modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 18:27:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 18:24:50
card
stringlengths
11
1.01M
Echefa/AI-TEST
Echefa
2023-03-28T03:18:00Z
0
0
null
[ "es", "en", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-03-28T03:17:10Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - es - en ---
vocabtrimmer/xlm-roberta-base-trimmed-es-tweet-sentiment-es
vocabtrimmer
2023-03-28T03:09:42Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-06T20:01:35Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 65.06 | 65.06 | 65.06 | 64.96 | 65.06 | 64.9 | 65.06 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-tweet-sentiment-es/raw/main/eval.json).
alangpp255/Question_classifier_V2
alangpp255
2023-03-28T03:07:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-28T02:49:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Question_classifier_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question_classifier_V2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0259 - Accuracy: 0.9966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0049 | 1.0 | 1215 | 0.0219 | 0.9967 | | 0.0009 | 2.0 | 2430 | 0.0259 | 0.9966 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Maryem13/ppo-LunarLander-v
Maryem13
2023-03-28T02:39:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:55:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -213.05 +/- 99.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
platzi/platzi-vit-model-andres-galvis
platzi
2023-03-28T02:29:05Z
225
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-27T20:45:13Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/platzi/platzi-vit-base-beans/resolve/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/platzi/platzi-vit-base-beans/resolve/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: platzi-vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-andres-galvis This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0227 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1343 | 3.85 | 500 | 0.0227 | 0.9850 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cpu - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/xlm-roberta-base-trimmed-it-60000-tweet-sentiment-it
vocabtrimmer
2023-03-28T02:24:15Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T11:45:19Z
# `vocabtrimmer/xlm-roberta-base-trimmed-it-60000-tweet-sentiment-it` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-60000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-60000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (italian). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(italian). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 65.29 | 65.29 | 65.29 | 65.06 | 65.29 | 67.2 | 65.29 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-it-60000-tweet-sentiment-it/raw/main/eval.json).
sohm/ppo-LunarLander-v2-Lunar1MM
sohm
2023-03-28T02:17:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T02:17:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.72 +/- 18.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sonny-dev/ppo-LunarLander-v2
sonny-dev
2023-03-28T02:14:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T15:38:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.99 +/- 20.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Seonwhee-Genome/bert-base
Seonwhee-Genome
2023-03-28T02:04:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:klue", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T02:59:08Z
--- tags: - generated_from_trainer datasets: - klue model-index: - name: bert-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base This model was trained from scratch on the klue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
sohm/ppo-LunarLander-v2-Lunar200Kv6
sohm
2023-03-28T02:03:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T02:02:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -117.72 +/- 67.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Senka1/hhhgy
Senka1
2023-03-28T01:59:16Z
0
0
nemo
[ "nemo", "not_for_all_eyes", "text-classification", "ru", "dataset:nyanko7/LLaMA-65B", "license:wtfpl", "region:us" ]
text-classification
2023-03-28T01:56:11Z
--- license: wtfpl datasets: - nyanko7/LLaMA-65B language: - ru metrics: - character library_name: nemo pipeline_tag: text-classification tags: - not_for_all_eyes ---
vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg
vocabtrimmer
2023-03-28T01:52:19Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "ru", "dataset:lmqg/qg_ruquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-17T09:12:57Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ru datasets: - lmqg/qg_ruquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов." example_title: "Question Generation Example 1" - text: "Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в состав Латинской Америки." example_title: "Question Generation Example 2" - text: "Классическим примером международного синдиката XX века была группа компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 % мировой торговли алмазами." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_ruquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 18.11 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 33.73 - name: METEOR (Question Generation) type: meteor_question_generation value: 28.94 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 86.01 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 64.61 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg` This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-ru-120000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000) for question generation task on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [vocabtrimmer/mt5-small-trimmed-ru-120000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000) - **Language:** ru - **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ru", model="vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg") # model prediction questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg") output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 86.01 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_1 | 33.64 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_2 | 26.89 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_3 | 21.94 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_4 | 18.11 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | METEOR | 28.94 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | MoverScore | 64.61 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | ROUGE_L | 33.73 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_ruquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: vocabtrimmer/mt5-small-trimmed-ru-120000 - max_length: 512 - max_length_output: 32 - epoch: 14 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
ryanaspen/ppo-SnowballTarget
ryanaspen
2023-03-28T01:43:30Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-28T01:43:25Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: ryanaspen/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
artem9k/alpaca-lora-7b
artem9k
2023-03-28T01:42:05Z
0
0
null
[ "license:other", "region:us" ]
null
2023-03-28T01:39:14Z
--- license: other --- #### Trained on Monday Mar 27 #### ALPACA LORA model #### Trained on alpaca-data-cleaned for 3 epochs #### micro_batch_size 10 #### all other params default #### https://github.com/tloen/alpaca-lora
nan2/clbenben
nan2
2023-03-28T01:37:55Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-28T01:32:00Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### clbenben Dreambooth model trained by nan2 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(2).png) ![1](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(5).png) ![2](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(4).png) ![3](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(3).png)
sohm/ppo-LunarLander-v2-Lunar200Kv4
sohm
2023-03-28T01:34:30Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:34:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.66 +/- 38.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sohm/ppo-LunarLander-v2-Lunar200Kv3
sohm
2023-03-28T01:30:53Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:30:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -180.77 +/- 43.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000
vocabtrimmer
2023-03-28T01:16:05Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T00:52:35Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,267,264 | | parameter_size_embedding | 512,057,344 | 122,886,144 | | vocab_size | 250,028 | 60,003 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 60000 | 2 |
aymenkhs/a2c-AntBulletEnv-v0
aymenkhs
2023-03-28T01:03:59Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:02:50Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1402.59 +/- 168.02 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sohm/ppo-LunarLander-v2-Lunar200Kv1
sohm
2023-03-28T01:02:51Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:02:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -144.32 +/- 41.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-30000
vocabtrimmer
2023-03-28T00:50:19Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T00:28:05Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 30000 | 2 |
ryanaspen/reinforce-cartpole
ryanaspen
2023-03-28T00:48:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-17T20:18:41Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
GraymanMedia/test
GraymanMedia
2023-03-28T00:46:04Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-28T00:16:39Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### test Dreambooth model trained by GraymanMedia with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
makdong/bert-finetuned-squad22
makdong
2023-03-28T00:42:43Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T23:47:07Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad22 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Neurogen/neurogen
Neurogen
2023-03-28T00:28:01Z
25
8
diffusers
[ "diffusers", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T16:19:59Z
--- license: other --- According to the tests, this model gives a very good detail of skin and textures. Great for close-up photorealistic portraits as well as various characters and models. UPD 26.03.2023: v1.1: The new version has taken a step forward in the direction of versatility. The detail of the half body planes and full body planes has been improved (don't forget to use the Hires fix). In addition to photorealism, you can use this model for digital art and anime as well. Texture detailing has been improved, and new colors have been added.
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-ukp
jakub014
2023-03-28T00:10:22Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-28T00:04:33Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-ukp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-sufficiency-ukp This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5288 - Accuracy: 0.8786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 52 | 0.3410 | 0.8544 | | No log | 2.0 | 104 | 0.4002 | 0.8689 | | No log | 3.0 | 156 | 0.5108 | 0.8544 | | No log | 4.0 | 208 | 0.5288 | 0.8786 | | No log | 5.0 | 260 | 0.5707 | 0.8738 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-10000
vocabtrimmer
2023-03-28T00:04:10Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T23:42:24Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 10000 | 2 |
Kaludi/Customer-Support-Assistant
Kaludi
2023-03-27T23:52:10Z
71
1
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T23:46:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Customer-Support-Assistant-V0 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Customer-Support-Assistant-V0 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1288 - Validation Loss: 1.1047 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.2620 | 4.1992 | 0 | | 4.0866 | 2.4363 | 1 | | 2.4098 | 1.5674 | 2 | | 1.5377 | 1.2284 | 3 | | 1.1288 | 1.1047 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
PhilSad/q-taxi-v3
PhilSad
2023-03-27T23:50:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:50:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/xlm-roberta-base-trimmed-it-tweet-sentiment-it
vocabtrimmer
2023-03-27T23:50:29Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-06T18:56:55Z
# `vocabtrimmer/xlm-roberta-base-trimmed-it-tweet-sentiment-it` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (italian). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(italian). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 70.92 | 70.92 | 70.92 | 70.83 | 70.92 | 72.13 | 70.92 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-it-tweet-sentiment-it/raw/main/eval.json).
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl
jakub014
2023-03-27T23:50:10Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T23:48:35Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6548 - Accuracy: 0.6508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 16 | 0.6548 | 0.6508 | | No log | 2.0 | 32 | 0.6502 | 0.6190 | | No log | 3.0 | 48 | 0.6451 | 0.6190 | | No log | 4.0 | 64 | 0.6436 | 0.6349 | | No log | 5.0 | 80 | 0.6482 | 0.6190 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-5000
vocabtrimmer
2023-03-27T23:41:48Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T23:19:47Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-5000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-5000 | |:---------------------------|:----------------------------------|:----------------------------------------------------------| | parameter_size_full | 610,852,864 | 359,949,312 | | parameter_size_embedding | 512,057,344 | 10,250,240 | | vocab_size | 250,028 | 5,005 | | compression_rate_full | 100.0 | 58.93 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 5000 | 2 |
PhilSad/q-FrozenLake-v1-4x4-noSlippery-5
PhilSad
2023-03-27T23:41:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:41:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-5 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-FrozenLake-v1-4x4-noSlippery-5", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
huggingtweets/aeg0lius
huggingtweets
2023-03-27T23:40:28Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T23:40:20Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1637576782198231040/KejpruXv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">owl</div> <div style="text-align: center; font-size: 14px;">@aeg0lius</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from owl. | Data | owl | | --- | --- | | Tweets downloaded | 774 | | Retweets | 30 | | Short tweets | 313 | | Tweets kept | 431 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/b6wmilz9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aeg0lius's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ymvqtlc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ymvqtlc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aeg0lius') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fathyshalab/autotrain-dialogsumgerman-44305111787
fathyshalab
2023-03-27T23:35:58Z
13
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "summarization", "de", "dataset:fathyshalab/autotrain-data-dialogsumgerman", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-03-27T19:49:05Z
--- tags: - autotrain - summarization language: - de widget: - text: "I love AutoTrain 🤗" datasets: - fathyshalab/autotrain-data-dialogsumgerman co2_eq_emissions: emissions: 86.21246024573398 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 44305111787 - CO2 Emissions (in grams): 86.2125 ## Validation Metrics - Loss: 1.069 - Rouge1: 33.702 - Rouge2: 13.478 - RougeL: 29.431 - RougeLsum: 30.710 - Gen Len: 18.952 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/fathyshalab/autotrain-dialogsumgerman-44305111787 ```
huggingtweets/ordinarygamers
huggingtweets
2023-03-27T23:23:58Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T23:23:50Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1403763529036046336/NTGmV9nb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mutahar</div> <div style="text-align: center; font-size: 14px;">@ordinarygamers</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mutahar. | Data | Mutahar | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 87 | | Short tweets | 306 | | Tweets kept | 2853 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6ezo4cbs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ordinarygamers's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dmhrus4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dmhrus4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ordinarygamers') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
satyrical/dqnSpaceInvaders
satyrical
2023-03-27T23:17:10Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:16:30Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 310.50 +/- 122.83 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga satyrical -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga satyrical -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga satyrical ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BoschAI/dqn-SpaceInvadersNoFrameskip-v4
BoschAI
2023-03-27T23:07:41Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:06:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 543.50 +/- 234.19 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BoschAI -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BoschAI -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BoschAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
aaronrmm/dqn-SpaceInvadersNoFrameskip-v4
aaronrmm
2023-03-27T23:04:51Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T21:31:02Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 670.00 +/- 278.20 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aaronrmm -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aaronrmm -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga aaronrmm ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
pinaggle/dqn-SpaceInvadersNoFrameskip-v4
pinaggle
2023-03-27T22:37:47Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T22:37:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 623.50 +/- 145.88 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pinaggle -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pinaggle -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga pinaggle ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
tcvrishank/histo_train_swin
tcvrishank
2023-03-27T22:31:54Z
166
0
transformers
[ "transformers", "pytorch", "tensorboard", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-25T03:42:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: histo_train_swin results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # histo_train_swin This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2654 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0305 | 16.67 | 100 | 0.2654 | 0.9 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000
vocabtrimmer
2023-03-27T22:28:45Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:19:50Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 30000 | 2 |
Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
Muennighoff
2023-03-27T22:26:36Z
466
23
sentence-transformers
[ "sentence-transformers", "pytorch", "gptj", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 69.22388059701493 - type: ap value: 32.04724673950256 - type: f1 value: 63.25719825770428 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 71.26109999999998 - type: ap value: 66.16336378255403 - type: f1 value: 70.89719145825303 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 39.19199999999999 - type: f1 value: 38.580766731113826 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 27.311999999999998 - type: map_at_10 value: 42.620000000000005 - type: map_at_100 value: 43.707 - type: map_at_1000 value: 43.714999999999996 - type: map_at_3 value: 37.624 - type: map_at_5 value: 40.498 - type: mrr_at_1 value: 27.667 - type: mrr_at_10 value: 42.737 - type: mrr_at_100 value: 43.823 - type: mrr_at_1000 value: 43.830999999999996 - type: mrr_at_3 value: 37.743 - type: mrr_at_5 value: 40.616 - type: ndcg_at_1 value: 27.311999999999998 - type: ndcg_at_10 value: 51.37500000000001 - type: ndcg_at_100 value: 55.778000000000006 - type: ndcg_at_1000 value: 55.96600000000001 - type: ndcg_at_3 value: 41.087 - type: ndcg_at_5 value: 46.269 - type: precision_at_1 value: 27.311999999999998 - type: precision_at_10 value: 7.945 - type: precision_at_100 value: 0.9820000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 17.046 - type: precision_at_5 value: 12.745000000000001 - type: recall_at_1 value: 27.311999999999998 - type: recall_at_10 value: 79.445 - type: recall_at_100 value: 98.151 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 51.13799999999999 - type: recall_at_5 value: 63.727000000000004 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 45.59037428592033 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 38.86371701986363 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 61.625568691427766 - type: mrr value: 75.83256386580486 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 89.96074355094802 - type: cos_sim_spearman value: 86.2501580394454 - type: euclidean_pearson value: 82.18427440380462 - type: euclidean_spearman value: 80.14760935017947 - type: manhattan_pearson value: 82.24621578156392 - type: manhattan_spearman value: 80.00363016590163 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 84.49350649350649 - type: f1 value: 84.4249343233736 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 36.551459722989385 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 33.69901851846774 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.499 - type: map_at_10 value: 41.208 - type: map_at_100 value: 42.638 - type: map_at_1000 value: 42.754 - type: map_at_3 value: 37.506 - type: map_at_5 value: 39.422000000000004 - type: mrr_at_1 value: 37.339 - type: mrr_at_10 value: 47.051 - type: mrr_at_100 value: 47.745 - type: mrr_at_1000 value: 47.786 - type: mrr_at_3 value: 44.086999999999996 - type: mrr_at_5 value: 45.711 - type: ndcg_at_1 value: 37.339 - type: ndcg_at_10 value: 47.666 - type: ndcg_at_100 value: 52.994 - type: ndcg_at_1000 value: 54.928999999999995 - type: ndcg_at_3 value: 41.982 - type: ndcg_at_5 value: 44.42 - type: precision_at_1 value: 37.339 - type: precision_at_10 value: 9.127 - type: precision_at_100 value: 1.4749999999999999 - type: precision_at_1000 value: 0.194 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.449000000000002 - type: recall_at_1 value: 30.499 - type: recall_at_10 value: 60.328 - type: recall_at_100 value: 82.57900000000001 - type: recall_at_1000 value: 95.074 - type: recall_at_3 value: 44.17 - type: recall_at_5 value: 50.94 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.613 - type: map_at_10 value: 40.781 - type: map_at_100 value: 42.018 - type: map_at_1000 value: 42.132999999999996 - type: map_at_3 value: 37.816 - type: map_at_5 value: 39.389 - type: mrr_at_1 value: 38.408 - type: mrr_at_10 value: 46.631 - type: mrr_at_100 value: 47.332 - type: mrr_at_1000 value: 47.368 - type: mrr_at_3 value: 44.384 - type: mrr_at_5 value: 45.661 - type: ndcg_at_1 value: 38.408 - type: ndcg_at_10 value: 46.379999999999995 - type: ndcg_at_100 value: 50.81 - type: ndcg_at_1000 value: 52.663000000000004 - type: ndcg_at_3 value: 42.18 - type: ndcg_at_5 value: 43.974000000000004 - type: precision_at_1 value: 38.408 - type: precision_at_10 value: 8.656 - type: precision_at_100 value: 1.3860000000000001 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.276 - type: precision_at_5 value: 14.241999999999999 - type: recall_at_1 value: 30.613 - type: recall_at_10 value: 56.44 - type: recall_at_100 value: 75.044 - type: recall_at_1000 value: 86.426 - type: recall_at_3 value: 43.766 - type: recall_at_5 value: 48.998000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 37.370999999999995 - type: map_at_10 value: 49.718 - type: map_at_100 value: 50.737 - type: map_at_1000 value: 50.79 - type: map_at_3 value: 46.231 - type: map_at_5 value: 48.329 - type: mrr_at_1 value: 42.884 - type: mrr_at_10 value: 53.176 - type: mrr_at_100 value: 53.81700000000001 - type: mrr_at_1000 value: 53.845 - type: mrr_at_3 value: 50.199000000000005 - type: mrr_at_5 value: 52.129999999999995 - type: ndcg_at_1 value: 42.884 - type: ndcg_at_10 value: 55.826 - type: ndcg_at_100 value: 59.93000000000001 - type: ndcg_at_1000 value: 61.013 - type: ndcg_at_3 value: 49.764 - type: ndcg_at_5 value: 53.025999999999996 - type: precision_at_1 value: 42.884 - type: precision_at_10 value: 9.046999999999999 - type: precision_at_100 value: 1.212 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.131999999999998 - type: precision_at_5 value: 15.524 - type: recall_at_1 value: 37.370999999999995 - type: recall_at_10 value: 70.482 - type: recall_at_100 value: 88.425 - type: recall_at_1000 value: 96.03399999999999 - type: recall_at_3 value: 54.43 - type: recall_at_5 value: 62.327999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.875999999999998 - type: map_at_10 value: 31.715 - type: map_at_100 value: 32.847 - type: map_at_1000 value: 32.922000000000004 - type: map_at_3 value: 29.049999999999997 - type: map_at_5 value: 30.396 - type: mrr_at_1 value: 24.52 - type: mrr_at_10 value: 33.497 - type: mrr_at_100 value: 34.455000000000005 - type: mrr_at_1000 value: 34.510000000000005 - type: mrr_at_3 value: 30.791 - type: mrr_at_5 value: 32.175 - type: ndcg_at_1 value: 24.52 - type: ndcg_at_10 value: 36.95 - type: ndcg_at_100 value: 42.238 - type: ndcg_at_1000 value: 44.147999999999996 - type: ndcg_at_3 value: 31.435000000000002 - type: ndcg_at_5 value: 33.839000000000006 - type: precision_at_1 value: 24.52 - type: precision_at_10 value: 5.9319999999999995 - type: precision_at_100 value: 0.901 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.469 - type: recall_at_1 value: 22.875999999999998 - type: recall_at_10 value: 51.38 - type: recall_at_100 value: 75.31099999999999 - type: recall_at_1000 value: 89.718 - type: recall_at_3 value: 36.26 - type: recall_at_5 value: 42.248999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.984 - type: map_at_10 value: 23.457 - type: map_at_100 value: 24.723 - type: map_at_1000 value: 24.846 - type: map_at_3 value: 20.873 - type: map_at_5 value: 22.357 - type: mrr_at_1 value: 18.159 - type: mrr_at_10 value: 27.431 - type: mrr_at_100 value: 28.449 - type: mrr_at_1000 value: 28.52 - type: mrr_at_3 value: 24.979000000000003 - type: mrr_at_5 value: 26.447 - type: ndcg_at_1 value: 18.159 - type: ndcg_at_10 value: 28.627999999999997 - type: ndcg_at_100 value: 34.741 - type: ndcg_at_1000 value: 37.516 - type: ndcg_at_3 value: 23.902 - type: ndcg_at_5 value: 26.294 - type: precision_at_1 value: 18.159 - type: precision_at_10 value: 5.485 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 11.774 - type: precision_at_5 value: 8.731 - type: recall_at_1 value: 14.984 - type: recall_at_10 value: 40.198 - type: recall_at_100 value: 67.11500000000001 - type: recall_at_1000 value: 86.497 - type: recall_at_3 value: 27.639000000000003 - type: recall_at_5 value: 33.595000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 29.067 - type: map_at_10 value: 39.457 - type: map_at_100 value: 40.83 - type: map_at_1000 value: 40.94 - type: map_at_3 value: 35.995 - type: map_at_5 value: 38.159 - type: mrr_at_1 value: 34.937000000000005 - type: mrr_at_10 value: 44.755 - type: mrr_at_100 value: 45.549 - type: mrr_at_1000 value: 45.589 - type: mrr_at_3 value: 41.947 - type: mrr_at_5 value: 43.733 - type: ndcg_at_1 value: 34.937000000000005 - type: ndcg_at_10 value: 45.573 - type: ndcg_at_100 value: 51.266999999999996 - type: ndcg_at_1000 value: 53.184 - type: ndcg_at_3 value: 39.961999999999996 - type: ndcg_at_5 value: 43.02 - type: precision_at_1 value: 34.937000000000005 - type: precision_at_10 value: 8.296000000000001 - type: precision_at_100 value: 1.32 - type: precision_at_1000 value: 0.167 - type: precision_at_3 value: 18.8 - type: precision_at_5 value: 13.763 - type: recall_at_1 value: 29.067 - type: recall_at_10 value: 58.298 - type: recall_at_100 value: 82.25099999999999 - type: recall_at_1000 value: 94.476 - type: recall_at_3 value: 42.984 - type: recall_at_5 value: 50.658 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 25.985999999999997 - type: map_at_10 value: 35.746 - type: map_at_100 value: 37.067 - type: map_at_1000 value: 37.191 - type: map_at_3 value: 32.599000000000004 - type: map_at_5 value: 34.239000000000004 - type: mrr_at_1 value: 31.735000000000003 - type: mrr_at_10 value: 40.515 - type: mrr_at_100 value: 41.459 - type: mrr_at_1000 value: 41.516 - type: mrr_at_3 value: 37.938 - type: mrr_at_5 value: 39.25 - type: ndcg_at_1 value: 31.735000000000003 - type: ndcg_at_10 value: 41.484 - type: ndcg_at_100 value: 47.047 - type: ndcg_at_1000 value: 49.427 - type: ndcg_at_3 value: 36.254999999999995 - type: ndcg_at_5 value: 38.375 - type: precision_at_1 value: 31.735000000000003 - type: precision_at_10 value: 7.66 - type: precision_at_100 value: 1.234 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 