028 | nan | 0.7072 | 0.9467 | 0.5200 | 0.8210 | 0.1523 | nan | 0.3109 | 0.6300 | 0.0 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5537 | 0.0 | 0.0 | 0.8196 | 0.0 | 0.5994 | 0.2228 | 0.0 | nan | 0.0 | 0.3040 | 0.0 | 0.0 | 0.9410 | 0.7925 | 0.9118 | 0.0 | 0.0 | 0.1383 | 0.0 | nan | 0.5906 | 0.8004 | 0.4780 | 0.7242 | 0.1412 | nan | 0.2191 | 0.3835 | 0.0 | 0.7780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3617 | 0.0 | 0.0 | 0.6282 | 0.0 | 0.3930 | 0.2002 | 0.0 | nan | 0.0 | 0.1673 | 0.0 | 0.0 | 0.7889 | 0.7080 | 0.8552 | 0.0 | 0.0 | 0.1194 | 0.0 | | 0.6038 | 24.0 | 2568 | 0.6785 | 0.2519 | 0.3080 | 0.7982 | nan | 0.6396 | 0.9585 | 0.4631 | 0.8241 | 0.1844 | nan | 0.3288 | 0.6904 | 0.0 | 0.9496 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2838 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.5447 | 0.1331 | 0.0 | nan | 0.0 | 0.1784 | 0.0 | 0.0 | 0.8765 | 0.8686 | 0.8889 | 0.0 | 0.0 | 0.1761 | 0.0 | nan | 0.5546 | 0.7909 | 0.4552 | 0.6615 | 0.1639 | nan | 0.2402 | 0.4092 | 0.0 | 0.7445 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2344 | 0.0 | 0.0 | 0.6467 | 0.0 | 0.3978 | 0.1283 | 0.0 | nan | 0.0 | 0.1413 | 0.0 | 0.0 | 0.7854 | 0.7015 | 0.8537 | 0.0 | 0.0 | 0.1505 | 0.0 | | 0.5843 | 25.0 | 2675 | 0.6425 | 0.2625 | 0.3200 | 0.8138 | nan | 0.7555 | 0.9393 | 0.5554 | 0.8420 | 0.1744 | nan | 0.3761 | 0.6702 | 0.0 | 0.9562 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2860 | 0.0 | 0.0 | 0.8611 | 0.0 | 0.5607 | 0.1917 | 0.0 | nan | 0.0 | 0.1636 | 0.0 | 0.0 | 0.9036 | 0.8870 | 0.9333 | 0.0 | 0.0 | 0.1841 | 0.0 | nan | 0.6111 | 0.8171 | 0.5276 | 0.6873 | 0.1643 | nan | 0.2403 | 0.4126 | 0.0 | 0.7284 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2312 | 0.0 | 0.0 | 0.6629 | 0.0 | 0.4188 | 0.1843 | 0.0 | nan | 0.0 | 0.1315 | 0.0 | 0.0 | 0.8117 | 0.7419 | 0.8673 | 0.0 | 0.0 | 0.1604 | 0.0 | | 0.6123 | 26.0 | 2782 | 0.6211 | 0.2684 | 0.3346 | 0.8108 | nan | 0.7087 | 0.9396 | 0.7111 | 0.8640 | 0.2795 | nan | 0.3913 | 0.6719 | 0.0 | 0.9391 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5103 | 0.0 | 0.0 | 0.8288 | 0.0 | 0.5326 | 0.1613 | 0.0 | nan | 0.0 | 0.2742 | 0.0 | 0.0 | 0.8939 | 0.9020 | 0.9356 | 0.0 | 0.0 | 0.1632 | 0.0 | nan | 0.6169 | 0.8093 | 0.5850 | 0.6558 | 0.2548 | nan | 0.2581 | 0.4340 | 0.0 | 0.7676 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3224 | 0.0 | 0.0 | 0.6583 | 0.0 | 0.3977 | 0.1580 | 0.0 | nan | 0.0 | 0.1779 | 0.0 | 0.0 | 0.7857 | 0.6936 | 0.8708 | 0.0 | 0.0 | 0.1444 | 0.0 | | 0.6164 | 27.0 | 2889 | 0.6278 | 0.2692 | 0.3328 | 0.8106 | nan | 0.7301 | 0.9259 | 0.4546 | 0.8241 | 0.2859 | nan | 0.4266 | 0.7477 | 0.0 | 0.9314 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4932 | 0.0 | 0.0 | 0.8171 | 0.0 | 0.6465 | 0.2815 | 0.0 | nan | 0.0 | 0.2226 | 0.0 | 0.0 | 0.9394 | 0.8207 | 0.9307 | 0.0 | 0.0 | 0.1704 | 0.0 | nan | 0.5995 | 0.8124 | 0.4500 | 0.6896 | 0.2528 | nan | 0.2576 | 0.4422 | 0.0 | 0.7626 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3378 | 0.0 | 0.0 | 0.6537 | 0.0 | 0.4146 | 0.2460 | 0.0 | nan | 0.0 | 0.1643 | 0.0 | 0.0 | 0.7946 | 0.7199 | 0.8725 | 0.0 | 0.0 | 0.1457 | 0.0 | | 0.5928 | 28.0 | 2996 | 0.6444 | 0.2560 | 0.3123 | 0.8032 | nan | 0.7225 | 0.9455 | 0.5826 | 0.7252 | 0.2540 | nan | 0.3636 | 0.6262 | 0.0 | 0.9521 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4389 | 0.0 | 0.0 | 0.8869 | 0.0 | 0.5355 | 0.2178 | 0.0 | nan | 0.0 | 0.1197 | 0.0 | 0.0 | 0.9124 | 0.7629 | 0.8912 | 0.0 | 0.0 | 0.0572 | 0.0 | nan | 0.6153 | 0.7979 | 0.4936 | 0.6398 | 0.2297 | nan | 0.2420 | 0.4290 | 0.0 | 0.7238 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2985 | 0.0 | 0.0 | 0.6188 | 0.0 | 0.3818 | 0.1974 | 0.0 | nan | 0.0 | 0.1012 | 0.0 | 0.0 | 0.8042 | 0.7110 | 0.8555 | 0.0 | 0.0 | 0.0540 | 0.0 | | 0.6063 | 29.0 | 3103 | 0.6164 | 0.2670 | 0.3287 | 0.8098 | nan | 0.7636 | 0.9203 | 0.5298 | 0.8515 | 0.2476 | nan | 0.3554 | 0.6410 | 0.0 | 0.9332 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5947 | 0.0 | 0.0 | 0.8756 | 0.0 | 0.4557 | 0.1954 | 0.0 | nan | 0.0 | 0.1901 | 0.0 | 0.0 | 0.9170 | 0.8145 | 0.9374 | 0.0 | 0.0 | 0.2956 | 0.0 | nan | 0.6094 | 0.8098 | 0.4908 | 0.6464 | 0.2266 | nan | 0.2439 | 0.4621 | 0.0 | 0.7694 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3324 | 0.0 | 0.0 | 0.6464 | 0.0 | 0.3436 | 0.1845 | 0.0 | nan | 0.0 | 0.1395 | 0.0 | 0.0 | 0.8088 | 0.7230 | 0.8753 | 0.0 | 0.0 | 0.2309 | 0.0 | | 0.5813 | 30.0 | 3210 | 0.6119 | 0.2729 | 0.3411 | 0.8105 | nan | 0.6853 | 0.9401 | 0.6264 | 0.8606 | 0.2528 | nan | 0.4579 | 0.5719 | 0.0 | 0.9117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6665 | 0.0 | 0.0 | 0.7954 | 0.0 | 0.7055 | 0.1902 | 0.0 | nan | 0.0 | 0.2144 | 0.0 | 0.0 | 0.9307 | 0.8167 | 0.9228 | 0.0 | 0.0 | 0.3674 | 0.0 | nan | 0.6009 | 0.8068 | 0.5336 | 0.6663 | 0.2257 | nan | 0.2688 | 0.4321 | 0.0 | 0.7877 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3381 | 0.0 | 0.0 | 0.6567 | 0.0 | 0.3964 | 0.1782 | 0.0 | nan | 0.0 | 0.1573 | 0.0 | 0.0 | 0.8086 | 0.7333 | 0.8815 | 0.0 | 0.0 | 0.2611 | 0.0 | | 0.5753 | 31.0 | 3317 | 0.6142 | 0.2692 | 0.3382 | 0.8144 | nan | 0.7397 | 0.9468 | 0.1591 | 0.8381 | 0.2301 | nan | 0.4275 | 0.6882 | 0.0 | 0.9288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6825 | 0.0 | 0.0 | 0.8008 | 0.0 | 0.5789 | 0.3769 | 0.0 | nan | 0.0 | 0.3456 | 0.0 | 0.0 | 0.9055 | 0.8430 | 0.9436 | 0.0 | 0.0 | 0.3874 | 0.0 | nan | 0.6312 | 0.8057 | 0.1547 | 0.6974 | 0.2115 | nan | 0.2538 | 0.4668 | 0.0 | 0.7752 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3349 | 0.0 | 0.0 | 0.6634 | 0.0 | 0.4402 | 0.3100 | 0.0 | nan | 0.0 | 0.1839 | 0.0 | 0.0 | 0.8163 | 0.7392 | 0.8800 | 0.0 | 0.0 | 0.2488 | 0.0 | | 0.5493 | 32.0 | 3424 | 0.6291 | 0.2726 | 0.3368 | 0.8115 | nan | 0.6741 | 0.9459 | 0.5440 | 0.8585 | 0.2403 | nan | 0.3326 | 0.6183 | 0.0 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6009 | 0.0 | 0.0 | 0.8325 | 0.0 | 0.6410 | 0.3244 | 0.0 | nan | 0.0 | 0.2637 | 0.0 | 0.0 | 0.9228 | 0.8354 | 0.9401 | 0.0 | 0.0 | 0.2739 | 0.0 | nan | 0.5865 | 0.8026 | 0.5007 | 0.6228 | 0.2209 | nan | 0.2419 | 0.4515 | 0.0 | 0.7720 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3170 | 0.0 | 0.0 | 0.6730 | 0.0 | 0.4396 | 0.2779 | 0.0 | nan | 0.0 | 0.1709 | 0.0 | 0.0 | 0.8131 | 0.7372 | 0.8849 | 0.0 | 0.0 | 0.2112 | 0.0 | | 0.572 | 33.0 | 3531 | 0.6095 | 0.2716 | 0.3339 | 0.8132 | nan | 0.7679 | 0.9161 | 0.4917 | 0.8535 | 0.2678 | nan | 0.3628 | 0.6298 | 0.0 | 0.9277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5765 | 0.0 | 0.0 | 0.8717 | 0.0 | 0.5620 | 0.3133 | 0.0 | nan | 0.0 | 0.2658 | 0.0 | 0.0 | 0.9195 | 0.8374 | 0.9406 | 0.0 | 0.0 | 0.1813 | 0.0 | nan | 0.6048 | 0.8106 | 0.4751 | 0.6478 | 0.2494 | nan | 0.2390 | 0.4547 | 0.0 | 0.7739 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3014 | 0.0 | 0.0 | 0.6518 | 0.0 | 0.4310 | 0.2716 | 0.0 | nan | 0.0 | 0.1825 | 0.0 | 0.0 | 0.8197 | 0.7451 | 0.8871 | 0.0 | 0.0 | 0.1444 | 0.0 | | 0.5659 | 34.0 | 3638 | 0.5995 | 0.2738 | 0.3390 | 0.8154 | nan | 0.7757 | 0.9180 | 0.4547 | 0.8543 | 0.2850 | nan | 0.4562 | 0.6517 | 0.0 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6006 | 0.0 | 0.0 | 0.8648 | 0.0 | 0.5829 | 0.3047 | 0.0 | nan | 0.0 | 0.3037 | 0.0 | 0.0 | 0.9198 | 0.7874 | 0.9499 | 0.0 | 0.0 | 0.2188 | 0.0 | nan | 0.6275 | 0.8164 | 0.4468 | 0.6083 | 0.2625 | nan | 0.2727 | 0.4371 | 0.0 | 0.7805 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3290 | 0.0 | 0.0 | 0.6634 | 0.0 | 0.4357 | 0.2797 | 0.0 | nan | 0.0 | 0.2018 | 0.0 | 0.0 | 0.8151 | 0.7264 | 0.8810 | 0.0 | 0.0 | 0.1772 | 0.0 | | 0.5575 | 35.0 | 3745 | 0.5962 | 0.2682 | 0.3311 | 0.8191 | nan | 0.7740 | 0.9371 | 0.2343 | 0.8567 | 0.2454 | nan | 0.3847 | 0.7019 | 0.0 | 0.9294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6050 | 0.0 | 0.0 | 0.8382 | 0.0 | 0.5856 | 0.2783 | 0.0 | nan | 0.0 | 0.2568 | 0.0 | 0.0 | 0.9207 | 0.8675 | 0.9434 | 0.0 | 0.0 | 0.2367 | 0.0 | nan | 0.6334 | 0.8124 | 0.2298 | 0.6599 | 0.2273 | nan | 0.2663 | 0.4582 | 0.0 | 0.7808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3277 | 0.0 | 0.0 | 0.6675 | 0.0 | 0.4400 | 0.2565 | 0.0 | nan | 0.0 | 0.1763 | 0.0 | 0.0 | 0.8190 | 0.7467 | 0.8883 | 0.0 | 0.0 | 0.1938 | 0.0 | | 0.5385 | 36.0 | 3852 | 0.6016 | 0.2774 | 0.3421 | 0.8201 | nan | 0.7738 | 0.9329 | 0.5348 | 0.8502 | 0.2559 | nan | 0.4350 | 0.6830 | 0.0 | 0.9382 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5540 | 0.0 | 0.0 | 0.8252 | 0.0 | 0.5325 | 0.3373 | 0.0 | nan | 0.0 | 0.2487 | 0.0 | 0.0 | 0.9255 | 0.8700 | 0.9223 | 0.0 | 0.0 | 0.3264 | 0.0 | nan | 0.6329 | 0.8225 | 0.5163 | 0.6751 | 0.2349 | nan | 0.2794 | 0.4422 | 0.0 | 0.7515 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2940 | 0.0 | 0.0 | 0.6535 | 0.0 | 0.4284 | 0.2885 | 0.0 | nan | 0.0 | 0.1702 | 0.0 | 0.0 | 0.8221 | 0.7615 | 0.8847 | 0.0 | 0.0 | 0.2205 | 0.0 | | 0.5514 | 37.0 | 3959 | 0.5875 | 0.2765 | 0.3385 | 0.8182 | nan | 0.7511 | 0.9456 | 0.7456 | 0.8527 | 0.1887 | nan | 0.3801 | 0.6007 | 0.0 | 0.9364 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5184 | 0.0 | 0.0 | 0.8594 | 0.0 | 0.5793 | 0.3400 | 0.0 | nan | 0.0 | 0.2364 | 0.0 | 0.0 | 0.9123 | 0.8157 | 0.9486 | 0.0 | 0.0005 | 0.2218 | 0.0 | nan | 0.6242 | 0.8136 | 0.6078 | 0.6635 | 0.1786 | nan | 0.2639 | 0.4478 | 0.0 | 0.7892 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2984 | 0.0 | 0.0 | 0.6629 | 0.0 | 0.4149 | 0.2929 | 0.0 | nan | 0.0 | 0.1679 | 0.0 | 0.0 | 0.8203 | 0.7379 | 0.8733 | 0.0 | 0.0005 | 0.1913 | 0.0 | | 0.5646 | 38.0 | 4066 | 0.5851 | 0.2778 | 0.3461 | 0.8213 | nan | 0.7679 | 0.9433 | 0.2984 | 0.8542 | 0.2606 | nan | 0.4306 | 0.6745 | 0.0 | 0.9418 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6483 | 0.0 | 0.0 | 0.7969 | 0.0 | 0.6172 | 0.4199 | 0.0 | nan | 0.0 | 0.3028 | 0.0 | 0.0 | 0.9174 | 0.8176 | 0.9435 | 0.0 | 0.0 | 0.4390 | 0.0 | nan | 0.6480 | 0.8126 | 0.2820 | 0.6944 | 0.2379 | nan | 0.2893 | 0.4644 | 0.0 | 0.7608 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3057 | 0.0 | 0.0 | 0.6647 | 0.0 | 0.4662 | 0.3524 | 0.0 | nan | 0.0 | 0.2084 | 0.0 | 0.0 | 0.8224 | 0.7383 | 0.8829 | 0.0 | 0.0 | 0.2589 | 0.0 | | 0.5159 | 39.0 | 4173 | 0.5972 | 0.2695 | 0.3261 | 0.8223 | nan | 0.8123 | 0.9386 | 0.1507 | 0.8524 | 0.2827 | nan | 0.3794 | 0.5939 | 0.0 | 0.9299 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5320 | 0.0 | 0.0 | 0.8163 | 0.0 | 0.5226 | 0.2399 | 0.0 | nan | 0.0 | 0.2565 | 0.0 | 0.0 | 0.9301 | 0.8507 | 0.9229 | 0.0 | 0.0343 | 0.3888 | 0.0 | nan | 0.6372 | 0.8230 | 0.1498 | 0.7153 | 0.2585 | nan | 0.2692 | 0.4527 | 0.0 | 0.7899 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3226 | 0.0 | 0.0 | 0.6551 | 0.0 | 0.4115 | 0.2302 | 0.0 | nan | 0.0 | 0.1851 | 0.0 | 0.0 | 0.8199 | 0.7428 | 0.8828 | 0.0 | 0.0338 | 0.2433 | 0.0 | | 0.5437 | 40.0 | 4280 | 0.6458 | 0.2638 | 0.3251 | 0.8133 | nan | 0.7190 | 0.9530 | 0.1568 | 0.8506 | 0.2216 | nan | 0.3876 | 0.6859 | 0.0 | 0.9265 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5604 | 0.0 | 0.0 | 0.8024 | 0.0 | 0.5051 | 0.3324 | 0.0 | nan | 0.0 | 0.3104 | 0.0 | 0.0 | 0.9478 | 0.7896 | 0.9378 | 0.0 | 0.0034 | 0.3133 | 0.0 | nan | 0.6243 | 0.8034 | 0.1541 | 0.6898 | 0.2043 | nan | 0.2718 | 0.4106 | 0.0 | 0.7866 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3329 | 0.0 | 0.0 | 0.6448 | 0.0 | 0.3972 | 0.2899 | 0.0 | nan | 0.0 | 0.2032 | 0.0 | 0.0 | 0.8065 | 0.7190 | 0.8874 | 0.0 | 0.0033 | 0.2121 | 0.0 | | 0.4939 | 41.0 | 4387 | 0.5953 | 0.2727 | 0.3344 | 0.8254 | nan | 0.7959 | 0.9461 | 0.1852 | 0.8392 | 0.2900 | nan | 0.4223 | 0.6795 | 0.0 | 0.9282 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6097 | 0.0 | 0.0 | 0.8611 | 0.0 | 0.4823 | 0.3292 | 0.0 | nan | 0.0 | 0.3134 | 0.0 | 0.0 | 0.9086 | 0.8670 | 0.9295 | 0.0 | 0.0145 | 0.2979 | 0.0 | nan | 0.6661 | 0.8216 | 0.1796 | 0.7319 | 0.2653 | nan | 0.2834 | 0.4419 | 0.0 | 0.7931 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3199 | 0.0 | 0.0 | 0.6450 | 0.0 | 0.3787 | 0.2909 | 0.0 | nan | 0.0 | 0.2106 | 0.0 | 0.0 | 0.8306 | 0.7667 | 0.8830 | 0.0 | 0.0140 | 0.2050 | 0.0 | | 0.506 | 42.0 | 4494 | 0.5911 | 0.2708 | 0.3345 | 0.8198 | nan | 0.7873 | 0.9425 | 0.2025 | 0.8426 | 0.2298 | nan | 0.4588 | 0.6948 | 0.0 | 0.9262 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6237 | 0.0 | 0.0 | 0.8128 | 0.0 | 0.5311 | 0.3261 | 0.0 | nan | 0.0 | 0.2602 | 0.0 | 0.0 | 0.9298 | 0.8085 | 0.9480 | 0.0 | 0.0 | 0.3804 | 0.0 | nan | 0.6450 | 0.8105 | 0.1975 | 0.7161 | 0.2125 | nan | 0.2897 | 0.4452 | 0.0 | 0.7978 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3305 | 0.0 | 0.0 | 0.6536 | 0.0 | 0.3841 | 0.2815 | 0.0 | nan | 0.0 | 0.1810 | 0.0 | 0.0 | 0.8288 | 0.7434 | 0.8883 | 0.0 | 0.0 | 0.2588 | 0.0 | | 0.509 | 43.0 | 4601 | 0.5833 | 0.2868 | 0.3498 | 0.8205 | nan | 0.7739 | 0.9379 | 0.5441 | 0.8511 | 0.2662 | nan | 0.4565 | 0.6319 | 0.0 | 0.9412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5537 | 0.0 | 0.0 | 0.8590 | 0.0 | 0.4568 | 0.4407 | 0.0 | nan | 0.0 | 0.3014 | 0.0 | 0.0 | 0.8854 | 0.8643 | 0.9519 | 0.0 | 0.2006 | 0.2775 | 0.0 | nan | 0.6424 | 0.8171 | 0.5156 | 0.6938 | 0.2412 | nan | 0.2817 | 0.4313 | 0.0 | 0.7883 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3691 | 0.0 | 0.0 | 0.6494 | 0.0 | 0.3882 | 0.3200 | 0.0 | nan | 0.0 | 0.1917 | 0.0 | 0.0 | 0.8231 | 0.7458 | 0.8888 | 0.0 | 0.1764 | 0.2126 | 0.0 | | 0.492 | 44.0 | 4708 | 0.5778 | 0.2894 | 0.3492 | 0.8279 | nan | 0.7784 | 0.9384 | 0.4728 | 0.8394 | 0.3692 | nan | 0.4454 | 0.6222 | 0.0 | 0.9326 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6000 | 0.0 | 0.0 | 0.8719 | 0.0 | 0.5171 | 0.3511 | 0.0 | nan | 0.0 | 0.2849 | 0.0 | 0.0 | 0.9081 | 0.8644 | 0.9380 | 0.0 | 0.1613 | 0.2784 | 0.0 | nan | 0.6517 | 0.8181 | 0.4574 | 0.7044 | 0.3303 | nan | 0.2926 | 0.4394 | 0.0 | 0.7927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3677 | 0.0 | 0.0 | 0.6662 | 0.0 | 0.3997 | 0.2946 | 0.0 | nan | 0.0 | 0.1834 | 0.0 | 0.0 | 0.8346 | 0.7660 | 0.8938 | 0.0 | 0.1488 | 0.2201 | 0.0 | | 0.4965 | 45.0 | 4815 | 0.5756 | 0.2907 | 0.3584 | 0.8280 | nan | 0.7832 | 0.9404 | 0.5044 | 0.8364 | 0.3479 | nan | 0.4872 | 0.6981 | 0.0 | 0.9539 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5872 | 0.0 | 0.0 | 0.8024 | 0.0 | 0.5819 | 0.4517 | 0.0 | nan | 0.0 | 0.3394 | 0.0 | 0.0 | 0.9036 | 0.8622 | 0.9505 | 0.0 | 0.0307 | 0.4088 | 0.0 | nan | 0.6637 | 0.8233 | 0.4888 | 0.7297 | 0.3113 | nan | 0.2962 | 0.4542 | 0.0 | 0.7496 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3476 | 0.0 | 0.0 | 0.6544 | 0.0 | 0.4196 | 0.3478 | 0.0 | nan | 0.0 | 0.2141 | 0.0 | 0.0 | 0.8337 | 0.7634 | 0.8923 | 0.0 | 0.0300 | 0.2841 | 0.0 | | 0.5002 | 46.0 | 4922 | 0.5911 | 0.2876 | 0.3519 | 0.8241 | nan | 0.7498 | 0.9490 | 0.6335 | 0.8538 | 0.2570 | nan | 0.4053 | 0.6984 | 0.0 | 0.9179 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6869 | 0.0 | 0.0 | 0.8449 | 0.0 | 0.5818 | 0.3487 | 0.0 | nan | 0.0 | 0.3070 | 0.0 | 0.0 | 0.9241 | 0.8325 | 0.9416 | 0.0 | 0.0284 | 0.2998 | 0.0 | nan | 0.6405 | 0.8102 | 0.5883 | 0.7132 | 0.2382 | nan | 0.2768 | 0.4374 | 0.0 | 0.8038 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3840 | 0.0 | 0.0 | 0.6677 | 0.0 | 0.4052 | 0.2988 | 0.0 | nan | 0.0 | 0.2030 | 0.0 | 0.0 | 0.8288 | 0.7556 | 0.8939 | 0.0 | 0.0275 | 0.2317 | 0.0 | | 0.4593 | 47.0 | 5029 | 0.5917 | 0.2826 | 0.3528 | 0.8187 | nan | 0.7586 | 0.9405 | 0.7273 | 0.8595 | 0.2065 | nan | 0.4141 | 0.6501 | 0.0 | 0.9297 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7871 | 0.0 | 0.0 | 0.8608 | 0.0 | 0.5563 | 0.4812 | 0.0 | nan | 0.0 | 0.2866 | 0.0 | 0.0 | 0.9116 | 0.7873 | 0.9549 | 0.0 | 0.0086 | 0.1702 | 0.0 | nan | 0.6428 | 0.8118 | 0.6553 | 0.6713 | 0.1926 | nan | 0.2664 | 0.4467 | 0.0 | 0.7903 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3458 | 0.0 | 0.0 | 0.6574 | 0.0 | 0.4026 | 0.3809 | 0.0 | nan | 0.0 | 0.1806 | 0.0 | 0.0 | 0.8257 | 0.7325 | 0.8904 | 0.0 | 0.0085 | 0.1427 | 0.0 | | 0.4918 | 48.0 | 5136 | 0.5844 | 0.2867 | 0.3512 | 0.8249 | nan | 0.7452 | 0.9517 | 0.6479 | 0.8534 | 0.2971 | nan | 0.4271 | 0.6779 | 0.0 | 0.9265 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6756 | 0.0 | 0.0 | 0.8596 | 0.0 | 0.5569 | 0.3076 | 0.0 | nan | 0.0 | 0.2851 | 0.0 | 0.0 | 0.9064 | 0.8252 | 0.9511 | 0.0 | 0.0297 | 0.3125 | 0.0 | nan | 0.6504 | 0.8138 | 0.5866 | 0.6861 | 0.2693 | nan | 0.2809 | 0.4518 | 0.0 | 0.7985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3514 | 0.0 | 0.0 | 0.6628 | 0.0 | 0.3947 | 