modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
johngreendr1/2afad5de-217f-4ab5-860f-b3dd1b442cdc
johngreendr1
2025-08-12T19:47:20Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "region:us" ]
null
2025-08-12T14:37:53Z
--- base_model: NousResearch/Yarn-Mistral-7b-128k library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
roeker/blockassist-bc-quick_wiry_owl_1755027914
roeker
2025-08-12T19:46:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:46:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muennighoff/Qwen2.5-1.5B-hl-baseline-v39
Muennighoff
2025-08-12T19:45:20Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:Muennighoff/openaimath-100", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-10T22:46:22Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct datasets: Muennighoff/openaimath-100 library_name: transformers model_name: Qwen2.5-1.5B-hl-baseline-v39 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-1.5B-hl-baseline-v39 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [Muennighoff/openaimath-100](https://huggingface.co/datasets/Muennighoff/openaimath-100) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Muennighoff/Qwen2.5-1.5B-hl-baseline-v39", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/muennighoff/halos/runs/m6bbj8uy) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.53.0 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tuananhle/forecaster_dow30_tokenizer_250813
tuananhle
2025-08-12T19:43:27Z
0
0
transformers
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T19:43:25Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roeker/blockassist-bc-quick_wiry_owl_1755027684
roeker
2025-08-12T19:42:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:42:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ibm-granite/granite-vision-3.3-2b-GGUF
ibm-granite
2025-08-12T19:42:06Z
0
0
transformers
[ "transformers", "gguf", "language", "granite-3.3", "en", "arxiv:2502.09927", "base_model:ibm-granite/granite-vision-3.3-2b", "base_model:quantized:ibm-granite/granite-vision-3.3-2b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T16:43:29Z
--- license: apache-2.0 language: - en tags: - language - granite-3.3 - gguf base_model: - ibm-granite/granite-vision-3.3-2b library_name: transformers --- > [!NOTE] > This repository contains models that have been converted to the GGUF format with various quantizations from an IBM Granite base model. > > Please reference the base model's full model card here: > https://huggingface.co/ibm-granite/granite-vision-3.3-2b **Model Summary**: Granite-vision-3.3-2b is a compact and efficient vision-language model, specifically designed for visual document understanding, enabling automated content extraction from tables, charts, infographics, plots, diagrams, and more. Granite-vision-3.3-2b introduces several novel experimental features such as *image segmentation*, *doctags generation*, and *multi-page support* (see **Experimental Capabilities** for more details) and offers enhanced safety when compared to earlier Granite vision models. The model was trained on a meticulously curated instruction-following data, comprising diverse public and synthetic datasets tailored to support a wide range of document understanding and general image tasks. Granite-vision-3.3-2b was trained by fine-tuning a Granite large language model with both image and text modalities. - **Paper:** [Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence](https://arxiv.org/abs/2502.09927). Note that the paper describes Granite Vision 3.2. Granite Vision 3.3 shares most of the technical underpinnings with Granite 3.2. However, there are several enhancements in terms of new and improved vision encoder, many new high quality datasets for training, and several new experimental capabilities. - **Release Date**: Jun 11th, 2025 - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) **Supported Input Format:** Currently the model supports English instructions and images (png, jpeg) as input format. **Intended Use:** The model is intended to be used in enterprise applications that involve processing visual and text data. In particular, the model is well-suited for a range of visual document understanding tasks, such as analyzing tables and charts, performing optical character recognition (OCR), and answering questions based on document content. Additionally, its capabilities extend to general image understanding, enabling it to be applied to a broader range of business applications. For tasks that exclusively involve text-based input, we suggest using our Granite large language models, which are optimized for text-only processing and offer superior performance compared to this model.
Grogun/blockassist-bc-lightfooted_yapping_macaw_1755027574
Grogun
2025-08-12T19:40:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted yapping macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:39:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted yapping macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Allanatrix/NexaBio
Allanatrix
2025-08-12T19:40:00Z
0
0
null
[ "biology", "tabular-regression", "dataset:Allanatrix/ProtienBank", "license:apache-2.0", "region:us" ]
tabular-regression
2025-06-13T18:43:03Z
--- license: apache-2.0 pipeline_tag: tabular-regression tags: - biology datasets: - Allanatrix/ProtienBank metrics: - accuracy --- # NexaBio: Advanced Protein Structure Prediction Models **NexaBio** is a sophisticated two-stage model suite designed for high-accuracy protein structure prediction from amino acid sequences. It comprises two complementary models: - **NexaBio_1**: A Convolutional Neural Network (CNN) and Bidirectional LSTM (BiLSTM) model for secondary structure prediction. - **NexaBio_2**: A Variational Autoencoder (VAE) and Diffusion-based model for tertiary (3D) structure prediction. NexaBio is a core component of the [Nexa Scientific Model Suite](https://huggingface.co/spaces/Allanatrix/NexaHub), a collection of machine learning models advancing scientific discovery. ## Model Overview ### NexaBio_1: Secondary Structure Prediction - **Architecture**: CNN combined with BiLSTM for robust sequence modeling. - **Input**: Amino acid sequence (one-hot encoded or embedded). - **Output**: Secondary structure classifications (e.g., Helix, Sheet, Coil). - **Use Case**: Identification of local structural motifs and protein folding patterns. ### NexaBio_2: Tertiary Structure Prediction - **Architecture**: VAE integrated with a Diffusion Model for generative 3D modeling. - **Input**: Amino acid sequence (optionally augmented with secondary structure predictions). - **Output**: 3D coordinates of protein backbone atoms. - **Use Case**: Full tertiary structure prediction for structural analysis and design. ## Applications - **Structural Bioinformatics**: Enabling precise protein structure analysis for research. - **Drug Discovery**: Supporting protein-ligand interaction studies and therapeutic design. - **Protein Engineering**: Facilitating the design of novel proteins for industrial and medical applications. - **Synthetic Biology**: Generating protein structures for biotechnological innovation. - **Academic Research**: Serving as a tool for educational and exploratory studies. ## Getting Started ### Example Usage ```python from transformers import AutoModel # Initialize the secondary structure prediction model model_sec = AutoModel.from_pretrained("Allanatrix/NexaBio_1") # Initialize the tertiary structure prediction model model_ter = AutoModel.from_pretrained("Allanatrix/NexaBio_2") # Process an amino acid sequence (refer to model documentation for input formatting) ``` For comprehensive instructions, including inference APIs and preprocessing details, consult the individual model cards on Hugging Face. ## Citation and License If you utilize NexaBio in your research or applications, please cite this repository and include a link to the [Nexa R&D Space](https://huggingface.co/spaces/Allanatrix/NexaR&D). The models and associated code are licensed under the **Boost Software License 1.1 (BSL-1.1)**. ## Part of the Nexa Scientific Ecosystem Discover other components of the Nexa Scientific Stack: - [Nexa Data Studio](https://huggingface.co/spaces/Allanatrix/NexaDataStudio): Data processing and visualization tools. - [Nexa R&D](https://huggingface.co/spaces/Allanatrix/NexaR&D): Research-focused model development environment. - [Nexa Infrastructure](https://huggingface.co/spaces/Allanatrix/NexaInfrastructure): Scalable ML deployment solutions. - [Nexa Hub](https://huggingface.co/spaces/Allanatrix/NexaHub): Central portal for Nexa resources. --- *Developed and maintained by [Allan](https://huggingface.co/Allanatrix), an independent machine learning researcher specializing in scientific AI and infrastructure.*
shoaib9/phase2
shoaib9
2025-08-12T19:38:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T19:38:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755027387
IvanJAjebu
2025-08-12T19:37:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:37:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/LFM2-350M-q8-hi-mlx
nightmedia
2025-08-12T19:36:43Z
0
0
mlx
[ "mlx", "safetensors", "lfm2", "liquid", "edge", "text-generation", "conversational", "en", "ar", "zh", "fr", "de", "ja", "ko", "es", "base_model:LiquidAI/LFM2-350M", "base_model:quantized:LiquidAI/LFM2-350M", "license:other", "8-bit", "region:us" ]
text-generation
2025-08-12T19:35:04Z
--- library_name: mlx license: other license_name: lfm1.0 license_link: LICENSE language: - en - ar - zh - fr - de - ja - ko - es pipeline_tag: text-generation tags: - liquid - lfm2 - edge - mlx base_model: LiquidAI/LFM2-350M --- # LFM2-350M-q8-hi-mlx This model [LFM2-350M-q8-hi-mlx](https://huggingface.co/LFM2-350M-q8-hi-mlx) was converted to MLX format from [LiquidAI/LFM2-350M](https://huggingface.co/LiquidAI/LFM2-350M) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("LFM2-350M-q8-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755027242
ggozzy
2025-08-12T19:35:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:35:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Grogun/blockassist-bc-lightfooted_yapping_macaw_1755027244
Grogun
2025-08-12T19:35:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted yapping macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:34:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted yapping macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755027231
roeker
2025-08-12T19:34:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:34:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1755025851
aleebaster
2025-08-12T19:34:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:34:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Fa51me/blockassist-bc-hibernating_thorny_elk_1755025610
Fa51me
2025-08-12T19:34:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hibernating thorny elk", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:33:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hibernating thorny elk --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755025436
calegpedia
2025-08-12T19:31:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:31:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/LFM2-350M-dwq5-mlx
nightmedia
2025-08-12T19:31:12Z
0
0
mlx
[ "mlx", "safetensors", "lfm2", "liquid", "edge", "text-generation", "conversational", "en", "ar", "zh", "fr", "de", "ja", "ko", "es", "base_model:LiquidAI/LFM2-350M", "base_model:quantized:LiquidAI/LFM2-350M", "license:other", "5-bit", "region:us" ]
text-generation
2025-08-12T19:30:02Z
--- library_name: mlx license: other license_name: lfm1.0 license_link: LICENSE language: - en - ar - zh - fr - de - ja - ko - es pipeline_tag: text-generation tags: - liquid - lfm2 - edge - mlx base_model: LiquidAI/LFM2-350M --- # LFM2-350M-dwq5-mlx This model [LFM2-350M-dwq5-mlx](https://huggingface.co/LFM2-350M-dwq5-mlx) was converted to MLX format from [LiquidAI/LFM2-350M](https://huggingface.co/LiquidAI/LFM2-350M) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("LFM2-350M-dwq5-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755026937
ggozzy
2025-08-12T19:30:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:30:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755025324
indoempatnol
2025-08-12T19:28:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:27:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755026764
roeker
2025-08-12T19:27:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:26:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmdnxja7k09ixsp0y4nroojx9_cme8uncjd02szrts8xlhdk69t
BootesVoid
2025-08-12T19:26:21Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T19:25:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MCROBER67 --- # Cmdnxja7K09Ixsp0Y4Nroojx9_Cme8Uncjd02Szrts8Xlhdk69T <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MCROBER67` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MCROBER67", "lora_weights": "https://huggingface.co/BootesVoid/cmdnxja7k09ixsp0y4nroojx9_cme8uncjd02szrts8xlhdk69t/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmdnxja7k09ixsp0y4nroojx9_cme8uncjd02szrts8xlhdk69t', weight_name='lora.safetensors') image = pipeline('MCROBER67').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmdnxja7k09ixsp0y4nroojx9_cme8uncjd02szrts8xlhdk69t/discussions) to add images that show off what you’ve made with this LoRA.