17.427999999999997 - type: precision_at_5 value: 12.328999999999999 - type: recall_at_1 value: 25.985999999999997 - type: recall_at_10 value: 53.761 - type: recall_at_100 value: 77.149 - type: recall_at_1000 value: 93.342 - type: recall_at_3 value: 39.068000000000005 - type: recall_at_5 value: 44.693 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.949749999999998 - type: map_at_10 value: 34.04991666666667 - type: map_at_100 value: 35.26825 - type: map_at_1000 value: 35.38316666666667 - type: map_at_3 value: 31.181333333333335 - type: map_at_5 value: 32.77391666666667 - type: mrr_at_1 value: 29.402833333333334 - type: mrr_at_10 value: 38.01633333333333 - type: mrr_at_100 value: 38.88033333333334 - type: mrr_at_1000 value: 38.938500000000005 - type: mrr_at_3 value: 35.5175 - type: mrr_at_5 value: 36.93808333333333 - type: ndcg_at_1 value: 29.402833333333334 - type: ndcg_at_10 value: 39.403166666666664 - type: ndcg_at_100 value: 44.66408333333333 - type: ndcg_at_1000 value: 46.96283333333333 - type: ndcg_at_3 value: 34.46633333333334 - type: ndcg_at_5 value: 36.78441666666667 - type: precision_at_1 value: 29.402833333333334 - type: precision_at_10 value: 6.965833333333333 - type: precision_at_100 value: 1.1330833333333334 - type: precision_at_1000 value: 0.15158333333333335 - type: precision_at_3 value: 15.886666666666665 - type: precision_at_5 value: 11.360416666666667 - type: recall_at_1 value: 24.949749999999998 - type: recall_at_10 value: 51.29325 - type: recall_at_100 value: 74.3695 - type: recall_at_1000 value: 90.31299999999999 - type: recall_at_3 value: 37.580083333333334 - type: recall_at_5 value: 43.529666666666664 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.081999999999997 - type: map_at_10 value: 29.215999999999998 - type: map_at_100 value: 30.163 - type: map_at_1000 value: 30.269000000000002 - type: map_at_3 value: 26.942 - type: map_at_5 value: 28.236 - type: mrr_at_1 value: 24.847 - type: mrr_at_10 value: 31.918999999999997 - type: mrr_at_100 value: 32.817 - type: mrr_at_1000 value: 32.897 - type: mrr_at_3 value: 29.831000000000003 - type: mrr_at_5 value: 31.019999999999996 - type: ndcg_at_1 value: 24.847 - type: ndcg_at_10 value: 33.4 - type: ndcg_at_100 value: 38.354 - type: ndcg_at_1000 value: 41.045 - type: ndcg_at_3 value: 29.236 - type: ndcg_at_5 value: 31.258000000000003 - type: precision_at_1 value: 24.847 - type: precision_at_10 value: 5.353 - type: precision_at_100 value: 0.853 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 12.679000000000002 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 22.081999999999997 - type: recall_at_10 value: 43.505 - type: recall_at_100 value: 66.45400000000001 - type: recall_at_1000 value: 86.378 - type: recall_at_3 value: 32.163000000000004 - type: recall_at_5 value: 37.059999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 15.540000000000001 - type: map_at_10 value: 22.362000000000002 - type: map_at_100 value: 23.435 - type: map_at_1000 value: 23.564 - type: map_at_3 value: 20.143 - type: map_at_5 value: 21.324 - type: mrr_at_1 value: 18.892 - type: mrr_at_10 value: 25.942999999999998 - type: mrr_at_100 value: 26.883000000000003 - type: mrr_at_1000 value: 26.968999999999998 - type: mrr_at_3 value: 23.727 - type: mrr_at_5 value: 24.923000000000002 - type: ndcg_at_1 value: 18.892 - type: ndcg_at_10 value: 26.811 - type: ndcg_at_100 value: 32.066 - type: ndcg_at_1000 value: 35.166 - type: ndcg_at_3 value: 22.706 - type: ndcg_at_5 value: 24.508 - type: precision_at_1 value: 18.892 - type: precision_at_10 value: 4.942 - type: precision_at_100 value: 0.878 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 10.748000000000001 - type: precision_at_5 value: 7.784000000000001 - type: recall_at_1 value: 15.540000000000001 - type: recall_at_10 value: 36.742999999999995 - type: recall_at_100 value: 60.525 - type: recall_at_1000 value: 82.57600000000001 - type: recall_at_3 value: 25.252000000000002 - type: recall_at_5 value: 29.872 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.453 - type: map_at_10 value: 33.363 - type: map_at_100 value: 34.579 - type: map_at_1000 value: 34.686 - type: map_at_3 value: 30.583 - type: map_at_5 value: 32.118 - type: mrr_at_1 value: 28.918 - type: mrr_at_10 value: 37.675 - type: mrr_at_100 value: 38.567 - type: mrr_at_1000 value: 38.632 - type: mrr_at_3 value: 35.260999999999996 - type: mrr_at_5 value: 36.576 - type: ndcg_at_1 value: 28.918 - type: ndcg_at_10 value: 38.736 - type: ndcg_at_100 value: 44.261 - type: ndcg_at_1000 value: 46.72 - type: ndcg_at_3 value: 33.81 - type: ndcg_at_5 value: 36.009 - type: precision_at_1 value: 28.918 - type: precision_at_10 value: 6.586 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 15.360999999999999 - type: precision_at_5 value: 10.857999999999999 - type: recall_at_1 value: 24.453 - type: recall_at_10 value: 50.885999999999996 - type: recall_at_100 value: 75.03 - type: recall_at_1000 value: 92.123 - type: recall_at_3 value: 37.138 - type: recall_at_5 value: 42.864999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.57 - type: map_at_10 value: 33.672000000000004 - type: map_at_100 value: 35.244 - type: map_at_1000 value: 35.467 - type: map_at_3 value: 30.712 - type: map_at_5 value: 32.383 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.344 - type: mrr_at_100 value: 39.219 - type: mrr_at_1000 value: 39.282000000000004 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.273 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 39.567 - type: ndcg_at_100 value: 45.097 - type: ndcg_at_1000 value: 47.923 - type: ndcg_at_3 value: 34.768 - type: ndcg_at_5 value: 37.122 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.5889999999999995 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 16.337 - type: precision_at_5 value: 12.055 - type: recall_at_1 value: 24.57 - type: recall_at_10 value: 51.00900000000001 - type: recall_at_100 value: 75.423 - type: recall_at_1000 value: 93.671 - type: recall_at_3 value: 36.925999999999995 - type: recall_at_5 value: 43.245 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 21.356 - type: map_at_10 value: 27.904 - type: map_at_100 value: 28.938000000000002 - type: map_at_1000 value: 29.036 - type: map_at_3 value: 25.726 - type: map_at_5 value: 26.935 - type: mrr_at_1 value: 22.551 - type: mrr_at_10 value: 29.259 - type: mrr_at_100 value: 30.272 - type: mrr_at_1000 value: 30.348000000000003 - type: mrr_at_3 value: 27.295 - type: mrr_at_5 value: 28.358 - type: ndcg_at_1 value: 22.551 - type: ndcg_at_10 value: 31.817 - type: ndcg_at_100 value: 37.164 - type: ndcg_at_1000 value: 39.82 - type: ndcg_at_3 value: 27.595999999999997 - type: ndcg_at_5 value: 29.568 - type: precision_at_1 value: 22.551 - type: precision_at_10 value: 4.917 - type: precision_at_100 value: 0.828 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 11.583 - type: precision_at_5 value: 8.133 - type: recall_at_1 value: 21.356 - type: recall_at_10 value: 42.489 - type: recall_at_100 value: 67.128 - type: recall_at_1000 value: 87.441 - type: recall_at_3 value: 31.165 - type: recall_at_5 value: 35.853 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 12.306000000000001 - type: map_at_10 value: 21.523 - type: map_at_100 value: 23.358 - type: map_at_1000 value: 23.541 - type: map_at_3 value: 17.809 - type: map_at_5 value: 19.631 - type: mrr_at_1 value: 27.948 - type: mrr_at_10 value: 40.355000000000004 - type: mrr_at_100 value: 41.166000000000004 - type: mrr_at_1000 value: 41.203 - type: mrr_at_3 value: 36.819 - type: mrr_at_5 value: 38.958999999999996 - type: ndcg_at_1 value: 27.948 - type: ndcg_at_10 value: 30.462 - type: ndcg_at_100 value: 37.473 - type: ndcg_at_1000 value: 40.717999999999996 - type: ndcg_at_3 value: 24.646 - type: ndcg_at_5 value: 26.642 - type: precision_at_1 value: 27.948 - type: precision_at_10 value: 9.648 - type: precision_at_100 value: 1.7239999999999998 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 18.48 - type: precision_at_5 value: 14.293 - type: recall_at_1 value: 12.306000000000001 - type: recall_at_10 value: 37.181 - type: recall_at_100 value: 61.148 - type: recall_at_1000 value: 79.401 - type: recall_at_3 value: 22.883 - type: recall_at_5 value: 28.59 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 9.357 - type: map_at_10 value: 18.849 - type: map_at_100 value: 25.369000000000003 - type: map_at_1000 value: 26.950000000000003 - type: map_at_3 value: 13.625000000000002 - type: map_at_5 value: 15.956999999999999 - type: mrr_at_1 value: 67.75 - type: mrr_at_10 value: 74.734 - type: mrr_at_100 value: 75.1 - type: mrr_at_1000 value: 75.10900000000001 - type: mrr_at_3 value: 73.542 - type: mrr_at_5 value: 74.167 - type: ndcg_at_1 value: 55.375 - type: ndcg_at_10 value: 39.873999999999995 - type: ndcg_at_100 value: 43.098 - type: ndcg_at_1000 value: 50.69200000000001 - type: ndcg_at_3 value: 44.856 - type: ndcg_at_5 value: 42.138999999999996 - type: precision_at_1 value: 67.75 - type: precision_at_10 value: 31.1 - type: precision_at_100 value: 9.303 - type: precision_at_1000 value: 2.0060000000000002 - type: precision_at_3 value: 48.25 - type: precision_at_5 value: 40.949999999999996 - type: recall_at_1 value: 9.357 - type: recall_at_10 value: 23.832 - type: recall_at_100 value: 47.906 - type: recall_at_1000 value: 71.309 - type: recall_at_3 value: 14.512 - type: recall_at_5 value: 18.3 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.655 - type: f1 value: 45.51976190938951 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 62.739999999999995 - type: map_at_10 value: 73.07000000000001 - type: map_at_100 value: 73.398 - type: map_at_1000 value: 73.41 - type: map_at_3 value: 71.33800000000001 - type: map_at_5 value: 72.423 - type: mrr_at_1 value: 67.777 - type: mrr_at_10 value: 77.873 - type: mrr_at_100 value: 78.091 - type: mrr_at_1000 value: 78.094 - type: mrr_at_3 value: 76.375 - type: mrr_at_5 value: 77.316 - type: ndcg_at_1 value: 67.777 - type: ndcg_at_10 value: 78.24 - type: ndcg_at_100 value: 79.557 - type: ndcg_at_1000 value: 79.814 - type: ndcg_at_3 value: 75.125 - type: ndcg_at_5 value: 76.834 - type: precision_at_1 value: 67.777 - type: precision_at_10 value: 9.832 - type: precision_at_100 value: 1.061 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 29.433 - type: precision_at_5 value: 18.665000000000003 - type: recall_at_1 value: 62.739999999999995 - type: recall_at_10 value: 89.505 - type: recall_at_100 value: 95.102 - type: recall_at_1000 value: 96.825 - type: recall_at_3 value: 81.028 - type: recall_at_5 value: 85.28099999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 18.467 - type: map_at_10 value: 30.020999999999997 - type: map_at_100 value: 31.739 - type: map_at_1000 value: 31.934 - type: map_at_3 value: 26.003 - type: map_at_5 value: 28.338 - type: mrr_at_1 value: 35.339999999999996 - type: mrr_at_10 value: 44.108999999999995 - type: mrr_at_100 value: 44.993 - type: mrr_at_1000 value: 45.042 - type: mrr_at_3 value: 41.667 - type: mrr_at_5 value: 43.14 - type: ndcg_at_1 value: 35.339999999999996 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 43.852999999999994 - type: ndcg_at_1000 value: 47.235 - type: ndcg_at_3 value: 33.5 - type: ndcg_at_5 value: 34.985 - type: precision_at_1 value: 35.339999999999996 - type: precision_at_10 value: 10.247 - type: precision_at_100 value: 1.7149999999999999 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 22.222 - type: precision_at_5 value: 16.573999999999998 - type: recall_at_1 value: 18.467 - type: recall_at_10 value: 44.080999999999996 - type: recall_at_100 value: 68.72200000000001 - type: recall_at_1000 value: 89.087 - type: recall_at_3 value: 30.567 - type: recall_at_5 value: 36.982 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 35.726 - type: map_at_10 value: 50.207 - type: map_at_100 value: 51.05499999999999 - type: map_at_1000 value: 51.12799999999999 - type: map_at_3 value: 47.576 - type: map_at_5 value: 49.172 - type: mrr_at_1 value: 71.452 - type: mrr_at_10 value: 77.41900000000001 - type: mrr_at_100 value: 77.711 - type: mrr_at_1000 value: 77.723 - type: mrr_at_3 value: 76.39399999999999 - type: mrr_at_5 value: 77.00099999999999 - type: ndcg_at_1 value: 71.452 - type: ndcg_at_10 value: 59.260999999999996 - type: ndcg_at_100 value: 62.424 - type: ndcg_at_1000 value: 63.951 - type: ndcg_at_3 value: 55.327000000000005 - type: ndcg_at_5 value: 57.416999999999994 - type: precision_at_1 value: 71.452 - type: precision_at_10 value: 12.061 - type: precision_at_100 value: 1.455 - type: precision_at_1000 value: 0.166 - type: precision_at_3 value: 34.36 - type: precision_at_5 value: 22.266 - type: recall_at_1 value: 35.726 - type: recall_at_10 value: 60.304 - type: recall_at_100 value: 72.75500000000001 - type: recall_at_1000 value: 82.978 - type: recall_at_3 value: 51.54 - type: recall_at_5 value: 55.665 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 66.63759999999999 - type: ap value: 61.48938261286748 - type: f1 value: 66.35089269264965 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 20.842 - type: map_at_10 value: 32.992 - type: map_at_100 value: 34.236 - type: map_at_1000 value: 34.286 - type: map_at_3 value: 29.049000000000003 - type: map_at_5 value: 31.391999999999996 - type: mrr_at_1 value: 21.375 - type: mrr_at_10 value: 33.581 - type: mrr_at_100 value: 34.760000000000005 - type: mrr_at_1000 value: 34.803 - type: mrr_at_3 value: 29.704000000000004 - type: mrr_at_5 value: 32.015 - type: ndcg_at_1 value: 21.375 - type: ndcg_at_10 value: 39.905 - type: ndcg_at_100 value: 45.843 - type: ndcg_at_1000 value: 47.083999999999996 - type: ndcg_at_3 value: 31.918999999999997 - type: ndcg_at_5 value: 36.107 - type: precision_at_1 value: 21.375 - type: precision_at_10 value: 6.393 - type: precision_at_100 value: 0.935 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.663 - type: precision_at_5 value: 10.324 - type: recall_at_1 value: 20.842 - type: recall_at_10 value: 61.17 - type: recall_at_100 value: 88.518 - type: recall_at_1000 value: 97.993 - type: recall_at_3 value: 39.571 - type: recall_at_5 value: 49.653999999999996 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 93.46557227542178 - type: f1 value: 92.87345917772146 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 72.42134062927497 - type: f1 value: 55.03624810959269 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 70.3866845998655 - type: f1 value: 68.9674519872921 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.27774041694687 - type: f1 value: 76.72936190462792 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.511745925773337 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.764235987575365 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.29353136386601 - type: mrr value: 33.536774455851685 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.702 - type: map_at_10 value: 13.642000000000001 - type: map_at_100 value: 17.503 - type: map_at_1000 value: 19.126 - type: map_at_3 value: 9.748 - type: map_at_5 value: 11.642 - type: mrr_at_1 value: 45.82 - type: mrr_at_10 value: 54.821 - type: mrr_at_100 value: 55.422000000000004 - type: mrr_at_1000 value: 55.452999999999996 - type: mrr_at_3 value: 52.373999999999995 - type: mrr_at_5 value: 53.937000000000005 - type: ndcg_at_1 value: 44.272 - type: ndcg_at_10 value: 36.213 - type: ndcg_at_100 value: 33.829 - type: ndcg_at_1000 value: 42.557 - type: ndcg_at_3 value: 40.814 - type: ndcg_at_5 value: 39.562000000000005 - type: precision_at_1 value: 45.511 - type: precision_at_10 value: 27.214 - type: precision_at_100 value: 8.941 - type: precision_at_1000 value: 2.1870000000000003 - type: precision_at_3 value: 37.874 - type: precision_at_5 value: 34.489 - type: recall_at_1 value: 5.702 - type: recall_at_10 value: 17.638 - type: recall_at_100 value: 34.419 - type: recall_at_1000 value: 66.41 - type: recall_at_3 value: 10.914 - type: recall_at_5 value: 14.032 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 30.567 - type: map_at_10 value: 45.01 - type: map_at_100 value: 46.091 - type: map_at_1000 value: 46.126 - type: map_at_3 value: 40.897 - type: map_at_5 value: 43.301 - type: mrr_at_1 value: 34.56 - type: mrr_at_10 value: 47.725 - type: mrr_at_100 value: 48.548 - type: mrr_at_1000 value: 48.571999999999996 - type: mrr_at_3 value: 44.361 - type: mrr_at_5 value: 46.351 - type: ndcg_at_1 value: 34.531 - type: ndcg_at_10 value: 52.410000000000004 - type: ndcg_at_100 value: 56.999 - type: ndcg_at_1000 value: 57.830999999999996 - type: ndcg_at_3 value: 44.734 - type: ndcg_at_5 value: 48.701 - type: precision_at_1 value: 34.531 - type: precision_at_10 value: 8.612 - type: precision_at_100 value: 1.118 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.307 - type: precision_at_5 value: 14.519000000000002 - type: recall_at_1 value: 30.567 - type: recall_at_10 value: 72.238 - type: recall_at_100 value: 92.154 - type: recall_at_1000 value: 98.375 - type: recall_at_3 value: 52.437999999999995 - type: recall_at_5 value: 61.516999999999996 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 65.98 - type: map_at_10 value: 80.05600000000001 - type: map_at_100 value: 80.76299999999999 - type: map_at_1000 value: 80.786 - type: map_at_3 value: 76.848 - type: map_at_5 value: 78.854 - type: mrr_at_1 value: 75.86 - type: mrr_at_10 value: 83.397 - type: mrr_at_100 value: 83.555 - type: mrr_at_1000 value: 83.557 - type: mrr_at_3 value: 82.033 - type: mrr_at_5 value: 82.97 - type: ndcg_at_1 value: 75.88000000000001 - type: ndcg_at_10 value: 84.58099999999999 - type: ndcg_at_100 value: 86.151 - type: ndcg_at_1000 value: 86.315 - type: ndcg_at_3 value: 80.902 - type: ndcg_at_5 value: 82.953 - type: precision_at_1 value: 75.88000000000001 - type: precision_at_10 value: 12.986 - type: precision_at_100 value: 1.5110000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.382999999999996 - type: precision_at_5 value: 23.555999999999997 - type: recall_at_1 value: 65.98 - type: recall_at_10 value: 93.716 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.97 - type: recall_at_3 value: 83.551 - type: recall_at_5 value: 88.998 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 40.45148482612238 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 55.749490673039126 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 4.903 - type: map_at_10 value: 11.926 - type: map_at_100 value: 13.916999999999998 - type: map_at_1000 value: 14.215 - type: map_at_3 value: 8.799999999999999 - type: map_at_5 value: 10.360999999999999 - type: mrr_at_1 value: 24.099999999999998 - type: mrr_at_10 value: 34.482 - type: mrr_at_100 value: 35.565999999999995 - type: mrr_at_1000 value: 35.619 - type: mrr_at_3 value: 31.433 - type: mrr_at_5 value: 33.243 - type: ndcg_at_1 value: 24.099999999999998 - type: ndcg_at_10 value: 19.872999999999998 - type: ndcg_at_100 value: 27.606 - type: ndcg_at_1000 value: 32.811 - type: ndcg_at_3 value: 19.497999999999998 - type: ndcg_at_5 value: 16.813 - type: precision_at_1 value: 24.099999999999998 - type: precision_at_10 value: 10.08 - type: precision_at_100 value: 2.122 - type: precision_at_1000 value: 0.337 - type: precision_at_3 value: 18.2 - type: precision_at_5 value: 14.62 - type: recall_at_1 value: 4.903 - type: recall_at_10 value: 20.438000000000002 - type: recall_at_100 value: 43.043 - type: recall_at_1000 value: 68.41000000000001 - type: recall_at_3 value: 11.068 - type: recall_at_5 value: 14.818000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 78.58086597995997 - type: cos_sim_spearman value: 69.63214182814991 - type: euclidean_pearson value: 72.76175489042691 - type: euclidean_spearman value: 67.84965161872971 - type: manhattan_pearson value: 72.73812689782592 - type: manhattan_spearman value: 67.83610439531277 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.13970861325006 - type: cos_sim_spearman value: 67.5020551515597 - type: euclidean_pearson value: 66.33415412418276 - type: euclidean_spearman value: 66.82145056673268 - type: manhattan_pearson value: 66.55489484006415 - type: manhattan_spearman value: 66.95147433279057 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 78.85850536483447 - type: cos_sim_spearman value: 79.1633350177206 - type: euclidean_pearson value: 72.74090561408477 - type: euclidean_spearman value: 73.57374448302961 - type: manhattan_pearson value: 72.92980654233226 - type: manhattan_spearman value: 73.72777155112588 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 79.51125593897028 - type: cos_sim_spearman value: 74.46048326701329 - type: euclidean_pearson value: 70.87726087052985 - type: euclidean_spearman value: 67.7721470654411 - type: manhattan_pearson value: 71.05892792135637 - type: manhattan_spearman value: 67.93472619779037 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 83.8299348880489 - type: cos_sim_spearman value: 84.47194637929275 - type: euclidean_pearson value: 78.68768462480418 - type: euclidean_spearman value: 79.80526323901917 - type: manhattan_pearson value: 78.6810718151946 - type: manhattan_spearman value: 79.7820584821254 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 79.99206664843005 - type: cos_sim_spearman value: 80.96089203722137 - type: euclidean_pearson value: 71.31216213716365 - type: euclidean_spearman value: 71.45258140049407 - type: manhattan_pearson value: 71.26140340402836 - type: manhattan_spearman value: 71.3896894666943 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 87.35697089594868 - type: cos_sim_spearman value: 87.78202647220289 - type: euclidean_pearson value: 84.20969668786667 - type: euclidean_spearman value: 83.91876425459982 - type: manhattan_pearson value: 84.24429755612542 - type: manhattan_spearman value: 83.98826315103398 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 69.06962775868384 - type: cos_sim_spearman value: 69.34889515492327 - type: euclidean_pearson value: 69.28108180412313 - type: euclidean_spearman value: 69.6437114853659 - type: manhattan_pearson value: 69.39974983734993 - type: manhattan_spearman value: 69.69057284482079 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 82.42553734213958 - type: cos_sim_spearman value: 81.38977341532744 - type: euclidean_pearson value: 76.47494587945522 - type: euclidean_spearman value: 75.92794860531089 - type: manhattan_pearson value: 76.4768777169467 - type: manhattan_spearman value: 75.9252673228599 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 80.78825425914722 - type: mrr value: 94.60017197762296 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 60.633 - type: map_at_10 value: 70.197 - type: map_at_100 value: 70.758 - type: map_at_1000 value: 70.765 - type: map_at_3 value: 67.082 - type: map_at_5 value: 69.209 - type: mrr_at_1 value: 63.333 - type: mrr_at_10 value: 71.17 - type: mrr_at_100 value: 71.626 - type: mrr_at_1000 value: 71.633 - type: mrr_at_3 value: 68.833 - type: mrr_at_5 value: 70.6 - type: ndcg_at_1 value: 63.333 - type: ndcg_at_10 value: 74.697 - type: ndcg_at_100 value: 76.986 - type: ndcg_at_1000 value: 77.225 - type: ndcg_at_3 value: 69.527 - type: ndcg_at_5 value: 72.816 - type: precision_at_1 value: 63.333 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.103 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.889000000000003 - type: precision_at_5 value: 18.2 - type: recall_at_1 value: 60.633 - type: recall_at_10 value: 87.36699999999999 - type: recall_at_100 value: 97.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 73.656 - type: recall_at_5 value: 82.083 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.76633663366337 - type: cos_sim_ap value: 93.84024096781063 - type: cos_sim_f1 value: 88.08080808080808 - type: cos_sim_precision value: 88.9795918367347 - type: cos_sim_recall value: 87.2 - type: dot_accuracy value: 99.46336633663367 - type: dot_ap value: 75.78127156965245 - type: dot_f1 value: 71.41403865717193 - type: dot_precision value: 72.67080745341616 - type: dot_recall value: 70.19999999999999 - type: euclidean_accuracy value: 99.67524752475248 - type: euclidean_ap value: 88.61274955249769 - type: euclidean_f1 value: 82.30852211434735 - type: euclidean_precision value: 89.34426229508196 - type: euclidean_recall value: 76.3 - type: manhattan_accuracy value: 99.67722772277227 - type: manhattan_ap value: 88.77516158012779 - type: manhattan_f1 value: 82.36536430834212 - type: manhattan_precision value: 87.24832214765101 - type: manhattan_recall value: 78.0 - type: max_accuracy value: 99.76633663366337 - type: max_ap value: 93.84024096781063 - type: max_f1 value: 88.08080808080808 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 59.20812266121527 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 33.954248554638056 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 51.52800990025549 - type: mrr value: 52.360394915541974 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.737881131277356 - type: cos_sim_spearman value: 31.45979323917254 - type: dot_pearson value: 26.24686017962023 - type: dot_spearman value: 25.006732878791743 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.253 - type: map_at_10 value: 2.1399999999999997 - type: map_at_100 value: 12.873000000000001 - type: map_at_1000 value: 31.002000000000002 - type: map_at_3 value: 0.711 - type: map_at_5 value: 1.125 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 98.0 - type: mrr_at_100 value: 98.0 - type: mrr_at_1000 value: 98.0 - type: mrr_at_3 value: 98.0 - type: mrr_at_5 value: 98.0 - type: ndcg_at_1 value: 94.0 - type: ndcg_at_10 value: 84.881 - type: ndcg_at_100 value: 64.694 - type: ndcg_at_1000 value: 56.85 - type: ndcg_at_3 value: 90.061 - type: ndcg_at_5 value: 87.155 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 88.8 - type: precision_at_100 value: 65.7 - type: precision_at_1000 value: 25.080000000000002 - type: precision_at_3 value: 92.667 - type: precision_at_5 value: 90.0 - type: recall_at_1 value: 0.253 - type: recall_at_10 value: 2.292 - type: recall_at_100 value: 15.78 - type: recall_at_1000 value: 53.015 - type: recall_at_3 value: 0.7270000000000001 - type: recall_at_5 value: 1.162 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 2.116 - type: map_at_10 value: 9.625 - type: map_at_100 value: 15.641 - type: map_at_1000 value: 17.127 - type: map_at_3 value: 4.316 - type: map_at_5 value: 6.208 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 48.083999999999996 - type: mrr_at_100 value: 48.631 - type: mrr_at_1000 value: 48.649 - type: mrr_at_3 value: 42.857 - type: mrr_at_5 value: 46.224 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 25.430999999999997 - type: ndcg_at_100 value: 36.344 - type: ndcg_at_1000 value: 47.676 - type: ndcg_at_3 value: 26.144000000000002 - type: ndcg_at_5 value: 26.304 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 24.082 - type: precision_at_100 value: 7.714 - type: precision_at_1000 value: 1.5310000000000001 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 2.116 - type: recall_at_10 value: 16.794 - type: recall_at_100 value: 47.452 - type: recall_at_1000 value: 82.312 - type: recall_at_3 value: 5.306 - type: recall_at_5 value: 9.306000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 67.709 - type: ap value: 13.541535578501716 - type: f1 value: 52.569619919446794 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 56.850594227504246 - type: f1 value: 57.233377364910574 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 39.463722986090474 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.09131549144662 - type: cos_sim_ap value: 66.86677647503386 - type: cos_sim_f1 value: 62.94631710362049 - type: cos_sim_precision value: 59.73933649289099 - type: cos_sim_recall value: 66.51715039577837 - type: dot_accuracy value: 80.27656911247541 - type: dot_ap value: 54.291720398612085 - type: dot_f1 value: 54.77150537634409 - type: dot_precision value: 47.58660957571039 - type: dot_recall value: 64.5118733509235 - type: euclidean_accuracy value: 82.76211480002385 - type: euclidean_ap value: 62.430397690753296 - type: euclidean_f1 value: 59.191590539356774 - type: euclidean_precision value: 56.296119971435374 - type: euclidean_recall value: 62.401055408970976 - type: manhattan_accuracy value: 82.7561542588067 - type: manhattan_ap value: 62.41882051995577 - type: manhattan_f1 value: 59.32101002778785 - type: manhattan_precision value: 54.71361711611321 - type: manhattan_recall value: 64.77572559366754 - type: max_accuracy value: 84.09131549144662 - type: max_ap value: 66.86677647503386 - type: max_f1 value: 62.94631710362049 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.79574649745798 - type: cos_sim_ap value: 85.28960532524223 - type: cos_sim_f1 value: 77.98460043358001 - type: cos_sim_precision value: 75.78090948714224 - type: cos_sim_recall value: 80.32029565753002 - type: dot_accuracy value: 85.5939767920208 - type: dot_ap value: 76.14131706694056 - type: dot_f1 value: 72.70246298696868 - type: dot_precision value: 65.27012127894156 - type: dot_recall value: 82.04496458269172 - type: euclidean_accuracy value: 86.72332828812046 - type: euclidean_ap value: 80.84854809178995 - type: euclidean_f1 value: 72.47657499809551 - type: euclidean_precision value: 71.71717171717171 - type: euclidean_recall value: 73.25223283030489 - type: manhattan_accuracy value: 86.7563162184189 - type: manhattan_ap value: 80.87598895575626 - type: manhattan_f1 value: 72.54617892068092 - type: manhattan_precision value: 68.49268225960881 - type: manhattan_recall value: 77.10963966738528 - type: max_accuracy value: 88.79574649745798 - type: max_ap value: 85.28960532524223 - type: max_f1 value: 77.98460043358001 --- # SGPT-5.8B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 249592 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