0.2834 | 0.0 | nan | 0.0 | 0.1980 | 0.0 | 0.0 | 0.8343 | 0.7573 | 0.8914 | 0.0 | 0.0293 | 0.2353 | 0.0 | | 0.4964 | 49.0 | 5243 | 0.6075 | 0.2763 | 0.3394 | 0.8260 | nan | 0.8158 | 0.9484 | 0.1481 | 0.8338 | 0.2194 | nan | 0.4162 | 0.6461 | 0.0 | 0.9305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6198 | 0.0 | 0.0 | 0.8643 | 0.0 | 0.6049 | 0.5862 | 0.0 | nan | 0.0 | 0.3021 | 0.0 | 0.0 | 0.8990 | 0.8118 | 0.9415 | 0.0 | 0.0430 | 0.2289 | 0.0 | nan | 0.6691 | 0.8134 | 0.1461 | 0.7553 | 0.2065 | nan | 0.2807 | 0.4379 | 0.0 | 0.7924 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3316 | 0.0 | 0.0 | 0.6698 | 0.0 | 0.4370 | 0.4026 | 0.0 | nan | 0.0 | 0.2042 | 0.0 | 0.0 | 0.8254 | 0.7464 | 0.8863 | 0.0 | 0.0412 | 0.1961 | 0.0 | | 0.5269 | 50.0 | 5350 | 0.5908 | 0.2872 | 0.3517 | 0.8275 | nan | 0.7844 | 0.9384 | 0.4184 | 0.8534 | 0.2576 | nan | 0.4853 | 0.6334 | 0.0 | 0.9291 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7341 | 0.0 | 0.0 | 0.8757 | 0.0 | 0.5056 | 0.4892 | 0.0 | nan | 0.0 | 0.3070 | 0.0 | 0.0 | 0.9109 | 0.8654 | 0.9529 | 0.0 | 0.0719 | 0.2414 | 0.0 | nan | 0.6483 | 0.8192 | 0.4170 | 0.6947 | 0.2399 | nan | 0.2972 | 0.4607 | 0.0 | 0.7964 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3577 | 0.0 | 0.0 | 0.6746 | 0.0 | 0.4162 | 0.3866 | 0.0 | nan | 0.0 | 0.2110 | 0.0 | 0.0 | 0.8339 | 0.7680 | 0.8941 | 0.0 | 0.0691 | 0.2074 | 0.0 | | 0.4802 | 51.0 | 5457 | 0.5712 | 0.2837 | 0.3464 | 0.8255 | nan | 0.8403 | 0.9234 | 0.5830 | 0.8358 | 0.3140 | nan | 0.4449 | 0.6503 | 0.0 | 0.9308 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7235 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.5109 | 0.3872 | 0.0 | nan | 0.0 | 0.2343 | 0.0 | 0.0 | 0.9138 | 0.7883 | 0.9594 | 0.0 | 0.0271 | 0.1250 | 0.0 | nan | 0.6763 | 0.8123 | 0.5638 | 0.6999 | 0.2848 | nan | 0.2960 | 0.4551 | 0.0 | 0.7899 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3364 | 0.0 | 0.0 | 0.6579 | 0.0 | 0.4071 | 0.3440 | 0.0 | nan | 0.0 | 0.1751 | 0.0 | 0.0 | 0.8265 | 0.7311 | 0.8846 | 0.0 | 0.0266 | 0.1127 | 0.0 | | 0.4695 | 52.0 | 5564 | 0.5993 | 0.2815 | 0.3477 | 0.8202 | nan | 0.7433 | 0.9466 | 0.3654 | 0.8687 | 0.2254 | nan | 0.4466 | 0.6632 | 0.0 | 0.9326 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7149 | 0.0 | 0.0 | 0.8300 | 0.0 | 0.5175 | 0.4682 | 0.0 | nan | 0.0 | 0.3419 | 0.0 | 0.0 | 0.9250 | 0.8074 | 0.9329 | 0.0 | 0.0434 | 0.3532 | 0.0 | nan | 0.6338 | 0.8101 | 0.3587 | 0.6763 | 0.2116 | nan | 0.2961 | 0.4354 | 0.0 | 0.7837 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3688 | 0.0 | 0.0 | 0.6543 | 0.0 | 0.4152 | 0.3928 | 0.0 | nan | 0.0 | 0.2239 | 0.0 | 0.0 | 0.8275 | 0.7419 | 0.8949 | 0.0 | 0.0419 | 0.2411 | 0.0 | | 0.4922 | 53.0 | 5671 | 0.6016 | 0.2920 | 0.3666 | 0.8225 | nan | 0.7667 | 0.9288 | 0.6087 | 0.8794 | 0.3013 | nan | 0.4562 | 0.6185 | 0.0 | 0.9306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7977 | 0.0 | 0.0 | 0.8122 | 0.0 | 0.5192 | 0.5661 | 0.0 | nan | 0.0 | 0.3506 | 0.0 | 0.0 | 0.8941 | 0.9025 | 0.9439 | 0.0 | 0.0648 | 0.3892 | 0.0 | nan | 0.6348 | 0.8233 | 0.5651 | 0.6433 | 0.2803 | nan | 0.3000 | 0.4514 | 0.0 | 0.7950 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3560 | 0.0 | 0.0 | 0.6593 | 0.0 | 0.4181 | 0.4241 | 0.0 | nan | 0.0 | 0.2173 | 0.0 | 0.0 | 0.8134 | 0.7252 | 0.8969 | 0.0 | 0.0619 | 0.2772 | 0.0 | | 0.4709 | 54.0 | 5778 | 0.5587 | 0.2946 | 0.3657 | 0.8311 | nan | 0.7967 | 0.9329 | 0.4847 | 0.8545 | 0.3175 | nan | 0.4448 | 0.6138 | 0.0 | 0.9310 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8397 | 0.0 | 0.0 | 0.8578 | 0.0 | 0.5495 | 0.5639 | 0.0 | nan | 0.0 | 0.3570 | 0.0 | 0.0 | 0.9111 | 0.8728 | 0.9307 | 0.0 | 0.0570 | 0.3867 | 0.0 | nan | 0.6590 | 0.8228 | 0.4692 | 0.6922 | 0.2950 | nan | 0.2932 | 0.4459 | 0.0 | 0.8035 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3522 | 0.0 | 0.0 | 0.6746 | 0.0 | 0.4287 | 0.4372 | 0.0 | nan | 0.0 | 0.2235 | 0.0 | 0.0 | 0.8385 | 0.7684 | 0.8894 | 0.0 | 0.0516 | 0.2812 | 0.0 | | 0.4817 | 55.0 | 5885 | 0.5667 | 0.2937 | 0.3562 | 0.8281 | nan | 0.7432 | 0.9461 | 0.5829 | 0.8569 | 0.2769 | nan | 0.4648 | 0.6192 | 0.0 | 0.9399 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6915 | 0.0 | 0.0 | 0.8736 | 0.0 | 0.5043 | 0.3381 | 0.0 | nan | 0.0 | 0.2935 | 0.0 | 0.0 | 0.9209 | 0.8639 | 0.9472 | 0.0 | 0.1859 | 0.3488 | 0.0 | nan | 0.6405 | 0.8191 | 0.5462 | 0.6840 | 0.2586 | nan | 0.2955 | 0.4549 | 0.0 | 0.8026 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3554 | 0.0 | 0.0 | 0.6683 | 0.0 | 0.4009 | 0.3136 | 0.0 | nan | 0.0 | 0.2126 | 0.0 | 0.0 | 0.8331 | 0.7734 | 0.9009 | 0.0 | 0.1641 | 0.2759 | 0.0 | | 0.4595 | 56.0 | 5992 | 0.5874 | 0.2862 | 0.3506 | 0.8218 | nan | 0.7450 | 0.9434 | 0.5648 | 0.8383 | 0.3200 | nan | 0.3914 | 0.6522 | 0.0 | 0.9315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7153 | 0.0 | 0.0 | 0.8812 | 0.0 | 0.5688 | 0.4178 | 0.0 | nan | 0.0 | 0.2323 | 0.0 | 0.0 | 0.8861 | 0.8754 | 0.9452 | 0.0 | 0.1441 | 0.1669 | 0.0 | nan | 0.6567 | 0.8024 | 0.5299 | 0.6787 | 0.2926 | nan | 0.2783 | 0.4446 | 0.0 | 0.8096 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3941 | 0.0 | 0.0 | 0.6572 | 0.0 | 0.3749 | 0.3000 | 0.0 | nan | 0.0 | 0.1759 | 0.0 | 0.0 | 0.8286 | 0.7613 | 0.8968 | 0.0 | 0.1304 | 0.1454 | 0.0 | | 0.4972 | 57.0 | 6099 | 0.5801 | 0.2977 | 0.3694 | 0.8266 | nan | 0.7642 | 0.9442 | 0.6982 | 0.8707 | 0.2118 | nan | 0.3879 | 0.6958 | 0.0 | 0.9321 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8075 | 0.0 | 0.0 | 0.8488 | 0.0 | 0.5833 | 0.5695 | 0.0 | nan | 0.0 | 0.3265 | 0.0 | 0.0 | 0.9050 | 0.8626 | 0.9449 | 0.0 | 0.1085 | 0.3580 | 0.0 | nan | 0.6488 | 0.8123 | 0.6271 | 0.6730 | 0.1990 | nan | 0.2857 | 0.4630 | 0.0 | 0.8064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3915 | 0.0 | 0.0 | 0.6675 | 0.0 | 0.4207 | 0.4152 | 0.0 | nan | 0.0 | 0.2344 | 0.0 | 0.0 | 0.8336 | 0.7738 | 0.8985 | 0.0 | 0.0953 | 0.2798 | 0.0 | | 0.4297 | 58.0 | 6206 | 0.5944 | 0.2996 | 0.3705 | 0.8216 | nan | 0.7302 | 0.9322 | 0.6533 | 0.8923 | 0.2638 | nan | 0.4137 | 0.6574 | 0.0 | 0.9288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7123 | 0.0 | 0.0 | 0.8174 | 0.0 | 0.5952 | 0.5885 | 0.0 | nan | 0.0 | 0.3330 | 0.0 | 0.0 | 0.9268 | 0.8476 | 0.9462 | 0.0 | 0.2844 | 0.3339 | 0.0 | nan | 0.6223 | 0.8119 | 0.6034 | 0.5998 | 0.2447 | nan | 0.2997 | 0.4546 | 0.0 | 0.8171 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4156 | 0.0 | 0.0 | 0.6598 | 0.0 | 0.4330 | 0.4211 | 0.0 | nan | 0.0 | 0.2281 | 0.0 | 0.0 | 0.8336 | 0.7715 | 0.9005 | 0.0 | 0.2255 | 0.2440 | 0.0 | | 0.4257 | 59.0 | 6313 | 0.6031 | 0.2902 | 0.3587 | 0.8230 | nan | 0.7653 | 0.9239 | 0.6527 | 0.8916 | 0.2514 | nan | 0.4532 | 0.6997 | 0.0 | 0.9376 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6646 | 0.0 | 0.0 | 0.8832 | 0.0 | 0.5420 | 0.4346 | 0.0 | nan | 0.0 | 0.3438 | 0.0 | 0.0 | 0.9162 | 0.8358 | 0.9575 | 0.0 | 0.1414 | 0.1839 | 0.0 | nan | 0.6284 | 0.8186 | 0.6079 | 0.6227 | 0.2397 | nan | 0.2999 | 0.4397 | 0.0 | 0.8057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3776 | 0.0 | 0.0 | 0.6643 | 0.0 | 0.4166 | 0.3533 | 0.0 | nan | 0.0 | 0.2243 | 0.0 | 0.0 | 0.8395 | 0.7679 | 0.8974 | 0.0 | 0.1223 | 0.1599 | 0.0 | | 0.4296 | 60.0 | 6420 | 0.5946 | 0.2944 | 0.3624 | 0.8258 | nan | 0.7561 | 0.9474 | 0.6031 | 0.8511 | 0.2484 | nan | 0.3636 | 0.7135 | 0.0 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7552 | 0.0 | 0.0 | 0.8357 | 0.0 | 0.5080 | 0.4909 | 0.0 | nan | 0.0 | 0.3729 | 0.0 | 0.0 | 0.9267 | 0.8464 | 0.9518 | 0.0 | 0.1229 | 0.3694 | 0.0 | nan | 0.6454 | 0.8089 | 0.5664 | 0.6767 | 0.2304 | nan | 0.2676 | 0.4330 | 0.0 | 0.8101 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4132 | 0.0 | 0.0 | 0.6672 | 0.0 | 0.4207 | 0.3790 | 0.0 | nan | 0.0 | 0.2213 | 0.0 | 0.0 | 0.8356 | 0.7718 | 0.9003 | 0.0 | 0.1051 | 0.2681 | 0.0 | | 0.4466 | 61.0 | 6527 | 0.5980 | 0.3001 | 0.3642 | 0.8282 | nan | 0.7422 | 0.9441 | 0.6934 | 0.8674 | 0.2867 | nan | 0.4244 | 0.6455 | 0.0 | 0.9306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6763 | 0.0 | 0.0 | 0.8719 | 0.0 | 0.5553 | 0.4299 | 0.0 | nan | 0.0 | 0.2880 | 0.0 | 0.0 | 0.9100 | 0.8833 | 0.9525 | 0.0 | 0.2727 | 0.2809 | 0.0 | nan | 0.6374 | 0.8179 | 0.6350 | 0.6721 | 