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755026433
canoplos112
2025-08-12T19:23:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:21:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755026534
roeker
2025-08-12T19:23:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:23:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gemvision13/blockassist-bc-finicky_jagged_panda_1755026482
Gemvision13
2025-08-12T19:22:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky jagged panda", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:22:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky jagged panda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ainekko/et-bank-7b-kvc-fp16
ainekko
2025-08-12T19:20:43Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-12T16:08:14Z
--- license: apache-2.0 ---
nightmedia/LFM2-1.2B-q8-hi-mlx
nightmedia
2025-08-12T19:20:41Z
0
0
mlx
[ "mlx", "safetensors", "lfm2", "liquid", "edge", "text-generation", "conversational", "en", "ar", "zh", "fr", "de", "ja", "ko", "es", "base_model:LiquidAI/LFM2-1.2B", "base_model:quantized:LiquidAI/LFM2-1.2B", "license:other", "8-bit", "region:us" ]
text-generation
2025-08-12T19:12:11Z
--- library_name: mlx license: other license_name: lfm1.0 license_link: LICENSE language: - en - ar - zh - fr - de - ja - ko - es pipeline_tag: text-generation tags: - liquid - lfm2 - edge - mlx base_model: LiquidAI/LFM2-1.2B --- # LFM2-1.2B-q8-hi-mlx This model [LFM2-1.2B-q8-hi-mlx](https://huggingface.co/LFM2-1.2B-q8-hi-mlx) was converted to MLX format from [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("LFM2-1.2B-q8-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755026327
ggozzy
2025-08-12T19:20:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:19:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
te4bag/GRIT-Full-MIMIC-llama-3.1-8B-Energy-0.9
te4bag
2025-08-12T19:19:59Z
0
0
peft
[ "peft", "safetensors", "llama", "alpaca", "grit", "lora", "qlora", "instruction-tuning", "fine-tuned", "text-generation", "en", "dataset:ParamDev/hcc_original", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:apache-2.0", "region:us" ]
text-generation
2025-08-12T19:19:39Z
--- tags: - llama - alpaca - grit - lora - qlora - instruction-tuning - fine-tuned base_model: meta-llama/Llama-3.1-8B library_name: peft license: apache-2.0 datasets: - ParamDev/hcc_original language: - en pipeline_tag: text-generation --- # meta-llama/Llama-3.1-8B Fine-tuned with GRIT and QLoRA This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) using the **GRIT** (Geometric Reprojection Instruction Tuning) algorithm and **QLoRA** on the [ParamDev/hcc_original dataset](https://huggingface.co/datasets/ParamDev/hcc_original). The base model is quantized to 4-bit (NF4) to enable efficient fine-tuning. ## 🚀 Training Details ### GRIT Algorithm - **K-FAC Updates**: Every 2 steps (adaptive) for second-order preconditioning. - **Neural Reprojection**: Every 10 steps (adaptive) for rank optimization. - **Rank Adaptation**: Enabled (Threshold: 0.9, Min Rank: 4). - **Optimized LoRA Modules**: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'] ### Fine-tuning Configuration - **Base Model**: meta-llama/Llama-3.1-8B - **Quantization**: 4-bit (NF4) with bf16 compute. - **LoRA Rank**: 32 - **LoRA Alpha**: 64 - **Batch Size**: 2 (per device) - **Gradient Accumulation**: 2 (Effective batch = 4) - **Learning Rate**: 2.0e-05 - **Precision**: bf16 mixed precision - **Sequence Length**: 16384 tokens - **Gradient Checkpointing**: Enabled ### Performance Improvements - ✅ **Faster Convergence**: K-FAC preconditioning aligns updates with curvature. - ✅ **Memory-Efficient**: 4-bit quantization (QLoRA) and gradient checkpointing used. - ✅ **Adaptive Rank**: Dynamically prunes LoRA rank to improve parameter efficiency. ## 📊 Training Metrics - **Total Steps**: 130 - **Final Loss**: 0.44451914383814883 - **Trainable Params**: 83,886,080 ## 📝 Algorithm Details - **K-FAC Preconditioning** (Natural Gradient) and **Neural Reprojection** as per GRIT method. - **Memory Efficient**: Covariance matrices on CPU to reduce GPU load. ## 🏆 Results In benchmark comparisons, GRIT has shown **faster convergence and better stability** than standard LoRA or fine-tuning, making it well-suited for efficient single-epoch training. The use of Unsloth further accelerates this process. ## 📝 Citation If you use this model, please cite the original GRIT paper and: ```bibtex @misc{grit-lora-Llama-3.1-8B-hcc_original}, title={ meta-llama/Llama-3.1-8B Fine-tuned with GRIT on ParamDev/hcc_original }, author={te4bag}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/te4bag/GRIT-Full-MIMIC-llama-3.1-8B-Energy-0.9} } ``` ## ⚖️ License This model inherits the Apache 2.0 license.
koloni/blockassist-bc-deadly_graceful_stingray_1755024729
koloni
2025-08-12T19:19:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:18:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wuav/Jinx-gpt-oss-20b-Q4_K_M-GGUF
wuav
2025-08-12T19:18:14Z
0
1
transformers
[ "transformers", "gguf", "vllm", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Jinx-org/Jinx-gpt-oss-20b", "base_model:quantized:Jinx-org/Jinx-gpt-oss-20b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T19:17:05Z
--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation base_model: Jinx-org/Jinx-gpt-oss-20b tags: - vllm - llama-cpp - gguf-my-repo extra_gated_heading: You need to read and agree to the Disclaimer and User Agreementa to access this model. extra_gated_description: ' ## Disclaimer and User Agreement 1. Introduction Thank you for your interest in accessing this model (“the Model”). Before you access, download, or use the Model or any derivative works, please read and understand this Disclaimer and User Agreement (“Agreement”). By checking “I have read and agree” and accessing the Model, you acknowledge that you have read, understood, and agreed to all terms of this Agreement. If you do not agree with any part of this Agreement, do not request or use the Model. 2. Nature of the Model & Risk Notice The Model is trained using large-scale machine learning techniques and may generate inaccurate, false, offensive, violent, sexual, discriminatory, politically sensitive, or otherwise uncontrolled content. The Model does not guarantee the accuracy, completeness, or legality of any generated content. You must independently evaluate and verify the outputs, and you assume all risks arising from their use. The Model may reflect biases or errors present in its training data, potentially producing inappropriate or controversial outputs. 3. License and Permitted Use You may use the Model solely for lawful, compliant, and non-malicious purposes in research, learning, experimentation, and development, in accordance with applicable laws and regulations. You must not use the Model for activities including, but not limited to: Creating, distributing, or promoting unlawful, violent, pornographic, terrorist, discriminatory, defamatory, or privacy-invasive content; Any activity that could cause significant negative impact on individuals, groups, organizations, or society; High-risk applications such as automated decision-making, medical diagnosis, financial transactions, or legal advice without proper validation and human oversight. You must not remove, alter, or circumvent any safety mechanisms implemented in the Model. 4. Data and Privacy You are solely responsible for any data processed or generated when using the Model, including compliance with data protection and privacy regulations. The Model’s authors and contributors make no guarantees or warranties regarding data security or privacy. 5. Limitation of Liability To the maximum extent permitted by applicable law, the authors, contributors, and their affiliated institutions shall not be liable for any direct, indirect, incidental, or consequential damages arising from the use of the Model. You agree to bear full legal responsibility for any disputes, claims, or litigation arising from your use of the Model, and you release the authors and contributors from any related liability. 6. Updates and Termination This Agreement may be updated at any time, with updates posted on the Model’s page and effective immediately upon publication. If you violate this Agreement, the authors reserve the right to revoke your access to the Model at any time. I have read and fully understand this Disclaimer and User Agreement, and I accept full responsibility for any consequences arising from my use of the Model.' extra_gated_button_content: I've read and agree --- # wuav/Jinx-gpt-oss-20b-Q4_K_M-GGUF This model was converted to GGUF format from [`Jinx-org/Jinx-gpt-oss-20b`](https://huggingface.co/Jinx-org/Jinx-gpt-oss-20b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Jinx-org/Jinx-gpt-oss-20b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo wuav/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo wuav/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo wuav/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo wuav/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -c 2048 ```
chiachenwo/gpt_MLM_large
chiachenwo
2025-08-12T19:17:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "endpoints_compatible", "region:us" ]
null
2025-08-12T13:04:13Z
--- base_model: openai/gpt-oss-20b library_name: transformers model_name: gpt_MLM_large tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gpt_MLM_large This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chiachenwo/gpt_MLM_large", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chiachenwo-northwestern-university/huggingface/runs/fg9pu96l) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.56.0.dev0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
liskil/KPG
liskil
2025-08-12T19:16:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-12T19:16:18Z
--- license: apache-2.0 ---
roeker/blockassist-bc-quick_wiry_owl_1755026073
roeker
2025-08-12T19:15:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:15:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/II-Medical-32B-Preview-GGUF
mradermacher
2025-08-12T19:14:49Z
617
1
transformers
[ "transformers", "gguf", "en", "base_model:Intelligent-Internet/II-Medical-32B-Preview", "base_model:quantized:Intelligent-Internet/II-Medical-32B-Preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-24T19:59:55Z
--- base_model: Intelligent-Internet/II-Medical-32B-Preview language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Intelligent-Internet/II-Medical-32B-Preview <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#II-Medical-32B-Preview-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/II-Medical-32B-Preview-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q3_K_M.gguf) | Q3_K_M | 16.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q3_K_L.gguf) | Q3_K_L | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q4_K_M.gguf) | Q4_K_M | 19.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q5_K_M.gguf) | Q5_K_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/II-Medical-32B-Preview-GGUF/resolve/main/II-Medical-32B-Preview.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Jessica-Radcliffe-Orca-Attack-V-iral-Video/Jessica-Radcliffe.Orca.Attack.Viral.Video.Clip