Muennighoff/SGPT-2.7B-weightedmean-msmarco-specb-bitfit
Muennighoff
2023-03-27T22:24:48Z
406
3
sentence-transformers
[ "sentence-transformers", "pytorch", "gpt_neo", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-2.7B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 67.56716417910448 - type: ap value: 30.75574629595259 - type: f1 value: 61.805121301858655 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 71.439575 - type: ap value: 65.91341330532453 - type: f1 value: 70.90561852619555 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 35.748000000000005 - type: f1 value: 35.48576287186347 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 25.96 - type: map_at_10 value: 41.619 - type: map_at_100 value: 42.673 - type: map_at_1000 value: 42.684 - type: map_at_3 value: 36.569 - type: map_at_5 value: 39.397 - type: mrr_at_1 value: 26.316 - type: mrr_at_10 value: 41.772 - type: mrr_at_100 value: 42.82 - type: mrr_at_1000 value: 42.83 - type: mrr_at_3 value: 36.724000000000004 - type: mrr_at_5 value: 39.528999999999996 - type: ndcg_at_1 value: 25.96 - type: ndcg_at_10 value: 50.491 - type: ndcg_at_100 value: 54.864999999999995 - type: ndcg_at_1000 value: 55.10699999999999 - type: ndcg_at_3 value: 40.053 - type: ndcg_at_5 value: 45.134 - type: precision_at_1 value: 25.96 - type: precision_at_10 value: 7.8950000000000005 - type: precision_at_100 value: 0.9780000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.714000000000002 - type: precision_at_5 value: 12.489 - type: recall_at_1 value: 25.96 - type: recall_at_10 value: 78.947 - type: recall_at_100 value: 97.795 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 50.141999999999996 - type: recall_at_5 value: 62.446999999999996 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 44.72125714642202 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 35.081451519142064 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 59.634661990392054 - type: mrr value: 73.6813525040672 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 87.42754550496836 - type: cos_sim_spearman value: 84.84289705838664 - type: euclidean_pearson value: 85.59331970450859 - type: euclidean_spearman value: 85.8525586184271 - type: manhattan_pearson value: 85.41233134466698 - type: manhattan_spearman value: 85.52303303767404 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 83.21753246753246 - type: f1 value: 83.15394543120915 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 34.41414219680629 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 30.533275862270028 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.808999999999997 - type: map_at_10 value: 40.617 - type: map_at_100 value: 41.894999999999996 - type: map_at_1000 value: 42.025 - type: map_at_3 value: 37.0 - type: map_at_5 value: 38.993 - type: mrr_at_1 value: 37.482 - type: mrr_at_10 value: 46.497 - type: mrr_at_100 value: 47.144000000000005 - type: mrr_at_1000 value: 47.189 - type: mrr_at_3 value: 43.705 - type: mrr_at_5 value: 45.193 - type: ndcg_at_1 value: 37.482 - type: ndcg_at_10 value: 46.688 - type: ndcg_at_100 value: 51.726000000000006 - type: ndcg_at_1000 value: 53.825 - type: ndcg_at_3 value: 41.242000000000004 - type: ndcg_at_5 value: 43.657000000000004 - type: precision_at_1 value: 37.482 - type: precision_at_10 value: 8.827 - type: precision_at_100 value: 1.393 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 19.361 - type: precision_at_5 value: 14.106 - type: recall_at_1 value: 30.808999999999997 - type: recall_at_10 value: 58.47 - type: recall_at_100 value: 80.51899999999999 - type: recall_at_1000 value: 93.809 - type: recall_at_3 value: 42.462 - type: recall_at_5 value: 49.385 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 26.962000000000003 - type: map_at_10 value: 36.93 - type: map_at_100 value: 38.102000000000004 - type: map_at_1000 value: 38.22 - type: map_at_3 value: 34.065 - type: map_at_5 value: 35.72 - type: mrr_at_1 value: 33.567 - type: mrr_at_10 value: 42.269 - type: mrr_at_100 value: 42.99 - type: mrr_at_1000 value: 43.033 - type: mrr_at_3 value: 40.064 - type: mrr_at_5 value: 41.258 - type: ndcg_at_1 value: 33.567 - type: ndcg_at_10 value: 42.405 - type: ndcg_at_100 value: 46.847 - type: ndcg_at_1000 value: 48.951 - type: ndcg_at_3 value: 38.312000000000005 - type: ndcg_at_5 value: 40.242 - type: precision_at_1 value: 33.567 - type: precision_at_10 value: 8.032 - type: precision_at_100 value: 1.295 - type: precision_at_1000 value: 0.17600000000000002 - type: precision_at_3 value: 18.662 - type: precision_at_5 value: 13.299 - type: recall_at_1 value: 26.962000000000003 - type: recall_at_10 value: 52.489 - type: recall_at_100 value: 71.635 - type: recall_at_1000 value: 85.141 - type: recall_at_3 value: 40.28 - type: recall_at_5 value: 45.757 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 36.318 - type: map_at_10 value: 47.97 - type: map_at_100 value: 49.003 - type: map_at_1000 value: 49.065999999999995 - type: map_at_3 value: 45.031 - type: map_at_5 value: 46.633 - type: mrr_at_1 value: 41.504999999999995 - type: mrr_at_10 value: 51.431000000000004 - type: mrr_at_100 value: 52.129000000000005 - type: mrr_at_1000 value: 52.161 - type: mrr_at_3 value: 48.934 - type: mrr_at_5 value: 50.42 - type: ndcg_at_1 value: 41.504999999999995 - type: ndcg_at_10 value: 53.676 - type: ndcg_at_100 value: 57.867000000000004 - type: ndcg_at_1000 value: 59.166 - type: ndcg_at_3 value: 48.516 - type: ndcg_at_5 value: 50.983999999999995 - type: precision_at_1 value: 41.504999999999995 - type: precision_at_10 value: 8.608 - type: precision_at_100 value: 1.1560000000000001 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 21.462999999999997 - type: precision_at_5 value: 14.721 - type: recall_at_1 value: 36.318 - type: recall_at_10 value: 67.066 - type: recall_at_100 value: 85.34 - type: recall_at_1000 value: 94.491 - type: recall_at_3 value: 53.215999999999994 - type: recall_at_5 value: 59.214 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.167 - type: map_at_10 value: 29.543999999999997 - type: map_at_100 value: 30.579 - type: map_at_1000 value: 30.669999999999998 - type: map_at_3 value: 26.982 - type: map_at_5 value: 28.474 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.237 - type: mrr_at_100 value: 32.222 - type: mrr_at_1000 value: 32.292 - type: mrr_at_3 value: 28.776000000000003 - type: mrr_at_5 value: 30.233999999999998 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 33.973 - type: ndcg_at_100 value: 39.135 - type: ndcg_at_1000 value: 41.443999999999996 - type: ndcg_at_3 value: 29.018 - type: ndcg_at_5 value: 31.558999999999997 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.299 - type: precision_at_100 value: 0.823 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 12.166 - type: precision_at_5 value: 8.767999999999999 - type: recall_at_1 value: 22.167 - type: recall_at_10 value: 46.115 - type: recall_at_100 value: 69.867 - type: recall_at_1000 value: 87.234 - type: recall_at_3 value: 32.798 - type: recall_at_5 value: 38.951 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 12.033000000000001 - type: map_at_10 value: 19.314 - type: map_at_100 value: 20.562 - type: map_at_1000 value: 20.695 - type: map_at_3 value: 16.946 - type: map_at_5 value: 18.076999999999998 - type: mrr_at_1 value: 14.801 - type: mrr_at_10 value: 22.74 - type: mrr_at_100 value: 23.876 - type: mrr_at_1000 value: 23.949 - type: mrr_at_3 value: 20.211000000000002 - type: mrr_at_5 value: 21.573 - type: ndcg_at_1 value: 14.801 - type: ndcg_at_10 value: 24.038 - type: ndcg_at_100 value: 30.186 - type: ndcg_at_1000 value: 33.321 - type: ndcg_at_3 value: 19.431 - type: ndcg_at_5 value: 21.34 - type: precision_at_1 value: 14.801 - type: precision_at_10 value: 4.776 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 9.66 - type: precision_at_5 value: 7.239 - type: recall_at_1 value: 12.033000000000001 - type: recall_at_10 value: 35.098 - type: recall_at_100 value: 62.175000000000004 - type: recall_at_1000 value: 84.17099999999999 - type: recall_at_3 value: 22.61 - type: recall_at_5 value: 27.278999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 26.651000000000003 - type: map_at_10 value: 36.901 - type: map_at_100 value: 38.249 - type: map_at_1000 value: 38.361000000000004 - type: map_at_3 value: 33.891 - type: map_at_5 value: 35.439 - type: mrr_at_1 value: 32.724 - type: mrr_at_10 value: 42.504 - type: mrr_at_100 value: 43.391999999999996 - type: mrr_at_1000 value: 43.436 - type: mrr_at_3 value: 39.989999999999995 - type: mrr_at_5 value: 41.347 - type: ndcg_at_1 value: 32.724 - type: ndcg_at_10 value: 43.007 - type: ndcg_at_100 value: 48.601 - type: ndcg_at_1000 value: 50.697 - type: ndcg_at_3 value: 37.99 - type: ndcg_at_5 value: 40.083999999999996 - type: precision_at_1 value: 32.724 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.247 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 18.062 - type: precision_at_5 value: 12.666 - type: recall_at_1 value: 26.651000000000003 - type: recall_at_10 value: 55.674 - type: recall_at_100 value: 78.904 - type: recall_at_1000 value: 92.55799999999999 - type: recall_at_3 value: 41.36 - type: recall_at_5 value: 46.983999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.589000000000002 - type: map_at_10 value: 32.244 - type: map_at_100 value: 33.46 - type: map_at_1000 value: 33.593 - type: map_at_3 value: 29.21 - type: map_at_5 value: 31.019999999999996 - type: mrr_at_1 value: 28.425 - type: mrr_at_10 value: 37.282 - type: mrr_at_100 value: 38.187 - type: mrr_at_1000 value: 38.248 - type: mrr_at_3 value: 34.684 - type: mrr_at_5 value: 36.123 - type: ndcg_at_1 value: 28.425 - type: ndcg_at_10 value: 37.942 - type: ndcg_at_100 value: 43.443 - type: ndcg_at_1000 value: 45.995999999999995 - type: ndcg_at_3 value: 32.873999999999995 - type: ndcg_at_5 value: 35.325 - type: precision_at_1 value: 28.425 - type: precision_at_10 value: 7.1 - type: precision_at_100 value: 1.166 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.02 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 22.589000000000002 - type: recall_at_10 value: 50.03999999999999 - type: recall_at_100 value: 73.973 - type: recall_at_1000 value: 91.128 - type: recall_at_3 value: 35.882999999999996 - type: recall_at_5 value: 42.187999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.190833333333334 - type: map_at_10 value: 31.504916666666666 - type: map_at_100 value: 32.64908333333334 - type: map_at_1000 value: 32.77075 - type: map_at_3 value: 28.82575 - type: map_at_5 value: 30.2755 - type: mrr_at_1 value: 27.427499999999995 - type: mrr_at_10 value: 35.36483333333334 - type: mrr_at_100 value: 36.23441666666666 - type: mrr_at_1000 value: 36.297583333333336 - type: mrr_at_3 value: 32.97966666666667 - type: mrr_at_5 value: 34.294583333333335 - type: ndcg_at_1 value: 27.427499999999995 - type: ndcg_at_10 value: 36.53358333333333 - type: ndcg_at_100 value: 41.64508333333333 - type: ndcg_at_1000 value: 44.14499999999999 - type: ndcg_at_3 value: 31.88908333333333 - type: ndcg_at_5 value: 33.98433333333333 - type: precision_at_1 value: 27.427499999999995 - type: precision_at_10 value: 6.481083333333333 - type: precision_at_100 value: 1.0610833333333334 - type: precision_at_1000 value: 0.14691666666666667 - type: precision_at_3 value: 14.656749999999999 - type: precision_at_5 value: 10.493583333333332 - type: recall_at_1 value: 23.190833333333334 - type: recall_at_10 value: 47.65175 - type: recall_at_100 value: 70.41016666666667 - type: recall_at_1000 value: 87.82708333333332 - type: recall_at_3 value: 34.637583333333325 - type: recall_at_5 value: 40.05008333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.409 - type: map_at_10 value: 26.794 - type: map_at_100 value: 27.682000000000002 - type: map_at_1000 value: 27.783 - type: map_at_3 value: 24.461 - type: map_at_5 value: 25.668000000000003 - type: mrr_at_1 value: 22.853 - type: mrr_at_10 value: 29.296 - type: mrr_at_100 value: 30.103 - type: mrr_at_1000 value: 30.179000000000002 - type: mrr_at_3 value: 27.173000000000002 - type: mrr_at_5 value: 28.223 - type: ndcg_at_1 value: 22.853 - type: ndcg_at_10 value: 31.007 - type: ndcg_at_100 value: 35.581 - type: ndcg_at_1000 value: 38.147 - type: ndcg_at_3 value: 26.590999999999998 - type: ndcg_at_5 value: 28.43 - type: precision_at_1 value: 22.853 - type: precision_at_10 value: 5.031 - type: precision_at_100 value: 0.7939999999999999 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 11.401 - type: precision_at_5 value: 8.16 - type: recall_at_1 value: 20.409 - type: recall_at_10 value: 41.766 - type: recall_at_100 value: 62.964 - type: recall_at_1000 value: 81.682 - type: recall_at_3 value: 29.281000000000002 - type: recall_at_5 value: 33.83 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.549000000000001 - type: map_at_10 value: 20.315 - type: map_at_100 value: 21.301000000000002 - type: map_at_1000 value: 21.425 - type: map_at_3 value: 18.132 - type: map_at_5 value: 19.429 - type: mrr_at_1 value: 17.86 - type: mrr_at_10 value: 23.860999999999997 - type: mrr_at_100 value: 24.737000000000002 - type: mrr_at_1000 value: 24.82 - type: mrr_at_3 value: 21.685 - type: mrr_at_5 value: 23.008 - type: ndcg_at_1 value: 17.86 - type: ndcg_at_10 value: 24.396 - type: ndcg_at_100 value: 29.328 - type: ndcg_at_1000 value: 32.486 - type: ndcg_at_3 value: 20.375 - type: ndcg_at_5 value: 22.411 - type: precision_at_1 value: 17.86 - type: precision_at_10 value: 4.47 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.475 - type: precision_at_5 value: 7.170999999999999 - type: recall_at_1 value: 14.549000000000001 - type: recall_at_10 value: 33.365 - type: recall_at_100 value: 55.797 - type: recall_at_1000 value: 78.632 - type: recall_at_3 value: 22.229 - type: recall_at_5 value: 27.339000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.286 - type: map_at_10 value: 30.728 - type: map_at_100 value: 31.840000000000003 - type: map_at_1000 value: 31.953 - type: map_at_3 value: 28.302 - type: map_at_5 value: 29.615000000000002 - type: mrr_at_1 value: 27.239 - type: mrr_at_10 value: 34.408 - type: mrr_at_100 value: 35.335 - type: mrr_at_1000 value: 35.405 - type: mrr_at_3 value: 32.151999999999994 - type: mrr_at_5 value: 33.355000000000004 - type: ndcg_at_1 value: 27.239 - type: ndcg_at_10 value: 35.324 - type: ndcg_at_100 value: 40.866 - type: ndcg_at_1000 value: 43.584 - type: ndcg_at_3 value: 30.898999999999997 - type: ndcg_at_5 value: 32.812999999999995 - type: precision_at_1 value: 27.239 - type: precision_at_10 value: 5.896 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 13.713000000000001 - type: precision_at_5 value: 9.683 - type: recall_at_1 value: 23.286 - type: recall_at_10 value: 45.711 - type: recall_at_100 value: 70.611 - type: recall_at_1000 value: 90.029 - type: recall_at_3 value: 33.615 - type: recall_at_5 value: 38.41 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.962 - type: map_at_10 value: 31.942999999999998 - type: map_at_100 value: 33.384 - type: map_at_1000 value: 33.611000000000004 - type: map_at_3 value: 29.243000000000002 - type: map_at_5 value: 30.446 - type: mrr_at_1 value: 28.458 - type: mrr_at_10 value: 36.157000000000004 - type: mrr_at_100 value: 37.092999999999996 - type: mrr_at_1000 value: 37.163000000000004 - type: mrr_at_3 value: 33.86 - type: mrr_at_5 value: 35.086 - type: ndcg_at_1 value: 28.458 - type: ndcg_at_10 value: 37.201 - type: ndcg_at_100 value: 42.591 - type: ndcg_at_1000 value: 45.539 - type: ndcg_at_3 value: 32.889 - type: ndcg_at_5 value: 34.483000000000004 - type: precision_at_1 value: 28.458 - type: precision_at_10 value: 7.332 - type: precision_at_100 value: 1.437 - type: precision_at_1000 value: 0.233 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.146 - type: recall_at_1 value: 23.962 - type: recall_at_10 value: 46.751 - type: recall_at_100 value: 71.626 - type: recall_at_1000 value: 90.93900000000001 - type: recall_at_3 value: 34.138000000000005 - type: recall_at_5 value: 38.673 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 18.555 - type: map_at_10 value: 24.759 - type: map_at_100 value: 25.732 - type: map_at_1000 value: 25.846999999999998 - type: map_at_3 value: 22.646 - type: map_at_5 value: 23.791999999999998 - type: mrr_at_1 value: 20.148 - type: mrr_at_10 value: 26.695999999999998 - type: mrr_at_100 value: 27.605 - type: mrr_at_1000 value: 27.695999999999998 - type: mrr_at_3 value: 24.522 - type: mrr_at_5 value: 25.715 - type: ndcg_at_1 value: 20.148 - type: ndcg_at_10 value: 28.746 - type: ndcg_at_100 value: 33.57 - type: ndcg_at_1000 value: 36.584 - type: ndcg_at_3 value: 24.532 - type: ndcg_at_5 value: 26.484 - type: precision_at_1 value: 20.148 - type: precision_at_10 value: 4.529 - type: precision_at_100 value: 0.736 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 10.351 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 18.555 - type: recall_at_10 value: 39.275999999999996 - type: recall_at_100 value: 61.511 - type: recall_at_1000 value: 84.111 - type: recall_at_3 value: 27.778999999999996 - type: recall_at_5 value: 32.591 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 10.366999999999999 - type: map_at_10 value: 18.953999999999997 - type: map_at_100 value: 20.674999999999997 - type: map_at_1000 value: 20.868000000000002 - type: map_at_3 value: 15.486 - type: map_at_5 value: 17.347 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 35.419 - type: mrr_at_100 value: 36.361 - type: mrr_at_1000 value: 36.403 - type: mrr_at_3 value: 31.747999999999998 - type: mrr_at_5 value: 34.077 - type: ndcg_at_1 value: 23.257 - type: ndcg_at_10 value: 27.11 - type: ndcg_at_100 value: 33.981 - type: ndcg_at_1000 value: 37.444 - type: ndcg_at_3 value: 21.471999999999998 - type: ndcg_at_5 value: 23.769000000000002 - type: precision_at_1 value: 23.257 - type: precision_at_10 value: 8.704 - type: precision_at_100 value: 1.606 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_3 value: 16.287 - type: precision_at_5 value: 13.068 - type: recall_at_1 value: 10.366999999999999 - type: recall_at_10 value: 33.706 - type: recall_at_100 value: 57.375 - type: recall_at_1000 value: 76.79 - type: recall_at_3 value: 20.18 - type: recall_at_5 value: 26.215 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 8.246 - type: map_at_10 value: 15.979 - type: map_at_100 value: 21.025 - type: map_at_1000 value: 22.189999999999998 - type: map_at_3 value: 11.997 - type: map_at_5 value: 13.697000000000001 - type: mrr_at_1 value: 60.75000000000001 - type: mrr_at_10 value: 68.70100000000001 - type: mrr_at_100 value: 69.1 - type: mrr_at_1000 value: 69.111 - type: mrr_at_3 value: 66.583 - type: mrr_at_5 value: 67.87100000000001 - type: ndcg_at_1 value: 49.75 - type: ndcg_at_10 value: 34.702 - type: ndcg_at_100 value: 37.607 - type: ndcg_at_1000 value: 44.322 - type: ndcg_at_3 value: 39.555 - type: ndcg_at_5 value: 36.684 - type: precision_at_1 value: 60.75000000000001 - type: precision_at_10 value: 26.625 - type: precision_at_100 value: 7.969999999999999 - type: precision_at_1000 value: 1.678 - type: precision_at_3 value: 41.833 - type: precision_at_5 value: 34.5 - type: recall_at_1 value: 8.246 - type: recall_at_10 value: 20.968 - type: recall_at_100 value: 42.065000000000005 - type: recall_at_1000 value: 63.671 - type: recall_at_3 value: 13.039000000000001 - type: recall_at_5 value: 16.042 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.214999999999996 - type: f1 value: 44.85952451163755 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 56.769000000000005 - type: map_at_10 value: 67.30199999999999 - type: map_at_100 value: 67.692 - type: map_at_1000 value: 67.712 - type: map_at_3 value: 65.346 - type: map_at_5 value: 66.574 - type: mrr_at_1 value: 61.370999999999995 - type: mrr_at_10 value: 71.875 - type: mrr_at_100 value: 72.195 - type: mrr_at_1000 value: 72.206 - type: mrr_at_3 value: 70.04 - type: mrr_at_5 value: 71.224 - type: ndcg_at_1 value: 61.370999999999995 - type: ndcg_at_10 value: 72.731 - type: ndcg_at_100 value: 74.468 - type: ndcg_at_1000 value: 74.91600000000001 - type: ndcg_at_3 value: 69.077 - type: ndcg_at_5 value: 71.111 - type: precision_at_1 value: 61.370999999999995 - type: precision_at_10 value: 9.325999999999999 - type: precision_at_100 value: 1.03 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 27.303 - type: precision_at_5 value: 17.525 - type: recall_at_1 value: 56.769000000000005 - type: recall_at_10 value: 85.06 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 95.933 - type: recall_at_3 value: 75.131 - type: recall_at_5 value: 80.17 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 15.753 - type: map_at_10 value: 25.875999999999998 - type: map_at_100 value: 27.415 - type: map_at_1000 value: 27.590999999999998 - type: map_at_3 value: 22.17 - type: map_at_5 value: 24.236 - type: mrr_at_1 value: 31.019000000000002 - type: mrr_at_10 value: 39.977000000000004 - type: mrr_at_100 value: 40.788999999999994 - type: mrr_at_1000 value: 40.832 - type: mrr_at_3 value: 37.088 - type: mrr_at_5 value: 38.655 - type: ndcg_at_1 value: 31.019000000000002 - type: ndcg_at_10 value: 33.286 - type: ndcg_at_100 value: 39.528999999999996 - type: ndcg_at_1000 value: 42.934 - type: ndcg_at_3 value: 29.29 - type: ndcg_at_5 value: 30.615 - type: precision_at_1 value: 31.019000000000002 - type: precision_at_10 value: 9.383 - type: precision_at_100 value: 1.6019999999999999 - type: precision_at_1000 value: 0.22200000000000003 - type: precision_at_3 value: 19.753 - type: precision_at_5 value: 14.815000000000001 - type: recall_at_1 value: 15.753 - type: recall_at_10 value: 40.896 - type: recall_at_100 value: 64.443 - type: recall_at_1000 value: 85.218 - type: recall_at_3 value: 26.526 - type: recall_at_5 value: 32.452999999999996 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 32.153999999999996 - type: map_at_10 value: 43.651 - type: map_at_100 value: 44.41 - type: map_at_1000 value: 44.487 - type: map_at_3 value: 41.239 - type: map_at_5 value: 42.659000000000006 - type: mrr_at_1 value: 64.30799999999999 - type: mrr_at_10 value: 71.22500000000001 - type: mrr_at_100 value: 71.57 - type: mrr_at_1000 value: 71.59100000000001 - type: mrr_at_3 value: 69.95 - type: mrr_at_5 value: 70.738 - type: ndcg_at_1 value: 64.30799999999999 - type: ndcg_at_10 value: 52.835 - type: ndcg_at_100 value: 55.840999999999994 - type: ndcg_at_1000 value: 57.484 - type: ndcg_at_3 value: 49.014 - type: ndcg_at_5 value: 51.01599999999999 - type: precision_at_1 value: 64.30799999999999 - type: precision_at_10 value: 10.77 - type: precision_at_100 value: 1.315 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 30.223 - type: precision_at_5 value: 19.716 - type: recall_at_1 value: 32.153999999999996 - type: recall_at_10 value: 53.849000000000004 - type: recall_at_100 value: 65.75999999999999 - type: recall_at_1000 value: 76.705 - type: recall_at_3 value: 45.334 - type: recall_at_5 value: 49.291000000000004 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 63.5316 - type: ap value: 58.90084300359825 - type: f1 value: 63.35727889030892 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 20.566000000000003 - type: map_at_10 value: 32.229 - type: map_at_100 value: 33.445 - type: map_at_1000 value: 33.501 - type: map_at_3 value: 28.504 - type: map_at_5 value: 30.681000000000004 - type: mrr_at_1 value: 21.218 - type: mrr_at_10 value: 32.816 - type: mrr_at_100 value: 33.986 - type: mrr_at_1000 value: 34.035 - type: mrr_at_3 value: 29.15 - type: mrr_at_5 value: 31.290000000000003 - type: ndcg_at_1 value: 21.218 - type: ndcg_at_10 value: 38.832 - type: ndcg_at_100 value: 44.743 - type: ndcg_at_1000 value: 46.138 - type: ndcg_at_3 value: 31.232 - type: ndcg_at_5 value: 35.099999999999994 - type: precision_at_1 value: 21.218 - type: precision_at_10 value: 6.186 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.314 - type: precision_at_5 value: 9.943 - type: recall_at_1 value: 20.566000000000003 - type: recall_at_10 value: 59.192 - type: recall_at_100 value: 86.626 - type: recall_at_1000 value: 97.283 - type: recall_at_3 value: 38.492 - type: recall_at_5 value: 47.760000000000005 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 92.56269949840402 - type: f1 value: 92.1020975473988 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 71.8467852257182 - type: f1 value: 53.652719348592015 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 69.00806993947546 - type: f1 value: 67.41429618885515 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.90114324142569 - type: f1 value: 76.25183590651454 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.350109978273395 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.768923695767327 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.716396735210754 - type: mrr value: 32.88970538547634 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.604 - type: map_at_10 value: 12.379999999999999 - type: map_at_100 value: 15.791 - type: map_at_1000 value: 17.327 - type: map_at_3 value: 9.15 - type: map_at_5 value: 10.599 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.374 - type: mrr_at_100 value: 54.089 - type: mrr_at_1000 value: 54.123 - type: mrr_at_3 value: 51.44499999999999 - type: mrr_at_5 value: 52.59 - type: ndcg_at_1 value: 42.879 - type: ndcg_at_10 value: 33.891 - type: ndcg_at_100 value: 31.391999999999996 - type: ndcg_at_1000 value: 40.36 - type: ndcg_at_3 value: 39.076 - type: ndcg_at_5 value: 37.047000000000004 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.294 - type: precision_at_100 value: 8.285 - type: precision_at_1000 value: 2.1479999999999997 - type: precision_at_3 value: 36.120000000000005 - type: precision_at_5 value: 31.95 - type: recall_at_1 value: 5.604 - type: recall_at_10 value: 16.239 - type: recall_at_100 value: 32.16 - type: recall_at_1000 value: 64.513 - type: recall_at_3 value: 10.406 - type: recall_at_5 value: 12.684999999999999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 25.881 - type: map_at_10 value: 39.501 - type: map_at_100 value: 40.615 - type: map_at_1000 value: 40.661 - type: map_at_3 value: 35.559000000000005 - type: map_at_5 value: 37.773 - type: mrr_at_1 value: 29.229 - type: mrr_at_10 value: 41.955999999999996 - type: mrr_at_100 value: 42.86 - type: mrr_at_1000 value: 42.893 - type: mrr_at_3 value: 38.562000000000005 - type: mrr_at_5 value: 40.542 - type: ndcg_at_1 value: 29.2 - type: ndcg_at_10 value: 46.703 - type: ndcg_at_100 value: 51.644 - type: ndcg_at_1000 value: 52.771 - type: ndcg_at_3 value: 39.141999999999996 - type: ndcg_at_5 value: 42.892 - type: precision_at_1 value: 29.2 - type: precision_at_10 value: 7.920000000000001 - type: precision_at_100 value: 1.0659999999999998 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 18.105 - type: precision_at_5 value: 13.036 - type: recall_at_1 value: 25.881 - type: recall_at_10 value: 66.266 - type: recall_at_100 value: 88.116 - type: recall_at_1000 value: 96.58200000000001 - type: recall_at_3 value: 46.526 - type: recall_at_5 value: 55.154 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 67.553 - type: map_at_10 value: 81.34 - type: map_at_100 value: 82.002 - type: map_at_1000 value: 82.027 - type: map_at_3 value: 78.281 - type: map_at_5 value: 80.149 - type: mrr_at_1 value: 77.72 - type: mrr_at_10 value: 84.733 - type: mrr_at_100 value: 84.878 - type: mrr_at_1000 value: 84.879 - type: mrr_at_3 value: 83.587 - type: mrr_at_5 value: 84.32600000000001 - type: ndcg_at_1 value: 77.75 - type: ndcg_at_10 value: 85.603 - type: ndcg_at_100 value: 87.069 - type: ndcg_at_1000 value: 87.25 - type: ndcg_at_3 value: 82.303 - type: ndcg_at_5 value: 84.03699999999999 - type: precision_at_1 value: 77.75 - type: precision_at_10 value: 13.04 - type: precision_at_100 value: 1.5070000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.903 - type: precision_at_5 value: 23.738 - type: recall_at_1 value: 67.553 - type: recall_at_10 value: 93.903 - type: recall_at_100 value: 99.062 - type: recall_at_1000 value: 99.935 - type: recall_at_3 value: 84.58099999999999 - type: recall_at_5 value: 89.316 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 46.46887711230235 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 54.166876298246926 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 4.053 - type: map_at_10 value: 9.693999999999999 - type: map_at_100 value: 11.387 - type: map_at_1000 value: 11.654 - type: map_at_3 value: 7.053 - type: map_at_5 value: 8.439 - type: mrr_at_1 value: 19.900000000000002 - type: mrr_at_10 value: 29.359 - type: mrr_at_100 value: 30.484 - type: mrr_at_1000 value: 30.553 - type: mrr_at_3 value: 26.200000000000003 - type: mrr_at_5 value: 28.115000000000002 - type: ndcg_at_1 value: 19.900000000000002 - type: ndcg_at_10 value: 16.575 - type: ndcg_at_100 value: 23.655 - type: ndcg_at_1000 value: 28.853 - type: ndcg_at_3 value: 15.848 - type: ndcg_at_5 value: 14.026 - type: precision_at_1 value: 19.900000000000002 - type: precision_at_10 value: 8.450000000000001 - type: precision_at_100 value: 1.872 - type: precision_at_1000 value: 0.313 - type: precision_at_3 value: 14.667 - type: precision_at_5 value: 12.32 - type: recall_at_1 value: 4.053 - type: recall_at_10 value: 17.169999999999998 - type: recall_at_100 value: 38.025 - type: recall_at_1000 value: 63.571999999999996 - type: recall_at_3 value: 8.903 - type: recall_at_5 value: 12.477 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 77.7548748519677 - type: cos_sim_spearman value: 68.19926431966059 - type: euclidean_pearson value: 71.69016204991725 - type: euclidean_spearman value: 66.98099673026834 - type: manhattan_pearson value: 71.62994072488664 - type: manhattan_spearman value: 67.03435950744577 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.91051402657887 - type: cos_sim_spearman value: 66.99390786191645 - type: euclidean_pearson value: 71.54128036454578 - type: euclidean_spearman value: 69.25605675649068 - type: manhattan_pearson value: 71.60981030780171 - type: manhattan_spearman value: 69.27513670128046 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 77.23835466417793 - type: cos_sim_spearman value: 77.57623085766706 - type: euclidean_pearson value: 77.5090992200725 - type: euclidean_spearman value: 77.88601688144924 - type: manhattan_pearson value: 77.39045060647423 - type: manhattan_spearman value: 77.77552718279098 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 77.91692485139602 - type: cos_sim_spearman value: 72.78258293483495 - type: euclidean_pearson value: 74.64773017077789 - type: euclidean_spearman value: 71.81662299104619 - type: manhattan_pearson value: 74.71043337995533 - type: manhattan_spearman value: 71.83960860845646 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 82.13422113617578 - type: cos_sim_spearman value: 82.61707296911949 - type: euclidean_pearson value: 81.42487480400861 - type: euclidean_spearman value: 82.17970991273835 - type: manhattan_pearson value: 81.41985055477845 - type: manhattan_spearman value: 82.15823204362937 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 79.07989542843826 - type: cos_sim_spearman value: 80.09839524406284 - type: euclidean_pearson value: 76.43186028364195 - type: euclidean_spearman value: 76.76720323266471 - type: manhattan_pearson value: 76.4674747409161 - type: manhattan_spearman value: 76.81797407068667 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 87.0420983224933 - type: cos_sim_spearman value: 87.25017540413702 - type: euclidean_pearson value: 84.56384596473421 - type: euclidean_spearman value: 84.72557417564886 - type: manhattan_pearson value: 84.7329954474549 - type: manhattan_spearman value: 84.75071371008909 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 68.47031320016424 - type: cos_sim_spearman value: 68.7486910762485 - type: euclidean_pearson value: 71.30330985913915 - type: euclidean_spearman value: 71.59666258520735 - type: manhattan_pearson value: 71.4423884279027 - type: manhattan_spearman value: 71.67460706861044 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 80.79514366062675 - type: cos_sim_spearman value: 79.20585637461048 - type: euclidean_pearson value: 78.6591557395699 - type: euclidean_spearman value: 77.86455794285718 - type: manhattan_pearson value: 78.67754806486865 - type: manhattan_spearman value: 77.88178687200732 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 77.71580844366375 - type: mrr value: 93.04215845882513 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 56.39999999999999 - type: map_at_10 value: 65.701 - type: map_at_100 value: 66.32000000000001 - type: map_at_1000 value: 66.34100000000001 - type: map_at_3 value: 62.641999999999996 - type: map_at_5 value: 64.342 - type: mrr_at_1 value: 58.667 - type: mrr_at_10 value: 66.45299999999999 - type: mrr_at_100 value: 66.967 - type: mrr_at_1000 value: 66.988 - type: mrr_at_3 value: 64.11099999999999 - type: mrr_at_5 value: 65.411 - type: ndcg_at_1 value: 58.667 - type: ndcg_at_10 value: 70.165 - type: ndcg_at_100 value: 72.938 - type: ndcg_at_1000 value: 73.456 - type: ndcg_at_3 value: 64.79 - type: ndcg_at_5 value: 67.28 - type: precision_at_1 value: 58.667 - type: precision_at_10 value: 9.4 - type: precision_at_100 value: 1.087 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 24.889 - type: precision_at_5 value: 16.667 - type: recall_at_1 value: 56.39999999999999 - type: recall_at_10 value: 83.122 - type: recall_at_100 value: 95.667 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 68.378 - type: recall_at_5 value: 74.68299999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.76831683168317 - type: cos_sim_ap value: 93.47124923047998 - type: cos_sim_f1 value: 88.06122448979592 - type: cos_sim_precision value: 89.89583333333333 - type: cos_sim_recall value: 86.3 - type: dot_accuracy value: 99.57326732673268 - type: dot_ap value: 84.06577868167207 - type: dot_f1 value: 77.82629791363416 - type: dot_precision value: 75.58906691800189 - type: dot_recall value: 80.2 - type: euclidean_accuracy value: 99.74257425742574 - type: euclidean_ap value: 92.1904681653555 - type: euclidean_f1 value: 86.74821610601427 - type: euclidean_precision value: 88.46153846153845 - type: euclidean_recall value: 85.1 - type: manhattan_accuracy value: 99.74554455445545 - type: manhattan_ap value: 92.4337790809948 - type: manhattan_f1 value: 86.86765457332653 - type: manhattan_precision value: 88.81922675026124 - type: manhattan_recall value: 85.0 - type: max_accuracy value: 99.76831683168317 - type: max_ap value: 93.47124923047998 - type: max_f1 value: 88.06122448979592 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 59.194098673976484 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 32.5744032578115 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 49.61186384154483 - type: mrr value: 50.55424253034547 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.027210161713946 - type: cos_sim_spearman value: 31.030178065751735 - type: dot_pearson value: 30.09179785685587 - type: dot_spearman value: 30.408303252207813 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.22300000000000003 - type: map_at_10 value: 1.762 - type: map_at_100 value: 9.984 - type: map_at_1000 value: 24.265 - type: map_at_3 value: 0.631 - type: map_at_5 value: 0.9950000000000001 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 92.833 - type: mrr_at_100 value: 92.833 - type: mrr_at_1000 value: 92.833 - type: mrr_at_3 value: 92.333 - type: mrr_at_5 value: 92.833 - type: ndcg_at_1 value: 83.0 - type: ndcg_at_10 value: 75.17 - type: ndcg_at_100 value: 55.432 - type: ndcg_at_1000 value: 49.482 - type: ndcg_at_3 value: 82.184 - type: ndcg_at_5 value: 79.712 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 78.60000000000001 - type: precision_at_100 value: 56.56 - type: precision_at_1000 value: 22.334 - type: precision_at_3 value: 86.667 - type: precision_at_5 value: 83.6 - type: recall_at_1 value: 0.22300000000000003 - type: recall_at_10 value: 1.9879999999999998 - type: recall_at_100 value: 13.300999999999998 - type: recall_at_1000 value: 46.587 - type: recall_at_3 value: 0.6629999999999999 - type: recall_at_5 value: 1.079 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 3.047 - type: map_at_10 value: 8.792 - type: map_at_100 value: 14.631 - type: map_at_1000 value: 16.127 - type: map_at_3 value: 4.673 - type: map_at_5 value: 5.897 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 49.271 - type: mrr_at_100 value: 50.181 - type: mrr_at_1000 value: 50.2 - type: mrr_at_3 value: 44.558 - type: mrr_at_5 value: 47.925000000000004 - type: ndcg_at_1 value: 35.714 - type: ndcg_at_10 value: 23.44 - type: ndcg_at_100 value: 35.345 - type: ndcg_at_1000 value: 46.495 - type: ndcg_at_3 value: 26.146 - type: ndcg_at_5 value: 24.878 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 20.816000000000003 - type: precision_at_100 value: 7.428999999999999 - type: precision_at_1000 value: 1.494 - type: precision_at_3 value: 25.85 - type: precision_at_5 value: 24.082 - type: recall_at_1 value: 3.047 - type: recall_at_10 value: 14.975 - type: recall_at_100 value: 45.943 - type: recall_at_1000 value: 80.31099999999999 - type: recall_at_3 value: 5.478000000000001 - type: recall_at_5 value: 8.294 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 68.84080000000002 - type: ap value: 13.135219251019848 - type: f1 value: 52.849999421995506 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 56.68647425014149 - type: f1 value: 56.97981427365949 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 40.8911707239219 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.04226023722954 - type: cos_sim_ap value: 63.681339908301325 - type: cos_sim_f1 value: 60.349184470480125 - type: cos_sim_precision value: 53.437754271765655 - type: cos_sim_recall value: 69.31398416886545 - type: dot_accuracy value: 81.46271681468677 - type: dot_ap value: 57.78072296265885 - type: dot_f1 value: 56.28769265132901 - type: dot_precision value: 48.7993803253292 - type: dot_recall value: 66.49076517150397 - type: euclidean_accuracy value: 82.16606067830959 - type: euclidean_ap value: 59.974530371203514 - type: euclidean_f1 value: 56.856023506366306 - type: euclidean_precision value: 53.037916857012334 - type: euclidean_recall value: 61.2664907651715 - type: manhattan_accuracy value: 82.16606067830959 - type: manhattan_ap value: 59.98962379571767 - type: manhattan_f1 value: 56.98153158451947 - type: manhattan_precision value: 51.41158989598811 - type: manhattan_recall value: 63.90501319261214 - type: max_accuracy value: 83.04226023722954 - type: max_ap value: 63.681339908301325 - type: max_f1 value: 60.349184470480125 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.56871191834517 - type: cos_sim_ap value: 84.80240716354544 - type: cos_sim_f1 value: 77.07765285922385 - type: cos_sim_precision value: 74.84947406601378 - type: cos_sim_recall value: 79.44256236526024 - type: dot_accuracy value: 86.00923662048356 - type: dot_ap value: 78.6556459012073 - type: dot_f1 value: 72.7583749109052 - type: dot_precision value: 67.72823779193206 - type: dot_recall value: 78.59562673236834 - type: euclidean_accuracy value: 87.84103698529127 - type: euclidean_ap value: 83.50424424952834 - type: euclidean_f1 value: 75.74496544549307 - type: euclidean_precision value: 73.19402556369381 - type: euclidean_recall value: 78.48013550970127 - type: manhattan_accuracy value: 87.9225365777933 - type: manhattan_ap value: 83.49479248597825 - type: manhattan_f1 value: 75.67748162447101 - type: manhattan_precision value: 73.06810035842294 - type: manhattan_recall value: 78.48013550970127 - type: max_accuracy value: 88.56871191834517 - type: max_ap value: 84.80240716354544 - type: max_f1 value: 77.07765285922385 --- # SGPT-2.7B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 124796 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 7.5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit
Muennighoff
2023-03-27T22:21:38Z
504
5
sentence-transformers
[ "sentence-transformers", "pytorch", "gpt_neo", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-1.3B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 65.20895522388061 - type: ap value: 29.59212705444778 - type: f1 value: 59.97099864321921 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 73.20565 - type: ap value: 67.36680643550963 - type: f1 value: 72.90420520325125 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 34.955999999999996 - type: f1 value: 34.719324437696955 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 26.101999999999997 - type: map_at_10 value: 40.958 - type: map_at_100 value: 42.033 - type: map_at_1000 value: 42.042 - type: map_at_3 value: 36.332 - type: map_at_5 value: 38.608 - type: mrr_at_1 value: 26.387 - type: mrr_at_10 value: 41.051 - type: mrr_at_100 value: 42.118 - type: mrr_at_1000 value: 42.126999999999995 - type: mrr_at_3 value: 36.415 - type: mrr_at_5 value: 38.72 - type: ndcg_at_1 value: 26.101999999999997 - type: ndcg_at_10 value: 49.68 - type: ndcg_at_100 value: 54.257999999999996 - type: ndcg_at_1000 value: 54.486000000000004 - type: ndcg_at_3 value: 39.864 - type: ndcg_at_5 value: 43.980000000000004 - type: precision_at_1 value: 26.101999999999997 - type: precision_at_10 value: 7.781000000000001 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.714000000000002 - type: precision_at_5 value: 12.034 - type: recall_at_1 value: 26.101999999999997 - type: recall_at_10 value: 77.809 - type: recall_at_100 value: 97.866 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 50.141999999999996 - type: recall_at_5 value: 60.171 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 43.384194916953774 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 33.70962633433912 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 58.133058996870076 - type: mrr value: 72.10922041946972 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 86.62153841660047 - type: cos_sim_spearman value: 83.01514456843276 - type: euclidean_pearson value: 86.00431518427241 - type: euclidean_spearman value: 83.85552516285783 - type: manhattan_pearson value: 85.83025803351181 - type: manhattan_spearman value: 83.86636878343106 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 82.05844155844156 - type: f1 value: 82.0185837884764 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 35.05918333141837 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 30.71055028830579 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 26.519 - type: map_at_10 value: 35.634 - type: map_at_100 value: 36.961 - type: map_at_1000 value: 37.088 - type: map_at_3 value: 32.254 - type: map_at_5 value: 34.22 - type: mrr_at_1 value: 32.332 - type: mrr_at_10 value: 41.168 - type: mrr_at_100 value: 41.977 - type: mrr_at_1000 value: 42.028999999999996 - type: mrr_at_3 value: 38.196999999999996 - type: mrr_at_5 value: 40.036 - type: ndcg_at_1 value: 32.332 - type: ndcg_at_10 value: 41.471000000000004 - type: ndcg_at_100 value: 46.955999999999996 - type: ndcg_at_1000 value: 49.262 - type: ndcg_at_3 value: 35.937999999999995 - type: ndcg_at_5 value: 38.702999999999996 - type: precision_at_1 value: 32.332 - type: precision_at_10 value: 7.7829999999999995 - type: precision_at_100 value: 1.29 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 16.834 - type: precision_at_5 value: 12.418 - type: recall_at_1 value: 26.519 - type: recall_at_10 value: 53.190000000000005 - type: recall_at_100 value: 76.56500000000001 - type: recall_at_1000 value: 91.47800000000001 - type: recall_at_3 value: 38.034 - type: recall_at_5 value: 45.245999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 25.356 - type: map_at_10 value: 34.596 - type: map_at_100 value: 35.714 - type: map_at_1000 value: 35.839999999999996 - type: map_at_3 value: 32.073 - type: map_at_5 value: 33.475 - type: mrr_at_1 value: 31.274 - type: mrr_at_10 value: 39.592 - type: mrr_at_100 value: 40.284 - type: mrr_at_1000 value: 40.339999999999996 - type: mrr_at_3 value: 37.378 - type: mrr_at_5 value: 38.658 - type: ndcg_at_1 value: 31.274 - type: ndcg_at_10 value: 39.766 - type: ndcg_at_100 value: 44.028 - type: ndcg_at_1000 value: 46.445 - type: ndcg_at_3 value: 35.934 - type: ndcg_at_5 value: 37.751000000000005 - type: precision_at_1 value: 31.274 - type: precision_at_10 value: 7.452 - type: precision_at_100 value: 1.217 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 17.431 - type: precision_at_5 value: 12.306000000000001 - type: recall_at_1 value: 25.356 - type: recall_at_10 value: 49.344 - type: recall_at_100 value: 67.497 - type: recall_at_1000 value: 83.372 - type: recall_at_3 value: 38.227 - type: recall_at_5 value: 43.187999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 32.759 - type: map_at_10 value: 43.937 - type: map_at_100 value: 45.004 - type: map_at_1000 value: 45.07 - type: map_at_3 value: 40.805 - type: map_at_5 value: 42.497 - type: mrr_at_1 value: 37.367 - type: mrr_at_10 value: 47.237 - type: mrr_at_100 value: 47.973 - type: mrr_at_1000 value: 48.010999999999996 - type: mrr_at_3 value: 44.65 - type: mrr_at_5 value: 46.050999999999995 - type: ndcg_at_1 value: 37.367 - type: ndcg_at_10 value: 49.659 - type: ndcg_at_100 value: 54.069 - type: ndcg_at_1000 value: 55.552 - type: ndcg_at_3 value: 44.169000000000004 - type: ndcg_at_5 value: 46.726 - type: precision_at_1 value: 37.367 - type: precision_at_10 value: 8.163 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 19.707 - type: precision_at_5 value: 13.718 - type: recall_at_1 value: 32.759 - type: recall_at_10 value: 63.341 - type: recall_at_100 value: 82.502 - type: recall_at_1000 value: 93.259 - type: recall_at_3 value: 48.796 - type: recall_at_5 value: 54.921 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 18.962 - type: map_at_10 value: 25.863000000000003 - type: map_at_100 value: 26.817999999999998 - type: map_at_1000 value: 26.918 - type: map_at_3 value: 23.043 - type: map_at_5 value: 24.599 - type: mrr_at_1 value: 20.452 - type: mrr_at_10 value: 27.301 - type: mrr_at_100 value: 28.233000000000004 - type: mrr_at_1000 value: 28.310000000000002 - type: mrr_at_3 value: 24.539 - type: mrr_at_5 value: 26.108999999999998 - type: ndcg_at_1 value: 20.452 - type: ndcg_at_10 value: 30.354999999999997 - type: ndcg_at_100 value: 35.336 - type: ndcg_at_1000 value: 37.927 - type: ndcg_at_3 value: 24.705 - type: ndcg_at_5 value: 27.42 - type: precision_at_1 value: 20.452 - type: precision_at_10 value: 4.949 - type: precision_at_100 value: 0.7799999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 10.358 - type: precision_at_5 value: 7.774 - type: recall_at_1 value: 18.962 - type: recall_at_10 value: 43.056 - type: recall_at_100 value: 66.27300000000001 - type: recall_at_1000 value: 85.96000000000001 - type: recall_at_3 value: 27.776 - type: recall_at_5 value: 34.287 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 11.24 - type: map_at_10 value: 18.503 - type: map_at_100 value: 19.553 - type: map_at_1000 value: 19.689999999999998 - type: map_at_3 value: 16.150000000000002 - type: map_at_5 value: 17.254 - type: mrr_at_1 value: 13.806 - type: mrr_at_10 value: 21.939 - type: mrr_at_100 value: 22.827 - type: mrr_at_1000 value: 22.911 - type: mrr_at_3 value: 19.32 - type: mrr_at_5 value: 20.558 - type: ndcg_at_1 value: 13.806 - type: ndcg_at_10 value: 23.383000000000003 - type: ndcg_at_100 value: 28.834 - type: ndcg_at_1000 value: 32.175 - type: ndcg_at_3 value: 18.651999999999997 - type: ndcg_at_5 value: 20.505000000000003 - type: precision_at_1 value: 13.806 - type: precision_at_10 value: 4.714 - type: precision_at_100 value: 0.864 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 9.328 - type: precision_at_5 value: 6.841 - type: recall_at_1 value: 11.24 - type: recall_at_10 value: 34.854 - type: recall_at_100 value: 59.50299999999999 - type: recall_at_1000 value: 83.25 - type: recall_at_3 value: 22.02 - type: recall_at_5 value: 26.715 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 23.012 - type: map_at_10 value: 33.048 - type: map_at_100 value: 34.371 - type: map_at_1000 value: 34.489 - type: map_at_3 value: 29.942999999999998 - type: map_at_5 value: 31.602000000000004 - type: mrr_at_1 value: 28.104000000000003 - type: mrr_at_10 value: 37.99 - type: mrr_at_100 value: 38.836 - type: mrr_at_1000 value: 38.891 - type: mrr_at_3 value: 35.226 - type: mrr_at_5 value: 36.693999999999996 - type: ndcg_at_1 value: 28.104000000000003 - type: ndcg_at_10 value: 39.037 - type: ndcg_at_100 value: 44.643 - type: ndcg_at_1000 value: 46.939 - type: ndcg_at_3 value: 33.784 - type: ndcg_at_5 value: 36.126000000000005 - type: precision_at_1 value: 28.104000000000003 - type: precision_at_10 value: 7.2669999999999995 - type: precision_at_100 value: 1.193 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 16.298000000000002 - type: precision_at_5 value: 11.684 - type: recall_at_1 value: 23.012 - type: recall_at_10 value: 52.054 - type: recall_at_100 value: 75.622 - type: recall_at_1000 value: 90.675 - type: recall_at_3 value: 37.282 - type: recall_at_5 value: 43.307 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 21.624 - type: map_at_10 value: 30.209999999999997 - type: map_at_100 value: 31.52 - type: map_at_1000 value: 31.625999999999998 - type: map_at_3 value: 26.951000000000004 - type: map_at_5 value: 28.938999999999997 - type: mrr_at_1 value: 26.941 - type: mrr_at_10 value: 35.13 - type: mrr_at_100 value: 36.15 - type: mrr_at_1000 value: 36.204 - type: mrr_at_3 value: 32.42 - type: mrr_at_5 value: 34.155 - type: ndcg_at_1 value: 26.941 - type: ndcg_at_10 value: 35.726 - type: ndcg_at_100 value: 41.725 - type: ndcg_at_1000 value: 44.105 - type: ndcg_at_3 value: 30.184 - type: ndcg_at_5 value: 33.176 - type: precision_at_1 value: 26.941 - type: precision_at_10 value: 6.654999999999999 - type: precision_at_100 value: 1.1520000000000001 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 14.346 - type: precision_at_5 value: 10.868 - type: recall_at_1 value: 21.624 - type: recall_at_10 value: 47.359 - type: recall_at_100 value: 73.436 - type: recall_at_1000 value: 89.988 - type: recall_at_3 value: 32.34 - type: recall_at_5 value: 39.856 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.67566666666667 - type: map_at_10 value: 28.479333333333333 - type: map_at_100 value: 29.612249999999996 - type: map_at_1000 value: 29.731166666666663 - type: map_at_3 value: 25.884 - type: map_at_5 value: 27.298916666666667 - type: mrr_at_1 value: 24.402583333333332 - type: mrr_at_10 value: 32.07041666666667 - type: mrr_at_100 value: 32.95841666666667 - type: mrr_at_1000 value: 33.025416666666665 - type: mrr_at_3 value: 29.677749999999996 - type: mrr_at_5 value: 31.02391666666667 - type: ndcg_at_1 value: 24.402583333333332 - type: ndcg_at_10 value: 33.326166666666666 - type: ndcg_at_100 value: 38.51566666666667 - type: ndcg_at_1000 value: 41.13791666666667 - type: ndcg_at_3 value: 28.687749999999994 - type: ndcg_at_5 value: 30.84766666666667 - type: precision_at_1 value: 24.402583333333332 - type: precision_at_10 value: 5.943749999999999 - type: precision_at_100 value: 1.0098333333333334 - type: precision_at_1000 value: 0.14183333333333334 - type: precision_at_3 value: 13.211500000000001 - type: precision_at_5 value: 9.548416666666668 - type: recall_at_1 value: 20.67566666666667 - type: recall_at_10 value: 44.245583333333336 - type: recall_at_100 value: 67.31116666666667 - type: recall_at_1000 value: 85.87841666666665 - type: recall_at_3 value: 31.49258333333333 - type: recall_at_5 value: 36.93241666666667 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 18.34 - type: map_at_10 value: 23.988 - type: map_at_100 value: 24.895 - type: map_at_1000 value: 24.992 - type: map_at_3 value: 21.831 - type: map_at_5 value: 23.0 - type: mrr_at_1 value: 20.399 - type: mrr_at_10 value: 26.186 - type: mrr_at_100 value: 27.017999999999997 - type: mrr_at_1000 value: 27.090999999999998 - type: mrr_at_3 value: 24.08 - type: mrr_at_5 value: 25.230000000000004 - type: ndcg_at_1 value: 20.399 - type: ndcg_at_10 value: 27.799000000000003 - type: ndcg_at_100 value: 32.579 - type: ndcg_at_1000 value: 35.209 - type: ndcg_at_3 value: 23.684 - type: ndcg_at_5 value: 25.521 - type: precision_at_1 value: 20.399 - type: precision_at_10 value: 4.585999999999999 - type: precision_at_100 value: 0.755 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 10.276 - type: precision_at_5 value: 7.362 - type: recall_at_1 value: 18.34 - type: recall_at_10 value: 37.456 - type: recall_at_100 value: 59.86 - type: recall_at_1000 value: 79.703 - type: recall_at_3 value: 26.163999999999998 - type: recall_at_5 value: 30.652 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 12.327 - type: map_at_10 value: 17.572 - type: map_at_100 value: 18.534 - type: map_at_1000 value: 18.653 - type: map_at_3 value: 15.703 - type: map_at_5 value: 16.752 - type: mrr_at_1 value: 15.038000000000002 - type: mrr_at_10 value: 20.726 - type: mrr_at_100 value: 21.61 - type: mrr_at_1000 value: 21.695 - type: mrr_at_3 value: 18.829 - type: mrr_at_5 value: 19.885 - type: ndcg_at_1 value: 15.038000000000002 - type: ndcg_at_10 value: 21.241 - type: ndcg_at_100 value: 26.179000000000002 - type: ndcg_at_1000 value: 29.316 - type: ndcg_at_3 value: 17.762 - type: ndcg_at_5 value: 19.413 - type: precision_at_1 value: 15.038000000000002 - type: precision_at_10 value: 3.8920000000000003 - type: precision_at_100 value: 0.75 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 8.351 - type: precision_at_5 value: 6.187 - type: recall_at_1 value: 12.327 - type: recall_at_10 value: 29.342000000000002 - type: recall_at_100 value: 51.854 - type: recall_at_1000 value: 74.648 - type: recall_at_3 value: 19.596 - type: recall_at_5 value: 23.899 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.594 - type: map_at_10 value: 27.878999999999998 - type: map_at_100 value: 28.926000000000002 - type: map_at_1000 value: 29.041 - type: map_at_3 value: 25.668999999999997 - type: map_at_5 value: 26.773999999999997 - type: mrr_at_1 value: 23.694000000000003 - type: mrr_at_10 value: 31.335 - type: mrr_at_100 value: 32.218 - type: mrr_at_1000 value: 32.298 - type: mrr_at_3 value: 29.26 - type: mrr_at_5 value: 30.328 - type: ndcg_at_1 value: 23.694000000000003 - type: ndcg_at_10 value: 32.456 - type: ndcg_at_100 value: 37.667 - type: ndcg_at_1000 value: 40.571 - type: ndcg_at_3 value: 28.283 - type: ndcg_at_5 value: 29.986 - type: precision_at_1 value: 23.694000000000003 - type: precision_at_10 value: 5.448 - type: precision_at_100 value: 0.9119999999999999 - type: precision_at_1000 value: 0.127 - type: precision_at_3 value: 12.717999999999998 - type: precision_at_5 value: 8.843 - type: recall_at_1 value: 20.594 - type: recall_at_10 value: 43.004999999999995 - type: recall_at_100 value: 66.228 - type: recall_at_1000 value: 87.17099999999999 - type: recall_at_3 value: 31.554 - type: recall_at_5 value: 35.838 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.855999999999998 - type: map_at_10 value: 28.372000000000003 - type: map_at_100 value: 29.87 - type: map_at_1000 value: 30.075000000000003 - type: map_at_3 value: 26.054 - type: map_at_5 value: 27.128999999999998 - type: mrr_at_1 value: 25.494 - type: mrr_at_10 value: 32.735 - type: mrr_at_100 value: 33.794000000000004 - type: mrr_at_1000 value: 33.85 - type: mrr_at_3 value: 30.731 - type: mrr_at_5 value: 31.897 - type: ndcg_at_1 value: 25.494 - type: ndcg_at_10 value: 33.385 - type: ndcg_at_100 value: 39.436 - type: ndcg_at_1000 value: 42.313 - type: ndcg_at_3 value: 29.612 - type: ndcg_at_5 value: 31.186999999999998 - type: precision_at_1 value: 25.494 - type: precision_at_10 value: 6.422999999999999 - type: precision_at_100 value: 1.383 - type: precision_at_1000 value: 0.22399999999999998 - type: precision_at_3 value: 13.834 - type: precision_at_5 value: 10.0 - type: recall_at_1 value: 20.855999999999998 - type: recall_at_10 value: 42.678 - type: recall_at_100 value: 70.224 - type: recall_at_1000 value: 89.369 - type: recall_at_3 value: 31.957 - type: recall_at_5 value: 36.026 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 16.519000000000002 - type: map_at_10 value: 22.15 - type: map_at_100 value: 23.180999999999997 - type: map_at_1000 value: 23.291999999999998 - type: map_at_3 value: 20.132 - type: map_at_5 value: 21.346 - type: mrr_at_1 value: 17.93 - type: mrr_at_10 value: 23.506 - type: mrr_at_100 value: 24.581 - type: mrr_at_1000 value: 24.675 - type: mrr_at_3 value: 21.503 - type: mrr_at_5 value: 22.686 - type: ndcg_at_1 value: 17.93 - type: ndcg_at_10 value: 25.636 - type: ndcg_at_100 value: 30.736 - type: ndcg_at_1000 value: 33.841 - type: ndcg_at_3 value: 21.546000000000003 - type: ndcg_at_5 value: 23.658 - type: precision_at_1 value: 17.93 - type: precision_at_10 value: 3.993 - type: precision_at_100 value: 0.6890000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 9.057 - type: precision_at_5 value: 6.58 - type: recall_at_1 value: 16.519000000000002 - type: recall_at_10 value: 35.268 - type: recall_at_100 value: 58.17 - type: recall_at_1000 value: 81.66799999999999 - type: recall_at_3 value: 24.165 - type: recall_at_5 value: 29.254 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 10.363 - type: map_at_10 value: 18.301000000000002 - type: map_at_100 value: 20.019000000000002 - type: map_at_1000 value: 20.207 - type: map_at_3 value: 14.877 - type: map_at_5 value: 16.544 - type: mrr_at_1 value: 22.866 - type: mrr_at_10 value: 34.935 - type: mrr_at_100 value: 35.802 - type: mrr_at_1000 value: 35.839999999999996 - type: mrr_at_3 value: 30.965999999999998 - type: mrr_at_5 value: 33.204 - type: ndcg_at_1 value: 22.866 - type: ndcg_at_10 value: 26.595000000000002 - type: ndcg_at_100 value: 33.513999999999996 - type: ndcg_at_1000 value: 36.872 - type: ndcg_at_3 value: 20.666999999999998 - type: ndcg_at_5 value: 22.728 - type: precision_at_1 value: 22.866 - type: precision_at_10 value: 8.632 - type: precision_at_100 value: 1.6119999999999999 - type: precision_at_1000 value: 0.22399999999999998 - type: precision_at_3 value: 15.504999999999999 - type: precision_at_5 value: 12.404 - type: recall_at_1 value: 10.363 - type: recall_at_10 value: 33.494 - type: recall_at_100 value: 57.593 - type: recall_at_1000 value: 76.342 - type: recall_at_3 value: 19.157 - type: recall_at_5 value: 24.637999999999998 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 7.436 - type: map_at_10 value: 14.760000000000002 - type: map_at_100 value: 19.206 - type: map_at_1000 value: 20.267 - type: map_at_3 value: 10.894 - type: map_at_5 value: 12.828999999999999 - type: mrr_at_1 value: 54.25 - type: mrr_at_10 value: 63.769 - type: mrr_at_100 value: 64.193 - type: mrr_at_1000 value: 64.211 - type: mrr_at_3 value: 61.458 - type: mrr_at_5 value: 63.096 - type: ndcg_at_1 value: 42.875 - type: ndcg_at_10 value: 31.507 - type: ndcg_at_100 value: 34.559 - type: ndcg_at_1000 value: 41.246 - type: ndcg_at_3 value: 35.058 - type: ndcg_at_5 value: 33.396 - type: precision_at_1 value: 54.25 - type: precision_at_10 value: 24.45 - type: precision_at_100 value: 7.383000000000001 - type: precision_at_1000 value: 1.582 - type: precision_at_3 value: 38.083 - type: precision_at_5 value: 32.6 - type: recall_at_1 value: 7.436 - type: recall_at_10 value: 19.862 - type: recall_at_100 value: 38.981 - type: recall_at_1000 value: 61.038000000000004 - type: recall_at_3 value: 11.949 - type: recall_at_5 value: 15.562000000000001 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 46.39 - type: f1 value: 42.26424885856703 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 50.916 - type: map_at_10 value: 62.258 - type: map_at_100 value: 62.741 - type: map_at_1000 value: 62.763000000000005 - type: map_at_3 value: 60.01800000000001 - type: map_at_5 value: 61.419999999999995 - type: mrr_at_1 value: 54.964999999999996 - type: mrr_at_10 value: 66.554 - type: mrr_at_100 value: 66.96600000000001 - type: mrr_at_1000 value: 66.97800000000001 - type: mrr_at_3 value: 64.414 - type: mrr_at_5 value: 65.77 - type: ndcg_at_1 value: 54.964999999999996 - type: ndcg_at_10 value: 68.12 - type: ndcg_at_100 value: 70.282 - type: ndcg_at_1000 value: 70.788 - type: ndcg_at_3 value: 63.861999999999995 - type: ndcg_at_5 value: 66.216 - type: precision_at_1 value: 54.964999999999996 - type: precision_at_10 value: 8.998000000000001 - type: precision_at_100 value: 1.016 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 25.618000000000002 - type: precision_at_5 value: 16.676 - type: recall_at_1 value: 50.916 - type: recall_at_10 value: 82.04 - type: recall_at_100 value: 91.689 - type: recall_at_1000 value: 95.34899999999999 - type: recall_at_3 value: 70.512 - type: recall_at_5 value: 76.29899999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 13.568 - type: map_at_10 value: 23.264000000000003 - type: map_at_100 value: 24.823999999999998 - type: map_at_1000 value: 25.013999999999996 - type: map_at_3 value: 19.724 - type: map_at_5 value: 21.772 - type: mrr_at_1 value: 27.315 - type: mrr_at_10 value: 35.935 - type: mrr_at_100 value: 36.929 - type: mrr_at_1000 value: 36.985 - type: mrr_at_3 value: 33.591 - type: mrr_at_5 value: 34.848 - type: ndcg_at_1 value: 27.315 - type: ndcg_at_10 value: 29.988 - type: ndcg_at_100 value: 36.41 - type: ndcg_at_1000 value: 40.184999999999995 - type: ndcg_at_3 value: 26.342 - type: ndcg_at_5 value: 27.68 - type: precision_at_1 value: 27.315 - type: precision_at_10 value: 8.565000000000001 - type: precision_at_100 value: 1.508 - type: precision_at_1000 value: 0.219 - type: precision_at_3 value: 17.849999999999998 - type: precision_at_5 value: 13.672999999999998 - type: recall_at_1 value: 13.568 - type: recall_at_10 value: 37.133 - type: recall_at_100 value: 61.475 - type: recall_at_1000 value: 84.372 - type: recall_at_3 value: 24.112000000000002 - type: recall_at_5 value: 29.507 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 30.878 - type: map_at_10 value: 40.868 - type: map_at_100 value: 41.693999999999996 - type: map_at_1000 value: 41.775 - type: map_at_3 value: 38.56 - type: map_at_5 value: 39.947 - type: mrr_at_1 value: 61.756 - type: mrr_at_10 value: 68.265 - type: mrr_at_100 value: 68.671 - type: mrr_at_1000 value: 68.694 - type: mrr_at_3 value: 66.78399999999999 - type: mrr_at_5 value: 67.704 - type: ndcg_at_1 value: 61.756 - type: ndcg_at_10 value: 49.931 - type: ndcg_at_100 value: 53.179 - type: ndcg_at_1000 value: 54.94799999999999 - type: ndcg_at_3 value: 46.103 - type: ndcg_at_5 value: 48.147 - type: precision_at_1 value: 61.756 - type: precision_at_10 value: 10.163 - type: precision_at_100 value: 1.2710000000000001 - type: precision_at_1000 value: 0.151 - type: precision_at_3 value: 28.179 - type: precision_at_5 value: 18.528 - type: recall_at_1 value: 30.878 - type: recall_at_10 value: 50.817 - type: recall_at_100 value: 63.544999999999995 - type: recall_at_1000 value: 75.361 - type: recall_at_3 value: 42.269 - type: recall_at_5 value: 46.32 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 64.04799999999999 - type: ap value: 59.185251455339284 - type: f1 value: 63.947123181349255 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 18.9 - type: map_at_10 value: 29.748 - type: map_at_100 value: 30.976 - type: map_at_1000 value: 31.041 - type: map_at_3 value: 26.112999999999996 - type: map_at_5 value: 28.197 - type: mrr_at_1 value: 19.413 - type: mrr_at_10 value: 30.322 - type: mrr_at_100 value: 31.497000000000003 - type: mrr_at_1000 value: 31.555 - type: mrr_at_3 value: 26.729000000000003 - type: mrr_at_5 value: 28.788999999999998 - type: ndcg_at_1 value: 19.413 - type: ndcg_at_10 value: 36.048 - type: ndcg_at_100 value: 42.152 - type: ndcg_at_1000 value: 43.772 - type: ndcg_at_3 value: 28.642 - type: ndcg_at_5 value: 32.358 - type: precision_at_1 value: 19.413 - type: precision_at_10 value: 5.785 - type: precision_at_100 value: 0.8869999999999999 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.192 - type: precision_at_5 value: 9.189 - type: recall_at_1 value: 18.9 - type: recall_at_10 value: 55.457 - type: recall_at_100 value: 84.09100000000001 - type: recall_at_1000 value: 96.482 - type: recall_at_3 value: 35.359 - type: recall_at_5 value: 44.275 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 92.07706338349293 - type: f1 value: 91.56680443236652 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 71.18559051527589 - type: f1 value: 52.42887061726789 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 68.64828513786148 - type: f1 value: 66.54281381596097 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.04236718224612 - type: f1 value: 75.89170458655639 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 32.0840369055247 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 29.448729560244537 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.340856463122375 - type: mrr value: 32.398547669840916 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.526 - type: map_at_10 value: 11.745 - type: map_at_100 value: 14.831 - type: map_at_1000 value: 16.235 - type: map_at_3 value: 8.716 - type: map_at_5 value: 10.101 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 51.06699999999999 - type: mrr_at_100 value: 51.881 - type: mrr_at_1000 value: 51.912000000000006 - type: mrr_at_3 value: 49.02 - type: mrr_at_5 value: 50.288999999999994 - type: ndcg_at_1 value: 41.949999999999996 - type: ndcg_at_10 value: 32.083 - type: ndcg_at_100 value: 30.049999999999997 - type: ndcg_at_1000 value: 38.661 - type: ndcg_at_3 value: 37.940000000000005 - type: ndcg_at_5 value: 35.455999999999996 - type: precision_at_1 value: 43.344 - type: precision_at_10 value: 23.437 - type: precision_at_100 value: 7.829999999999999 - type: precision_at_1000 value: 2.053 - type: precision_at_3 value: 35.501 - type: precision_at_5 value: 30.464000000000002 - type: recall_at_1 value: 5.526 - type: recall_at_10 value: 15.445999999999998 - type: recall_at_100 value: 31.179000000000002 - type: recall_at_1000 value: 61.578 - type: recall_at_3 value: 9.71 - type: recall_at_5 value: 12.026 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 23.467 - type: map_at_10 value: 36.041000000000004 - type: map_at_100 value: 37.268 - type: map_at_1000 value: 37.322 - type: map_at_3 value: 32.09 - type: map_at_5 value: 34.414 - type: mrr_at_1 value: 26.738 - type: mrr_at_10 value: 38.665 - type: mrr_at_100 value: 39.64 - type: mrr_at_1000 value: 39.681 - type: mrr_at_3 value: 35.207 - type: mrr_at_5 value: 37.31 - type: ndcg_at_1 value: 26.709 - type: ndcg_at_10 value: 42.942 - type: ndcg_at_100 value: 48.296 - type: ndcg_at_1000 value: 49.651 - type: ndcg_at_3 value: 35.413 - type: ndcg_at_5 value: 39.367999999999995 - type: precision_at_1 value: 26.709 - type: precision_at_10 value: 7.306 - type: precision_at_100 value: 1.0290000000000001 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 16.348 - type: precision_at_5 value: 12.068 - type: recall_at_1 value: 23.467 - type: recall_at_10 value: 61.492999999999995 - type: recall_at_100 value: 85.01100000000001 - type: recall_at_1000 value: 95.261 - type: recall_at_3 value: 41.952 - type: recall_at_5 value: 51.105999999999995 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 67.51700000000001 - type: map_at_10 value: 81.054 - type: map_at_100 value: 81.727 - type: map_at_1000 value: 81.75200000000001 - type: map_at_3 value: 78.018 - type: map_at_5 value: 79.879 - type: mrr_at_1 value: 77.52 - type: mrr_at_10 value: 84.429 - type: mrr_at_100 value: 84.58200000000001 - type: mrr_at_1000 value: 84.584 - type: mrr_at_3 value: 83.268 - type: mrr_at_5 value: 84.013 - type: ndcg_at_1 value: 77.53 - type: ndcg_at_10 value: 85.277 - type: ndcg_at_100 value: 86.80499999999999 - type: ndcg_at_1000 value: 87.01 - type: ndcg_at_3 value: 81.975 - type: ndcg_at_5 value: 83.723 - type: precision_at_1 value: 77.53 - type: precision_at_10 value: 12.961 - type: precision_at_100 value: 1.502 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.713 - type: precision_at_5 value: 23.574 - type: recall_at_1 value: 67.51700000000001 - type: recall_at_10 value: 93.486 - type: recall_at_100 value: 98.9 - type: recall_at_1000 value: 99.92999999999999 - type: recall_at_3 value: 84.17999999999999 - type: recall_at_5 value: 88.97500000000001 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 48.225994608749915 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 53.17635557157765 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 3.988 - type: map_at_10 value: 9.4 - type: map_at_100 value: 10.968 - type: map_at_1000 value: 11.257 - type: map_at_3 value: 7.123 - type: map_at_5 value: 8.221 - type: mrr_at_1 value: 19.7 - type: mrr_at_10 value: 29.098000000000003 - type: mrr_at_100 value: 30.247 - type: mrr_at_1000 value: 30.318 - type: mrr_at_3 value: 26.55 - type: mrr_at_5 value: 27.915 - type: ndcg_at_1 value: 19.7 - type: ndcg_at_10 value: 16.176 - type: ndcg_at_100 value: 22.931 - type: ndcg_at_1000 value: 28.301 - type: ndcg_at_3 value: 16.142 - type: ndcg_at_5 value: 13.633999999999999 - type: precision_at_1 value: 19.7 - type: precision_at_10 value: 8.18 - type: precision_at_100 value: 1.8010000000000002 - type: precision_at_1000 value: 0.309 - type: precision_at_3 value: 15.1 - type: precision_at_5 value: 11.74 - type: recall_at_1 value: 3.988 - type: recall_at_10 value: 16.625 - type: recall_at_100 value: 36.61 - type: recall_at_1000 value: 62.805 - type: recall_at_3 value: 9.168 - type: recall_at_5 value: 11.902 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 77.29330379162072 - type: cos_sim_spearman value: 67.22953551111448 - type: euclidean_pearson value: 71.44682700059415 - type: euclidean_spearman value: 66.33178012153247 - type: manhattan_pearson value: 71.46941734657887 - type: manhattan_spearman value: 66.43234359835814 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.40943196466576 - type: cos_sim_spearman value: 66.59241013465915 - type: euclidean_pearson value: 71.32500540796616 - type: euclidean_spearman value: 67.86667467202591 - type: manhattan_pearson value: 71.48209832089134 - type: manhattan_spearman value: 67.94511626964879 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 77.08302398877518 - type: cos_sim_spearman value: 77.33151317062642 - type: euclidean_pearson value: 76.77020279715008 - type: euclidean_spearman value: 77.13893776083225 - type: manhattan_pearson value: 76.76732290707477 - type: manhattan_spearman value: 77.14500877396631 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 77.46886184932168 - type: cos_sim_spearman value: 71.82815265534886 - type: euclidean_pearson value: 75.19783284299076 - type: euclidean_spearman value: 71.36479611710412 - type: manhattan_pearson value: 75.30375233959337 - type: manhattan_spearman value: 71.46280266488021 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 80.093017609484 - type: cos_sim_spearman value: 80.65931167868882 - type: euclidean_pearson value: 80.36786337117047 - type: euclidean_spearman value: 81.30521389642827 - type: manhattan_pearson value: 80.37922433220973 - type: manhattan_spearman value: 81.30496664496285 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 77.98998347238742 - type: cos_sim_spearman value: 78.91151365939403 - type: euclidean_pearson value: 76.40510899217841 - type: euclidean_spearman value: 76.8551459824213 - type: manhattan_pearson value: 76.3986079603294 - type: manhattan_spearman value: 76.8848053254288 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 85.63510653472044 - type: cos_sim_spearman value: 86.98674844768605 - type: euclidean_pearson value: 85.205080538809 - type: euclidean_spearman value: 85.53630494151886 - type: manhattan_pearson value: 85.48612469885626 - type: manhattan_spearman value: 85.81741413931921 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 66.7257987615171 - type: cos_sim_spearman value: 67.30387805090024 - type: euclidean_pearson value: 69.46877227885867 - type: euclidean_spearman value: 69.33161798704344 - type: manhattan_pearson value: 69.82773311626424 - type: manhattan_spearman value: 69.57199940498796 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 79.37322139418472 - type: cos_sim_spearman value: 77.5887175717799 - type: euclidean_pearson value: 78.23006410562164 - type: euclidean_spearman value: 77.18470385673044 - type: manhattan_pearson value: 78.40868369362455 - type: manhattan_spearman value: 77.36675823897656 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 77.21233007730808 - type: mrr value: 93.0502386139641 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 54.567 - type: map_at_10 value: 63.653000000000006 - type: map_at_100 value: 64.282 - type: map_at_1000 value: 64.31099999999999 - type: map_at_3 value: 60.478 - type: map_at_5 value: 62.322 - type: mrr_at_1 value: 56.99999999999999 - type: mrr_at_10 value: 64.759 - type: mrr_at_100 value: 65.274 - type: mrr_at_1000 value: 65.301 - type: mrr_at_3 value: 62.333000000000006 - type: mrr_at_5 value: 63.817 - type: ndcg_at_1 value: 56.99999999999999 - type: ndcg_at_10 value: 68.28699999999999 - type: ndcg_at_100 value: 70.98400000000001 - type: ndcg_at_1000 value: 71.695 - type: ndcg_at_3 value: 62.656 - type: ndcg_at_5 value: 65.523 - type: precision_at_1 value: 56.99999999999999 - type: precision_at_10 value: 9.232999999999999 - type: precision_at_100 value: 1.0630000000000002 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 24.221999999999998 - type: precision_at_5 value: 16.333000000000002 - type: recall_at_1 value: 54.567 - type: recall_at_10 value: 81.45599999999999 - type: recall_at_100 value: 93.5 - type: recall_at_1000 value: 99.0 - type: recall_at_3 value: 66.228 - type: recall_at_5 value: 73.489 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.74455445544554 - type: cos_sim_ap value: 92.57836032673468 - type: cos_sim_f1 value: 87.0471464019851 - type: cos_sim_precision value: 86.4039408866995 - type: cos_sim_recall value: 87.7 - type: dot_accuracy value: 99.56039603960396 - type: dot_ap value: 82.47233353407186 - type: dot_f1 value: 76.78207739307537 - type: dot_precision value: 78.21576763485477 - type: dot_recall value: 75.4 - type: euclidean_accuracy value: 99.73069306930694 - type: euclidean_ap value: 91.70507666665775 - type: euclidean_f1 value: 86.26262626262626 - type: euclidean_precision value: 87.14285714285714 - type: euclidean_recall value: 85.39999999999999 - type: manhattan_accuracy value: 99.73861386138614 - type: manhattan_ap value: 91.96809459281754 - type: manhattan_f1 value: 86.6 - type: manhattan_precision value: 86.6 - type: manhattan_recall value: 86.6 - type: max_accuracy value: 99.74455445544554 - type: max_ap value: 92.57836032673468 - type: max_f1 value: 87.0471464019851 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 60.85593925770172 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 32.356772998237496 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 49.320607035290735 - type: mrr value: 50.09196481622952 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 31.17573968015504 - type: cos_sim_spearman value: 30.43371643155132 - type: dot_pearson value: 30.164319483092744 - type: dot_spearman value: 29.207082242868754 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.22100000000000003 - type: map_at_10 value: 1.7229999999999999 - type: map_at_100 value: 9.195 - type: map_at_1000 value: 21.999 - type: map_at_3 value: 0.6479999999999999 - type: map_at_5 value: 0.964 - type: mrr_at_1 value: 86.0 - type: mrr_at_10 value: 90.667 - type: mrr_at_100 value: 90.858 - type: mrr_at_1000 value: 90.858 - type: mrr_at_3 value: 90.667 - type: mrr_at_5 value: 90.667 - type: ndcg_at_1 value: 82.0 - type: ndcg_at_10 value: 72.98 - type: ndcg_at_100 value: 52.868 - type: ndcg_at_1000 value: 46.541 - type: ndcg_at_3 value: 80.39699999999999 - type: ndcg_at_5 value: 76.303 - type: precision_at_1 value: 86.0 - type: precision_at_10 value: 75.8 - type: precision_at_100 value: 53.5 - type: precision_at_1000 value: 20.946 - type: precision_at_3 value: 85.333 - type: precision_at_5 value: 79.2 - type: recall_at_1 value: 0.22100000000000003 - type: recall_at_10 value: 1.9109999999999998 - type: recall_at_100 value: 12.437 - type: recall_at_1000 value: 43.606 - type: recall_at_3 value: 0.681 - type: recall_at_5 value: 1.023 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 2.5 - type: map_at_10 value: 9.568999999999999 - type: map_at_100 value: 15.653 - type: map_at_1000 value: 17.188 - type: map_at_3 value: 5.335999999999999 - type: map_at_5 value: 6.522 - type: mrr_at_1 value: 34.694 - type: mrr_at_10 value: 49.184 - type: mrr_at_100 value: 50.512 - type: mrr_at_1000 value: 50.512 - type: mrr_at_3 value: 46.259 - type: mrr_at_5 value: 48.299 - type: ndcg_at_1 value: 30.612000000000002 - type: ndcg_at_10 value: 24.45 - type: ndcg_at_100 value: 35.870999999999995 - type: ndcg_at_1000 value: 47.272999999999996 - type: ndcg_at_3 value: 28.528 - type: ndcg_at_5 value: 25.768 - type: precision_at_1 value: 34.694 - type: precision_at_10 value: 21.429000000000002 - type: precision_at_100 value: 7.265000000000001 - type: precision_at_1000 value: 1.504 - type: precision_at_3 value: 29.252 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 2.5 - type: recall_at_10 value: 15.844 - type: recall_at_100 value: 45.469 - type: recall_at_1000 value: 81.148 - type: recall_at_3 value: 6.496 - type: recall_at_5 value: 8.790000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 68.7272 - type: ap value: 13.156450706152686 - type: f1 value: 52.814703437064395 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 55.6677985285795 - type: f1 value: 55.9373937514999 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 40.05809562275603 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 82.76807534124099 - type: cos_sim_ap value: 62.37052608803734 - type: cos_sim_f1 value: 59.077414934916646 - type: cos_sim_precision value: 52.07326892109501 - type: cos_sim_recall value: 68.25857519788919 - type: dot_accuracy value: 80.56267509089825 - type: dot_ap value: 54.75349561321037 - type: dot_f1 value: 54.75483794372552 - type: dot_precision value: 49.77336499028707 - type: dot_recall value: 60.844327176781 - type: euclidean_accuracy value: 82.476008821601 - type: euclidean_ap value: 61.17417554210511 - type: euclidean_f1 value: 57.80318696022382 - type: euclidean_precision value: 53.622207176709544 - type: euclidean_recall value: 62.69129287598945 - type: manhattan_accuracy value: 82.48792990403528 - type: manhattan_ap value: 61.044816292966544 - type: manhattan_f1 value: 58.03033951360462 - type: manhattan_precision value: 53.36581045172719 - type: manhattan_recall value: 63.58839050131926 - type: max_accuracy value: 82.76807534124099 - type: max_ap value: 62.37052608803734 - type: max_f1 value: 59.077414934916646 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.97881010594946 - type: cos_sim_ap value: 83.78748636891035 - type: cos_sim_f1 value: 75.94113995691386 - type: cos_sim_precision value: 72.22029307590805 - type: cos_sim_recall value: 80.06621496766245 - type: dot_accuracy value: 85.69294058291614 - type: dot_ap value: 78.15363722278026 - type: dot_f1 value: 72.08894926888564 - type: dot_precision value: 67.28959487419075 - type: dot_recall value: 77.62550046196489 - type: euclidean_accuracy value: 87.73625179493149 - type: euclidean_ap value: 83.19012184470559 - type: euclidean_f1 value: 75.5148064623461 - type: euclidean_precision value: 72.63352535381551 - type: euclidean_recall value: 78.6341238065907 - type: manhattan_accuracy value: 87.74013272790779 - type: manhattan_ap value: 83.23305405113403 - type: manhattan_f1 value: 75.63960775639607 - type: manhattan_precision value: 72.563304569246 - type: manhattan_recall value: 78.9882968894364 - type: max_accuracy value: 87.97881010594946 - type: max_ap value: 83.78748636891035 - type: max_f1 value: 75.94113995691386 --- # SGPT-1.3B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 62398 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
alesthehuman/ppo-LunarLander-v2
alesthehuman
2023-03-27T22:21:26Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T22:21:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.19 +/- 14.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit
Muennighoff
2023-03-27T22:19:34Z
1,244
2
sentence-transformers
[ "sentence-transformers", "pytorch", "gpt_neo", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-125M-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 61.23880597014926 - type: ap value: 25.854431650388644 - type: f1 value: 55.751862762818604 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 56.88436830835117 - type: ap value: 72.67279104379772 - type: f1 value: 54.449840243786404 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 58.27586206896551 - type: ap value: 14.067357642500387 - type: f1 value: 48.172318518691334 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 54.64668094218415 - type: ap value: 11.776694555054965 - type: f1 value: 44.526622834078765 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 65.401225 - type: ap value: 60.22809958678552 - type: f1 value: 65.0251824898292 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 31.165999999999993 - type: f1 value: 30.908870050167437 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 24.79 - type: f1 value: 24.5833598854121 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 26.643999999999995 - type: f1 value: 26.39012792213563 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 26.386000000000003 - type: f1 value: 26.276867791454873 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 22.078000000000003 - type: f1 value: 21.797960290226843 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 24.274 - type: f1 value: 23.887054434822627 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 22.404 - type: map_at_10 value: 36.845 - type: map_at_100 value: 37.945 - type: map_at_1000 value: 37.966 - type: map_at_3 value: 31.78 - type: map_at_5 value: 34.608 - type: mrr_at_1 value: 22.902 - type: mrr_at_10 value: 37.034 - type: mrr_at_100 value: 38.134 - type: mrr_at_1000 value: 38.155 - type: mrr_at_3 value: 31.935000000000002 - type: mrr_at_5 value: 34.812 - type: ndcg_at_1 value: 22.404 - type: ndcg_at_10 value: 45.425 - type: ndcg_at_100 value: 50.354 - type: ndcg_at_1000 value: 50.873999999999995 - type: ndcg_at_3 value: 34.97 - type: ndcg_at_5 value: 40.081 - type: precision_at_1 value: 22.404 - type: precision_at_10 value: 7.303999999999999 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 14.746 - type: precision_at_5 value: 11.337 - type: recall_at_1 value: 22.404 - type: recall_at_10 value: 73.044 - type: recall_at_100 value: 95.092 - type: recall_at_1000 value: 99.075 - type: recall_at_3 value: 44.239 - type: recall_at_5 value: 56.686 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 39.70858340673288 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 28.242847713721048 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 55.83700395192393 - type: mrr value: 70.3891307215407 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 79.25366801756223 - type: cos_sim_spearman value: 75.20954502580506 - type: euclidean_pearson value: 78.79900722991617 - type: euclidean_spearman value: 77.79996549607588 - type: manhattan_pearson value: 78.18408109480399 - type: manhattan_spearman value: 76.85958262303106 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 77.70454545454545 - type: f1 value: 77.6929000113803 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 33.63260395543984 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 27.038042665369925 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.139 - type: map_at_10 value: 28.839 - type: map_at_100 value: 30.023 - type: map_at_1000 value: 30.153000000000002 - type: map_at_3 value: 26.521 - type: map_at_5 value: 27.775 - type: mrr_at_1 value: 26.466 - type: mrr_at_10 value: 33.495000000000005 - type: mrr_at_100 value: 34.416999999999994 - type: mrr_at_1000 value: 34.485 - type: mrr_at_3 value: 31.402 - type: mrr_at_5 value: 32.496 - type: ndcg_at_1 value: 26.466 - type: ndcg_at_10 value: 33.372 - type: ndcg_at_100 value: 38.7 - type: ndcg_at_1000 value: 41.696 - type: ndcg_at_3 value: 29.443 - type: ndcg_at_5 value: 31.121 - type: precision_at_1 value: 26.466 - type: precision_at_10 value: 6.037 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 13.782 - type: precision_at_5 value: 9.757 - type: recall_at_1 value: 22.139 - type: recall_at_10 value: 42.39 - type: recall_at_100 value: 65.427 - type: recall_at_1000 value: 86.04899999999999 - type: recall_at_3 value: 31.127 - type: recall_at_5 value: 35.717999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.652 - type: map_at_10 value: 27.558 - type: map_at_100 value: 28.473 - type: map_at_1000 value: 28.577 - type: map_at_3 value: 25.402 - type: map_at_5 value: 26.68 - type: mrr_at_1 value: 25.223000000000003 - type: mrr_at_10 value: 31.966 - type: mrr_at_100 value: 32.664 - type: mrr_at_1000 value: 32.724 - type: mrr_at_3 value: 30.074 - type: mrr_at_5 value: 31.249 - type: ndcg_at_1 value: 25.223000000000003 - type: ndcg_at_10 value: 31.694 - type: ndcg_at_100 value: 35.662 - type: ndcg_at_1000 value: 38.092 - type: ndcg_at_3 value: 28.294000000000004 - type: ndcg_at_5 value: 30.049 - type: precision_at_1 value: 25.223000000000003 - type: precision_at_10 value: 5.777 - type: precision_at_100 value: 0.9730000000000001 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 13.397 - type: precision_at_5 value: 9.605 - type: recall_at_1 value: 20.652 - type: recall_at_10 value: 39.367999999999995 - type: recall_at_100 value: 56.485 - type: recall_at_1000 value: 73.292 - type: recall_at_3 value: 29.830000000000002 - type: recall_at_5 value: 34.43 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 25.180000000000003 - type: map_at_10 value: 34.579 - type: map_at_100 value: 35.589999999999996 - type: map_at_1000 value: 35.68 - type: map_at_3 value: 31.735999999999997 - type: map_at_5 value: 33.479 - type: mrr_at_1 value: 29.467 - type: mrr_at_10 value: 37.967 - type: mrr_at_100 value: 38.800000000000004 - type: mrr_at_1000 value: 38.858 - type: mrr_at_3 value: 35.465 - type: mrr_at_5 value: 37.057 - type: ndcg_at_1 value: 29.467 - type: ndcg_at_10 value: 39.796 - type: ndcg_at_100 value: 44.531 - type: ndcg_at_1000 value: 46.666000000000004 - type: ndcg_at_3 value: 34.676 - type: ndcg_at_5 value: 37.468 - type: precision_at_1 value: 29.467 - type: precision_at_10 value: 6.601999999999999 - type: precision_at_100 value: 0.9900000000000001 - type: precision_at_1000 value: 0.124 - type: precision_at_3 value: 15.568999999999999 - type: precision_at_5 value: 11.172 - type: recall_at_1 value: 25.180000000000003 - type: recall_at_10 value: 52.269 - type: recall_at_100 value: 73.574 - type: recall_at_1000 value: 89.141 - type: recall_at_3 value: 38.522 - type: recall_at_5 value: 45.323 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 16.303 - type: map_at_10 value: 21.629 - type: map_at_100 value: 22.387999999999998 - type: map_at_1000 value: 22.489 - type: map_at_3 value: 19.608 - type: map_at_5 value: 20.774 - type: mrr_at_1 value: 17.740000000000002 - type: mrr_at_10 value: 23.214000000000002 - type: mrr_at_100 value: 23.97 - type: mrr_at_1000 value: 24.054000000000002 - type: mrr_at_3 value: 21.243000000000002 - type: mrr_at_5 value: 22.322 - type: ndcg_at_1 value: 