0.2686 | nan | 0.2882 | 0.4531 | 0.0 | 0.8191 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4176 | 0.0 | 0.0 | 0.6744 | 0.0 | 0.4024 | 0.3371 | 0.0 | nan | 0.0 | 0.1962 | 0.0 | 0.0 | 0.8345 | 0.7681 | 0.9003 | 0.0 | 0.2299 | 0.2500 | 0.0 | | 0.4241 | 62.0 | 6634 | 0.5839 | 0.2995 | 0.3691 | 0.8287 | nan | 0.7865 | 0.9340 | 0.6469 | 0.8640 | 0.2307 | nan | 0.4864 | 0.6815 | 0.0 | 0.9352 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7356 | 0.0 | 0.0 | 0.8697 | 0.0 | 0.5722 | 0.5777 | 0.0 | nan | 0.0 | 0.3104 | 0.0 | 0.0 | 0.8992 | 0.8627 | 0.9563 | 0.0 | 0.1362 | 0.3268 | 0.0 | nan | 0.6410 | 0.8222 | 0.6152 | 0.6686 | 0.2212 | nan | 0.3016 | 0.4654 | 0.0 | 0.8115 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3924 | 0.0 | 0.0 | 0.6780 | 0.0 | 0.4340 | 0.4100 | 0.0 | nan | 0.0 | 0.2163 | 0.0 | 0.0 | 0.8374 | 0.7735 | 0.8996 | 0.0 | 0.1217 | 0.2751 | 0.0 | | 0.4301 | 63.0 | 6741 | 0.5800 | 0.2924 | 0.3520 | 0.8283 | nan | 0.7768 | 0.9481 | 0.5269 | 0.8604 | 0.2304 | nan | 0.4541 | 0.5774 | 0.0 | 0.9296 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6931 | 0.0 | 0.0 | 0.8854 | 0.0 | 0.5592 | 0.3688 | 0.0 | nan | 0.0 | 0.2901 | 0.0 | 0.0 | 0.9181 | 0.8332 | 0.9422 | 0.0 | 0.2659 | 0.2051 | 0.0 | nan | 0.6594 | 0.8162 | 0.5133 | 0.7126 | 0.2168 | nan | 0.2955 | 0.4311 | 0.0 | 0.8130 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3954 | 0.0 | 0.0 | 0.6715 | 0.0 | 0.3933 | 0.3227 | 0.0 | nan | 0.0 | 0.2063 | 0.0 | 0.0 | 0.8385 | 0.7662 | 0.9011 | 0.0 | 0.2251 | 0.1793 | 0.0 | | 0.4282 | 64.0 | 6848 | 0.5546 | 0.2960 | 0.3590 | 0.8307 | nan | 0.7868 | 0.9365 | 0.6291 | 0.8655 | 0.2797 | nan | 0.4857 | 0.6495 | 0.0 | 0.9440 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6531 | 0.0 | 0.0 | 0.8811 | 0.0 | 0.5376 | 0.4277 | 0.0 | nan | 0.0 | 0.2711 | 0.0 | 0.0 | 0.9272 | 0.8346 | 0.9506 | 0.0 | 0.2383 | 0.1889 | 0.0 | nan | 0.6604 | 0.8267 | 0.5860 | 0.6907 | 0.2597 | nan | 0.3043 | 0.4349 | 0.0 | 0.8033 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3992 | 0.0 | 0.0 | 0.6664 | 0.0 | 0.4137 | 0.3631 | 0.0 | nan | 0.0 | 0.1893 | 0.0 | 0.0 | 0.8362 | 0.7675 | 0.9011 | 0.0 | 0.1973 | 0.1722 | 0.0 | | 0.4217 | 65.0 | 6955 | 0.5678 | 0.3011 | 0.3648 | 0.8301 | nan | 0.7971 | 0.9362 | 0.6074 | 0.8616 | 0.2837 | nan | 0.4557 | 0.6452 | 0.0 | 0.9430 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6666 | 0.0 | 0.0 | 0.8609 | 0.0 | 0.5462 | 0.4516 | 0.0 | nan | 0.0 | 0.3334 | 0.0 | 0.0 | 0.9182 | 0.8233 | 0.9599 | 0.0 | 0.2847 | 0.2985 | 0.0 | nan | 0.6547 | 0.8215 | 0.5730 | 0.7057 | 0.2655 | nan | 0.2969 | 0.4596 | 0.0 | 0.7902 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3813 | 0.0 | 0.0 | 0.6660 | 0.0 | 0.4061 | 0.3796 | 0.0 | nan | 0.0 | 0.2260 | 0.0 | 0.0 | 0.8349 | 0.7645 | 0.8985 | 0.0 | 0.2453 | 0.2659 | 0.0 | | 0.4464 | 66.0 | 7062 | 0.5729 | 0.3010 | 0.3652 | 0.8313 | nan | 0.7799 | 0.9313 | 0.5977 | 0.8700 | 0.3423 | nan | 0.4580 | 0.6002 | 0.0 | 0.9398 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5995 | 0.0 | 0.0 | 0.8886 | 0.0 | 0.5401 | 0.5306 | 0.0 | nan | 0.0 | 0.3340 | 0.0 | 0.0 | 0.9036 | 0.8522 | 0.9591 | 0.0 | 0.2789 | 0.2821 | 0.0 | nan | 0.6616 | 0.8237 | 0.5684 | 0.6686 | 0.3166 | nan | 0.3077 | 0.4360 | 0.0 | 0.8019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3915 | 0.0 | 0.0 | 0.6702 | 0.0 | 0.4127 | 0.3736 | 0.0 | nan | 0.0 | 0.2210 | 0.0 | 0.0 | 0.8325 | 0.7774 | 0.8983 | 0.0 | 0.2219 | 0.2476 | 0.0 | | 0.4301 | 67.0 | 7169 | 0.5685 | 0.3014 | 0.3645 | 0.8338 | nan | 0.7739 | 0.9469 | 0.6631 | 0.8587 | 0.3149 | nan | 0.4595 | 0.6357 | 0.0 | 0.9363 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6059 | 0.0 | 0.0 | 0.8867 | 0.0 | 0.5642 | 0.5072 | 0.0 | nan | 0.0 | 0.2801 | 0.0 | 0.0 | 0.9005 | 0.8686 | 0.9538 | 0.0 | 0.2690 | 0.2390 | 0.0 | nan | 0.6602 | 0.8274 | 0.6195 | 0.7196 | 0.2892 | nan | 0.3109 | 0.4324 | 0.0 | 0.8114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3900 | 0.0 | 0.0 | 0.6722 | 0.0 | 0.4242 | 0.3639 | 0.0 | nan | 0.0 | 0.2029 | 0.0 | 0.0 | 0.8328 | 0.7705 | 0.8975 | 0.0 | 0.2093 | 0.2123 | 0.0 | | 0.4372 | 68.0 | 7276 | 0.5774 | 0.3001 | 0.3620 | 0.8331 | nan | 0.8014 | 0.9429 | 0.5934 | 0.8543 | 0.2700 | nan | 0.4604 | 0.6515 | 0.0 | 0.9315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7000 | 0.0 | 0.0 | 0.8804 | 0.0 | 0.5757 | 0.4549 | 0.0 | nan | 0.0 | 0.2809 | 0.0 | 0.0 | 0.9107 | 0.8576 | 0.9436 | 0.0 | 0.2058 | 0.2682 | 0.0 | nan | 0.6612 | 0.8234 | 0.5769 | 0.7374 | 0.2506 | nan | 0.2950 | 0.4312 | 0.0 | 0.8122 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4148 | 0.0 | 0.0 | 0.6733 | 0.0 | 0.4192 | 0.3731 | 0.0 | nan | 0.0 | 0.2016 | 0.0 | 0.0 | 0.8396 | 0.7792 | 0.9010 | 0.0 | 0.1768 | 0.2359 | 0.0 | | 0.4152 | 69.0 | 7383 | 0.5865 | 0.2997 | 0.3656 | 0.8304 | nan | 0.7695 | 0.9499 | 0.5623 | 0.8607 | 0.2533 | nan | 0.4527 | 0.6812 | 0.0 | 0.9392 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7690 | 0.0 | 0.0 | 0.8475 | 0.0 | 0.5371 | 0.5074 | 0.0 | nan | 0.0 | 0.3253 | 0.0 | 0.0 | 0.9251 | 0.8096 | 0.9561 | 0.0 | 0.1738 | 0.3779 | 0.0 | nan | 0.6567 | 0.8192 | 0.5492 | 0.7168 | 0.2357 | nan | 0.2922 | 0.4481 | 0.0 | 0.8000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4081 | 0.0 | 0.0 | 0.6716 | 0.0 | 0.4078 | 0.4154 | 0.0 | nan | 0.0 | 0.2236 | 0.0 | 0.0 | 0.8347 | 0.7605 | 0.8992 | 0.0 | 0.1559 | 0.2954 | 0.0 | | 0.3752 | 70.0 | 7490 | 0.5815 | 0.2986 | 0.3657 | 0.8312 | nan | 0.7869 | 0.9356 | 0.6206 | 0.8688 | 0.3233 | nan | 0.4608 | 0.6776 | 0.0 | 0.9427 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7906 | 0.0 | 0.0 | 0.8797 | 0.0 | 0.5149 | 0.4586 | 0.0 | nan | 0.0 | 0.3025 | 0.0 | 0.0 | 0.9155 | 0.8223 | 0.9550 | 0.0 | 0.1530 | 0.2946 | 0.0 | nan | 0.6478 | 0.8285 | 0.5954 | 0.6915 | 0.2975 | nan | 0.2928 | 0.4499 | 0.0 | 0.7924 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4008 | 0.0 | 0.0 | 0.6707 | 0.0 | 0.4119 | 0.3609 | 0.0 | nan | 0.0 | 0.2096 | 0.0 | 0.0 | 0.8349 | 0.7640 | 0.9017 | 0.0 | 0.1404 | 0.2649 | 0.0 | | 0.4303 | 71.0 | 7597 | 0.5584 | 0.3069 | 0.3678 | 0.8376 | nan | 0.7772 | 0.9490 | 0.6739 | 0.8657 | 0.3428 | nan | 0.4455 | 0.6180 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7038 | 0.0 | 0.0 | 0.8718 | 0.0 | 0.5481 | 0.4799 | 0.0 | nan | 0.0 | 0.2685 | 0.0 | 0.0 | 0.9220 | 0.8662 | 0.9529 | 0.0 | 0.2862 | 0.2554 | 0.0 | nan | 0.6665 | 0.8277 | 0.6340 | 0.7189 | 0.3123 | nan | 0.3026 | 0.4458 | 0.0 | 0.8048 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4185 | 0.0 | 0.0 | 0.6825 | 0.0 | 0.4252 | 0.4008 | 0.0 | nan | 0.0 | 0.1970 | 0.0 | 0.0 | 0.8378 | 0.7761 | 0.9033 | 0.0 | 0.2345 | 0.2315 | 0.0 | | 0.4076 | 72.0 | 7704 | 0.5620 | 0.3076 | 0.3717 | 0.8355 | nan | 0.7952 | 0.9487 | 0.6617 | 0.8569 | 0.2702 | nan | 0.4229 | 0.6185 | 0.0 | 0.9411 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7300 | 0.0 | 0.0 | 0.8682 | 0.0 | 0.5422 | 0.5640 | 0.0 | nan | 0.0 | 0.2992 | 0.0 | 0.0 | 0.9085 | 0.8604 | 0.9578 | 0.0 | 0.2977 | 0.3501 | 0.0 | nan | 0.6677 | 0.8230 | 0.6294 | 0.7269 | 0.2521 | nan | 0.2996 | 0.4452 | 0.0 | 0.8073 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4243 | 0.0 | 0.0 | 0.6803 | 0.0 | 0.4240 | 0.4145 | 0.0 | nan | 0.0 | 0.2007 | 0.0 | 0.0 | 0.8393 | 0.7749 | 0.9002 | 0.0 | 0.2384 | 0.2949 | 0.0 | | 0.3955 | 73.0 | 7811 | 0.5621 | 0.3101 | 0.3785 | 0.8339 | nan | 0.7895 | 0.9417 | 0.7490 | 0.8660 | 0.3128 | nan | 0.4477 | 0.5938 | 0.0 | 0.9339 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7367 | 0.0 | 0.0 | 0.8139 | 0.0 | 0.5560 | 0.5443 | 0.0 | nan | 0.0 | 0.3697 | 0.0 | 0.0 | 0.9193 | 0.8727 | 0.9590 | 0.0 | 0.2933 | 0.4120 | 0.0 | nan | 0.6573 | 0.8268 | 0.6815 | 0.6924 | 0.2906 | nan | 0.2931 | 0.4485 | 0.0 | 0.8106 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3907 | 0.0 | 0.0 | 0.6750 | 0.0 | 0.4267 | 0.4409 | 0.0 | nan | 0.0 | 0.2378 | 0.0 | 0.0 | 0.8327 | 0.7671 | 0.9007 | 0.0 | 0.2377 | 0.3121 | 0.0 | | 0.4452 | 74.0 | 7918 | 0.5760 | 0.3049 | 0.3686 | 0.8320 | nan | 0.7726 | 0.9410 | 0.6627 | 0.8454 | 0.2764 | nan | 0.4363 | 0.6118 | 0.0 | 0.9354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7153 | 0.0 | 0.0 | 0.8825 | 0.0 | 0.5270 | 0.5036 | 0.0 | nan | 0.0 | 0.2900 | 0.0 | 0.0 | 0.9235 | 0.8576 | 0.9476 | 0.0 | 0.3158 | 0.3507 | 0.0 | nan | 0.6590 | 0.8189 | 0.6276 | 0.7115 | 0.2563 | nan | 0.2929 | 0.4501 | 0.0 | 0.8114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4173 | 0.0 | 0.0 | 0.6722 | 0.0 | 0.4165 | 0.4052 | 0.0 | nan | 0.0 | 0.2029 | 0.0 | 0.0 | 0.8327 | 0.7690 | 0.9035 | 0.0 | 0.2170 | 0.2945 | 0.0 | | 0.3568 | 75.0 | 8025 | 0.5606 | 0.3077 | 0.3716 | 0.8363 | nan | 0.7962 | 0.9389 | 0.6796 | 0.8557 | 0.3318 | nan | 0.4446 | 0.5949 | 0.0 | 0.9376 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7570 | 0.0 | 0.0 | 0.8904 | 0.0 | 0.5460 | 0.4607 | 0.0 | nan | 0.0 | 0.2889 | 0.0 | 0.0 | 0.9088 | 0.8802 | 0.9495 | 0.0 | 0.3142 | 0.3154 | 0.0 | nan | 0.6583 | 0.8284 | 0.6421 | 0.7339 | 0.3049 | nan | 0.2952 | 0.4438 | 0.0 | 0.8132 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4285 | 0.0 | 0.0 | 0.6766 | 0.0 | 0.4371 | 0.3675 | 0.0 | nan | 0.0 | 0.1966 | 0.0 | 0.0 | 0.8377 | 0.7781 | 0.9054 | 0.0 | 0.2262 | 0.2728 | 0.0 | | 0.4273 | 76.0 | 8132 | 0.5716 | 0.3064 | 0.3689 | 0.8359 | nan | 0.8006 | 0.9397 | 0.6296 | 0.8601 | 0.2801 | nan | 0.4445 | 0.5972 | 0.0 | 0.9332 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7044 | 0.0 | 0.0 | 0.8808 | 0.0 | 0.5899 | 0.5244 | 0.0 | nan | 0.0 | 0.2834 | 0.0 | 0.0 | 0.9226 | 0.8539 | 0.9494 | 0.0 | 0.3082 | 0.3026 | 0.0 | nan | 0.6647 | 0.8258 | 0.6010 | 0.7331 | 0.2601 | nan | 0.2925 | 0.4412 | 0.0 | 0.8204 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4267 | 0.0 | 0.0 | 0.6808 | 0.0 | 0.4422 | 0.3883 | 0.0 | nan | 0.0 | 0.2059 | 0.0 | 0.0 | 0.8376 | 0.7809 | 0.9037 | 0.0 | 0.2323 | 0.2677 | 0.0 | | 0.3989 | 77.0 | 8239 | 0.5950 | 0.3046 | 0.3710 | 0.8298 | nan | 0.7813 | 0.9402 | 0.6772 | 0.8622 | 0.2998 | nan | 0.3972 | 0.6240 | 0.0 | 0.9352 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7485 | 0.0 | 0.0 | 0.8968 | 0.0 | 0.5384 | 0.5001 | 0.0 | nan | 0.0 | 0.3072 | 0.0 | 0.0 | 0.8772 | 0.8678 | 0.9564 | 0.0 | 0.3039 | 0.3580 | 0.0 | nan | 0.6575 | 0.8156 | 0.6366 | 0.6857 | 0.2767 | nan | 0.2826 | 0.4490 | 0.0 | 0.8130 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4133 | 0.0 | 0.0 | 0.6752 | 0.0 | 0.4315 | 0.3788 | 0.0 | nan | 0.0 | 0.2079 | 0.0 | 0.0 | 0.8275 | 0.7582 | 0.8964 | 0.0 | 0.2436 | 0.2983 | 0.0 | | 0.4225 | 78.0 | 8346 | 0.5773 | 0.3053 | 0.3660 | 0.8346 | nan | 0.7976 | 0.9434 | 0.7047 | 0.8617 | 0.2893 | nan | 0.4078 | 0.6335 | 0.0 | 0.9320 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6728 | 0.0 | 0.0 | 0.8665 | 0.0 | 0.5345 | 0.4411 | 0.0 | nan | 0.0 | 0.2897 | 0.0 | 0.0 | 0.9188 | 0.8781 | 0.9634 | 0.0 | 0.2847 | 0.2928 | 0.0 | nan | 0.6589 | 0.8257 | 0.6567 | 0.7034 | 0.2678 | nan | 0.2897 | 0.4498 | 0.0 | 0.8247 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4262 | 0.0 | 0.0 | 0.6748 | 0.0 | 0.4348 | 0.3547 | 0.0 | nan | 0.0 | 0.2030 | 0.0 | 0.0 | 0.8333 | 0.7724 | 0.8983 | 0.0 | 0.2337 | 0.2629 | 0.0 | | 0.3732 | 79.0 | 8453 | 0.5765 | 0.3071 | 0.3699 | 0.8335 | nan | 0.7966 | 0.9393 | 0.6529 | 0.8586 | 0.3281 | nan | 0.4279 | 0.6442 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6990 | 0.0 | 0.0 | 0.8564 | 0.0 | 0.5440 | 0.4633 | 0.0 | nan | 0.0 | 0.3160 | 0.0 | 0.0 | 0.9170 | 0.8463 | 0.9560 | 0.0 | 0.3043 | 0.3435 | 0.0 | nan | 0.6577 | 0.8237 | 0.6301 | 0.7032 | 0.3022 | nan | 0.2923 | 0.4703 | 0.0 | 0.7838 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4134 | 0.0 | 0.0 | 0.6680 | 0.0 | 0.4317 | 0.3638 | 0.0 | nan | 0.0 | 0.2212 | 0.0 | 0.0 | 0.8389 | 0.7737 | 0.9019 | 0.0 | 0.2508 | 0.2994 | 0.0 | | 0.406 | 80.0 | 8560 | 0.5652 | 0.3088 | 0.3702 | 0.8370 | nan | 0.7922 | 0.9442 | 0.6424 | 0.8559 | 0.3423 | nan | 0.4291 | 0.6286 | 0.0 | 0.9319 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6899 | 0.0 | 0.0 | 0.8776 | 0.0 | 0.5416 | 0.4536 | 0.0 | nan | 0.0 | 0.3157 | 0.0 | 0.0 | 0.9151 | 0.8583 | 0.9587 | 0.0 | 0.3040 | 0.3666 | 0.0 | nan | 0.6601 | 0.8284 | 0.6172 | 0.7326 | 0.3070 | nan | 0.2938 | 0.4547 | 0.0 | 0.8155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4208 | 0.0 | 0.0 | 0.6769 | 0.0 | 0.4275 | 0.3633 | 0.0 | nan | 0.0 | 0.2149 | 0.0 | 0.0 | 0.8398 | 0.7758 | 0.9023 | 0.0 | 0.2380 | 0.3132 | 0.0 | | 0.3805 | 81.0 | 8667 | 0.5927 | 0.3068 | 0.3739 | 0.8318 | nan | 0.7781 | 0.9398 | 0.6409 | 0.8694 | 0.2671 | nan | 0.4200 | 0.6579 | 0.0 | 0.9410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7389 | 0.0 | 0.0 | 0.8685 | 0.0 | 0.5615 | 0.5156 | 0.0 | nan | 0.0 | 0.3313 | 0.0 | 0.0 | 0.9068 | 0.8633 | 0.9571 | 0.0 | 0.3063 | 0.4028 | 0.0 | nan | 0.6610 | 0.8161 | 0.6084 | 0.6775 | 0.2471 | nan | 0.2901 | 0.4606 | 0.0 | 0.8100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4319 | 0.0 | 0.0 | 0.6832 | 0.0 | 0.4334 | 0.3861 | 0.0 | nan | 0.0 | 0.2187 | 0.0 | 0.0 | 0.8389 | 0.7767 | 0.9039 | 0.0 | 0.2378 | 0.3349 | 0.0 | | 0.417 | 82.0 | 8774 | 0.5876 | 0.3059 | 0.3675 | 0.8354 | nan | 0.8054 | 0.9478 | 0.5985 | 0.8555 | 0.2401 | nan | 0.4154 | 0.6657 | 0.0 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6828 | 0.0 | 0.0 | 0.8633 | 0.0 | 0.5546 | 0.4982 | 0.0 | nan | 0.0 | 0.3150 | 0.0 | 0.0 | 0.9250 | 0.8476 | 0.9540 | 0.0 | 0.2826 | 0.3741 | 0.0 | nan | 0.6661 | 0.8224 | 0.5876 | 0.7389 | 0.2260 | nan | 0.2843 | 0.4586 | 0.0 | 0.8168 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4123 | 0.0 | 0.0 | 0.6820 | 0.0 | 0.4254 | 0.3936 | 0.0 | nan | 0.0 | 0.2202 | 0.0 | 0.0 | 0.8386 | 0.7766 | 0.9026 | 0.0 | 0.2190 | 0.3189 | 0.0 | | 0.3894 | 83.0 | 8881 | 0.5765 | 0.3087 | 0.3745 | 0.8344 | nan | 0.8097 | 0.9389 | 0.6470 | 0.8604 | 0.2726 | nan | 0.4096 | 0.6719 | 0.0 | 0.9377 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7344 | 0.0 | 0.0 | 0.8537 | 0.0 | 0.5445 | 0.5077 | 0.0 | nan | 0.0 | 0.3452 | 0.0 | 0.0 | 0.9142 | 0.8713 | 0.9550 | 0.0 | 0.2862 | 0.4235 | 0.0 | nan | 0.6627 | 0.8207 | 0.6235 | 0.7133 | 0.2534 | nan | 0.2864 | 0.4618 | 0.0 | 0.8177 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4237 | 0.0 | 0.0 | 0.6802 | 0.0 | 0.4332 | 0.3990 | 0.0 | nan | 0.0 | 0.2247 | 0.0 | 0.0 | 0.8385 | 0.7756 | 0.9046 | 0.0 | 0.2248 | 0.3333 | 0.0 | | 0.3837 | 84.0 | 8988 | 0.6004 | 0.3036 | 0.3712 | 0.8292 | nan | 0.7741 | 0.9374 | 0.6093 | 0.8726 | 0.2691 | nan | 0.4232 | 0.6590 | 0.0 | 0.9410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7466 | 0.0 | 0.0 | 0.8726 | 0.0 | 0.5627 | 0.4905 | 0.0 | nan | 0.0 | 0.3329 | 0.0 | 0.0 | 0.9002 | 0.8601 | 0.9551 | 0.0 | 0.3032 | 0.3703 | 0.0 | nan | 0.6535 | 0.8166 | 0.5919 | 0.6585 | 0.2514 | nan | 0.2897 | 0.4643 | 0.0 | 0.8054 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4115 | 0.0 | 0.0 | 0.6766 | 0.0 | 0.4207 | 0.3879 | 0.0 | nan | 0.0 | 0.2191 | 0.0 | 0.0 | 0.8380 | 0.7728 | 0.9020 | 0.0 | 0.2484 | 0.3078 | 0.0 | | 0.3893 | 85.0 | 9095 | 0.5829 | 0.3084 | 0.3760 | 0.8340 | nan | 0.7840 | 0.9454 | 0.6141 | 0.8637 | 0.2819 | nan | 0.4197 | 0.6554 | 0.0 | 0.9299 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7525 | 0.0 | 0.0 | 0.8579 | 0.0 | 0.5518 | 0.5349 | 0.0 | nan | 0.0 | 0.3574 | 0.0 | 0.0 | 0.9054 | 0.8711 | 0.9585 | 0.0 | 0.3114 | 0.4356 | 0.0 | nan | 0.6558 | 0.8246 | 0.5972 | 0.7109 | 0.2607 | nan | 0.2940 | 0.4619 | 0.0 | 0.8209 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4206 | 0.0 | 0.0 | 0.6725 | 0.0 | 0.4299 | 0.4114 | 0.0 | nan | 0.0 | 0.2291 | 0.0 | 0.0 | 0.8388 | 0.7753 | 0.9033 | 0.0 | 0.2374 | 0.3259 | 0.0 | | 0.3568 | 86.0 | 9202 | 0.5820 | 0.3080 | 0.3747 | 0.8325 | nan | 0.7903 | 0.9414 | 0.6354 | 0.8605 | 0.2640 | nan | 0.4273 | 0.6557 | 0.0 | 0.9349 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7446 | 0.0 | 0.0 | 0.8585 | 0.0 | 0.5437 | 0.5643 | 0.0 | nan | 0.0 | 0.3338 | 0.0 | 0.0 | 0.9118 | 0.8567 | 0.9552 | 0.0 | 0.3089 | 0.4020 | 0.0 | nan | 0.6572 | 0.8189 | 0.6172 | 0.7005 | 0.2476 | nan | 0.2908 | 0.4655 | 0.0 | 0.8147 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4183 | 0.0 | 0.0 | 0.6758 | 0.0 | 0.4228 | 0.4167 | 0.0 | nan | 0.0 | 0.2271 | 0.0 | 0.0 | 0.8392 | 0.7752 | 0.9050 | 0.0 | 0.2439 | 0.3209 | 0.0 | | 0.3812 | 87.0 | 9309 | 0.5807 | 0.3103 | 0.3773 | 0.8331 | nan | 0.7822 | 0.9393 | 0.7419 | 0.8598 | 0.2849 | nan | 0.4434 | 0.6552 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6996 | 0.0 | 0.0 | 0.8562 | 0.0 | 0.5577 | 0.5600 | 0.0 | nan | 0.0 | 0.3260 | 0.0 | 0.0 | 0.9138 | 0.8579 | 0.9549 | 0.0 | 0.3072 | 0.3889 | 0.0 | nan | 0.6617 | 0.8195 | 0.6735 | 0.6867 | 0.2661 | nan | 0.2962 | 0.4633 | 0.0 | 0.8066 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4183 | 0.0 | 0.0 | 0.6738 | 0.0 | 0.4195 | 0.4302 | 0.0 | nan | 0.0 | 0.2260 | 0.0 | 0.0 | 0.8401 | 0.7766 | 0.9048 | 0.0 | 0.2449 | 0.3213 | 0.0 | | 0.3861 | 88.0 | 9416 | 0.5830 | 0.3086 | 0.3753 | 0.8326 | nan | 0.7898 | 0.9402 | 0.6848 | 0.8620 | 0.2609 | nan | 0.4195 | 0.6699 | 0.0 | 0.9395 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7112 | 0.0 | 0.0 | 0.8726 | 0.0 | 0.5395 | 0.5290 | 0.0 | nan | 0.0 | 0.3415 | 0.0 | 0.0 | 0.9041 | 0.8616 | 0.9560 | 0.0 | 0.3120 | 0.4148 | 0.0 | nan | 0.6604 | 0.8180 | 0.6453 | 0.6906 | 0.2451 | nan | 0.2897 | 0.4600 | 0.0 | 0.8129 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4175 | 0.0 | 0.0 | 0.6771 | 0.0 | 0.4296 | 0.4125 | 0.0 | nan | 0.0 | 0.2268 | 0.0 | 0.0 | 0.8392 | 0.7765 | 0.9045 | 0.0 | 0.2408 | 0.3276 | 0.0 | | 0.3794 | 89.0 | 9523 | 0.5810 | 0.3097 | 0.3749 | 0.8352 | nan | 0.7929 | 0.9458 | 0.6782 | 0.8640 | 0.2715 | nan | 0.4132 | 0.6713 | 0.0 | 0.9444 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6702 | 0.0 | 0.0 | 0.8568 | 0.0 | 0.5447 | 0.5202 | 0.0 | nan | 0.0 | 0.3659 | 0.0 | 0.0 | 0.9108 | 0.8647 | 0.9536 | 0.0 | 0.3065 | 0.4218 | 0.0 | nan | 0.6601 | 0.8260 | 0.6376 | 0.7196 | 0.2537 | nan | 0.2907 | 0.4658 | 0.0 | 0.7987 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4120 | 0.0 | 0.0 | 0.6758 | 0.0 | 0.4326 | 0.4139 | 0.0 | nan | 0.0 | 0.2351 | 0.0 | 0.0 | 0.8374 | 0.7762 | 0.9056 | 0.0 | 0.2380 | 0.3327 | 0.0 | | 0.3862 | 90.0 | 9630 | 0.5829 | 0.3101 | 0.3741 | 0.8360 | nan | 0.7848 | 0.9513 | 0.6485 | 0.8585 | 0.2785 | nan | 0.4155 | 0.6589 | 0.0 | 0.9368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7153 | 0.0 | 0.0 | 0.8629 | 0.0 | 0.5388 | 0.5348 | 0.0 | nan | 0.0 | 0.3483 | 0.0 | 0.0 | 0.9114 | 0.8631 | 0.9563 | 0.0 | 0.3089 | 0.3983 | 0.0 | nan | 0.6612 | 0.8226 | 0.6249 | 0.7241 | 0.2594 | nan | 0.2904 | 0.4605 | 0.0 | 0.8116 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4253 | 0.0 | 0.0 | 0.6824 | 0.0 | 0.4310 | 0.4208 | 0.0 | nan | 0.0 | 0.2285 | 0.0 | 0.0 | 0.8396 | 0.7744 | 0.9050 | 0.0 | 0.2350 | 0.3275 | 0.0 | | 0.3932 | 91.0 | 9737 | 0.5930 | 0.3098 | 0.3750 | 0.8355 | nan | 0.7909 | 0.9519 | 0.6784 | 0.8521 | 0.2627 | nan | 0.4139 | 0.6617 | 0.0 | 0.9373 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7455 | 0.0 | 0.0 | 0.8494 | 0.0 | 0.5452 | 0.5494 | 0.0 | nan | 0.0 | 0.3350 | 0.0 | 0.0 | 0.9168 | 0.8574 | 0.9575 | 0.0 | 0.3072 | 0.3890 | 0.0 | nan | 0.6640 | 0.8206 | 0.6375 | 0.7287 | 0.2458 | nan | 0.2891 | 0.4614 | 0.0 | 0.8079 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4162 | 0.0 | 0.0 | 0.6814 | 0.0 | 0.4299 | 0.4185 | 0.0 | nan | 0.0 | 0.2279 | 0.0 | 0.0 | 0.8395 | 0.7741 | 0.9051 | 0.0 | 0.2450 | 0.3209 | 0.0 | | 0.3772 | 92.0 | 9844 | 0.5853 | 0.3107 | 0.3765 | 0.8360 | nan | 0.7945 | 0.9480 | 0.7226 | 0.8569 | 0.2856 | nan | 0.4213 | 0.6610 | 0.0 | 0.9426 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7424 | 0.0 | 0.0 | 0.8737 | 0.0 | 0.5441 | 0.5365 | 0.0 | nan | 0.0 | 0.3261 | 0.0 | 0.0 | 0.9066 | 0.8428 | 0.9565 | 0.0 | 0.3083 | 0.3800 | 0.0 | nan | 0.6627 | 0.8247 | 0.6681 | 0.7259 | 0.2658 | nan | 0.2930 | 0.4638 | 0.0 | 0.8004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4139 | 0.0 | 0.0 | 0.6795 | 0.0 | 0.4294 | 0.4075 | 0.0 | nan | 0.0 | 0.2218 | 0.0 | 0.0 | 0.8407 | 0.7744 | 0.9051 | 0.0 | 0.2460 | 0.3197 | 0.0 | | 0.3886 | 93.0 | 9951 | 0.5873 | 0.3101 | 0.3758 | 0.8353 | nan | 0.7940 | 0.9477 | 0.6976 | 0.8584 | 0.2758 | nan | 0.4271 | 0.6610 | 0.0 | 0.9388 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7573 | 0.0 | 0.0 | 0.8781 | 0.0 | 0.5376 | 0.5151 | 0.0 | nan | 0.0 | 0.3348 | 0.0 | 0.0 | 0.9022 | 0.8517 | 0.9536 | 0.0 | 0.3092 | 0.3870 | 0.0 | nan | 0.6608 | 0.8232 | 0.6593 | 0.7203 | 0.2580 | nan | 0.2931 | 0.4603 | 0.0 | 0.8067 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4182 | 0.0 | 0.0 | 0.6808 | 0.0 | 0.4315 | 0.4049 | 0.0 | nan | 0.0 | 0.2203 | 0.0 | 0.0 | 0.8401 | 0.7743 | 0.9055 | 0.0 | 0.2425 | 0.3223 | 0.0 | | 0.3732 | 93.4579 | 10000 | 0.5890 | 0.3100 | 0.3785 | 0.8340 | nan | 0.7750 | 0.9476 | 0.7198 | 0.8649 | 0.2833 | nan | 0.4461 | 0.6623 | 0.0 | 0.9432 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7612 | 0.0 | 0.0 | 0.8657 | 0.0 | 0.5605 | 0.5325 | 0.0 | nan | 0.0 | 0.3362 | 0.0 | 0.0 | 0.8960 | 0.8673 | 0.9590 | 0.0 | 0.3077 | 0.3834 | 0.0 | nan | 0.6597 | 0.8220 | 0.6669 | 0.7094 | 0.2634 | nan | 0.2962 | 0.4612 | 0.0 | 0.8019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4166 | 0.0 | 0.0 | 0.6806 | 0.0 | 0.4268 | 0.4087 | 0.0 | nan | 0.0 | 0.2241 | 0.0 | 0.0 | 0.8381 | 0.7739 | 0.9036 | 0.0 | 0.2473 | 0.3211 | 0.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
juhw/uiop92
juhw
"2025-03-12T21:25:33Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-12T21:21:40Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ihsanahakiim/videomae-base-finetuned-signlanguage
ihsanahakiim
"2025-03-02T06:22:58Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
"2025-03-02T03:21:39Z"
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-signlanguage results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-signlanguage This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3358 - Accuracy: 0.6567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3560 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:--------:|:----:|:---------------:|:--------:| | 4.2372 | 0.0065 | 23 | 4.2439 | 0.0186 | | 4.2325 | 1.0065 | 46 | 4.2369 | 0.0186 | | 4.1795 | 2.0065 | 69 | 4.2250 | 0.0233 | | 4.211 | 3.0065 | 92 | 4.2141 | 0.0140 | | 4.2361 | 4.0065 | 115 | 4.2051 | 0.0372 | | 4.2524 | 5.0065 | 138 | 4.2052 | 0.0233 | | 4.2297 | 6.0065 | 161 | 4.2014 | 0.0186 | | 4.2596 | 7.0065 | 184 | 4.1950 | 0.0233 | | 4.1911 | 8.0065 | 207 | 4.1898 | 0.0326 | | 4.184 | 9.0065 | 230 | 4.1860 | 0.0279 | | 4.1731 | 10.0065 | 253 | 4.1680 | 0.0419 | | 4.098 | 11.0065 | 276 | 4.1413 | 0.0512 | | 4.1105 | 12.0065 | 299 | 4.1351 | 0.0279 | | 4.1477 | 13.0065 | 322 | 4.1182 | 0.0372 | | 4.0121 | 14.0065 | 345 | 4.0324 | 0.0605 | | 3.8587 | 15.0065 | 368 | 3.9973 | 0.0512 | | 3.8878 | 16.0065 | 391 | 3.9077 | 0.0651 | | 3.7205 | 17.0065 | 414 | 3.8901 | 0.0698 | | 3.6613 | 18.0065 | 437 | 3.7347 | 0.1349 | | 3.5438 | 19.0065 | 460 | 3.6275 | 0.1488 | | 3.4033 | 20.0065 | 483 | 3.5495 | 0.1442 | | 3.2043 | 21.0065 | 506 | 3.5864 | 0.1349 | | 3.1477 | 22.0065 | 529 | 3.4515 | 0.1674 | | 3.0344 | 23.0065 | 552 | 3.3110 | 0.2233 | | 2.9459 | 24.0065 | 575 | 3.2645 | 0.2605 | | 2.6629 | 25.0065 | 598 | 3.1746 | 0.2558 | | 2.764 | 26.0065 | 621 | 3.0833 | 0.3163 | | 2.4924 | 27.0065 | 644 | 2.9918 | 0.3023 | | 2.6696 | 28.0065 | 667 | 3.0009 | 0.3349 | | 2.4616 | 29.0065 | 690 | 2.8396 | 0.4 | | 2.2084 | 30.0065 | 713 | 2.8039 | 0.3674 | | 2.3011 | 31.0065 | 736 | 2.7465 | 0.4 | | 2.1059 | 32.0065 | 759 | 2.6865 | 0.4140 | | 2.0525 | 33.0065 | 782 | 2.6070 | 0.4326 | | 2.1054 | 34.0065 | 805 | 2.6387 | 0.3953 | | 1.8791 | 35.0065 | 828 | 2.5539 | 0.4326 | | 1.7834 | 36.0065 | 851 | 2.4750 | 0.4326 | | 1.5749 | 37.0065 | 874 | 2.4880 | 0.4233 | | 1.6162 | 38.0065 | 897 | 2.3581 | 0.4884 | | 1.5611 | 39.0065 | 920 | 2.2846 | 0.5256 | | 1.5449 | 40.0065 | 943 | 2.2999 | 0.5116 | | 1.6013 | 41.0065 | 966 | 2.2349 | 0.5302 | | 1.3959 | 42.0065 | 989 | 2.1957 | 0.5488 | | 1.1607 | 43.0065 | 1012 | 2.1559 | 0.5209 | | 1.2663 | 44.0065 | 1035 | 2.1192 | 0.5721 | | 1.0869 | 45.0065 | 1058 | 2.0522 | 0.5535 | | 1.2477 | 46.0065 | 1081 | 2.0597 | 0.5767 | | 0.9665 | 47.0065 | 1104 | 2.0365 | 0.5535 | | 1.0521 | 48.0065 | 1127 | 1.9669 | 0.5767 | | 0.8273 | 49.0065 | 1150 | 1.9918 | 0.5907 | | 0.8396 | 50.0065 | 1173 | 1.9576 | 0.5860 | | 0.9543 | 51.0065 | 1196 | 1.9371 | 0.5953 | | 0.8095 | 52.0065 | 1219 | 1.8800 | 0.5953 | | 0.7694 | 53.0065 | 1242 | 1.8737 | 0.6 | | 0.8243 | 54.0065 | 1265 | 1.8846 | 0.6093 | | 0.6632 | 55.0065 | 1288 | 1.8230 | 0.6 | | 0.7446 | 56.0065 | 1311 | 1.7898 | 0.6093 | | 0.7044 | 57.0065 | 1334 | 1.7740 | 0.5907 | | 0.6732 | 58.0065 | 1357 | 1.8061 | 0.6047 | | 0.5786 | 59.0065 | 1380 | 1.7060 | 0.6186 | | 0.6348 | 60.0065 | 1403 | 1.7004 | 0.6140 | | 0.5706 | 61.0065 | 1426 | 1.7013 | 0.6279 | | 0.5007 | 62.0065 | 1449 | 1.6992 | 0.6186 | | 0.5078 | 63.0065 | 1472 | 1.6649 | 0.6047 | | 0.5048 | 64.0065 | 1495 | 1.6449 | 0.6140 | | 0.4526 | 65.0065 | 1518 | 1.6256 | 0.6279 | | 0.504 | 66.0065 | 1541 | 1.6401 | 0.6372 | | 0.3824 | 67.0065 | 1564 | 1.5941 | 0.6093 | | 0.453 | 68.0065 | 1587 | 1.6236 | 0.6186 | | 0.3618 | 69.0065 | 1610 | 1.6100 | 0.6186 | | 0.3689 | 70.0065 | 1633 | 1.5488 | 0.6419 | | 0.3545 | 71.0065 | 1656 | 1.5390 | 0.6465 | | 0.4126 | 72.0065 | 1679 | 1.5287 | 0.6558 | | 0.2734 | 73.0065 | 1702 | 1.4978 | 0.6465 | | 0.3144 | 74.0065 | 1725 | 1.5038 | 0.6326 | | 0.3152 | 75.0065 | 1748 | 1.5692 | 0.6326 | | 0.371 | 76.0065 | 1771 | 1.5331 | 0.6558 | | 0.3033 | 77.0065 | 1794 | 1.4733 | 0.6465 | | 0.2574 | 78.0065 | 1817 | 1.5694 | 0.5907 | | 0.2562 | 79.0065 | 1840 | 1.5097 | 0.6279 | | 0.2162 | 80.0065 | 1863 | 1.4782 | 0.6512 | | 0.2493 | 81.0065 | 1886 | 1.4350 | 0.6465 | | 0.2173 | 82.0065 | 1909 | 1.4730 | 0.6093 | | 0.2508 | 83.0065 | 1932 | 1.4735 | 0.6186 | | 0.1932 | 84.0065 | 1955 | 1.4491 | 0.6326 | | 0.1822 | 85.0065 | 1978 | 1.4155 | 0.6326 | | 0.2051 | 86.0065 | 2001 | 1.4431 | 0.6419 | | 0.2269 | 87.0065 | 2024 | 1.4029 | 0.6419 | | 0.1747 | 88.0065 | 2047 | 1.4643 | 0.6233 | | 0.1464 | 89.0065 | 2070 | 1.3921 | 0.6558 | | 0.1642 | 90.0065 | 2093 | 1.4033 | 0.6512 | | 0.1582 | 91.0065 | 2116 | 1.3728 | 0.6512 | | 0.1641 | 92.0065 | 2139 | 1.3756 | 0.6326 | | 0.1292 | 93.0065 | 2162 | 1.3731 | 0.6512 | | 0.1285 | 94.0065 | 2185 | 1.3559 | 0.6698 | | 0.1405 | 95.0065 | 2208 | 1.4126 | 0.6233 | | 0.1299 | 96.0065 | 2231 | 1.3524 | 0.6419 | | 0.1166 | 97.0065 | 2254 | 1.3812 | 0.6512 | | 0.1434 | 98.0065 | 2277 | 1.4055 | 0.6279 | | 0.1748 | 99.0065 | 2300 | 1.3894 | 0.6558 | | 0.0999 | 100.0065 | 2323 | 1.3665 | 0.6326 | | 0.1361 | 101.0065 | 2346 | 1.3776 | 0.6372 | | 0.118 | 102.0065 | 2369 | 1.3635 | 0.6558 | | 0.0996 | 103.0065 | 2392 | 1.3477 | 0.6512 | | 0.1232 | 104.0065 | 2415 | 1.3550 | 0.6419 | | 0.0783 | 105.0065 | 2438 | 1.3460 | 0.6233 | | 0.1517 | 106.0065 | 2461 | 1.3527 | 0.6279 | | 0.1007 | 107.0065 | 2484 | 1.3040 | 0.6465 | | 0.1036 | 108.0065 | 2507 | 1.3216 | 0.6698 | | 0.1085 | 109.0065 | 2530 | 1.2975 | 0.6326 | | 0.0691 | 110.0065 | 2553 | 1.3401 | 0.6512 | | 0.1231 | 111.0065 | 2576 | 1.3251 | 0.6372 | | 0.0801 | 112.0065 | 2599 | 1.3120 | 0.6605 | | 0.0784 | 113.0065 | 2622 | 1.3061 | 0.6605 | | 0.0891 | 114.0065 | 2645 | 1.2882 | 0.6558 | | 0.0792 | 115.0065 | 2668 | 1.3531 | 0.6558 | | 0.0772 | 116.0065 | 2691 | 1.3200 | 0.6698 | | 0.1068 | 117.0065 | 2714 | 1.3186 | 0.6744 | | 0.0711 | 118.0065 | 2737 | 1.3067 | 0.6419 | | 0.0982 | 119.0065 | 2760 | 1.3161 | 0.6512 | | 0.0741 | 120.0065 | 2783 | 1.3029 | 0.6512 | | 0.1507 | 121.0065 | 2806 | 1.3406 | 0.6605 | | 0.0602 | 122.0065 | 2829 | 1.3187 | 0.6558 | | 0.0748 | 123.0065 | 2852 | 1.2874 | 0.6605 | | 0.0638 | 124.0065 | 2875 | 1.2871 | 0.6791 | | 0.0915 | 125.0065 | 2898 | 1.2869 | 0.6465 | | 0.0749 | 126.0065 | 2921 | 1.2859 | 0.6558 | | 0.0717 | 127.0065 | 2944 | 1.3222 | 0.6372 | | 0.0539 | 128.0065 | 2967 | 1.3263 | 0.6326 | | 0.0488 | 129.0065 | 2990 | 1.2945 | 0.6512 | | 0.0696 | 130.0065 | 3013 | 1.2636 | 0.6698 | | 0.0665 | 131.0065 | 3036 | 1.2910 | 0.6698 | | 0.0562 | 132.0065 | 3059 | 1.2820 | 0.6558 | | 0.0527 | 133.0065 | 3082 | 1.2927 | 0.6651 | | 0.057 | 134.0065 | 3105 | 1.2846 | 0.6558 | | 0.0764 | 135.0065 | 3128 | 1.3104 | 0.6651 | | 0.0805 | 136.0065 | 3151 | 1.3110 | 0.6465 | | 0.0503 | 137.0065 | 3174 | 1.3107 | 0.6558 | | 0.0629 | 138.0065 | 3197 | 1.2915 | 0.6465 | | 0.0491 | 139.0065 | 3220 | 1.2753 | 0.6558 | | 0.0456 | 140.0065 | 3243 | 1.3105 | 0.6605 | | 0.053 | 141.0065 | 3266 | 1.2686 | 0.6558 | | 0.051 | 142.0065 | 3289 | 1.2831 | 0.6651 | | 0.0669 | 143.0065 | 3312 | 1.2852 | 0.6698 | | 0.0445 | 144.0065 | 3335 | 1.2868 | 0.6651 | | 0.0414 | 145.0065 | 3358 | 1.2806 | 0.6698 | | 0.0575 | 146.0065 | 3381 | 1.2815 | 0.6651 | | 0.0392 | 147.0065 | 3404 | 1.2596 | 0.6558 | | 0.0898 | 148.0065 | 3427 | 1.2666 | 0.6698 | | 0.0617 | 149.0065 | 3450 | 1.2629 | 0.6605 | | 0.0453 | 150.0065 | 3473 | 1.2797 | 0.6651 | | 0.0398 | 151.0065 | 3496 | 1.2698 | 0.6558 | | 0.0435 | 152.0065 | 3519 | 1.2721 | 0.6558 | | 0.0507 | 153.0065 | 3542 | 1.2745 | 0.6512 | | 0.0525 | 154.0051 | 3560 | 1.2777 | 0.6512 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.0.1+cu118 - Datasets 3.3.2 - Tokenizers 0.21.0
abdullahfurquan/mistral_instruct_generation_own_data
abdullahfurquan
"2024-04-16T10:58:52Z"
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
"2024-04-16T10:29:44Z"
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 datasets: - generator model-index: - name: mistral_instruct_generation_own_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_instruct_generation_own_data This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6476 | 2.5 | 20 | 0.4816 | | 0.3414 | 5.0 | 40 | 0.3842 | | 0.2565 | 7.5 | 60 | 0.3931 | | 0.1973 | 10.0 | 80 | 0.4198 | | 0.1245 | 12.5 | 100 | 0.4734 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
espnet/kan-bayashi_vctk_tts_train_gst_xvector_conformer_fastspeech2_transform-truncated-e051a9
espnet
"2021-07-03T15:00:13Z"
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
"2022-03-02T23:29:05Z"
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst+xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4394608/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Preeda/custom-resnet18-model-1
Preeda
"2024-06-05T03:30:45Z"
79
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
"2024-06-05T03:30:36Z"
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
eageringdev/c76a542b-056b-4a05-913b-6b4f0a86ac4e
eageringdev
"2025-02-07T22:36:12Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
"2025-02-07T22:30:03Z"
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: c76a542b-056b-4a05-913b-6b4f0a86ac4e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f5b2c02e5839d40f_train_data.json ds_type: json format: custom path: /workspace/input_data/f5b2c02e5839d40f_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: eageringdev/c76a542b-056b-4a05-913b-6b4f0a86ac4e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 1540 micro_batch_size: 2 mlflow_experiment_name: /tmp/f5b2c02e5839d40f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6f786248-2197-4023-a381-b548ed19bd9d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6f786248-2197-4023-a381-b548ed19bd9d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c76a542b-056b-4a05-913b-6b4f0a86ac4e This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1540 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7691 | 0.0000 | 1 | 11.7650 | | 11.7368 | 0.0158 | 385 | 11.7344 | | 11.7267 | 0.0316 | 770 | 11.7316 | | 11.7243 | 0.0475 | 1155 | 11.7306 | | 11.7302 | 0.0633 | 1540 | 11.7305 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
abrotech/ALM-Math-Latex
abrotech
"2025-04-01T15:33:41Z"
0
0
transformers
[ "transformers", "qwen2_5_vl", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-01T15:33:37Z"
Temporary Redirect. Redirecting to /api/resolve-cache/models/abrotech/ALM-Math-Latex/f0072a5a8add59e25ce593dc887b55e1ad6b23cb/README.md?%2Fabrotech%2FALM-Math-Latex%2Fresolve%2Fmain%2FREADME.md=&etag=%22dc4bb7fa4c9724ee0ade7c2092cac75905ff74c4%22
bigband/VisionarySekhmet
bigband
"2025-04-13T20:31:25Z"
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
"2025-04-13T20:20:49Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
samoline/4fb6091d-d88a-49fe-9d4c-ad3b17a39a59
samoline
"2025-02-26T03:59:38Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "region:us" ]
null
"2025-02-26T03:51:58Z"