Jessica-Radcliffe-Orca-Attack-V-iral-Video
2025-08-12T19:13:31Z
0
0
null
[ "region:us" ]
null
2025-08-12T19:09:17Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Jessica-Radcliffe-Orca-Attack">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Jessica-Radcliffe-Orca-Attack">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Jessica-Radcliffe-Orca-Attack"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1755025855
Ferdi3425
2025-08-12T19:12:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:11:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jack-Payne1/qwen_2.5_7b-phoenix_T1_format_seed2
Jack-Payne1
2025-08-12T19:11:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T19:08:52Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Jack-Payne1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755025716
ggozzy
2025-08-12T19:09:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:09:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755025614
roeker
2025-08-12T19:07:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:07:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1755025583
Ferdi3425
2025-08-12T19:07:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:07:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mozilla-ai/jina-embeddings-v2-small-en-off-topic
mozilla-ai
2025-08-12T19:07:09Z
3
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "text-classification", "license:mit", "region:us" ]
text-classification
2025-08-07T18:28:42Z
--- license: mit pipeline_tag: text-classification tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: For full documentation of this model, please see the official [model card](https://huggingface.co/govtech/jina-embeddings-v2-small-en-off-topic). They are the ones who built the model. Mozilla AI has made it so you can call the `govtech/jina-embeddings-v2-small-en-off-topic` using `from_pretrained`. To do this, you'll need to first pull the `CrossEncoderWithSharedBase` model architectuer from their model card and make sure to add `PyTorchModelHubMixin` as an inherited class. See this [article](https://huggingface.co/docs/hub/en/models-uploading#upload-a-pytorch-model-using-huggingfacehub) Then, you can do the following: ```python from transformers import AutoModel, AutoTokenizer from huggingface_hub import PyTorchModelHubMixin import torch.nn as nn class Adapter(nn.Module): def __init__(self, hidden_size): super(Adapter, self).__init__() self.down_project = nn.Linear(hidden_size, hidden_size // 2) self.activation = nn.ReLU() self.up_project = nn.Linear(hidden_size // 2, hidden_size) def forward(self, x): down = self.down_project(x) activated = self.activation(down) up = self.up_project(activated) return up + x # Residual connection class AttentionPooling(nn.Module): def __init__(self, hidden_size): super(AttentionPooling, self).__init__() self.attention_weights = nn.Parameter(torch.randn(hidden_size)) def forward(self, hidden_states): # hidden_states: [seq_len, batch_size, hidden_size] scores = torch.matmul(hidden_states, self.attention_weights) attention_weights = torch.softmax(scores, dim=0) weighted_sum = torch.sum(attention_weights.unsqueeze(-1) * hidden_states, dim=0) return weighted_sum class CrossEncoderWithSharedBase(nn.Module, PyTorchModelHubMixin): def __init__(self, base_model, num_labels=2, num_heads=8): super(CrossEncoderWithSharedBase, self).__init__() # Shared pre-trained model self.shared_encoder = base_model hidden_size = self.shared_encoder.config.hidden_size # Sentence-specific adapters self.adapter1 = Adapter(hidden_size) self.adapter2 = Adapter(hidden_size) # Cross-attention layers self.cross_attention_1_to_2 = nn.MultiheadAttention(hidden_size, num_heads) self.cross_attention_2_to_1 = nn.MultiheadAttention(hidden_size, num_heads) # Attention pooling layers self.attn_pooling_1_to_2 = AttentionPooling(hidden_size) self.attn_pooling_2_to_1 = AttentionPooling(hidden_size) # Projection layer with non-linearity self.projection_layer = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.ReLU() ) # Classifier with three hidden layers self.classifier = nn.Sequential( nn.Linear(hidden_size, hidden_size // 2), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_size // 2, hidden_size // 4), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_size // 4, num_labels) ) def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2): # Encode sentences outputs1 = self.shared_encoder(input_ids1, attention_mask=attention_mask1) outputs2 = self.shared_encoder(input_ids2, attention_mask=attention_mask2) # Apply sentence-specific adapters embeds1 = self.adapter1(outputs1.last_hidden_state) embeds2 = self.adapter2(outputs2.last_hidden_state) # Transpose for attention layers embeds1 = embeds1.transpose(0, 1) embeds2 = embeds2.transpose(0, 1) # Cross-attention cross_attn_1_to_2, _ = self.cross_attention_1_to_2(embeds1, embeds2, embeds2) cross_attn_2_to_1, _ = self.cross_attention_2_to_1(embeds2, embeds1, embeds1) # Attention pooling pooled_1_to_2 = self.attn_pooling_1_to_2(cross_attn_1_to_2) pooled_2_to_1 = self.attn_pooling_2_to_1(cross_attn_2_to_1) # Concatenate and project combined = torch.cat((pooled_1_to_2, pooled_2_to_1), dim=1) projected = self.projection_layer(combined) # Classification logits = self.classifier(projected) return logits tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-small-en") base_model = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-small-en") off_topic = CrossEncoderWithSharedBase.from_pretrained("mozilla-ai/jina-embeddings-v2-small-en", base_model=base_model) # Then you can build a predict function that utilizes the tokenizer def predict(model, tokenizer, sentence1, sentence2): inputs1 = tokenizer(sentence1, return_tensors="pt", truncation=True, padding="max_length", max_length=max_length) inputs2 = tokenizer(sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=max_length) input_ids1 = inputs1['input_ids'].to(device) attention_mask1 = inputs1['attention_mask'].to(device) input_ids2 = inputs2['input_ids'].to(device) attention_mask2 = inputs2['attention_mask'].to(device) # Get outputs with torch.no_grad(): outputs = model(input_ids1=input_ids1, attention_mask1=attention_mask1, input_ids2=input_ids2, attention_mask2=attention_mask2) probabilities = torch.softmax(outputs, dim=1) predicted_label = torch.argmax(probabilities, dim=1).item() return predicted_label, probabilities.cpu().numpy() ```
S-ophie-Rain-Spider-man-Video-Tutori-al/Sophie.Rain.Spiderman.Video.Tutorial
S-ophie-Rain-Spider-man-Video-Tutori-al
2025-08-12T19:06:36Z
0
0
null
[ "region:us" ]
null
2025-08-12T19:04:29Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman+HD">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman+HD">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman+HD"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
Khanh2611/donut_v1
Khanh2611
2025-08-12T19:06:15Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-12T11:25:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aleebaster/blockassist-bc-sly_eager_boar_1755024466
aleebaster
2025-08-12T19:06:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:06:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755025410
ggozzy
2025-08-12T19:04:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:04:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Eden-L3.3-70b-0.1-GGUF
mradermacher
2025-08-12T19:04:53Z
157
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:BruhzEarth/Eden-L3.3-70b-0.1", "base_model:quantized:BruhzEarth/Eden-L3.3-70b-0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-29T20:15:17Z
--- base_model: BruhzEarth/Eden-L3.3-70b-0.1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/BruhzEarth/Eden-L3.3-70b-0.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Eden-L3.3-70b-0.1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Eden-L3.3-70b-0.1-GGUF/resolve/main/Eden-L3.3-70b-0.1.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
haryoaw/xlmr-base-massive-kd-1
haryoaw
2025-08-12T19:04:05Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T19:03:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
haryoaw/xlmr-base-massive-kd-0
haryoaw
2025-08-12T19:03:24Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T19:02:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kayacrypto/blockassist-bc-thriving_barky_wolf_1755025265
kayacrypto
2025-08-12T19:03:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T19:02:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF
mradermacher
2025-08-12T19:01:57Z
369
0
transformers
[ "transformers", "gguf", "agent", "tool-use", "reinforcement-learning", "qwen", "llm", "en", "base_model:dongguanting/Qwen3-14B-ARPO-DeepSearch", "base_model:quantized:dongguanting/Qwen3-14B-ARPO-DeepSearch", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
reinforcement-learning
2025-07-31T02:26:33Z
--- base_model: dongguanting/Qwen3-14B-ARPO-DeepSearch language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - agent - tool-use - reinforcement-learning - qwen - llm --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/dongguanting/Qwen3-14B-ARPO-DeepSearch <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-14B-ARPO-DeepSearch-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ1_M.gguf) | i1-IQ1_M | 3.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ2_M.gguf) | i1-IQ2_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-ARPO-DeepSearch-i1-GGUF/resolve/main/Qwen3-14B-ARPO-DeepSearch.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Gemma-3-R1-12B-v1-i1-GGUF
mradermacher
2025-08-12T19:00:10Z
0
1
transformers
[ "transformers", "gguf", "en", "base_model:TheDrummer/Gemma-3-R1-12B-v1", "base_model:quantized:TheDrummer/Gemma-3-R1-12B-v1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-12T17:59:49Z
--- base_model: TheDrummer/Gemma-3-R1-12B-v1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/TheDrummer/Gemma-3-R1-12B-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Gemma-3-R1-12B-v1-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 5.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q4_0.gguf) | i1-Q4_0 | 7.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q4_1.gguf) | i1-Q4_1 | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF/resolve/main/Gemma-3-R1-12B-v1.i1-Q6_K.gguf) | i1-Q6_K | 9.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/REMORX-UREX-GGUF
mradermacher
2025-08-12T19:00:07Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "grpo", "en", "base_model:pawin205/REMORX-UREX", "base_model:quantized:pawin205/REMORX-UREX", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T18:38:48Z
--- base_model: pawin205/REMORX-UREX language: - en library_name: transformers model_name: REMORX-UREX mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - trl - grpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/pawin205/REMORX-UREX <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#REMORX-UREX-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/REMORX-UREX-GGUF/resolve/main/REMORX-UREX.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
vengky/blockassist-bc-wild_gentle_manatee_1755022629
vengky