17.740000000000002 - type: ndcg_at_10 value: 25.113000000000003 - type: ndcg_at_100 value: 29.287999999999997 - type: ndcg_at_1000 value: 32.204 - type: ndcg_at_3 value: 21.111 - type: ndcg_at_5 value: 23.061999999999998 - type: precision_at_1 value: 17.740000000000002 - type: precision_at_10 value: 3.955 - type: precision_at_100 value: 0.644 - type: precision_at_1000 value: 0.093 - type: precision_at_3 value: 8.851 - type: precision_at_5 value: 6.418 - type: recall_at_1 value: 16.303 - type: recall_at_10 value: 34.487 - type: recall_at_100 value: 54.413999999999994 - type: recall_at_1000 value: 77.158 - type: recall_at_3 value: 23.733 - type: recall_at_5 value: 28.381 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 10.133000000000001 - type: map_at_10 value: 15.665999999999999 - type: map_at_100 value: 16.592000000000002 - type: map_at_1000 value: 16.733999999999998 - type: map_at_3 value: 13.625000000000002 - type: map_at_5 value: 14.721 - type: mrr_at_1 value: 12.562000000000001 - type: mrr_at_10 value: 18.487000000000002 - type: mrr_at_100 value: 19.391 - type: mrr_at_1000 value: 19.487 - type: mrr_at_3 value: 16.418 - type: mrr_at_5 value: 17.599999999999998 - type: ndcg_at_1 value: 12.562000000000001 - type: ndcg_at_10 value: 19.43 - type: ndcg_at_100 value: 24.546 - type: ndcg_at_1000 value: 28.193 - type: ndcg_at_3 value: 15.509999999999998 - type: ndcg_at_5 value: 17.322000000000003 - type: precision_at_1 value: 12.562000000000001 - type: precision_at_10 value: 3.794 - type: precision_at_100 value: 0.74 - type: precision_at_1000 value: 0.122 - type: precision_at_3 value: 7.546 - type: precision_at_5 value: 5.721 - type: recall_at_1 value: 10.133000000000001 - type: recall_at_10 value: 28.261999999999997 - type: recall_at_100 value: 51.742999999999995 - type: recall_at_1000 value: 78.075 - type: recall_at_3 value: 17.634 - type: recall_at_5 value: 22.128999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 19.991999999999997 - type: map_at_10 value: 27.346999999999998 - type: map_at_100 value: 28.582 - type: map_at_1000 value: 28.716 - type: map_at_3 value: 24.907 - type: map_at_5 value: 26.1 - type: mrr_at_1 value: 23.773 - type: mrr_at_10 value: 31.647 - type: mrr_at_100 value: 32.639 - type: mrr_at_1000 value: 32.706 - type: mrr_at_3 value: 29.195 - type: mrr_at_5 value: 30.484 - type: ndcg_at_1 value: 23.773 - type: ndcg_at_10 value: 32.322 - type: ndcg_at_100 value: 37.996 - type: ndcg_at_1000 value: 40.819 - type: ndcg_at_3 value: 27.876 - type: ndcg_at_5 value: 29.664 - type: precision_at_1 value: 23.773 - type: precision_at_10 value: 5.976999999999999 - type: precision_at_100 value: 1.055 - type: precision_at_1000 value: 0.15 - type: precision_at_3 value: 13.122 - type: precision_at_5 value: 9.451 - type: recall_at_1 value: 19.991999999999997 - type: recall_at_10 value: 43.106 - type: recall_at_100 value: 67.264 - type: recall_at_1000 value: 86.386 - type: recall_at_3 value: 30.392000000000003 - type: recall_at_5 value: 34.910999999999994 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 17.896 - type: map_at_10 value: 24.644 - type: map_at_100 value: 25.790000000000003 - type: map_at_1000 value: 25.913999999999998 - type: map_at_3 value: 22.694 - type: map_at_5 value: 23.69 - type: mrr_at_1 value: 21.346999999999998 - type: mrr_at_10 value: 28.594 - type: mrr_at_100 value: 29.543999999999997 - type: mrr_at_1000 value: 29.621 - type: mrr_at_3 value: 26.807 - type: mrr_at_5 value: 27.669 - type: ndcg_at_1 value: 21.346999999999998 - type: ndcg_at_10 value: 28.833 - type: ndcg_at_100 value: 34.272000000000006 - type: ndcg_at_1000 value: 37.355 - type: ndcg_at_3 value: 25.373 - type: ndcg_at_5 value: 26.756 - type: precision_at_1 value: 21.346999999999998 - type: precision_at_10 value: 5.2170000000000005 - type: precision_at_100 value: 0.954 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 11.948 - type: precision_at_5 value: 8.425 - type: recall_at_1 value: 17.896 - type: recall_at_10 value: 37.291000000000004 - type: recall_at_100 value: 61.138000000000005 - type: recall_at_1000 value: 83.212 - type: recall_at_3 value: 27.705999999999996 - type: recall_at_5 value: 31.234 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 17.195166666666665 - type: map_at_10 value: 23.329083333333333 - type: map_at_100 value: 24.30308333333333 - type: map_at_1000 value: 24.422416666666667 - type: map_at_3 value: 21.327416666666664 - type: map_at_5 value: 22.419999999999998 - type: mrr_at_1 value: 19.999916666666667 - type: mrr_at_10 value: 26.390166666666666 - type: mrr_at_100 value: 27.230999999999998 - type: mrr_at_1000 value: 27.308333333333334 - type: mrr_at_3 value: 24.4675 - type: mrr_at_5 value: 25.541083333333336 - type: ndcg_at_1 value: 19.999916666666667 - type: ndcg_at_10 value: 27.248666666666665 - type: ndcg_at_100 value: 32.00258333333334 - type: ndcg_at_1000 value: 34.9465 - type: ndcg_at_3 value: 23.58566666666667 - type: ndcg_at_5 value: 25.26341666666666 - type: precision_at_1 value: 19.999916666666667 - type: precision_at_10 value: 4.772166666666666 - type: precision_at_100 value: 0.847 - type: precision_at_1000 value: 0.12741666666666668 - type: precision_at_3 value: 10.756166666666669 - type: precision_at_5 value: 7.725416666666667 - type: recall_at_1 value: 17.195166666666665 - type: recall_at_10 value: 35.99083333333334 - type: recall_at_100 value: 57.467999999999996 - type: recall_at_1000 value: 78.82366666666667 - type: recall_at_3 value: 25.898499999999995 - type: recall_at_5 value: 30.084333333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 16.779 - type: map_at_10 value: 21.557000000000002 - type: map_at_100 value: 22.338 - type: map_at_1000 value: 22.421 - type: map_at_3 value: 19.939 - type: map_at_5 value: 20.903 - type: mrr_at_1 value: 18.404999999999998 - type: mrr_at_10 value: 23.435 - type: mrr_at_100 value: 24.179000000000002 - type: mrr_at_1000 value: 24.25 - type: mrr_at_3 value: 21.907 - type: mrr_at_5 value: 22.781000000000002 - type: ndcg_at_1 value: 18.404999999999998 - type: ndcg_at_10 value: 24.515 - type: ndcg_at_100 value: 28.721000000000004 - type: ndcg_at_1000 value: 31.259999999999998 - type: ndcg_at_3 value: 21.508 - type: ndcg_at_5 value: 23.01 - type: precision_at_1 value: 18.404999999999998 - type: precision_at_10 value: 3.834 - type: precision_at_100 value: 0.641 - type: precision_at_1000 value: 0.093 - type: precision_at_3 value: 9.151 - type: precision_at_5 value: 6.503 - type: recall_at_1 value: 16.779 - type: recall_at_10 value: 31.730000000000004 - type: recall_at_100 value: 51.673 - type: recall_at_1000 value: 71.17599999999999 - type: recall_at_3 value: 23.518 - type: recall_at_5 value: 27.230999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 9.279 - type: map_at_10 value: 13.822000000000001 - type: map_at_100 value: 14.533 - type: map_at_1000 value: 14.649999999999999 - type: map_at_3 value: 12.396 - type: map_at_5 value: 13.214 - type: mrr_at_1 value: 11.149000000000001 - type: mrr_at_10 value: 16.139 - type: mrr_at_100 value: 16.872 - type: mrr_at_1000 value: 16.964000000000002 - type: mrr_at_3 value: 14.613000000000001 - type: mrr_at_5 value: 15.486 - type: ndcg_at_1 value: 11.149000000000001 - type: ndcg_at_10 value: 16.82 - type: ndcg_at_100 value: 20.73 - type: ndcg_at_1000 value: 23.894000000000002 - type: ndcg_at_3 value: 14.11 - type: ndcg_at_5 value: 15.404000000000002 - type: precision_at_1 value: 11.149000000000001 - type: precision_at_10 value: 3.063 - type: precision_at_100 value: 0.587 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 6.699 - type: precision_at_5 value: 4.928 - type: recall_at_1 value: 9.279 - type: recall_at_10 value: 23.745 - type: recall_at_100 value: 41.873 - type: recall_at_1000 value: 64.982 - type: recall_at_3 value: 16.152 - type: recall_at_5 value: 19.409000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 16.36 - type: map_at_10 value: 21.927 - type: map_at_100 value: 22.889 - type: map_at_1000 value: 22.994 - type: map_at_3 value: 20.433 - type: map_at_5 value: 21.337 - type: mrr_at_1 value: 18.75 - type: mrr_at_10 value: 24.859 - type: mrr_at_100 value: 25.746999999999996 - type: mrr_at_1000 value: 25.829 - type: mrr_at_3 value: 23.383000000000003 - type: mrr_at_5 value: 24.297 - type: ndcg_at_1 value: 18.75 - type: ndcg_at_10 value: 25.372 - type: ndcg_at_100 value: 30.342999999999996 - type: ndcg_at_1000 value: 33.286 - type: ndcg_at_3 value: 22.627 - type: ndcg_at_5 value: 24.04 - type: precision_at_1 value: 18.75 - type: precision_at_10 value: 4.1419999999999995 - type: precision_at_100 value: 0.738 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 10.261000000000001 - type: precision_at_5 value: 7.164 - type: recall_at_1 value: 16.36 - type: recall_at_10 value: 32.949 - type: recall_at_100 value: 55.552 - type: recall_at_1000 value: 77.09899999999999 - type: recall_at_3 value: 25.538 - type: recall_at_5 value: 29.008 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 17.39 - type: map_at_10 value: 23.058 - type: map_at_100 value: 24.445 - type: map_at_1000 value: 24.637999999999998 - type: map_at_3 value: 21.037 - type: map_at_5 value: 21.966 - type: mrr_at_1 value: 19.96 - type: mrr_at_10 value: 26.301000000000002 - type: mrr_at_100 value: 27.297 - type: mrr_at_1000 value: 27.375 - type: mrr_at_3 value: 24.340999999999998 - type: mrr_at_5 value: 25.339 - type: ndcg_at_1 value: 19.96 - type: ndcg_at_10 value: 27.249000000000002 - type: ndcg_at_100 value: 32.997 - type: ndcg_at_1000 value: 36.359 - type: ndcg_at_3 value: 23.519000000000002 - type: ndcg_at_5 value: 24.915000000000003 - type: precision_at_1 value: 19.96 - type: precision_at_10 value: 5.356000000000001 - type: precision_at_100 value: 1.198 - type: precision_at_1000 value: 0.20400000000000001 - type: precision_at_3 value: 10.738 - type: precision_at_5 value: 7.904999999999999 - type: recall_at_1 value: 17.39 - type: recall_at_10 value: 35.254999999999995 - type: recall_at_100 value: 61.351 - type: recall_at_1000 value: 84.395 - type: recall_at_3 value: 25.194 - type: recall_at_5 value: 28.546 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.238999999999999 - type: map_at_10 value: 19.323 - type: map_at_100 value: 19.994 - type: map_at_1000 value: 20.102999999999998 - type: map_at_3 value: 17.631 - type: map_at_5 value: 18.401 - type: mrr_at_1 value: 15.157000000000002 - type: mrr_at_10 value: 20.578 - type: mrr_at_100 value: 21.252 - type: mrr_at_1000 value: 21.346999999999998 - type: mrr_at_3 value: 18.762 - type: mrr_at_5 value: 19.713 - type: ndcg_at_1 value: 15.157000000000002 - type: ndcg_at_10 value: 22.468 - type: ndcg_at_100 value: 26.245 - type: ndcg_at_1000 value: 29.534 - type: ndcg_at_3 value: 18.981 - type: ndcg_at_5 value: 20.349999999999998 - type: precision_at_1 value: 15.157000000000002 - type: precision_at_10 value: 3.512 - type: precision_at_100 value: 0.577 - type: precision_at_1000 value: 0.091 - type: precision_at_3 value: 8.01 - type: precision_at_5 value: 5.656 - type: recall_at_1 value: 14.238999999999999 - type: recall_at_10 value: 31.038 - type: recall_at_100 value: 49.122 - type: recall_at_1000 value: 74.919 - type: recall_at_3 value: 21.436 - type: recall_at_5 value: 24.692 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 8.828 - type: map_at_10 value: 14.982000000000001 - type: map_at_100 value: 16.495 - type: map_at_1000 value: 16.658 - type: map_at_3 value: 12.366000000000001 - type: map_at_5 value: 13.655000000000001 - type: mrr_at_1 value: 19.088 - type: mrr_at_10 value: 29.29 - type: mrr_at_100 value: 30.291 - type: mrr_at_1000 value: 30.342000000000002 - type: mrr_at_3 value: 25.907000000000004 - type: mrr_at_5 value: 27.840999999999998 - type: ndcg_at_1 value: 19.088 - type: ndcg_at_10 value: 21.858 - type: ndcg_at_100 value: 28.323999999999998 - type: ndcg_at_1000 value: 31.561 - type: ndcg_at_3 value: 17.175 - type: ndcg_at_5 value: 18.869 - type: precision_at_1 value: 19.088 - type: precision_at_10 value: 6.9190000000000005 - type: precision_at_100 value: 1.376 - type: precision_at_1000 value: 0.197 - type: precision_at_3 value: 12.703999999999999 - type: precision_at_5 value: 9.993 - type: recall_at_1 value: 8.828 - type: recall_at_10 value: 27.381 - type: recall_at_100 value: 50.0 - type: recall_at_1000 value: 68.355 - type: recall_at_3 value: 16.118 - type: recall_at_5 value: 20.587 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 5.586 - type: map_at_10 value: 10.040000000000001 - type: map_at_100 value: 12.55 - type: map_at_1000 value: 13.123999999999999 - type: map_at_3 value: 7.75 - type: map_at_5 value: 8.835999999999999 - type: mrr_at_1 value: 42.25 - type: mrr_at_10 value: 51.205999999999996 - type: mrr_at_100 value: 51.818 - type: mrr_at_1000 value: 51.855 - type: mrr_at_3 value: 48.875 - type: mrr_at_5 value: 50.488 - type: ndcg_at_1 value: 32.25 - type: ndcg_at_10 value: 22.718 - type: ndcg_at_100 value: 24.359 - type: ndcg_at_1000 value: 29.232000000000003 - type: ndcg_at_3 value: 25.974000000000004 - type: ndcg_at_5 value: 24.291999999999998 - type: precision_at_1 value: 42.25 - type: precision_at_10 value: 17.75 - type: precision_at_100 value: 5.032 - type: precision_at_1000 value: 1.117 - type: precision_at_3 value: 28.833 - type: precision_at_5 value: 24.25 - type: recall_at_1 value: 5.586 - type: recall_at_10 value: 14.16 - type: recall_at_100 value: 28.051 - type: recall_at_1000 value: 45.157000000000004 - type: recall_at_3 value: 8.758000000000001 - type: recall_at_5 value: 10.975999999999999 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 39.075 - type: f1 value: 35.01420354708222 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 43.519999999999996 - type: map_at_10 value: 54.368 - type: map_at_100 value: 54.918 - type: map_at_1000 value: 54.942 - type: map_at_3 value: 51.712 - type: map_at_5 value: 53.33599999999999 - type: mrr_at_1 value: 46.955000000000005 - type: mrr_at_10 value: 58.219 - type: mrr_at_100 value: 58.73500000000001 - type: mrr_at_1000 value: 58.753 - type: mrr_at_3 value: 55.518 - type: mrr_at_5 value: 57.191 - type: ndcg_at_1 value: 46.955000000000005 - type: ndcg_at_10 value: 60.45 - type: ndcg_at_100 value: 63.047 - type: ndcg_at_1000 value: 63.712999999999994 - type: ndcg_at_3 value: 55.233 - type: ndcg_at_5 value: 58.072 - type: precision_at_1 value: 46.955000000000005 - type: precision_at_10 value: 8.267 - type: precision_at_100 value: 0.962 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 22.326999999999998 - type: precision_at_5 value: 14.940999999999999 - type: recall_at_1 value: 43.519999999999996 - type: recall_at_10 value: 75.632 - type: recall_at_100 value: 87.41600000000001 - type: recall_at_1000 value: 92.557 - type: recall_at_3 value: 61.597 - type: recall_at_5 value: 68.518 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 9.549000000000001 - type: map_at_10 value: 15.762 - type: map_at_100 value: 17.142 - type: map_at_1000 value: 17.329 - type: map_at_3 value: 13.575000000000001 - type: map_at_5 value: 14.754000000000001 - type: mrr_at_1 value: 19.753 - type: mrr_at_10 value: 26.568 - type: mrr_at_100 value: 27.606 - type: mrr_at_1000 value: 27.68 - type: mrr_at_3 value: 24.203 - type: mrr_at_5 value: 25.668999999999997 - type: ndcg_at_1 value: 19.753 - type: ndcg_at_10 value: 21.118000000000002 - type: ndcg_at_100 value: 27.308 - type: ndcg_at_1000 value: 31.304 - type: ndcg_at_3 value: 18.319 - type: ndcg_at_5 value: 19.414 - type: precision_at_1 value: 19.753 - type: precision_at_10 value: 6.08 - type: precision_at_100 value: 1.204 - type: precision_at_1000 value: 0.192 - type: precision_at_3 value: 12.191 - type: precision_at_5 value: 9.383 - type: recall_at_1 value: 9.549000000000001 - type: recall_at_10 value: 26.131 - type: recall_at_100 value: 50.544999999999995 - type: recall_at_1000 value: 74.968 - type: recall_at_3 value: 16.951 - type: recall_at_5 value: 20.95 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 25.544 - type: map_at_10 value: 32.62 - type: map_at_100 value: 33.275 - type: map_at_1000 value: 33.344 - type: map_at_3 value: 30.851 - type: map_at_5 value: 31.868999999999996 - type: mrr_at_1 value: 51.087 - type: mrr_at_10 value: 57.704 - type: mrr_at_100 value: 58.175 - type: mrr_at_1000 value: 58.207 - type: mrr_at_3 value: 56.106 - type: mrr_at_5 value: 57.074000000000005 - type: ndcg_at_1 value: 51.087 - type: ndcg_at_10 value: 40.876000000000005 - type: ndcg_at_100 value: 43.762 - type: ndcg_at_1000 value: 45.423 - type: ndcg_at_3 value: 37.65 - type: ndcg_at_5 value: 39.305 - type: precision_at_1 value: 51.087 - type: precision_at_10 value: 8.304 - type: precision_at_100 value: 1.059 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 22.875999999999998 - type: precision_at_5 value: 15.033 - type: recall_at_1 value: 25.544 - type: recall_at_10 value: 41.519 - type: recall_at_100 value: 52.957 - type: recall_at_1000 value: 64.132 - type: recall_at_3 value: 34.315 - type: recall_at_5 value: 37.583 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 58.6696 - type: ap value: 55.3644880984279 - type: f1 value: 58.07942097405652 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 14.442 - type: map_at_10 value: 22.932 - type: map_at_100 value: 24.132 - type: map_at_1000 value: 24.213 - type: map_at_3 value: 20.002 - type: map_at_5 value: 21.636 - type: mrr_at_1 value: 14.841999999999999 - type: mrr_at_10 value: 23.416 - type: mrr_at_100 value: 24.593999999999998 - type: mrr_at_1000 value: 24.669 - type: mrr_at_3 value: 20.494 - type: mrr_at_5 value: 22.14 - type: ndcg_at_1 value: 14.841999999999999 - type: ndcg_at_10 value: 27.975 - type: ndcg_at_100 value: 34.143 - type: ndcg_at_1000 value: 36.370000000000005 - type: ndcg_at_3 value: 21.944 - type: ndcg_at_5 value: 24.881 - type: precision_at_1 value: 14.841999999999999 - type: precision_at_10 value: 4.537 - type: precision_at_100 value: 0.767 - type: precision_at_1000 value: 0.096 - type: precision_at_3 value: 9.322 - type: precision_at_5 value: 7.074 - type: recall_at_1 value: 14.442 - type: recall_at_10 value: 43.557 - type: recall_at_100 value: 72.904 - type: recall_at_1000 value: 90.40700000000001 - type: recall_at_3 value: 27.088 - type: recall_at_5 value: 34.144000000000005 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 86.95622435020519 - type: f1 value: 86.58363130708494 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 62.73034657650043 - type: f1 value: 60.78623915840713 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 67.54503002001334 - type: f1 value: 65.34879794116112 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 65.35233322893829 - type: f1 value: 62.994001882446646 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 45.37110075295806 - type: f1 value: 44.26285860740745 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 55.276672694394215 - type: f1 value: 53.28388179869587 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 62.25262197902417 - type: f1 value: 43.44084037148853 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 49.56043956043956 - type: f1 value: 32.86333673498598 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 49.93995997331555 - type: f1 value: 34.726671876888126 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 46.32947071719386 - type: f1 value: 32.325273615982795 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 32.208676945141626 - type: f1 value: 21.32185122815139 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 43.627486437613015 - type: f1 value: 27.04872922347508 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 40.548083389374575 - type: f1 value: 39.490307545239716 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 24.18291862811029 - type: f1 value: 23.437620034727473 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 30.134498991257562 - type: f1 value: 28.787175191531283 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 35.88433086751849 - type: f1 value: 36.264500398782126 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 29.17283120376597 - type: f1 value: 27.8101616531901 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 41.788836583725626 - type: f1 value: 39.71413181054801 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 44.176193678547406 - type: f1 value: 42.192499826552286 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.07464694014795 - type: f1 value: 39.44188259183162 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 36.254203093476804 - type: f1 value: 34.46592715936761 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 61.40887693342301 - type: f1 value: 59.79854802683996 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.679892400807 - type: f1 value: 42.04801248338172 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 35.59179556153329 - type: f1 value: 34.045862930486166 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 40.036987222595826 - type: f1 value: 38.117703439362785 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 43.43981170141224 - type: f1 value: 42.7084388987865 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 31.593813046402154 - type: f1 value: 29.98550522450782 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 27.044384667114997 - type: f1 value: 27.313059184832667 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 38.453261600538 - type: f1 value: 37.309189326110435 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 27.979152656355076 - type: f1 value: 27.430939684346445 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 43.97108271687963 - type: f1 value: 43.40585705688761 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 40.302622730329524 - type: f1 value: 39.108052180520744 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 45.474108944182916 - type: f1 value: 45.85950328241134 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 45.60860793544048 - type: f1 value: 43.94920708216737 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 38.668459986550104 - type: f1 value: 37.6990034018859 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 25.6523201075992 - type: f1 value: 25.279084273189582 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 28.295225285810353 - type: f1 value: 26.645825638771548 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 23.480161398789505 - type: f1 value: 22.275241866506732 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 36.55682582380632 - type: f1 value: 36.004753171063605 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 41.84936112979153 - type: f1 value: 41.38932672359119 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 24.90921318090114 - type: f1 value: 23.968687483768807 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 29.86213853396099 - type: f1 value: 29.977152075255407 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.42098184263618 - type: f1 value: 41.50877432664628 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 25.131136516476126 - type: f1 value: 23.938932214086776 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 39.81506388702084 - type: f1 value: 38.809586587791664 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 43.62138533960995 - type: f1 value: 42.01386842914633 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.19569603227976 - type: f1 value: 40.00556559825827 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 45.20847343644923 - type: f1 value: 44.24115005029051 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 41.80901143241426 - type: f1 value: 40.474074848670085 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 35.96839273705447 - type: f1 value: 35.095456843621 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 40.60524546065905 - type: f1 value: 39.302383051500136 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.75722932078009 - type: f1 value: 41.53763931497389 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.347007397444514 - type: f1 value: 41.04366017948627 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 41.12306657700067 - type: f1 value: 39.712940473289024 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 24.603227975790183 - type: f1 value: 23.969236788828606 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 25.03698722259583 - type: f1 value: 24.37196123281459 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 35.40013449899126 - type: f1 value: 35.063600413688036 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 41.19031607262945 - type: f1 value: 40.240432304273014 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 36.405514458641555 - type: f1 value: 36.03844992856558 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 25.934767989240076 - type: f1 value: 25.2074457023531 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 38.79959650302622 - type: f1 value: 37.160233794673125 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 46.244115669132476 - type: f1 value: 44.367480561291906 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 42.30665770006724 - type: f1 value: 41.9642223283514 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 43.2481506388702 - type: f1 value: 40.924230769590785 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 25.30262273032952 - type: f1 value: 24.937105830264066 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.07128446536651 - type: f1 value: 31.80245816594883 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 36.681237390719566 - type: f1 value: 36.37219042508338 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 29.56624075319435 - type: f1 value: 28.386042056362758 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.1049092131809 - type: f1 value: 38.926150886991294 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 45.44384667114997 - type: f1 value: 42.578252395460005 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 43.211163416274374 - type: f1 value: 41.04465858304789 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 36.503026227303295 - type: f1 value: 34.49785095312759 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.73772696704773 - type: f1 value: 69.21759502909043 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.078681909885674 - type: f1 value: 43.05914426901129 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.61264290517821 - type: f1 value: 32.02463177462754 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 40.35642232683255 - type: f1 value: 38.13642481807678 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 45.06724949562878 - type: f1 value: 43.19827608343738 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.178883658372555 - type: f1 value: 29.979761884698775 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 26.903160726294555 - type: f1 value: 25.833010434083363 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 40.379959650302624 - type: f1 value: 37.93134355292882 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.375924680564896 - type: f1 value: 26.96255693013172 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.361129791526565 - type: f1 value: 43.54445012295126 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 39.290517821116346 - type: f1 value: 37.26982052174147 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 46.4694014794889 - type: f1 value: 44.060986162841566 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 46.25756556825824 - type: f1 value: 45.625139456758816 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 41.12642905178212 - type: f1 value: 39.54392378396527 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 24.72763954270343 - type: f1 value: 23.337743140804484 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 29.741089441829182 - type: f1 value: 27.570876190083748 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 23.850033624747816 - type: f1 value: 22.86733484540032 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 36.56691324815064 - type: f1 value: 35.504081677134565 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 40.928043039677206 - type: f1 value: 39.108589131211254 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 25.527908540685946 - type: f1 value: 25.333391622280477 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 29.105581708137183 - type: f1 value: 28.478235012692814 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 43.78614660390047 - type: f1 value: 41.9640143926267 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 27.269670477471415 - type: f1 value: 26.228386764141852 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 39.018157363819775 - type: f1 value: 37.641949339321854 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 45.35978480161399 - type: f1 value: 42.6851176096831 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 41.89307330195023 - type: f1 value: 40.888710642615024 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 45.901143241425686 - type: f1 value: 44.496942353920545 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.11566913248151 - type: f1 value: 41.953945105870616 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.76395427034297 - type: f1 value: 31.436372571600934 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 40.504371217215876 - type: f1 value: 39.322752749628165 