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 4fb6091d-d88a-49fe-9d4c-ad3b17a39a59 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bd07874fa96e3b1a_train_data.json ds_type: json format: custom path: /workspace/input_data/bd07874fa96e3b1a_train_data.json type: field_input: description field_instruction: input persona field_output: synthesized text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/4fb6091d-d88a-49fe-9d4c-ad3b17a39a59 hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/bd07874fa96e3b1a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: c36f8c49-e5a9-4577-b0b9-4685f343695c wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: c36f8c49-e5a9-4577-b0b9-4685f343695c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4fb6091d-d88a-49fe-9d4c-ad3b17a39a59 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.456 | 0.0000 | 1 | 1.2673 | | 1.3132 | 0.0000 | 2 | 1.2674 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
edixo/road_good_damaged_condition
edixo
"2021-07-05T14:43:15Z"
84
5
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2022-03-02T23:29:05Z"
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: road_good_damaged_condition results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9583333134651184 --- # road_good_damaged_condition Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### damaged road ![damaged road](images/damaged_road.jpg) #### good road ![good road](images/good_road.jpg)
kujirahand/whisper-ja
kujirahand
"2023-02-19T02:59:53Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-02-16T10:15:04Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-ja results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-ja This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4305 - Wer: 22.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.01 | 5 | 1.8992 | 29.5429 | | No log | 0.01 | 10 | 1.4305 | 22.5625 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.6.1 - Tokenizers 0.13.2
mradermacher/symptom-check-april-3-GGUF
mradermacher
"2024-12-27T09:09:46Z"
83
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:akhileshav8/symptom-check-april-3", "base_model:quantized:akhileshav8/symptom-check-april-3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-12-27T09:08:55Z"
--- base_model: akhileshav8/symptom-check-april-3 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/akhileshav8/symptom-check-april-3 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/symptom-check-april-3-GGUF/resolve/main/symptom-check-april-3.f16.gguf) | f16 | 0.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
haonan-li/bactrian-id-bloom-7b1-lora
haonan-li
"2023-06-13T13:28:40Z"
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
"2023-06-13T13:28:28Z"
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Indonesian. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-id-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
srvmishra832/emotions-dataset-distilbert-base-uncased
srvmishra832
"2025-03-27T13:53:29Z"
1
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:dair-ai/emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-09T07:08:30Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>503</h1> <p>We had to rate limit you. To continue using our service, please log in or create an account.</p> </div> </main> </body> </html>
MinHyeong/dolly-v2-7b_focal04
MinHyeong
"2025-03-30T16:15:33Z"
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-30T16:09:27Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
lukasfast/Teuken-7B-instruct-research-v0.4-Q4_K_M-GGUF
lukasfast
"2025-01-22T18:12:21Z"
36
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "de", "bg", "cs", "da", "el", "en", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sl", "sv", "sk", "base_model:openGPT-X/Teuken-7B-instruct-research-v0.4", "base_model:quantized:openGPT-X/Teuken-7B-instruct-research-v0.4", "license:other", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-22T18:11:56Z"
--- language: - de - bg - cs - da - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sl - sv - sk metrics: - accuracy - bleu pipeline_tag: text-generation library_name: transformers base_model: openGPT-X/Teuken-7B-instruct-research-v0.4 license: other tags: - llama-cpp - gguf-my-repo --- # lukasfast/Teuken-7B-instruct-research-v0.4-Q4_K_M-GGUF This model was converted to GGUF format from [`openGPT-X/Teuken-7B-instruct-research-v0.4`](https://huggingface.co/openGPT-X/Teuken-7B-instruct-research-v0.4) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/openGPT-X/Teuken-7B-instruct-research-v0.4) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo lukasfast/Teuken-7B-instruct-research-v0.4-Q4_K_M-GGUF --hf-file teuken-7b-instruct-research-v0.4-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo lukasfast/Teuken-7B-instruct-research-v0.4-Q4_K_M-GGUF --hf-file teuken-7b-instruct-research-v0.4-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo lukasfast/Teuken-7B-instruct-research-v0.4-Q4_K_M-GGUF --hf-file teuken-7b-instruct-research-v0.4-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo lukasfast/Teuken-7B-instruct-research-v0.4-Q4_K_M-GGUF --hf-file teuken-7b-instruct-research-v0.4-q4_k_m.gguf -c 2048 ```
xiaozhangMJXXZ/SEX-lora-all
xiaozhangMJXXZ
"2023-01-26T07:25:32Z"
0
62
null
[ "region:us" ]
null
"2023-01-22T17:47:32Z"
ERROR: type should be string, got "\nhttps://t.me/+a-k8rVfjIVk3NGU1 \nhttps://t.me/loraeveryone\n这是tg群组,之后会在第一时间更新tg,因为tg可以直接传tg原文件呜呜呜,笑脸站会缓慢更新!\n笑脸上下载不下来的也可以直接来tg下载\n这里是色色的lora合集,希望各位可以及时来补充!!! \n分别为打包全下载与单个角色,由于中文名字的文件无法下载所以是压缩包的形式,下载之后需要各位解压一下里面就有对应的中文名字了。 校 长的联系方式:qq3062945846\n\n只是为了方便中文玩家而搬运整理!!\n\n有目录的截图小伙伴们可以参照!\n\n我们十分尊敬每一位lora的作者!!\n\n感谢你们的付出!!\n\n大家好这里是校长,目前这边准备来整合质量高些的lora模型, 已经是整理了70+并且给打上了中文标注以及把触发tag直接打到了文件名字上, 有些复杂的衣物装饰什么的还在旁边附带了同名的文档可以方便查阅。 如果大家有比较好的且跟目前的不同的lora的话, 希望可以来找咱发下Lora模型, 我把它们全部都统一整理完之后进行分类整理并且分享给大家(是lora模型哦,不是平常的大模型)。"
carnival13/xnli-non_gst-mbert-b-cased
carnival13
"2025-04-14T18:06:19Z"
7
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-02-19T23:12:26Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
freshpearYoon/largev2_temp
freshpearYoon
"2024-02-05T05:44:16Z"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "base_model:openai/whisper-large-v2", "base_model:finetune:openai/whisper-large-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-01-29T13:15:35Z"
--- language: - ko license: apache-2.0 base_model: openai/whisper-large-v2 tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: whisper_finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_finetune This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the aihub_1_15 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.16.1 - Tokenizers 0.15.1
raajkumar16/english-tamil-colloquial-translator
raajkumar16
"2025-02-17T06:06:51Z"
2
0
peft
[ "peft", "safetensors", "llama", "unsloth", "generated_from_trainer", "base_model:unsloth/tinyllama-chat-bnb-4bit", "base_model:adapter:unsloth/tinyllama-chat-bnb-4bit", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-02-12T08:21:04Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama-chat-bnb-4bit tags: - unsloth - generated_from_trainer model-index: - name: english-tamil-colloquial-translator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-tamil-colloquial-translator This model is a fine-tuned version of [unsloth/tinyllama-chat-bnb-4bit](https://huggingface.co/unsloth/tinyllama-chat-bnb-4bit) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.4556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 14.8974 | 2.0 | 2 | 9.4556 | | 14.8974 | 4.0 | 4 | 9.4556 | | 14.8974 | 6.0 | 6 | 9.4556 | | 14.8974 | 8.0 | 8 | 9.4556 | | 14.8974 | 10.0 | 10 | 9.4556 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0
PHL99/Reinforce-Pixelcopter-PLE-v0
PHL99
"2023-09-29T19:19:25Z"
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2023-09-08T22:31:30Z"
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.60 +/- 13.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jmailman/jb_mailman_marketing_mail
jmailman
"2024-03-18T17:39:11Z"
3
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-03-18T04:08:03Z"
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kallilikhitha123/llama-Quantized-Model-8B_10lakh_03-03-2025
kallilikhitha123
"2025-03-03T11:58:52Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2025-03-03T10:55:07Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]