2025-08-12T18:58:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild gentle manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:58:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild gentle manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aramzz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wild_stalking_lemur
aramzz
2025-08-12T18:58:10Z
24
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am wild stalking lemur", "unsloth", "trl", "genrl-swarm", "I am wild_stalking_lemur", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-07T13:07:53Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wild_stalking_lemur tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am wild stalking lemur - unsloth - trl - genrl-swarm - I am wild_stalking_lemur licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wild_stalking_lemur This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aramzz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wild_stalking_lemur", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Malaysian-TTS-1.7B-GGUF
mradermacher
2025-08-12T18:57:27Z
179
0
transformers
[ "transformers", "gguf", "en", "base_model:mesolitica/Malaysian-TTS-1.7B-v0.1", "base_model:quantized:mesolitica/Malaysian-TTS-1.7B-v0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-02T05:19:29Z
--- base_model: mesolitica/Malaysian-TTS-1.7B-v0.1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/mesolitica/Malaysian-TTS-1.7B-v0.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Malaysian-TTS-1.7B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q3_K_M.gguf) | Q3_K_M | 1.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q3_K_L.gguf) | Q3_K_L | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.IQ4_XS.gguf) | IQ4_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q4_K_M.gguf) | Q4_K_M | 1.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Malaysian-TTS-1.7B-GGUF/resolve/main/Malaysian-TTS-1.7B.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755023939
Sayemahsjn
2025-08-12T18:56:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:56:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rahulseetharaman/reranker-bert-uncased_L-12_H-768_A-12-msmarco-bce-1m
rahulseetharaman
2025-08-12T18:54:50Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "reranker", "generated_from_trainer", "dataset_size:990000", "loss:BinaryCrossEntropyLoss", "text-ranking", "en", "dataset:sentence-transformers/msmarco", "arxiv:1908.10084", "base_model:bansalaman18/bert-uncased_L-12_H-768_A-12", "base_model:finetune:bansalaman18/bert-uncased_L-12_H-768_A-12", "model-index", "region:us" ]
text-ranking
2025-08-12T18:54:38Z
--- language: - en tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:990000 - loss:BinaryCrossEntropyLoss base_model: bansalaman18/bert-uncased_L-12_H-768_A-12 datasets: - sentence-transformers/msmarco pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 model-index: - name: CrossEncoder based on bansalaman18/bert-uncased_L-12_H-768_A-12 results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoMSMARCO R100 type: NanoMSMARCO_R100 metrics: - type: map value: 0.1343 name: Map - type: mrr@10 value: 0.1068 name: Mrr@10 - type: ndcg@10 value: 0.1284 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNFCorpus R100 type: NanoNFCorpus_R100 metrics: - type: map value: 0.2869 name: Map - type: mrr@10 value: 0.4272 name: Mrr@10 - type: ndcg@10 value: 0.2637 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNQ R100 type: NanoNQ_R100 metrics: - type: map value: 0.1478 name: Map - type: mrr@10 value: 0.1285 name: Mrr@10 - type: ndcg@10 value: 0.1597 name: Ndcg@10 - task: type: cross-encoder-nano-beir name: Cross Encoder Nano BEIR dataset: name: NanoBEIR R100 mean type: NanoBEIR_R100_mean metrics: - type: map value: 0.1897 name: Map - type: mrr@10 value: 0.2208 name: Mrr@10 - type: ndcg@10 value: 0.184 name: Ndcg@10 --- # CrossEncoder based on bansalaman18/bert-uncased_L-12_H-768_A-12 This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [bansalaman18/bert-uncased_L-12_H-768_A-12](https://huggingface.co/bansalaman18/bert-uncased_L-12_H-768_A-12) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [bansalaman18/bert-uncased_L-12_H-768_A-12](https://huggingface.co/bansalaman18/bert-uncased_L-12_H-768_A-12) <!-- at revision f4e5e9b768dfff7d448a3e4b88785934c95f3e5a --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label - **Training Dataset:** - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("rahulseetharaman/reranker-bert-uncased_L-12_H-768_A-12-msmarco-bce-1m") # Get scores for pairs of texts pairs = [ ['star voyager cast', 'On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling further than anyone, or anything, in history. As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.'], ['physiologist who conducted the classical conditioning studies with dogs', "Classical Conditioning. The people who fed Pavlov's dogs wore lab coats. Pavlov noticed that the dogs began to drool whenever they saw lab coats, even if there was no food in sight. Pavlov wondered why the dogs salivated at lab coats, and not just at food."], ['is a written check considered a contract', 'If you bought a flat screen TV and are paying it off monthly, thatâ\x80\x99s considered recurring debt because you canâ\x80\x99t easily cancel your payments. If you subscribe to a magazine or have an Internet or phone contract, those obligations are not considered recurring debt because there is no fixed debt amount you are paying down and you can cancel your contract.'], ['definition of an actuator', 'An actuator is a type of motor that is responsible for moving or controlling a mechanism or system. It is operated by a source of energy, typically electric current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electronic system), software-based (e.g. a printer driver, robot control system), a human, or any other input.'], ['what are rheumatoid arthritis symptoms', 'While early RA symptoms can be mimicked by other diseases, the symptoms and signs are very characteristic of rheumatoid disease. The 15 early rheumatoid arthritis symptoms and signs discussed in this article include the following: Fatigue. Joint pain. Joint tenderness. Joint swelling. Joint redness. Joint warmth.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'star voyager cast', [ 'On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling further than anyone, or anything, in history. As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.', "Classical Conditioning. The people who fed Pavlov's dogs wore lab coats. Pavlov noticed that the dogs began to drool whenever they saw lab coats, even if there was no food in sight. Pavlov wondered why the dogs salivated at lab coats, and not just at food.", 'If you bought a flat screen TV and are paying it off monthly, thatâ\x80\x99s considered recurring debt because you canâ\x80\x99t easily cancel your payments. If you subscribe to a magazine or have an Internet or phone contract, those obligations are not considered recurring debt because there is no fixed debt amount you are paying down and you can cancel your contract.', 'An actuator is a type of motor that is responsible for moving or controlling a mechanism or system. It is operated by a source of energy, typically electric current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electronic system), software-based (e.g. a printer driver, robot control system), a human, or any other input.', 'While early RA symptoms can be mimicked by other diseases, the symptoms and signs are very characteristic of rheumatoid disease. The 15 early rheumatoid arthritis symptoms and signs discussed in this article include the following: Fatigue. Joint pain. Joint tenderness. Joint swelling. Joint redness. Joint warmth.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": true } ``` | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.1343 (-0.3553) | 0.2869 (+0.0260) | 0.1478 (-0.2718) | | mrr@10 | 0.1068 (-0.3707) | 0.4272 (-0.0726) | 0.1285 (-0.2982) | | **ndcg@10** | **0.1284 (-0.4120)** | **0.2637 (-0.0614)** | **0.1597 (-0.3409)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true } ``` | Metric | Value | |:------------|:---------------------| | map | 0.1897 (-0.2004) | | mrr@10 | 0.2208 (-0.2472) | | **ndcg@10** | **0.1840 (-0.2714)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### msmarco * Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83) * Size: 990,000 training samples * Columns: <code>query</code>, <code>passage</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | query | passage | score | |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 10 characters</li><li>mean: 34.06 characters</li><li>max: 103 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 341.02 characters</li><li>max: 943 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | * Samples: | query | passage | score | |:----------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>can a urinalysis detect kidney disease</code> | <code>A urinalysis is a simple, inexpensive test that can help to detect problems in many parts of the body, including the kidneys, urinary tract, heart, and liver. A urinalysis can include a visual examination of a urine sample, microscopic examination, and a dipstick test.</code> | <code>1.0</code> | | <code>what is the hamsa hand</code> | <code>Answer by Mikereptile. Confidence votes 60. It takes about 6-8 weeks to heal, depending on the type of injury sustained. (Keep the finger as still as you can !!!!). When broken place the hand in ice cold water for about 5 min.s then take it and wrap the whole hand in a soft wrap (anything that is a soft colth) .Take the wraped hand and hold it above or upright to the head.hen broken place the hand in ice cold water for about 5 min.s then take it and wrap the whole hand in a soft wrap (anything that is a soft colth) . Take the wraped hand and hold it above or upright to the head.</code> | <code>0.0</code> | | <code>was white tiger in the us zoo killed?</code> | <code>Cubby is a male American black bear born at the Chahinkapa Zoo in North Dakota. He was transferred to the Hogle Zoo (Salt Lake City, Utah) in 2003, and arrived at the Oregon Zoo in May 2010.</code> | <code>0.0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Evaluation Dataset #### msmarco * Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83) * Size: 10,000 evaluation samples * Columns: <code>query</code>, <code>passage</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | query | passage | score | |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 10 characters</li><li>mean: 33.97 characters</li><li>max: 121 characters</li></ul> | <ul><li>min: 70 characters</li><li>mean: 345.9 characters</li><li>max: 946 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> | * Samples: | query | passage | score | |:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>star voyager cast</code> | <code>On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling further than anyone, or anything, in history. As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.</code> | <code>0.0</code> | | <code>physiologist who conducted the classical conditioning studies with dogs</code> | <code>Classical Conditioning. The people who fed Pavlov's dogs wore lab coats. Pavlov noticed that the dogs began to drool whenever they saw lab coats, even if there was no food in sight. Pavlov wondered why the dogs salivated at lab coats, and not just at food.