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.51849361129792 - type: f1 value: 41.4139297118463 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.293207800941495 - type: f1 value: 40.50409536806683 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.9993275050437 - type: f1 value: 41.045416224973266 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.32548755884331 - type: f1 value: 27.276841995561867 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 26.593813046402154 - type: f1 value: 25.483878616197586 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 36.788836583725626 - type: f1 value: 34.603932909177686 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.5689307330195 - type: f1 value: 40.924469309079825 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 37.09482178883658 - type: f1 value: 37.949628822857164 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.836583725622063 - type: f1 value: 27.806558655512344 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 37.357094821788834 - type: f1 value: 37.507918961038165 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 49.37794216543375 - type: f1 value: 47.20421153697707 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.42165433759248 - type: f1 value: 44.34741861198931 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.374938993074252 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 26.871455379644093 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.402396942935333 - type: mrr value: 31.42600938803256 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 3.7740000000000005 - type: map_at_10 value: 7.614999999999999 - type: map_at_100 value: 9.574 - type: map_at_1000 value: 10.711 - type: map_at_3 value: 5.7540000000000004 - type: map_at_5 value: 6.6659999999999995 - type: mrr_at_1 value: 33.127 - type: mrr_at_10 value: 40.351 - type: mrr_at_100 value: 41.144 - type: mrr_at_1000 value: 41.202 - type: mrr_at_3 value: 38.029 - type: mrr_at_5 value: 39.190000000000005 - type: ndcg_at_1 value: 31.579 - type: ndcg_at_10 value: 22.792 - type: ndcg_at_100 value: 21.698999999999998 - type: ndcg_at_1000 value: 30.892999999999997 - type: ndcg_at_3 value: 26.828999999999997 - type: ndcg_at_5 value: 25.119000000000003 - type: precision_at_1 value: 33.127 - type: precision_at_10 value: 16.718 - type: precision_at_100 value: 5.7090000000000005 - type: precision_at_1000 value: 1.836 - type: precision_at_3 value: 24.768 - type: precision_at_5 value: 21.3 - type: recall_at_1 value: 3.7740000000000005 - type: recall_at_10 value: 10.302999999999999 - type: recall_at_100 value: 23.013 - type: recall_at_1000 value: 54.864999999999995 - type: recall_at_3 value: 6.554 - type: recall_at_5 value: 8.087 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 15.620999999999999 - type: map_at_10 value: 24.519 - type: map_at_100 value: 25.586 - type: map_at_1000 value: 25.662000000000003 - type: map_at_3 value: 21.619 - type: map_at_5 value: 23.232 - type: mrr_at_1 value: 17.497 - type: mrr_at_10 value: 26.301000000000002 - type: mrr_at_100 value: 27.235 - type: mrr_at_1000 value: 27.297 - type: mrr_at_3 value: 23.561 - type: mrr_at_5 value: 25.111 - type: ndcg_at_1 value: 17.497 - type: ndcg_at_10 value: 29.725 - type: ndcg_at_100 value: 34.824 - type: ndcg_at_1000 value: 36.907000000000004 - type: ndcg_at_3 value: 23.946 - type: ndcg_at_5 value: 26.739 - type: precision_at_1 value: 17.497 - type: precision_at_10 value: 5.2170000000000005 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 11.114 - type: precision_at_5 value: 8.285 - type: recall_at_1 value: 15.620999999999999 - type: recall_at_10 value: 43.999 - type: recall_at_100 value: 67.183 - type: recall_at_1000 value: 83.174 - type: recall_at_3 value: 28.720000000000002 - type: recall_at_5 value: 35.154 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 54.717000000000006 - type: map_at_10 value: 67.514 - type: map_at_100 value: 68.484 - type: map_at_1000 value: 68.523 - type: map_at_3 value: 64.169 - type: map_at_5 value: 66.054 - type: mrr_at_1 value: 62.46000000000001 - type: mrr_at_10 value: 71.503 - type: mrr_at_100 value: 71.91499999999999 - type: mrr_at_1000 value: 71.923 - type: mrr_at_3 value: 69.46799999999999 - type: mrr_at_5 value: 70.677 - type: ndcg_at_1 value: 62.480000000000004 - type: ndcg_at_10 value: 72.98 - type: ndcg_at_100 value: 76.023 - type: ndcg_at_1000 value: 76.512 - type: ndcg_at_3 value: 68.138 - type: ndcg_at_5 value: 70.458 - type: precision_at_1 value: 62.480000000000004 - type: precision_at_10 value: 11.373 - type: precision_at_100 value: 1.437 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 29.622999999999998 - type: precision_at_5 value: 19.918 - type: recall_at_1 value: 54.717000000000006 - type: recall_at_10 value: 84.745 - type: recall_at_100 value: 96.528 - type: recall_at_1000 value: 99.39 - type: recall_at_3 value: 71.60600000000001 - type: recall_at_5 value: 77.511 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 40.23390747226228 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 49.090518272935626 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 3.028 - type: map_at_10 value: 6.968000000000001 - type: map_at_100 value: 8.200000000000001 - type: map_at_1000 value: 8.432 - type: map_at_3 value: 5.3069999999999995 - type: map_at_5 value: 6.099 - type: mrr_at_1 value: 14.799999999999999 - type: mrr_at_10 value: 22.425 - type: mrr_at_100 value: 23.577 - type: mrr_at_1000 value: 23.669999999999998 - type: mrr_at_3 value: 20.233 - type: mrr_at_5 value: 21.318 - type: ndcg_at_1 value: 14.799999999999999 - type: ndcg_at_10 value: 12.206 - type: ndcg_at_100 value: 17.799 - type: ndcg_at_1000 value: 22.891000000000002 - type: ndcg_at_3 value: 12.128 - type: ndcg_at_5 value: 10.212 - type: precision_at_1 value: 14.799999999999999 - type: precision_at_10 value: 6.17 - type: precision_at_100 value: 1.428 - type: precision_at_1000 value: 0.266 - type: precision_at_3 value: 11.333 - type: precision_at_5 value: 8.74 - type: recall_at_1 value: 3.028 - type: recall_at_10 value: 12.522 - type: recall_at_100 value: 28.975 - type: recall_at_1000 value: 54.038 - type: recall_at_3 value: 6.912999999999999 - type: recall_at_5 value: 8.883000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 76.62983928119752 - type: cos_sim_spearman value: 65.92910683118656 - type: euclidean_pearson value: 71.10290039690963 - type: euclidean_spearman value: 64.80076622426652 - type: manhattan_pearson value: 70.8944726230188 - type: manhattan_spearman value: 64.75082576033986 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 74.42679147085553 - type: cos_sim_spearman value: 66.52980061546658 - type: euclidean_pearson value: 74.87039477408763 - type: euclidean_spearman value: 70.63397666902786 - type: manhattan_pearson value: 74.97015137513088 - type: manhattan_spearman value: 70.75951355434326 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 75.62472426599543 - type: cos_sim_spearman value: 76.1662886374236 - type: euclidean_pearson value: 76.3297128081315 - type: euclidean_spearman value: 77.19385151966563 - type: manhattan_pearson value: 76.50363291423257 - type: manhattan_spearman value: 77.37081896355399 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 74.48227705407035 - type: cos_sim_spearman value: 69.04572664009687 - type: euclidean_pearson value: 71.76138185714849 - type: euclidean_spearman value: 68.93415452043307 - type: manhattan_pearson value: 71.68010915543306 - type: manhattan_spearman value: 68.99176321262806 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 78.1566527175902 - type: cos_sim_spearman value: 79.23677712825851 - type: euclidean_pearson value: 76.29138438696417 - type: euclidean_spearman value: 77.20108266215374 - type: manhattan_pearson value: 76.27464935799118 - type: manhattan_spearman value: 77.15286174478099 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 75.068454465977 - type: cos_sim_spearman value: 76.06792422441929 - type: euclidean_pearson value: 70.64605440627699 - type: euclidean_spearman value: 70.21776051117844 - type: manhattan_pearson value: 70.32479295054918 - type: manhattan_spearman value: 69.89782458638528 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 39.43327289939437 - type: cos_sim_spearman value: 52.386010275505654 - type: euclidean_pearson value: 46.40999904885745 - type: euclidean_spearman value: 51.00333465175934 - type: manhattan_pearson value: 46.55753533133655 - type: manhattan_spearman value: 51.07550440519388 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 55.54431928210687 - type: cos_sim_spearman value: 55.61674586076298 - type: euclidean_pearson value: 58.07442713714088 - type: euclidean_spearman value: 55.74066216931719 - type: manhattan_pearson value: 57.84021675638542 - type: manhattan_spearman value: 55.20365812536853 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 11.378463868809098 - type: cos_sim_spearman value: 8.209569244801065 - type: euclidean_pearson value: 1.07041700730406 - type: euclidean_spearman value: 2.2052197108931892 - type: manhattan_pearson value: 0.7671300251104268 - type: manhattan_spearman value: 3.430645020535567 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 32.71403560929013 - type: cos_sim_spearman value: 30.18181775929109 - type: euclidean_pearson value: 25.57368595910298 - type: euclidean_spearman value: 23.316649115731376 - type: manhattan_pearson value: 24.144200325329614 - type: manhattan_spearman value: 21.64621546338457 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 83.36340470799158 - type: cos_sim_spearman value: 84.95398260629699 - type: euclidean_pearson value: 80.69876969911644 - type: euclidean_spearman value: 80.97451731130427 - type: manhattan_pearson value: 80.65869354146945 - type: manhattan_spearman value: 80.8540858718528 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 1.9200044163754912 - type: cos_sim_spearman value: 1.0393399782021342 - type: euclidean_pearson value: 1.1376003191297994 - type: euclidean_spearman value: 1.8947106671763914 - type: manhattan_pearson value: 3.8362564474484335 - type: manhattan_spearman value: 4.242750882792888 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 26.561262451099577 - type: cos_sim_spearman value: 28.776666666659906 - type: euclidean_pearson value: 14.640410196999088 - type: euclidean_spearman value: 16.10557011701786 - type: manhattan_pearson value: 15.019405495911272 - type: manhattan_spearman value: 15.37192083104197 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 69.7544202001433 - type: cos_sim_spearman value: 71.88444295144646 - type: euclidean_pearson value: 73.84934185952773 - type: euclidean_spearman value: 73.26911108021089 - type: manhattan_pearson value: 74.04354196954574 - type: manhattan_spearman value: 73.37650787943872 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 27.70511842301491 - type: cos_sim_spearman value: 26.339466714066447 - type: euclidean_pearson value: 9.323158236506385 - type: euclidean_spearman value: 7.32083231520273 - type: manhattan_pearson value: 7.807399527573071 - type: manhattan_spearman value: 5.525546663067113 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 24.226521799447692 - type: cos_sim_spearman value: 20.72992940458968 - type: euclidean_pearson value: 6.753378617205011 - type: euclidean_spearman value: 6.281654679029505 - type: manhattan_pearson value: 7.087180250449323 - type: manhattan_spearman value: 6.41611659259516 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 29.131412364061234 - type: cos_sim_spearman value: 25.053429612793547 - type: euclidean_pearson value: 10.657141303962 - type: euclidean_spearman value: 9.712124819778452 - type: manhattan_pearson value: 12.481782693315688 - type: manhattan_spearman value: 11.287958480905973 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 64.04750650962879 - type: cos_sim_spearman value: 65.66183708171826 - type: euclidean_pearson value: 66.90887604405887 - type: euclidean_spearman value: 66.89814072484552 - type: manhattan_pearson value: 67.31627110509089 - type: manhattan_spearman value: 67.01048176165322 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 19.26519187000913 - type: cos_sim_spearman value: 21.987647321429005 - type: euclidean_pearson value: 17.850618752342946 - type: euclidean_spearman value: 22.86669392885474 - type: manhattan_pearson value: 18.16183594260708 - type: manhattan_spearman value: 23.637510352837907 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 34.221261828226936 - type: cos_sim_spearman value: 49.811823238907664 - type: euclidean_pearson value: 44.50394399762147 - type: euclidean_spearman value: 50.959184495072876 - type: manhattan_pearson value: 45.83191034038624 - type: manhattan_spearman value: 50.190409866117946 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 3.620381732096531 - type: cos_sim_spearman value: 23.30843951799194 - type: euclidean_pearson value: 0.965453312113125 - type: euclidean_spearman value: 24.235967620790316 - type: manhattan_pearson value: 1.4408922275701606 - type: manhattan_spearman value: 25.161920137046096 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 16.69489628726267 - type: cos_sim_spearman value: 34.66348380997687 - type: euclidean_pearson value: 29.415825529188606 - type: euclidean_spearman value: 38.33011033170646 - type: manhattan_pearson value: 31.23273195263394 - type: manhattan_spearman value: 39.10055785755795 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 9.134927430889528 - type: cos_sim_spearman value: 28.18922448944151 - type: euclidean_pearson value: 19.86814169549051 - type: euclidean_spearman value: 27.519588644948627 - type: manhattan_pearson value: 21.80949221238945 - type: manhattan_spearman value: 28.25217200494078 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 3.6386482942352085 - type: cos_sim_spearman value: 9.068119621940966 - type: euclidean_pearson value: 0.8123129118737714 - type: euclidean_spearman value: 9.173672890166147 - type: manhattan_pearson value: 0.754518899822658 - type: manhattan_spearman value: 8.431719541986524 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 2.972091574908432 - type: cos_sim_spearman value: 25.48511383289232 - type: euclidean_pearson value: 12.751569670148918 - type: euclidean_spearman value: 24.940721642439286 - type: manhattan_pearson value: 14.310238482989826 - type: manhattan_spearman value: 24.69821216148647 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 54.4745185734135 - type: cos_sim_spearman value: 67.66493409568727 - type: euclidean_pearson value: 60.13580336797049 - type: euclidean_spearman value: 66.12319300814538 - type: manhattan_pearson value: 60.816210368708155 - type: manhattan_spearman value: 65.70010026716766 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 49.37865412588201 - type: cos_sim_spearman value: 53.07135629778897 - type: euclidean_pearson value: 49.29201416711091 - type: euclidean_spearman value: 50.54523702399645 - type: manhattan_pearson value: 51.265764141268534 - type: manhattan_spearman value: 51.979086403193605 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 44.925652392562135 - type: cos_sim_spearman value: 49.51253904767726 - type: euclidean_pearson value: 48.79346518897415 - type: euclidean_spearman value: 51.47957870101565 - type: manhattan_pearson value: 49.51314553898044 - type: manhattan_spearman value: 51.895207893189166 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 45.241690321111875 - type: cos_sim_spearman value: 48.24795739512037 - type: euclidean_pearson value: 49.22719494399897 - type: euclidean_spearman value: 49.64102442042809 - type: manhattan_pearson value: 49.497887732970256 - type: manhattan_spearman value: 49.940515338096304 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 36.42138324083909 - type: cos_sim_spearman value: 36.79867489417801 - type: euclidean_pearson value: 27.760612942610084 - type: euclidean_spearman value: 29.140966500287625 - type: manhattan_pearson value: 28.456674031350115 - type: manhattan_spearman value: 27.46356370924497 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 26.55350664089358 - type: cos_sim_spearman value: 28.681707196975008 - type: euclidean_pearson value: 12.613577889195138 - type: euclidean_spearman value: 13.589493311702933 - type: manhattan_pearson value: 11.640157427420958 - type: manhattan_spearman value: 10.345223941212415 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 38.54682179114309 - type: cos_sim_spearman value: 45.782560880405704 - type: euclidean_pearson value: 46.496857002368486 - type: euclidean_spearman value: 48.21270426410012 - type: manhattan_pearson value: 46.871839119374044 - type: manhattan_spearman value: 47.556987773851525 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 35.12956772546032 - type: cos_sim_spearman value: 32.96920218281008 - type: euclidean_pearson value: 34.23140384382136 - type: euclidean_spearman value: 32.19303153191447 - type: manhattan_pearson value: 34.189468276600635 - type: manhattan_spearman value: 34.887065709732376 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 30.507667380509634 - type: cos_sim_spearman value: 20.447284723752716 - type: euclidean_pearson value: 29.662041381794474 - type: euclidean_spearman value: 20.939990379746757 - type: manhattan_pearson value: 32.5112080506328 - type: manhattan_spearman value: 23.773047901712495 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 71.10820459712156 - type: cos_sim_spearman value: 61.97797868009122 - type: euclidean_pearson value: 60.30910689156633 - type: euclidean_spearman value: 61.97797868009122 - type: manhattan_pearson value: 66.3405176964038 - type: manhattan_spearman value: 61.97797868009122 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 76.53032504460737 - type: cos_sim_spearman value: 75.33716094627373 - type: euclidean_pearson value: 69.64662673290599 - type: euclidean_spearman value: 67.30188896368857 - type: manhattan_pearson value: 69.45096082050807 - type: manhattan_spearman value: 67.0718727259371 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 71.33941904192648 - type: mrr value: 89.73766429648782 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 43.333 - type: map_at_10 value: 52.364 - type: map_at_100 value: 53.184 - type: map_at_1000 value: 53.234 - type: map_at_3 value: 49.832 - type: map_at_5 value: 51.244 - type: mrr_at_1 value: 45.333 - type: mrr_at_10 value: 53.455 - type: mrr_at_100 value: 54.191 - type: mrr_at_1000 value: 54.235 - type: mrr_at_3 value: 51.556000000000004 - type: mrr_at_5 value: 52.622 - type: ndcg_at_1 value: 45.333 - type: ndcg_at_10 value: 56.899 - type: ndcg_at_100 value: 60.702 - type: ndcg_at_1000 value: 62.046 - type: ndcg_at_3 value: 52.451 - type: ndcg_at_5 value: 54.534000000000006 - type: precision_at_1 value: 45.333 - type: precision_at_10 value: 7.8 - type: precision_at_100 value: 0.987 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 20.778 - type: precision_at_5 value: 13.866999999999999 - type: recall_at_1 value: 43.333 - type: recall_at_10 value: 69.69999999999999 - type: recall_at_100 value: 86.9 - type: recall_at_1000 value: 97.6 - type: recall_at_3 value: 57.81699999999999 - type: recall_at_5 value: 62.827999999999996 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.7 - type: cos_sim_ap value: 89.88577913120001 - type: cos_sim_f1 value: 84.62694041061593 - type: cos_sim_precision value: 84.7542627883651 - type: cos_sim_recall value: 84.5 - type: dot_accuracy value: 99.24752475247524 - type: dot_ap value: 56.81855467290009 - type: dot_f1 value: 56.084126189283936 - type: dot_precision value: 56.16850551654965 - type: dot_recall value: 56.00000000000001 - type: euclidean_accuracy value: 99.7059405940594 - type: euclidean_ap value: 90.12451226491524 - type: euclidean_f1 value: 84.44211629125196 - type: euclidean_precision value: 88.66886688668868 - type: euclidean_recall value: 80.60000000000001 - type: manhattan_accuracy value: 99.7128712871287 - type: manhattan_ap value: 90.67590584183216 - type: manhattan_f1 value: 84.85436893203884 - type: manhattan_precision value: 82.45283018867924 - type: manhattan_recall value: 87.4 - type: max_accuracy value: 99.7128712871287 - type: max_ap value: 90.67590584183216 - type: max_f1 value: 84.85436893203884 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 52.74481093815175 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 32.65999453562101 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 44.74498464555465 - type: mrr value: 45.333879764026825 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 29,603788751645216 - type: cos_sim_spearman value: 29.705103354786033 - type: dot_pearson value: 28.07425338095399 - type: dot_spearman value: 26.841406359135367 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.241 - type: map_at_10 value: 1.672 - type: map_at_100 value: 7.858999999999999 - type: map_at_1000 value: 17.616 - type: map_at_3 value: 0.631 - type: map_at_5 value: 0.968 - type: mrr_at_1 value: 90.0 - type: mrr_at_10 value: 92.952 - type: mrr_at_100 value: 93.036 - type: mrr_at_1000 value: 93.036 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 92.667 - type: ndcg_at_1 value: 83.0 - type: ndcg_at_10 value: 70.30199999999999 - type: ndcg_at_100 value: 48.149 - type: ndcg_at_1000 value: 40.709 - type: ndcg_at_3 value: 79.173 - type: ndcg_at_5 value: 75.347 - type: precision_at_1 value: 90.0 - type: precision_at_10 value: 72.6 - type: precision_at_100 value: 48.46 - type: precision_at_1000 value: 18.093999999999998 - type: precision_at_3 value: 84.0 - type: precision_at_5 value: 78.8 - type: recall_at_1 value: 0.241 - type: recall_at_10 value: 1.814 - type: recall_at_100 value: 11.141 - type: recall_at_1000 value: 37.708999999999996 - type: recall_at_3 value: 0.647 - type: recall_at_5 value: 1.015 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 2.782 - type: map_at_10 value: 9.06 - type: map_at_100 value: 14.571000000000002 - type: map_at_1000 value: 16.006999999999998 - type: map_at_3 value: 5.037 - type: map_at_5 value: 6.63 - type: mrr_at_1 value: 34.694 - type: mrr_at_10 value: 48.243 - type: mrr_at_100 value: 49.065 - type: mrr_at_1000 value: 49.065 - type: mrr_at_3 value: 44.897999999999996 - type: mrr_at_5 value: 46.428999999999995 - type: ndcg_at_1 value: 31.633 - type: ndcg_at_10 value: 22.972 - type: ndcg_at_100 value: 34.777 - type: ndcg_at_1000 value: 45.639 - type: ndcg_at_3 value: 26.398 - type: ndcg_at_5 value: 24.418 - type: precision_at_1 value: 34.694 - type: precision_at_10 value: 19.796 - type: precision_at_100 value: 7.224 - type: precision_at_1000 value: 1.4449999999999998 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 23.265 - type: recall_at_1 value: 2.782 - type: recall_at_10 value: 14.841 - type: recall_at_100 value: 44.86 - type: recall_at_1000 value: 78.227 - type: recall_at_3 value: 5.959 - type: recall_at_5 value: 8.969000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 62.657999999999994 - type: ap value: 10.96353161716344 - type: f1 value: 48.294226423442645 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 52.40803621958121 - type: f1 value: 52.61009636022186 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 32.12697126747911 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 80.69976753889253 - type: cos_sim_ap value: 54.74680676121268 - type: cos_sim_f1 value: 53.18923998590391 - type: cos_sim_precision value: 47.93563413084904 - type: cos_sim_recall value: 59.73614775725594 - type: dot_accuracy value: 79.3348036001669 - type: dot_ap value: 48.46902128933627 - type: dot_f1 value: 50.480109739369006 - type: dot_precision value: 42.06084051345173 - type: dot_recall value: 63.113456464379944 - type: euclidean_accuracy value: 79.78780473266973 - type: euclidean_ap value: 50.258327255164815 - type: euclidean_f1 value: 49.655838666827684 - type: euclidean_precision value: 45.78044978846582 - type: euclidean_recall value: 54.24802110817942 - type: manhattan_accuracy value: 79.76992310901831 - type: manhattan_ap value: 49.89892485714363 - type: manhattan_f1 value: 49.330433787341185 - type: manhattan_precision value: 43.56175459874672 - type: manhattan_recall value: 56.86015831134564 - type: max_accuracy value: 80.69976753889253 - type: max_ap value: 54.74680676121268 - type: max_f1 value: 53.18923998590391 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.90573213800597 - type: cos_sim_ap value: 81.05760818661524 - type: cos_sim_f1 value: 73.64688856729379 - type: cos_sim_precision value: 69.46491946491946 - type: cos_sim_recall value: 78.3646442870342 - type: dot_accuracy value: 83.80680715644041 - type: dot_ap value: 72.49774005947461 - type: dot_f1 value: 68.68460650173216 - type: dot_precision value: 62.954647507858105 - type: dot_recall value: 75.56205728364644 - type: euclidean_accuracy value: 85.97430822369697 - type: euclidean_ap value: 78.86101740829326 - type: euclidean_f1 value: 71.07960824663695 - type: euclidean_precision value: 70.36897306270279 - type: euclidean_recall value: 71.8047428395442 - type: manhattan_accuracy value: 85.94132029339853 - type: manhattan_ap value: 78.77876711171923 - type: manhattan_f1 value: 71.07869075515912 - type: manhattan_precision value: 69.80697847067557 - type: manhattan_recall value: 72.39759778256852 - type: max_accuracy value: 86.90573213800597 - type: max_ap value: 81.05760818661524 - type: max_f1 value: 73.64688856729379 --- # SGPT-125M-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15600 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
SharpNLight/q-FrozenLake-v1-4x4-noSlippery
SharpNLight
2023-03-27T22:08:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T22:08:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SharpNLight/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tcvrishank/histo_train_segformer
tcvrishank
2023-03-27T22:06:32Z
206
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-25T03:34:01Z
--- license: other tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: histo_train_segformer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # histo_train_segformer This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2234 | 16.67 | 100 | 0.3830 | 0.875 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
u23429/headline-predictor
u23429
2023-03-27T22:05:18Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:u23429/autotrain-data-stock-distil", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T21:58:02Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - u23429/autotrain-data-stock-distil co2_eq_emissions: emissions: 2.960971697133151 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44339111846 - CO2 Emissions (in grams): 2.9610 ## Validation Metrics - Loss: 1.634 - Accuracy: 0.940 - Macro F1: 0.882 - Micro F1: 0.940 - Weighted F1: 0.924 - Macro Precision: 0.876 - Micro Precision: 0.940 - Weighted Precision: 0.914 - Macro Recall: 0.900 - Micro Recall: 0.940 - Weighted Recall: 0.940 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/u23429/autotrain-stock-distil-44339111846 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("u23429/autotrain-stock-distil-44339111846", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("u23429/autotrain-stock-distil-44339111846", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ROGRANMAR/que_funcione_que_funcione3
ROGRANMAR
2023-03-27T21:59:26Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-27T21:57:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: que_funcione_que_funcione3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # que_funcione_que_funcione3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 26.7271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.5 | 10 | 29.9242 | | No log | 1.0 | 20 | 26.7271 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
SAL83/poca-SoccerTwos
SAL83
2023-03-27T21:58:36Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-27T21:58:18Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: SAL83/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-15000
vocabtrimmer
2023-03-27T21:55:14Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:20:24Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-15000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-15000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 370,188,288 | | parameter_size_embedding | 512,057,344 | 30,728,192 | | vocab_size | 250,028 | 15,004 | | compression_rate_full | 100.0 | 60.6 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 15000 | 2 |
ROGRANMAR/que_funcione_que_funcione2
ROGRANMAR
2023-03-27T21:46:14Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-27T21:41:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: que_funcione_que_funcione2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # que_funcione_que_funcione2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 43.6653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.5 | 10 | 50.2270 | | No log | 1.0 | 20 | 43.6653 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
rocketai/company_fistherman_hat_bc_fisherman_hat
rocketai
2023-03-27T21:44:08Z
0
0
null
[ "region:us" ]
null
2023-03-25T17:22:21Z
fistherman_hat bc_fisherman_hat fistherman_hat bc_fisherman_hat ...