</code> | <code>0.0</code> | | <code>is a written check considered a contract</code> | <code>If you bought a flat screen TV and are paying it off monthly, that’s considered recurring debt because you can’t easily cancel your payments. If you subscribe to a magazine or have an Internet or phone contract, those obligations are not considered recurring debt because there is no fixed debt amount you are paying down and you can cancel your contract.</code> | <code>0.0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `dataloader_num_workers`: 4 - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:| | -1 | -1 | - | - | 0.0355 (-0.5049) | 0.2692 (-0.0558) | 0.0305 (-0.4701) | 0.1118 (-0.3436) | | 0.0000 | 1 | 0.7222 | - | - | - | - | - | | 0.0162 | 1000 | 0.6948 | 0.6929 | 0.0568 (-0.4836) | 0.2595 (-0.0656) | 0.0188 (-0.4818) | 0.1117 (-0.3437) | | 0.0323 | 2000 | 0.6944 | 0.6925 | 0.0402 (-0.5002) | 0.2539 (-0.0711) | 0.0483 (-0.4524) | 0.1141 (-0.3412) | | 0.0485 | 3000 | 0.6948 | 0.6900 | 0.0484 (-0.4921) | 0.2392 (-0.0859) | 0.0484 (-0.4523) | 0.1120 (-0.3434) | | 0.0646 | 4000 | 0.6939 | 0.6870 | 0.0342 (-0.5062) | 0.2502 (-0.0748) | 0.0680 (-0.4327) | 0.1175 (-0.3379) | | 0.0808 | 5000 | 0.69 | 0.6868 | 0.0606 (-0.4798) | 0.2497 (-0.0753) | 0.0763 (-0.4243) | 0.1289 (-0.3265) | | 0.0970 | 6000 | 0.6868 | 0.6766 | 0.0543 (-0.4861) | 0.2752 (-0.0499) | 0.1036 (-0.3970) | 0.1444 (-0.3110) | | 0.1131 | 7000 | 0.6831 | 0.6880 | 0.0658 (-0.4746) | 0.2700 (-0.0550) | 0.1128 (-0.3879) | 0.1495 (-0.3058) | | 0.1293 | 8000 | 0.6749 | 0.6864 | 0.0875 (-0.4529) | 0.2720 (-0.0531) | 0.1081 (-0.3926) | 0.1559 (-0.2995) | | 0.1455 | 9000 | 0.6766 | 0.6635 | 0.0731 (-0.4673) | 0.2705 (-0.0545) | 0.1106 (-0.3900) | 0.1514 (-0.3039) | | 0.1616 | 10000 | 0.6732 | 0.6690 | 0.0877 (-0.4527) | 0.2708 (-0.0542) | 0.1336 (-0.3671) | 0.1640 (-0.2913) | | 0.1778 | 11000 | 0.6689 | 0.6506 | 0.0928 (-0.4476) | 0.2603 (-0.0648) | 0.0746 (-0.4261) | 0.1426 (-0.3128) | | 0.1939 | 12000 | 0.6662 | 0.6495 | 0.0990 (-0.4414) | 0.2705 (-0.0546) | 0.1219 (-0.3788) | 0.1638 (-0.2916) | | 0.2101 | 13000 | 0.6608 | 0.6430 | 0.1232 (-0.4172) | 0.2817 (-0.0434) | 0.0758 (-0.4248) | 0.1602 (-0.2951) | | 0.2263 | 14000 | 0.66 | 0.6630 | 0.1147 (-0.4257) | 0.2880 (-0.0370) | 0.1215 (-0.3791) | 0.1748 (-0.2806) | | 0.2424 | 15000 | 0.672 | 0.6576 | 0.1084 (-0.4320) | 0.2582 (-0.0668) | 0.0922 (-0.4085) | 0.1529 (-0.3024) | | 0.2586 | 16000 | 0.671 | 0.6382 | 0.0831 (-0.4573) | 0.2583 (-0.0668) | 0.0993 (-0.4014) | 0.1469 (-0.3085) | | 0.2747 | 17000 | 0.6933 | 0.6594 | 0.1126 (-0.4278) | 0.2676 (-0.0574) | 0.1012 (-0.3995) | 0.1605 (-0.2949) | | 0.2909 | 18000 | 0.6762 | 0.6848 | 0.1071 (-0.4333) | 0.2832 (-0.0418) | 0.0839 (-0.4167) | 0.1581 (-0.2973) | | **0.3071** | **19000** | **0.6762** | **0.6577** | **0.1284 (-0.4120)** | **0.2637 (-0.0614)** | **0.1597 (-0.3409)** | **0.1840 (-0.2714)** | | 0.3232 | 20000 | 0.6682 | 0.6640 | 0.1147 (-0.4257) | 0.2469 (-0.0782) | 0.0936 (-0.4071) | 0.1517 (-0.3037) | | 0.3394 | 21000 | 0.6798 | 0.6860 | 0.0714 (-0.4690) | 0.2566 (-0.0684) | 0.0905 (-0.4102) | 0.1395 (-0.3159) | | 0.3556 | 22000 | 0.6899 | 0.6951 | 0.0678 (-0.4726) | 0.2604 (-0.0647) | 0.0789 (-0.4217) | 0.1357 (-0.3197) | | 0.3717 | 23000 | 0.6956 | 0.6934 | 0.0740 (-0.4664) | 0.2632 (-0.0618) | 0.0784 (-0.4222) | 0.1386 (-0.3168) | | 0.3879 | 24000 | 0.6962 | 0.6917 | 0.0410 (-0.4994) | 0.2567 (-0.0684) | 0.0225 (-0.4781) | 0.1067 (-0.3486) | | 0.4040 | 25000 | 0.6978 | 0.6954 | 0.0451 (-0.4953) | 0.2461 (-0.0789) | 0.0282 (-0.4724) | 0.1065 (-0.3489) | | 0.4202 | 26000 | 0.6977 | 0.6972 | 0.0449 (-0.4955) | 0.2364 (-0.0886) | 0.0279 (-0.4727) | 0.1031 (-0.3523) | | 0.4364 | 27000 | 0.6971 | 0.6943 | 0.0473 (-0.4932) | 0.2566 (-0.0684) | 0.0477 (-0.4529) | 0.1172 (-0.3382) | | 0.4525 | 28000 | 0.6953 | 0.6931 | 0.0467 (-0.4937) | 0.2613 (-0.0637) | 0.0362 (-0.4645) | 0.1147 (-0.3406) | | 0.4687 | 29000 | 0.6968 | 0.6940 | 0.0467 (-0.4938) | 0.2566 (-0.0685) | 0.0474 (-0.4533) | 0.1169 (-0.3385) | | 0.4848 | 30000 | 0.6963 | 0.6931 | 0.0476 (-0.4928) | 0.2549 (-0.0702) | 0.0422 (-0.4584) | 0.1149 (-0.3405) | | 0.5010 | 31000 | 0.6963 | 0.6944 | 0.0455 (-0.4949) | 0.2562 (-0.0688) | 0.0459 (-0.4547) | 0.1159 (-0.3395) | | 0.5172 | 32000 | 0.6958 | 0.6958 | 0.0270 (-0.5134) | 0.2789 (-0.0461) | 0.0283 (-0.4724) | 0.1114 (-0.3440) | | 0.5333 | 33000 | 0.6955 | 0.6956 | 0.0502 (-0.4903) | 0.2581 (-0.0669) | 0.0292 (-0.4715) | 0.1125 (-0.3429) | | 0.5495 | 34000 | 0.6952 | 0.6931 | 0.0441 (-0.4964) | 0.2559 (-0.0692) | 0.0418 (-0.4589) | 0.1139 (-0.3415) | | 0.5657 | 35000 | 0.695 | 0.6931 | 0.0306 (-0.5098) | 0.2567 (-0.0684) | 0.0365 (-0.4642) | 0.1079 (-0.3475) | | 0.5818 | 36000 | 0.6953 | 0.7034 | 0.0456 (-0.4948) | 0.2563 (-0.0687) | 0.0468 (-0.4538) | 0.1162 (-0.3391) | | 0.5980 | 37000 | 0.6952 | 0.6960 | 0.0493 (-0.4912) | 0.2511 (-0.0739) | 0.0470 (-0.4536) | 0.1158 (-0.3396) | | 0.6141 | 38000 | 0.6953 | 0.6932 | 0.0517 (-0.4887) | 0.2592 (-0.0658) | 0.0372 (-0.4635) | 0.1160 (-0.3393) | | 0.6303 | 39000 | 0.6946 | 0.6931 | 0.0471 (-0.4933) | 0.2581 (-0.0670) | 0.0496 (-0.4511) | 0.1182 (-0.3371) | | 0.6465 | 40000 | 0.6949 | 0.6941 | 0.0483 (-0.4921) | 0.2557 (-0.0694) | 0.0577 (-0.4429) | 0.1206 (-0.3348) | | 0.6626 | 41000 | 0.6949 | 0.6967 | 0.0500 (-0.4904) | 0.2562 (-0.0689) | 0.0517 (-0.4490) | 0.1193 (-0.3361) | | 0.6788 | 42000 | 0.6945 | 0.6944 | 0.0334 (-0.5070) | 0.2627 (-0.0623) | 0.0566 (-0.4440) | 0.1176 (-0.3378) | | 0.6949 | 43000 | 0.6952 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.7111 | 44000 | 0.6942 | 0.6931 | 0.0439 (-0.4966) | 0.2567 (-0.0683) | 0.0473 (-0.4533) | 0.1160 (-0.3394) | | 0.7273 | 45000 | 0.6944 | 0.6985 | 0.0556 (-0.4848) | 0.2413 (-0.0837) | 0.0467 (-0.4540) | 0.1145 (-0.3408) | | 0.7434 | 46000 | 0.6942 | 0.6936 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.7596 | 47000 | 0.6941 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.7758 | 48000 | 0.6937 | 0.6962 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.7919 | 49000 | 0.6946 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.8081 | 50000 | 0.6942 | 0.6931 | 0.0443 (-0.4961) | 0.2590 (-0.0661) | 0.0449 (-0.4557) | 0.1161 (-0.3393) | | 0.8242 | 51000 | 0.6945 | 0.6955 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.8404 | 52000 | 0.694 | 0.6932 | 0.0419 (-0.4985) | 0.2498 (-0.0753) | 0.0433 (-0.4573) | 0.1117 (-0.3437) | | 0.8566 | 53000 | 0.6941 | 0.6941 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.8727 | 54000 | 0.6941 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.8889 | 55000 | 0.6942 | 0.6939 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.9051 | 56000 | 0.6939 | 0.6942 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.9212 | 57000 | 0.6939 | 0.6932 | 0.0456 (-0.4948) | 0.2552 (-0.0698) | 0.0471 (-0.4536) | 0.1160 (-0.3394) | | 0.9374 | 58000 | 0.6937 | 0.6948 | 0.0446 (-0.4958) | 0.2561 (-0.0689) | 0.0469 (-0.4538) | 0.1159 (-0.3395) | | 0.9535 | 59000 | 0.6941 | 0.6931 | 0.0390 (-0.5014) | 0.2625 (-0.0626) | 0.0526 (-0.4480) | 0.1180 (-0.3373) | | 0.9697 | 60000 | 0.6938 | 0.6964 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 0.9859 | 61000 | 0.6944 | 0.6932 | 0.0450 (-0.4954) | 0.2805 (-0.0445) | 0.0460 (-0.4547) | 0.1238 (-0.3315) | | 1.0020 | 62000 | 0.6937 | 0.6935 | 0.0815 (-0.4589) | 0.2565 (-0.0685) | 0.0184 (-0.4822) | 0.1188 (-0.3365) | | 1.0182 | 63000 | 0.6939 | 0.6951 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.0343 | 64000 | 0.6939 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.0505 | 65000 | 0.6939 | 0.6931 | 0.0381 (-0.5023) | 0.2567 (-0.0683) | 0.0479 (-0.4527) | 0.1143 (-0.3411) | | 1.0667 | 66000 | 0.6934 | 0.6943 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0466 (-0.4540) | 0.1161 (-0.3393) | | 1.0828 | 67000 | 0.6938 | 0.6932 | 0.0411 (-0.4993) | 0.2583 (-0.0667) | 0.0429 (-0.4578) | 0.1141 (-0.3413) | | 1.0990 | 68000 | 0.6941 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.1152 | 69000 | 0.6937 | 0.6935 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.1313 | 70000 | 0.6938 | 0.6932 | 0.0446 (-0.4959) | 0.2566 (-0.0684) | 0.0495 (-0.4512) | 0.1169 (-0.3385) | | 1.1475 | 71000 | 0.6934 | 0.6936 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.1636 | 72000 | 0.6933 | 0.6939 | 0.0232 (-0.5173) | 0.2471 (-0.0779) | 0.0308 (-0.4698) | 0.1004 (-0.3550) | | 1.1798 | 73000 | 0.6937 | 0.6931 | 0.0449 (-0.4956) | 0.2566 (-0.0684) | 0.0462 (-0.4545) | 0.1159 (-0.3395) | | 1.1960 | 74000 | 0.694 | 0.6934 | 0.0541 (-0.4863) | 0.2425 (-0.0825) | 0.0361 (-0.4646) | 0.1109 (-0.3445) | | 1.2121 | 75000 | 0.6937 | 0.6931 | 0.0649 (-0.4755) | 0.2555 (-0.0695) | 0.0318 (-0.4689) | 0.1174 (-0.3380) | | 1.2283 | 76000 | 0.6939 | 0.6942 | 0.0833 (-0.4571) | 0.2697 (-0.0554) | 0.0497 (-0.4510) | 0.1342 (-0.3212) | | 1.2444 | 77000 | 0.6939 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.2606 | 78000 | 0.6938 | 0.6931 | 0.0501 (-0.4903) | 0.2584 (-0.0666) | 0.0525 (-0.4481) | 0.1203 (-0.3350) | | 1.2768 | 79000 | 0.6938 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.2929 | 80000 | 0.6936 | 0.6931 | 0.0412 (-0.4992) | 0.2719 (-0.0531) | 0.0444 (-0.4562) | 0.1192 (-0.3362) | | 1.3091 | 81000 | 0.6939 | 0.6931 | 0.0437 (-0.4967) | 0.2512 (-0.0739) | 0.0443 (-0.4563) | 0.1131 (-0.3423) | | 1.3253 | 82000 | 0.6936 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.3414 | 83000 | 0.6935 | 0.6933 | 0.0488 (-0.4916) | 0.2585 (-0.0665) | 0.0486 (-0.4520) | 0.1186 (-0.3367) | | 1.3576 | 84000 | 0.6937 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.3737 | 85000 | 0.6935 | 0.6941 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.3899 | 86000 | 0.6938 | 0.6949 | 0.0437 (-0.4967) | 0.2567 (-0.0683) | 0.0473 (-0.4533) | 0.1159 (-0.3394) | | 1.4061 | 87000 | 0.6937 | 0.6934 | 0.0454 (-0.4950) | 0.2560 (-0.0691) | 0.0468 (-0.4538) | 0.1161 (-0.3393) | | 1.4222 | 88000 | 0.6937 | 0.6931 | 0.0390 (-0.5014) | 0.2537 (-0.0714) | 0.0515 (-0.4491) | 0.1147 (-0.3406) | | 1.4384 | 89000 | 0.6936 | 0.6945 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.4545 | 90000 | 0.6936 | 0.6932 | 0.0479 (-0.4925) | 0.2633 (-0.0618) | 0.0508 (-0.4498) | 0.1207 (-0.3347) | | 1.4707 | 91000 | 0.6935 | 0.6933 | 0.0468 (-0.4937) | 0.2564 (-0.0686) | 0.0461 (-0.4545) | 0.1164 (-0.3389) | | 1.4869 | 92000 | 0.6935 | 0.6932 | 0.0462 (-0.4942) | 0.2564 (-0.0687) | 0.0472 (-0.4534) | 0.1166 (-0.3388) | | 1.5030 | 93000 | 0.6936 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.5192 | 94000 | 0.6937 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.5354 | 95000 | 0.6934 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.5515 | 96000 | 0.6936 | 0.6933 | 0.0454 (-0.4950) | 0.2563 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.5677 | 97000 | 0.6937 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.5838 | 98000 | 0.6936 | 0.6936 | 0.0479 (-0.4925) | 0.2600 (-0.0651) | 0.0226 (-0.4780) | 0.1102 (-0.3452) | | 1.6 | 99000 | 0.6936 | 0.6939 | 0.0472 (-0.4932) | 0.2565 (-0.0685) | 0.0484 (-0.4522) | 0.1174 (-0.3380) | | 1.6162 | 100000 | 0.6935 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.6323 | 101000 | 0.6935 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.6485 | 102000 | 0.6936 | 0.6931 | 0.0424 (-0.4980) | 0.2491 (-0.0760) | 0.0303 (-0.4704) | 0.1073 (-0.3481) | | 1.6646 | 103000 | 0.6936 | 0.6935 | 0.0467 (-0.4937) | 0.2573 (-0.0678) | 0.0477 (-0.4529) | 0.1172 (-0.3381) | | 1.6808 | 104000 | 0.6935 | 0.6931 | 0.0450 (-0.4954) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1160 (-0.3393) | | 1.6970 | 105000 | 0.6935 | 0.6939 | 0.0384 (-0.5020) | 0.2461 (-0.0790) | 0.0304 (-0.4703) | 0.1050 (-0.3504) | | 1.7131 | 106000 | 0.6935 | 0.6932 | 0.0455 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.7293 | 107000 | 0.6936 | 0.6936 | 0.0462 (-0.4942) | 0.2546 (-0.0704) | 0.0463 (-0.4543) | 0.1157 (-0.3397) | | 1.7455 | 108000 | 0.6935 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.7616 | 109000 | 0.6933 | 0.6934 | 0.0462 (-0.4942) | 0.2556 (-0.0694) | 0.0498 (-0.4509) | 0.1172 (-0.3382) | | 1.7778 | 110000 | 0.6934 | 0.6934 | 0.0383 (-0.5022) | 0.2390 (-0.0860) | 0.0391 (-0.4616) | 0.1055 (-0.3499) | | 1.7939 | 111000 | 0.6935 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.8101 | 112000 | 0.6934 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.8263 | 113000 | 0.6938 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.8424 | 114000 | 0.6937 | 0.6931 | 0.0460 (-0.4944) | 0.2564 (-0.0686) | 0.0482 (-0.4524) | 0.1169 (-0.3385) | | 1.8586 | 115000 | 0.6935 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.8747 | 116000 | 0.6932 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.8909 | 117000 | 0.6935 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.9071 | 118000 | 0.6935 | 0.6935 | 0.0215 (-0.5189) | 0.2637 (-0.0614) | 0.0311 (-0.4695) | 0.1054 (-0.3499) | | 1.9232 | 119000 | 0.6933 | 0.6951 | 0.0185 (-0.5219) | 0.2301 (-0.0949) | 0.0419 (-0.4588) | 0.0968 (-0.3586) | | 1.9394 | 120000 | 0.6935 | 0.6935 | 0.0509 (-0.4896) | 0.2444 (-0.0807) | 0.0468 (-0.4539) | 0.1140 (-0.3414) | | 1.9556 | 121000 | 0.6932 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.9717 | 122000 | 0.6936 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 1.9879 | 123000 | 0.6936 | 0.6937 | 0.0466 (-0.4939) | 0.2563 (-0.0688) | 0.0470 (-0.4536) | 0.1166 (-0.3388) | | 2.0040 | 124000 | 0.6934 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.0202 | 125000 | 0.6933 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.0364 | 126000 | 0.6935 | 0.6931 | 0.0452 (-0.4952) | 0.2512 (-0.0739) | 0.0460 (-0.4546) | 0.1142 (-0.3412) | | 2.0525 | 127000 | 0.6933 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.0687 | 128000 | 0.6935 | 0.6947 | 0.0454 (-0.4950) | 0.2521 (-0.0730) | 0.0464 (-0.4542) | 0.1147 (-0.3407) | | 2.0848 | 129000 | 0.6934 | 0.6943 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.1010 | 130000 | 0.6932 | 0.6942 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.1172 | 131000 | 0.6934 | 0.6941 | 0.0457 (-0.4947) | 0.2562 (-0.0689) | 0.0464 (-0.4542) | 0.1161 (-0.3393) | | 2.1333 | 132000 | 0.6933 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.1495 | 133000 | 0.6933 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.1657 | 134000 | 0.6933 | 0.6943 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.1818 | 135000 | 0.6934 | 0.6940 | 0.0454 (-0.4950) | 0.2510 (-0.0740) | 0.0466 (-0.4540) | 0.1144 (-0.3410) | | 2.1980 | 136000 | 0.6933 | 0.6935 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.2141 | 137000 | 0.6933 | 0.6937 | 0.0455 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.2303 | 138000 | 0.6935 | 0.6936 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.2465 | 139000 | 0.6934 | 0.6952 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.2626 | 140000 | 0.6935 | 0.6932 | 0.0455 (-0.4949) | 0.2562 (-0.0689) | 0.0469 (-0.4538) | 0.1162 (-0.3392) | | 2.2788 | 141000 | 0.6937 | 0.6939 | 0.0454 (-0.4950) | 0.2568 (-0.0683) | 0.0456 (-0.4550) | 0.1159 (-0.3394) | | 2.2949 | 142000 | 0.6934 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.3111 | 143000 | 0.6933 | 0.6935 | 0.0267 (-0.5137) | 0.2617 (-0.0634) | 0.0826 (-0.4180) | 0.1237 (-0.3317) | | 2.3273 | 144000 | 0.6935 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.3434 | 145000 | 0.6934 | 0.6931 | 0.0473 (-0.4931) | 0.2557 (-0.0694) | 0.0484 (-0.4522) | 0.1172 (-0.3382) | | 2.3596 | 146000 | 0.6934 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.3758 | 147000 | 0.6935 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.3919 | 148000 | 0.6933 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.4081 | 149000 | 0.6933 | 0.6938 | 0.0543 (-0.4861) | 0.2533 (-0.0717) | 0.0445 (-0.4561) | 0.1174 (-0.3380) | | 2.4242 | 150000 | 0.6935 | 0.6933 | 0.0402 (-0.5002) | 0.2562 (-0.0688) | 0.0446 (-0.4560) | 0.1137 (-0.3417) | | 2.4404 | 151000 | 0.6934 | 0.6935 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.4566 | 152000 | 0.6934 | 0.6931 | 0.0426 (-0.4978) | 0.2122 (-0.1128) | 0.0361 (-0.4645) | 0.0970 (-0.3584) | | 2.4727 | 153000 | 0.6935 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.4889 | 154000 | 0.6933 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.5051 | 155000 | 0.6934 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.5212 | 156000 | 0.6933 | 0.6935 | 0.0469 (-0.4935) | 0.2585 (-0.0665) | 0.0432 (-0.4575) | 0.1162 (-0.3392) | | 2.5374 | 157000 | 0.6934 | 0.6935 | 0.0429 (-0.4976) | 0.2641 (-0.0610) | 0.0462 (-0.4545) | 0.1177 (-0.3377) | | 2.5535 | 158000 | 0.6934 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.5697 | 159000 | 0.6933 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.5859 | 160000 | 0.6933 | 0.6936 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.6020 | 161000 | 0.6933 | 0.6935 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.6182 | 162000 | 0.6931 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.6343 | 163000 | 0.6934 | 0.6938 | 0.0582 (-0.4822) | 0.2534 (-0.0716) | 0.0465 (-0.4541) | 0.1194 (-0.3360) | | 2.6505 | 164000 | 0.6931 | 0.6933 | 0.0261 (-0.5143) | 0.2586 (-0.0664) | 0.0376 (-0.4631) | 0.1074 (-0.3479) | | 2.6667 | 165000 | 0.6932 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.6828 | 166000 | 0.6933 | 0.6939 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.6990 | 167000 | 0.6932 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.7152 | 168000 | 0.6932 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.7313 | 169000 | 0.6933 | 0.6946 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.7475 | 170000 | 0.6934 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.7636 | 171000 | 0.6932 | 0.6941 | 0.0303 (-0.5101) | 0.2541 (-0.0710) | 0.0364 (-0.4643) | 0.1069 (-0.3485) | | 2.7798 | 172000 | 0.6931 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.7960 | 173000 | 0.6935 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.8121 | 174000 | 0.6932 | 0.6933 | 0.0473 (-0.4931) | 0.2568 (-0.0682) | 0.0481 (-0.4526) | 0.1174 (-0.3380) | | 2.8283 | 175000 | 0.693 | 0.6933 | 0.0492 (-0.4912) | 0.2569 (-0.0682) | 0.0450 (-0.4557) | 0.1170 (-0.3384) | | 2.8444 | 176000 | 0.6933 | 0.6945 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.8606 | 177000 | 0.6931 | 0.6931 | 0.0455 (-0.4949) | 0.2564 (-0.0687) | 0.0469 (-0.4538) | 0.1163 (-0.3391) | | 2.8768 | 178000 | 0.6933 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.8929 | 179000 | 0.6929 | 0.6940 | 0.0597 (-0.4807) | 0.2604 (-0.0647) | 0.0581 (-0.4425) | 0.1261 (-0.3293) | | 2.9091 | 180000 | 0.6933 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.9253 | 181000 | 0.6932 | 0.6945 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.9414 | 182000 | 0.6932 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.9576 | 183000 | 0.6932 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 2.9737 | 184000 | 0.6932 | 0.6933 | 0.0469 (-0.4935) | 0.2499 (-0.0751) | 0.0317 (-0.4689) | 0.1095 (-0.3459) | | 2.9899 | 185000 | 0.6933 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.0061 | 186000 | 0.6935 | 0.6935 | 0.0433 (-0.4972) | 0.2615 (-0.0635) | 0.0566 (-0.4440) | 0.1205 (-0.3349) | | 3.0222 | 187000 | 0.6934 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.0384 | 188000 | 0.6932 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.0545 | 189000 | 0.6933 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.0707 | 190000 | 0.6932 | 0.6941 | 0.0376 (-0.5028) | 0.2517 (-0.0733) | 0.0365 (-0.4641) | 0.1086 (-0.3467) | | 3.0869 | 191000 | 0.6932 | 0.6943 | 0.0457 (-0.4947) | 0.2565 (-0.0686) | 0.0480 (-0.4527) | 0.1167 (-0.3387) | | 3.1030 | 192000 | 0.6932 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.1192 | 193000 | 0.6932 | 0.6931 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.1354 | 194000 | 0.6933 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.1515 | 195000 | 0.6932 | 0.6937 | 0.0455 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.1677 | 196000 | 0.6932 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.1838 | 197000 | 0.6932 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.2 | 198000 | 0.6933 | 0.6935 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.2162 | 199000 | 0.6932 | 0.6941 | 0.0479 (-0.4925) | 0.2161 (-0.1089) | 0.0227 (-0.4780) | 0.0956 (-0.3598) | | 3.2323 | 200000 | 0.6932 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.2485 | 201000 | 0.6933 | 0.6935 | 0.0450 (-0.4954) | 0.2492 (-0.0759) | 0.0466 (-0.4540) | 0.1136 (-0.3418) | | 3.2646 | 202000 | 0.6933 | 0.6931 | 0.0401 (-0.5003) | 0.2528 (-0.0722) | 0.0495 (-0.4512) | 0.1141 (-0.3412) | | 3.2808 | 203000 | 0.6934 | 0.6933 | 0.0456 (-0.4949) | 0.2563 (-0.0688) | 0.0470 (-0.4537) | 0.1163 (-0.3391) | | 3.2970 | 204000 | 0.693 | 0.6931 | 0.0440 (-0.4964) | 0.2698 (-0.0553) | 0.0505 (-0.4501) | 0.1214 (-0.3339) | | 3.3131 | 205000 | 0.693 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.3293 | 206000 | 0.6934 | 0.6934 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.3455 | 207000 | 0.6934 | 0.6934 | 0.0428 (-0.4977) | 0.2615 (-0.0635) | 0.0503 (-0.4504) | 0.1182 (-0.3372) | | 3.3616 | 208000 | 0.6932 | 0.6936 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.3778 | 209000 | 0.6934 | 0.6938 | 0.0476 (-0.4928) | 0.2573 (-0.0677) | 0.0414 (-0.4592) | 0.1154 (-0.3399) | | 3.3939 | 210000 | 0.6933 | 0.6935 | 0.0216 (-0.5188) | 0.2499 (-0.0752) | 0.0321 (-0.4685) | 0.1012 (-0.3542) | | 3.4101 | 211000 | 0.693 | 0.6932 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.4263 | 212000 | 0.6932 | 0.6935 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.4424 | 213000 | 0.6933 | 0.6933 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.4586 | 214000 | 0.6931 | 0.6934 | 0.0427 (-0.4977) | 0.2481 (-0.0769) | 0.0455 (-0.4551) | 0.1121 (-0.3433) | | 3.4747 | 215000 | 0.6931 | 0.6936 | 0.0356 (-0.5048) | 0.2708 (-0.0543) | 0.0377 (-0.4630) | 0.1147 (-0.3407) | | 3.4909 | 216000 | 0.6931 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.5071 | 217000 | 0.6933 | 0.6947 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.5232 | 218000 | 0.6931 | 0.6936 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.5394 | 219000 | 0.6931 | 0.6939 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.5556 | 220000 | 0.6932 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.5717 | 221000 | 0.6932 | 0.6937 | 0.0452 (-0.4952) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1161 (-0.3393) | | 3.5879 | 222000 | 0.6932 | 0.6941 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.6040 | 223000 | 0.6929 | 0.6950 | 0.0333 (-0.5071) | 0.2317 (-0.0933) | 0.0560 (-0.4446) | 0.1070 (-0.3483) | | 3.6202 | 224000 | 0.6932 | 0.6947 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0466 (-0.4540) | 0.1161 (-0.3393) | | 3.6364 | 225000 | 0.6932 | 0.6941 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.6525 | 226000 | 0.6933 | 0.6939 | 0.0374 (-0.5030) | 0.2623 (-0.0628) | 0.0408 (-0.4599) | 0.1135 (-0.3419) | | 3.6687 | 227000 | 0.6931 | 0.6942 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.6848 | 228000 | 0.6933 | 0.6943 | 0.0543 (-0.4861) | 0.2546 (-0.0704) | 0.0453 (-0.4553) | 0.1181 (-0.3373) | | 3.7010 | 229000 | 0.693 | 0.6939 | 0.0452 (-0.4952) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1161 (-0.3393) | | 3.7172 | 230000 | 0.6933 | 0.6940 | 0.0411 (-0.4994) | 0.2378 (-0.0873) | 0.0396 (-0.4610) | 0.1062 (-0.3492) | | 3.7333 | 231000 | 0.6932 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.7495 | 232000 | 0.6931 | 0.6942 | 0.0264 (-0.5140) | 0.2650 (-0.0601) | 0.0250 (-0.4757) | 0.1055 (-0.3499) | | 3.7657 | 233000 | 0.693 | 0.6942 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.7818 | 234000 | 0.6932 | 0.6938 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.7980 | 235000 | 0.6932 | 0.6939 | 0.0447 (-0.4957) | 0.2563 (-0.0687) | 0.0471 (-0.4536) | 0.1160 (-0.3393) | | 3.8141 | 236000 | 0.6931 | 0.6938 | 0.0560 (-0.4844) | 0.2637 (-0.0613) | 0.0427 (-0.4579) | 0.1208 (-0.3346) | | 3.8303 | 237000 | 0.6932 | 0.6938 | 0.0391 (-0.5013) | 0.2573 (-0.0678) | 0.0438 (-0.4568) | 0.1134 (-0.3420) | | 3.8465 | 238000 | 0.6931 | 0.6939 | 0.0415 (-0.4989) | 0.2714 (-0.0537) | 0.0423 (-0.4584) | 0.1184 (-0.3370) | | 3.8626 | 239000 | 0.6931 | 0.6937 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.8788 | 240000 | 0.693 | 0.6940 | 0.0394 (-0.5010) | 0.2307 (-0.0944) | 0.0280 (-0.4727) | 0.0994 (-0.3560) | | 3.8949 | 241000 | 0.693 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.9111 | 242000 | 0.693 | 0.6942 | 0.0206 (-0.5198) | 0.2498 (-0.0753) | 0.0275 (-0.4731) | 0.0993 (-0.3561) | | 3.9273 | 243000 | 0.6929 | 0.6942 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.9434 | 244000 | 0.6931 | 0.6941 | 0.0219 (-0.5185) | 0.2498 (-0.0753) | 0.0277 (-0.4729) | 0.0998 (-0.3556) | | 3.9596 | 245000 | 0.693 | 0.6940 | 0.0454 (-0.4950) | 0.2562 (-0.0688) | 0.0468 (-0.4538) | 0.1162 (-0.3392) | | 3.9758 | 246000 | 0.693 | 0.6940 | 0.0518 (-0.4886) | 0.2368 (-0.0882) | 0.0451 (-0.4555) | 0.1113 (-0.3441) | | 3.9919 | 247000 | 0.6931 | 0.6940 | 0.0263 (-0.5141) | 0.2556 (-0.0695) | 0.0404 (-0.4602) | 0.1074 (-0.3479) | | -1 | -1 | - | - | 0.1284 (-0.4120) | 0.2637 (-0.0614) | 0.1597 (-0.3409) | 0.1840 (-0.2714) | * The bold row denotes the saved checkpoint. </details> ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.0.0 - Transformers: 4.56.0.dev0 - PyTorch: 2.7.1+cu126 - Accelerate: 1.9.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
AmirMT/Norbert-Lora
AmirMT
2025-08-12T18:53:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T18:20:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Norbert --- # Norbert Lora <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Norbert` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Norbert", "lora_weights": "https://huggingface.co/AmirMT/Norbert-Lora/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('AmirMT/Norbert-Lora', weight_name='lora.safetensors') image = pipeline('Norbert').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/AmirMT/Norbert-Lora/discussions) to add images that show off what you’ve made with this LoRA.
mradermacher/II-Search-CIR-4B-GGUF
mradermacher
2025-08-12T18:53:47Z
235
0
transformers
[ "transformers", "gguf", "en", "base_model:Intelligent-Internet/II-Search-CIR-4B", "base_model:quantized:Intelligent-Internet/II-Search-CIR-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-06T11:09:54Z
--- base_model: Intelligent-Internet/II-Search-CIR-4B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Intelligent-Internet/II-Search-CIR-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#II-Search-CIR-4B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF/resolve/main/II-Search-CIR-4B.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
haryoaw/xlmr-base-massive-4-id
haryoaw
2025-08-12T18:53:28Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T18:52:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/II-Search-CIR-4B-i1-GGUF
mradermacher
2025-08-12T18:53:25Z
393
0
transformers
[ "transformers", "gguf", "en", "base_model:Intelligent-Internet/II-Search-CIR-4B", "base_model:quantized:Intelligent-Internet/II-Search-CIR-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-06T12:58:25Z
--- base_model: Intelligent-Internet/II-Search-CIR-4B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Intelligent-Internet/II-Search-CIR-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#II-Search-CIR-4B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/II-Search-CIR-4B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q4_0.gguf) | i1-Q4_0 | 2.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/II-Search-CIR-4B-i1-GGUF/resolve/main/II-Search-CIR-4B.i1-Q6_K.gguf) | i1-Q6_K | 3.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
haryoaw/xlmr-base-massive-2-id
haryoaw
2025-08-12T18:52:13Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T18:51:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/reasonrank-32B-GGUF
mradermacher
2025-08-12T18:50:43Z
839
0
transformers
[ "transformers", "gguf", "passage-ranking", "text-ranking", "reasoning", "Information-retrieval", "en", "dataset:liuwenhan/reasonrank_data_sft", "dataset:liuwenhan/reasonrank_data_rl", "dataset:liuwenhan/reasonrank_data_13k", "base_model:liuwenhan/reasonrank-32B", "base_model:quantized:liuwenhan/reasonrank-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-ranking
2025-08-09T11:36:21Z
--- base_model: liuwenhan/reasonrank-32B datasets: - liuwenhan/reasonrank_data_sft - liuwenhan/reasonrank_data_rl - liuwenhan/reasonrank_data_13k language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - passage-ranking - text-ranking - reasoning - Information-retrieval --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/liuwenhan/reasonrank-32B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#reasonrank-32B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/reasonrank-32B-GGUF/resolve/main/reasonrank-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1755024552
Ferdi3425
2025-08-12T18:50:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:50:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shanghong/oumi_rag_grpo
shanghong
2025-08-12T18:50:08Z
0
0
null
[ "safetensors", "qwen3", "question-answering", "en", "dataset:shanghong/oumi_rag_grpo_data", "arxiv:1910.09700", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "region:us" ]
question-answering
2025-08-12T18:34:57Z
--- datasets: - shanghong/oumi_rag_grpo_data base_model: - Qwen/Qwen3-4B pipeline_tag: question-answering language: - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755024495
ggozzy
2025-08-12T18:49:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:49:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755024513
IvanJAjebu
2025-08-12T18:49:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:49:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abdeljalilELmajjodi/Darija_Arabic_NER_LID_2
abdeljalilELmajjodi
2025-08-12T18:48:35Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:atlasia/XLM-RoBERTa-Morocco", "base_model:finetune:atlasia/XLM-RoBERTa-Morocco", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-12T18:46:39Z
--- library_name: transformers license: mit base_model: atlasia/XLM-RoBERTa-Morocco tags: - generated_from_trainer metrics: - f1 model-index: - name: Darija_Arabic_NER_LID_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Darija_Arabic_NER_LID_2 This model is a fine-tuned version of [atlasia/XLM-RoBERTa-Morocco](https://huggingface.co/atlasia/XLM-RoBERTa-Morocco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4273 - F1: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
MatValSE/EE_Fraktur_OCR
MatValSE
2025-08-12T18:47:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-12T17:57:36Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: olmocr-finetuned tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for olmocr-finetuned This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Gemma-3-R1-12B-v1-GGUF
mradermacher
2025-08-12T18:46:44Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:TheDrummer/Gemma-3-R1-12B-v1", "base_model:quantized:TheDrummer/Gemma-3-R1-12B-v1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T17:38:46Z
--- base_model: TheDrummer/Gemma-3-R1-12B-v1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/TheDrummer/Gemma-3-R1-12B-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Gemma-3-R1-12B-v1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.7 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.mmproj-f16.gguf) | mmproj-f16 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q3_K_M.gguf) | Q3_K_M | 6.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q3_K_L.gguf) | Q3_K_L | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.IQ4_XS.gguf) | IQ4_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q4_K_S.gguf) | Q4_K_S | 7.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q4_K_M.gguf) | Q4_K_M | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q5_K_S.gguf) | Q5_K_S | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q5_K_M.gguf) | Q5_K_M | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q6_K.gguf) | Q6_K | 9.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-3-R1-12B-v1-GGUF/resolve/main/Gemma-3-R1-12B-v1.Q8_0.gguf) | Q8_0 | 12.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1755024214
Ferdi3425
2025-08-12T18:45:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:44:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amoranv3/somatotype-inceptionresnetv2
amoranv3
2025-08-12T18:45:07Z
0
0
null
[ "pytorch", "computer-vision", "somatotype-classification", "body-type-analysis", "license:mit", "region:us" ]
null
2025-08-12T18:39:20Z
--- license: mit tags: - pytorch - computer-vision - somatotype-classification - body-type-analysis --- # Somatotype Classification Model - InceptionResNetV2 Este modelo clasifica somatotipos (tipos corporales) en tres categorías: - Ectomorph (Ectomorfo) - Mesomorph (Mesomorfo) - Endomorph (Endomorfo) ## Uso ```python from landing_page import InceptionResNetV2Module, predict_transform import torch from PIL import Image # Cargar modelo model = InceptionResNetV2Module(num_classes=3) model.load_weights("pytorch_model.bin") # Procesar imagen image = Image.open("imagen_corporal.jpg") image_tensor = predict_transform(image) # Predicción predicted_class, confidence, probabilities = model.predict(image_tensor) ``` ## Modelo - **Arquitectura**: InceptionResNetV2 - **Clases**: 3 (Ectomorph, Mesomorph, Endomorph) - **Input Size**: 224x224 RGB - **Framework**: PyTorch Desarrollado por ElectroBiomed para análisis biomecánico y medicina deportiva.
Abinayasankar/SkyplerCoder-1.0-SFT
Abinayasankar
2025-08-12T18:44:45Z
9
0
peft
[ "peft", "safetensors", "llama", "text-generation", "code-generation", "codellama", "lora", "skypler", "finetuned", "trl", "sft", "transformers", "huggingface", "conversational", "license:mit", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-10T11:37:31Z
--- license: mit tags: - code-generation - codellama - lora - peft - skypler - finetuned - trl - sft - transformers - huggingface model-index: - name: SkyplerCoder-1.0-SFT results: [] --- # SkyplerCoder-1.0-SFT SkyplerCoder-1.0-SFT is a CodeLlama-7B model finetuned using LoRA (PEFT) on a curated dataset of code instructions and completions. This model is designed for code generation, code completion, and code understanding tasks, supporting both Python and TypeScript, and is optimized for instruction-following and developer productivity. ## Model Details - **Base Model:** [meta-llama/CodeLlama-7b-hf](https://huggingface.co/meta-llama/CodeLlama-7b-hf) - **Finetuning Method:** LoRA (PEFT) with SFT (Supervised Fine-Tuning) - **Framework:** PyTorch, Hugging Face Transformers, PEFT, TRL - **Quantization:** Optional (BitsAndBytes config available) - **Parameters:** 7B (with LoRA adapters merged) - **Author:** Abinayasankar M(Skypler AI) - **Contact:** [email protected] ## Training Data - **Sources:** - [mhhmm/typescript-instruct-20k](https://huggingface.co/datasets/mhhmm/typescript-instruct-20k) - Custom CSVs: `trainable_data.csv`, `trainable_data_concert.csv` - **Format:** Instruction/Completion pairs for code tasks in Python and TypeScript. ## Training Procedure - **Hardware:** NVIDIA A100 GPU - **Batch Size:** 8 - **Epochs:** 5 - **Learning Rate:** 2e-5 - **Optimizer:** AdamW - **Scheduler:** Cosine - **LoRA Config:** r=8, alpha=16, dropout=0.1, target_modules=["q_proj", "v_proj"] - **Max Sequence Length:** 1024 (input), 2048 (labels) - **Callbacks:** EarlyStopping, GradientNormLog, SaveCheckpoints ## Intended Use - **Primary:** Code generation, code completion, code review, and code understanding. - **Secondary:** Instruction-following for code tasks, code explanation, and code translation. ## Limitations - May generate incorrect or insecure code. - Not suitable for production without human review. - Trained on public and synthetic data; may not generalize to all codebases. ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("Abinayasankar/SkyplerCoder-1.0-SFT") model = AutoModelForCausalLM.from_pretrained("Abinayasankar/SkyplerCoder-1.0-SFT").to("cuda") prompt = "Write a Python function to reverse a string." inputs = tokenizer(prompt, return_tensors="pt").to("cuda") with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=128, pad_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Evaluation - **Perplexity:** Use the provided `compute_perplexity` function in the repo to evaluate on your own validation set. ## Citation If you use this model, please cite: ``` @misc{skyplercoder2025, title={SkyplerCoder-1.0-SFT: LoRA-Finetuned CodeLlama-7B for Code Generation}, author={Abinayasankar M}, year={2025}, howpublished={\url{https://huggingface.co/Abinayasankar/SkyplerCoder-1.0-SFT}} } ``` ## License mit --- **Disclaimer:** This model is provided as-is and comes with no warranty. Always review generated code for correctness and security before use
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755022715
kojeklollipop
2025-08-12T18:44:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:44:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stanpony/tiny_lm_8M_vanilla_full_20250812_123852
stanpony
2025-08-12T18:40:00Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T18:39:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755023884
ggozzy
2025-08-12T18:39:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:39:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amoranv3/somatotype-densenet121
amoranv3
2025-08-12T18:39:19Z
0
0
null
[ "pytorch", "computer-vision", "somatotype-classification", "body-type-analysis", "license:mit", "region:us" ]
null
2025-08-12T18:38:31Z
--- license: mit tags: - pytorch - computer-vision - somatotype-classification - body-type-analysis --- # Somatotype Classification Model - DenseNet121 Este modelo clasifica somatotipos (tipos corporales) en tres categorías: - Ectomorph (Ectomorfo) - Mesomorph (Mesomorfo) - Endomorph (Endomorfo) ## Uso ```python from landing_page import DenseNet121Module, predict_transform import torch from PIL import Image # Cargar modelo model = DenseNet121Module(num_classes=3) model.load_weights("pytorch_model.bin") # Procesar imagen image = Image.open("imagen_corporal.jpg") image_tensor = predict_transform(image) # Predicción predicted_class, confidence, probabilities = model.predict(image_tensor) ``` ## Modelo - **Arquitectura**: DenseNet121 - **Clases**: 3 (Ectomorph, Mesomorph, Endomorph) - **Input Size**: 224x224 RGB - **Framework**: PyTorch Desarrollado por ElectroBiomed para análisis biomecánico y medicina deportiva.
Jack-Payne1/qwen_2.5_7b-phoenix_T1_format_seed1
Jack-Payne1
2025-08-12T18:38:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T18:35:09Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Jack-Payne1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755023827
IvanJAjebu
2025-08-12T18:38:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:38:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
giovannidemuri/llama3b-llamab8-er-afg-v90-seed2-hx-alpaca-fpt
giovannidemuri
2025-08-12T18:38:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T17:26:16Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: llama3b-llamab8-er-afg-v90-seed2-hx-alpaca-fpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3b-llamab8-er-afg-v90-seed2-hx-alpaca-fpt This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.0
BASH-Lab/RAVEN-AV-7B
BASH-Lab
2025-08-12T18:36:23Z
2
0
null
[ "safetensors", "raven_qwen2", "arxiv:2505.17114", "license:apache-2.0", "region:us" ]
null
2025-08-04T17:51:40Z
--- license: apache-2.0 --- <p align="center"> <img src="./assets/raven_logo.png" width="100" style="margin-bottom: 0.2;"/> <p> <h3 align="center"> <a href="https://arxiv.org/pdf/2505.17114" style="color:#825987"> RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language </a> </h3> <h5 align="center"> Project Page: <a href="https://bashlab.github.io/raven_project/" style="color:#825987"> https://bashlab.github.io/raven_project/ </a> </h5> <p align="center"> <img src="./assets/raven_architecture.png" width="800" /> <p> --- ## 🛠️ Requirements and Installation Basic Dependencies: * Python >= 3.8 * Pytorch >= 2.2.0 * CUDA Version >= 11.8 * transformers == 4.40.0 (for reproducing paper results) * tokenizers == 0.19.1 ```bash cd RAVEN pip install -r requirements.txt pip install flash-attn==2.5.8 --no-build-isolation pip install opencv-python==4.5.5.64 apt-get update && apt-get install ffmpeg libsm6 libxext6 -y ``` --- ## 🤖 Inference - **STEP 1:** Download $\texttt{siglip-so400m-patch14-384}$ from here [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) - **STEP 2:** Download **RAVEN** checkpoint ```bash CUDA_VISIBLE_DEVICES=0 python inference.py --model-path=<MODEL PATH> --modal-type=<MODAL TYPE> ``` ## 👍 Acknowledgement The codebase of RAVEN is adapted from [**VideoLLaMA2**](https://github.com/DAMO-NLP-SG/VideoLLaMA2). We are also grateful for their contribution.
Top-Video-Archita-Phukan-Viral-Video/Archita.viral.videos.link.Exclusive
Top-Video-Archita-Phukan-Viral-Video
2025-08-12T18:36:00Z
0
0
null
[ "region:us" ]
null
2025-08-12T18:35:23Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5abutj9x?viral-news" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
andr0m4da/blockassist-bc-grazing_hunting_boar_1755023546
andr0m4da
2025-08-12T18:34:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grazing hunting boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:34:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grazing hunting boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755023579
ggozzy
2025-08-12T18:34:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:34:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bamitunde/blockassist-bc-mimic_humming_frog_1755023561
bamitunde
2025-08-12T18:34:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic humming frog", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:33:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic humming frog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EurekaTian/qwen2p5_7b_mmlu_pos
EurekaTian
2025-08-12T18:33:36Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2025-08-12T17:39:27Z
--- license: apache-2.0 ---
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755023544
IvanJAjebu
2025-08-12T18:33:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:33:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Abhay31/ppo-LunarLander-v2
Abhay31
2025-08-12T18:33:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-12T18:33:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.61 +/- 25.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jessica-Radcliffe-Viral-Video-Clip/Did.an.Orca.Kill.Trainer.Jessica.Radcliffe.Viral.Clip.Explained
Jessica-Radcliffe-Viral-Video-Clip
2025-08-12T18:30:15Z
0
0
null
[ "region:us" ]
null
2025-08-12T18:30:04Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1755023333
Ferdi3425
2025-08-12T18:30:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:29:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ver-Video-Jessica-Radcliffe-la-orca-viral/VIRAL.VER.Video.Jessica.Radcliffe.y.la.orca.viral.de.la.muerte.video
ver-Video-Jessica-Radcliffe-la-orca-viral
2025-08-12T18:29:18Z
0
0
null
[ "region:us" ]
null
2025-08-12T18:28:48Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755023273
ggozzy
2025-08-12T18:29:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:29:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Abhay31/ppo-LunarLander-v3
Abhay31
2025-08-12T18:28:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-12T18:28:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v3 type: LunarLander-v3 metrics: - type: mean_reward value: 256.58 +/- 18.52 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v3** This is a trained model of a **PPO** agent playing **LunarLander-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755021689
calegpedia
2025-08-12T18:28:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:28:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MariChristmass/digital
MariChristmass
2025-08-12T18:28:41Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-12T18:28:17Z
--- license: apache-2.0 ---
hamid1232/Qwen3-0.6B-Gensyn-Swarm-strong_wiry_skunk
hamid1232
2025-08-12T18:28:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am strong_wiry_skunk", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T08:10:51Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am strong_wiry_skunk --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nightmedia/Jan-v1-4B-q4-hi-mlx
nightmedia
2025-08-12T18:26:14Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "en", "base_model:janhq/Jan-v1-4B", "base_model:quantized:janhq/Jan-v1-4B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-12T18:15:50Z
--- license: apache-2.0 language: - en base_model: janhq/Jan-v1-4B pipeline_tag: text-generation tags: - mlx library_name: mlx --- # Jan-v1-4B-q4-hi-mlx This model [Jan-v1-4B-q4-hi-mlx](https://huggingface.co/Jan-v1-4B-q4-hi-mlx) was converted to MLX format from [janhq/Jan-v1-4B](https://huggingface.co/janhq/Jan-v1-4B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Jan-v1-4B-q4-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755021416
milliarderdol
2025-08-12T18:26:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:26:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1755023044
Ferdi3425
2025-08-12T18:25:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T18:24:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).