aegrif/CIS6930_DAAGR_Classification
aegrif
2023-03-27T21:30:47Z
152
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T21:26:17Z
--- tags: - generated_from_keras_callback model-index: - name: CIS6930_DAAGR_Classification results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # CIS6930_DAAGR_Classification This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
kingsley9494/ks
kingsley9494
2023-03-27T21:16:32Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-03-27T21:16:32Z
--- license: bigscience-openrail-m ---
charlesbeale/vccp-avatar
charlesbeale
2023-03-27T21:12:38Z
29
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T21:10:10Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: vccpavatar --- ### VCCP Avatar Dreambooth model trained by charlesbeale with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: vccpavatar (use that on your prompt) ![vccpavatar 0](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%281%29.jpg)![vccpavatar 1](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%282%29.jpg)![vccpavatar 2](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%283%29.jpg)![vccpavatar 3](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%284%29.jpg)![vccpavatar 4](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%285%29.jpg)![vccpavatar 5](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%286%29.jpg)![vccpavatar 6](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%287%29.jpg)![vccpavatar 7](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%288%29.jpg)![vccpavatar 8](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%289%29.jpg)![vccpavatar 9](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2810%29.jpg)![vccpavatar 10](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2811%29.jpg)![vccpavatar 11](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2812%29.jpg)![vccpavatar 12](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2813%29.jpg)![vccpavatar 13](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2814%29.jpg)![vccpavatar 14](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2815%29.jpg)![vccpavatar 15](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2816%29.jpg)![vccpavatar 16](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2817%29.jpg)![vccpavatar 17](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2818%29.jpg)![vccpavatar 18](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2819%29.jpg)![vccpavatar 19](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2820%29.jpg)![vccpavatar 20](https://huggingface.co/charlesbeale/vccp-avatar/resolve/main/concept_images/vccpavatar_%2821%29.jpg)
shi-labs/versatile-diffusion
shi-labs
2023-03-27T21:10:36Z
2,813
48
diffusers
[ "diffusers", "image-to-text", "image-to-image", "text-to-image", "text-to-text", "image-editing", "image-variation", "generation", "vision", "dataset:Laion2B-en", "arxiv:2211.08332", "license:mit", "diffusers:VersatileDiffusionPipeline", "region:us" ]
text-to-image
2022-11-22T22:47:21Z
--- license: mit tags: - image-to-text - image-to-image - text-to-image - text-to-text - image-editing - image-variation - generation - vision datasets: - Laion2B-en widget: - text: "A high tech solarpunk utopia in the Amazon rainforest" example_title: Amazon rainforest --- # Versatile Diffusion V1.0 Model Card We built **Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework**, as a step towards **Universal Generative AI**. Versatile Diffusion can natively support image-to-text, image-variation, text-to-image, and text-variation, and can be further extended to other applications such as semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more. Future versions will support more modalities such as speech, music, video and 3D. Resources for more information: [GitHub](https://github.com/SHI-Labs/Versatile-Diffusion), [arXiv](https://arxiv.org/abs/2211.08332). # Model Details One single flow of Versatile Diffusion contains a VAE, a diffuser, and a context encoder, and thus handles one task (e.g., text-to-image) under one data type (e.g., image) and one context type (e.g., text). The multi-flow structure of Versatile Diffusion shows in the following diagram: <p align="center"> <img src="https://huggingface.co/shi-labs/versatile-diffusion-model/resolve/main/assets/figures/vd_combined.png" width="99%"> </p> - **Developed by:** Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang, and Humphrey Shi - **Model type:** Diffusion-based multimodal generation model - **Language(s):** English - **License:** MIT - **Resources for more information:** [GitHub Repository](https://github.com/SHI-Labs/Versatile-Diffusion), [Paper](https://arxiv.org/abs/2211.08332). - **Cite as:** ``` @article{xu2022versatile, title = {Versatile Diffusion: Text, Images and Variations All in One Diffusion Model}, author = {Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2211.08332}, eprint = {2211.08332}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ``` # Usage You can use the model both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [SHI-Labs Versatile Diffusion codebase](https://github.com/SHI-Labs/Versatile-Diffusion). ## 🧨 Diffusers Diffusers let's you both use a unified and more memory-efficient, task-specific pipelines. **Make sure to install `transformers` from `"main"` in order to use this model.**: ``` pip install git+https://github.com/huggingface/transformers ``` ## VersatileDiffusionPipeline To use Versatile Diffusion for all tasks, it is recommend to use the [`VersatileDiffusionPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/versatile_diffusion#diffusers.VersatileDiffusionPipeline) ```py #! pip install git+https://github.com/huggingface/transformers diffusers torch from diffusers import VersatileDiffusionPipeline import torch import requests from io import BytesIO from PIL import Image pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe = pipe.to("cuda") # prompt prompt = "a red car" # initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") # text to image image = pipe.text_to_image(prompt).images[0] # image variation image = pipe.image_variation(image).images[0] # image variation image = pipe.dual_guided(prompt, image).images[0] ``` ### Task Specific The task specific pipelines load only the weights that are needed onto GPU. You can find all task specific pipelines [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/versatile_diffusion#versatilediffusion). You can use them as follows: ### Text to Image ```py from diffusers import VersatileDiffusionTextToImagePipeline import torch pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.remove_unused_weights() pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) image = pipe("an astronaut riding on a horse on mars", generator=generator).images[0] image.save("./astronaut.png") ``` #### Image variations ```py from diffusers import VersatileDiffusionImageVariationPipeline import torch import requests from io import BytesIO from PIL import Image # download an initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) image = pipe(image, generator=generator).images[0] image.save("./car_variation.png") ``` #### Dual-guided generation ```py from diffusers import VersatileDiffusionDualGuidedPipeline import torch import requests from io import BytesIO from PIL import Image # download an initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") text = "a red car in the sun" pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.remove_unused_weights() pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) text_to_image_strength = 0.75 image = pipe(prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator).images[0] image.save("./red_car.png") ``` ### Original GitHub Repository Follow the instructions [here](https://github.com/SHI-Labs/Versatile-Diffusion/#evaluation). # Cautions, Biases, and Content Acknowledgment We would like the raise the awareness of users of this demo of its potential issues and concerns. Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope. In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data. So far, we have kept all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future. We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors. Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence. VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contain unintended exceptions as we removed illegal content. VD in this demo is meant only for research purposes.
JfuentesR/a2c-PandaReachDense-v2
JfuentesR
2023-03-27T21:01:08Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T20:58:36Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.64 +/- 0.20 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jorgelzn/dqn-SpaceInvadersNoFrameskip-v4
jorgelzn
2023-03-27T20:57:31Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-02T12:59:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 403.00 +/- 148.73 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jorgelzn -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jorgelzn -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jorgelzn ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
pimentooliver/fungi-sd-diffusion
pimentooliver
2023-03-27T20:44:48Z
32
0
diffusers
[ "diffusers", "text-to-image", "en", "dataset:pimentooliver/fungi", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T17:15:48Z
--- datasets: - pimentooliver/fungi language: - en library_name: diffusers pipeline_tag: text-to-image --- This is a fine-tune of CompVis/stable-diffusion-v1-4. It has been fine tuned on a dataset of fungi imagery which has been clustered to represent 'species'. Each 'species' has been assigned a generated name in an attempt to fine-tune the model on nonexistent fungal species. Unfortunately, this model has been impacted by catastrophic forgetting. It will be retrained soon, upload only for academic use.
kunishou/Japanese-Alpaca-LoRA-13b-v0
kunishou
2023-03-27T20:40:44Z
0
3
null
[ "license:mit", "region:us" ]
null
2023-03-22T14:17:13Z
--- license: mit --- This repo contains a low-rank adapter for LLaMA-13b fit on the Stanford Alpaca dataset translated into Japanese. It doesn't contain the foundation model itself, so it's MIT licensed. Instructions for running it can be found at https://github.com/kunishou/Japanese-Alpaca-LoRA.
joshnielsen876/LKD_Experience_CV5
joshnielsen876
2023-03-27T20:33:32Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T19:43:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: LKD_Experience_CV5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LKD_Experience_CV5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1901 - Accuracy: 0.9328 - F1: 0.9306 - Precision: 0.9335 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 48 | 0.5064 | 0.6555 | 0.5380 | 0.8136 | 0.59 | | No log | 2.0 | 96 | 0.3327 | 0.9160 | 0.9114 | 0.9297 | 0.9028 | | No log | 3.0 | 144 | 0.2398 | 0.9244 | 0.9212 | 0.9305 | 0.9155 | | No log | 4.0 | 192 | 0.1995 | 0.9328 | 0.9306 | 0.9335 | 0.9283 | | No log | 5.0 | 240 | 0.1901 | 0.9328 | 0.9306 | 0.9335 | 0.9283 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-10000
vocabtrimmer
2023-03-27T20:21:39Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T19:30:33Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 10000 | 2 |
LarryAIDraw/SNKurskAzurLaneLora_beta
LarryAIDraw
2023-03-27T19:55:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:39:56Z
--- license: creativeml-openrail-m --- https://civitai.com/models/24748/sn-kursk-or-azur-lane-or-lora
LarryAIDraw/elysiaHohWithout_10
LarryAIDraw
2023-03-27T19:54:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:33:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/17798/elysia-hoh-without-bells
LarryAIDraw/morisakiAlesiaYuBlue_v10
LarryAIDraw
2023-03-27T19:53:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:34:03Z
--- license: creativeml-openrail-m --- https://civitai.com/models/24488/morisaki-alesia-yu-blue-reflection-sun
env-test/a2c-AntBulletEnv-v0
env-test
2023-03-27T19:41:06Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T19:40:00Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 943.38 +/- 41.30 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-10000
vocabtrimmer
2023-03-27T19:24:18Z
104
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T19:00:52Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-frquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa): `vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-frquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-frquad-qa | vocabtrimmer/mbart-large-cc25-frquad-qa-trimmed-fr-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 10000 | 2 |
jeffwan/llama-7b-hf
jeffwan
2023-03-27T18:55:34Z
2,686
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T18:37:46Z
# LLama 7B Hugging Face model This repo hosts model weights and it's for research purpose. If it against some policies that I don't know, feel free to reach out to me and I will delete it. --- license: other --- LLaMA-7B converted to work with Transformers/HuggingFace. This is under a special license, please see the LICENSE file for details. License Non-commercial bespoke license > Note: I copied above statement from https://huggingface.co/decapoda-research/llama-7b-hf
BreadAi/MuseBread
BreadAi
2023-03-27T18:53:36Z
190
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "dataset:breadlicker45/musenet-encoders-12k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-25T21:45:18Z
--- datasets: - breadlicker45/musenet-encoders-12k ---
emmuzoo/a2c-PandaReachDense-v2
emmuzoo
2023-03-27T18:30:03Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T14:01:19Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.69 +/- 0.51 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
miki030/PPO-Lunar-v5
miki030
2023-03-27T18:13:35Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T18:07:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 302.89 +/- 13.61 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
silentkebab/ppo-LunarLander-v2
silentkebab
2023-03-27T18:12:38Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T17:47:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.25 +/- 21.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pinaggle/q-FrozenLake-v1-4x4-noSlippery
pinaggle
2023-03-27T17:54:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T17:54:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pinaggle/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MilaNLProc/xlm-emo-t
MilaNLProc
2023-03-27T17:52:36Z
4,763
4
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "emotion", "emotion-analysis", "multilingual", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-06T08:56:26Z
--- language: multilingual tags: - emotion - emotion-analysis - multilingual widget: - text: "Guarda! ci sono dei bellissimi capibara!" example_title: "Emotion Classification 1" - text: "Sei una testa di cazzo!!" example_title: "Emotion Classification 2" - text: "Quelle bonne nouvelle!" example_title: "Emotion Classification 3" arxiv: "" --- # [Federico Bianchi](https://federicobianchi.io/) • [Debora Nozza](http://dnozza.github.io/) • [Dirk Hovy](http://www.dirkhovy.com/) ## Abstract Detecting emotion in text allows social and computational scientists to study how people behave and react to online events. However, developing these tools for different languages requires data that is not always available. This paper collects the available emotion detection datasets across 19 languages. We train a multilingual emotion prediction model for social media data, XLM-EMO. The model shows competitive performance in a zero-shot setting, suggesting it is helpful in the context of low-resource languages. We release our model to the community so that interested researchers can directly use it. ## Model This model is the fine-tuned version of the [XLM-T](https://aclanthology.org/2022.lrec-1.27/) model. ### Intended Use The model is intended as a research output for research communities. #### Primary intended uses The primary intended users of these models are AI researchers. ## Results This model had an F1 of 0.85 on the test set. ## License For models, restrictions may apply to the data (which are derived from existing datasets) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## Citation Please use the following BibTeX entry if you use this model in your project: ``` @inproceedings{bianchi2021feel, title = "{XLM-EMO: Multilingual Emotion Prediction in Social Media Text}", author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk", booktitle = "Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", year = "2022", publisher = "Association for Computational Linguistics", } ```
Cleighton071/autotrain-detection-for-product-location-44269111681
Cleighton071
2023-03-27T17:50:11Z
101
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "autotrain", "en", "dataset:Cleighton071/autotrain-data-detection-for-product-location", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T17:44:20Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Cleighton071/autotrain-data-detection-for-product-location co2_eq_emissions: emissions: 2.30199726014708 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44269111681 - CO2 Emissions (in grams): 2.3020 ## Validation Metrics - Loss: 0.005 - Accuracy: 0.999 - Macro F1: 0.999 - Micro F1: 0.999 - Weighted F1: 0.999 - Macro Precision: 0.999 - Micro Precision: 0.999 - Weighted Precision: 0.999 - Macro Recall: 0.999 - Micro Recall: 0.999 - Weighted Recall: 0.999 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Cleighton071/autotrain-detection-for-product-location-44269111681 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Cleighton071/autotrain-detection-for-product-location-44269111681", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Cleighton071/autotrain-detection-for-product-location-44269111681", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Cleighton071/autotrain-detection-for-product-location-44269111684
Cleighton071
2023-03-27T17:49:34Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:Cleighton071/autotrain-data-detection-for-product-location", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T17:44:38Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Cleighton071/autotrain-data-detection-for-product-location co2_eq_emissions: emissions: 1.9511985418671698 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44269111684 - CO2 Emissions (in grams): 1.9512 ## Validation Metrics - Loss: 0.038 - Accuracy: 0.988 - Macro F1: 0.988 - Micro F1: 0.988 - Weighted F1: 0.988 - Macro Precision: 0.988 - Micro Precision: 0.988 - Weighted Precision: 0.988 - Macro Recall: 0.987 - Micro Recall: 0.988 - Weighted Recall: 0.988 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Cleighton071/autotrain-detection-for-product-location-44269111684 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Cleighton071/autotrain-detection-for-product-location-44269111684", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Cleighton071/autotrain-detection-for-product-location-44269111684", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ViditRaj/Distil_BERT_Hindi_Ads_Classifier
ViditRaj
2023-03-27T17:43:16Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T17:34:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ViditRaj/Distil_BERT_Hindi_Ads_Classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ViditRaj/Distil_BERT_Hindi_Ads_Classifier This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1092 - Validation Loss: 0.1996 - Train Accuracy: 0.9347 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 480, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3621 | 0.2848 | 0.9012 | 0 | | 0.2283 | 0.2223 | 0.9210 | 1 | | 0.1774 | 0.2084 | 0.9255 | 2 | | 0.1389 | 0.2367 | 0.9073 | 3 | | 0.1092 | 0.1996 | 0.9347 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
ghassenhannachi/Reinforce-Pixelcopter-PLE-v0
ghassenhannachi
2023-03-27T17:23:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T17:23:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.90 +/- 25.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ViditRaj/XLM_Roberta_Hindi_Ads_Classifier
ViditRaj
2023-03-27T17:22:05Z
60
0
transformers
[ "transformers", "tf", "xlm-roberta", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T17:08:00Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: ViditRaj/XLM_Roberta_Hindi_Ads_Classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ViditRaj/XLM_Roberta_Hindi_Ads_Classifier This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3258 - Validation Loss: 0.2867 - Train Accuracy: 0.9149 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3738 | 0.2117 | 0.9301 | 0 | | 0.2323 | 0.1927 | 0.9347 | 1 | | 0.2013 | 0.1739 | 0.9377 | 2 | | 0.4551 | 0.5800 | 0.7219 | 3 | | 0.3258 | 0.2867 | 0.9149 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
nflechas/spanish-multilingualBERT-sts
nflechas
2023-03-27T17:19:46Z
184
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-17T11:25:10Z
Please, visit https://github.com/nflechas/sentence_similarity for more information on this model.
therealcyberlord/bigcatvit
therealcyberlord
2023-03-27T17:19:13Z
237
0
transformers
[ "transformers", "pytorch", "safetensors", "vit", "image-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-26T16:27:24Z
--- license: apache-2.0 --- Fine-tuning a Vision Transformer on the Big Cats Dataset In this project, we fine-tuned a vision transformer on the Big Cats dataset to perform image classification. The Big Cats dataset consists of 2339 images of 10 different types of big cats, including lions, tigers, jaguars, and more. Our goal was to train a model that could accurately classify these images with high accuracy. After fine-tuning a pre-trained Vision Transformer, we were able to achieve an accuracy of 98%. Kaggle dataset: https://www.kaggle.com/datasets/gpiosenka/cats-in-the-wild-image-classification <img src="https://images.pexels.com/photos/8521833/pexels-photo-8521833.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1">
vocabtrimmer/mt5-small-esquad-qa-trimmed-es-120000
vocabtrimmer
2023-03-27T17:09:18Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T16:33:10Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa): `vocabtrimmer/mt5-small-esquad-qa-trimmed-es-120000` This model is a trimmed version of [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qa | vocabtrimmer/mt5-small-esquad-qa-trimmed-es-120000 | |:---------------------------|:---------------------------|:-----------------------------------------------------| | parameter_size_full | 300,165,504 | 166,944,128 | | parameter_size_embedding | 256,103,424 | 122,882,048 | | vocab_size | 250,101 | 120,002 | | compression_rate_full | 100.0 | 55.62 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 120000 | 2 |
huggingtweets/hackscsslife
huggingtweets
2023-03-27T17:03:53Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T15:54:43Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1636581917536468995/EbnzZvIL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gert {</div> <div style="text-align: center; font-size: 14px;">@hackscsslife</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gert {. | Data | gert { | | --- | --- | | Tweets downloaded | 1671 | | Retweets | 20 | | Short tweets | 374 | | Tweets kept | 1277 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/0k2h69dm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hackscsslife's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w5818qp8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w5818qp8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hackscsslife') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
arbts/taxi-v3-initial
arbts
2023-03-27T17:00:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T13:43:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-initial results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="arbts/taxi-v3-initial", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ViditRaj/BERT_Hindi_Ads_Classifier
ViditRaj
2023-03-27T16:59:49Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-22T19:53:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ViditRaj/BERT_Hindi_Ads_Classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ViditRaj/BERT_Hindi_Ads_Classifier This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0534 - Validation Loss: 0.1984 - Train Accuracy: 0.9377 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 480, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3284 | 0.2441 | 0.9164 | 0 | | 0.1970 | 0.1913 | 0.9316 | 1 | | 0.1183 | 0.1870 | 0.9438 | 2 | | 0.0825 | 0.1853 | 0.9392 | 3 | | 0.0534 | 0.1984 | 0.9377 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
joshnielsen876/LKD_Experience_CV4
joshnielsen876
2023-03-27T16:48:48Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T19:27:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: LKD_Experience_CV4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LKD_Experience_CV4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2443 - Accuracy: 0.9244 - F1: 0.9158 - Precision: 0.9240 - Recall: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 48 | 0.4809 | 0.7311 | 0.6063 | 0.8532 | 0.6190 | | No log | 2.0 | 96 | 0.3551 | 0.8908 | 0.8716 | 0.9157 | 0.8506 | | No log | 3.0 | 144 | 0.2712 | 0.9244 | 0.9158 | 0.9240 | 0.9091 | | No log | 4.0 | 192 | 0.2508 | 0.9244 | 0.9158 | 0.9240 | 0.9091 | | No log | 5.0 | 240 | 0.2443 | 0.9244 | 0.9158 | 0.9240 | 0.9091 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
SebasV/autotrain-tableros_factibilidad-44246111621
SebasV
2023-03-27T16:46:06Z
221
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain", "vision", "dataset:SebasV/autotrain-data-tableros_factibilidad", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-27T16:44:26Z
--- tags: - autotrain - vision - image-classification datasets: - SebasV/autotrain-data-tableros_factibilidad widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.6678858266803156 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44246111621 - CO2 Emissions (in grams): 0.6679 ## Validation Metrics - Loss: 1.097 - Accuracy: 0.200 - Macro F1: 0.167 - Micro F1: 0.200 - Weighted F1: 0.133 - Macro Precision: 0.125 - Micro Precision: 0.200 - Weighted Precision: 0.100 - Macro Recall: 0.250 - Micro Recall: 0.200 - Weighted Recall: 0.200
SebasV/autotrain-tableros_factibilidad-44246111624
SebasV
2023-03-27T16:45:41Z
171
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "autotrain", "vision", "dataset:SebasV/autotrain-data-tableros_factibilidad", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-27T16:44:54Z
--- tags: - autotrain - vision - image-classification datasets: - SebasV/autotrain-data-tableros_factibilidad widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.36296304345687347 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44246111624 - CO2 Emissions (in grams): 0.3630 ## Validation Metrics - Loss: 1.413 - Accuracy: 0.400 - Macro F1: 0.375 - Micro F1: 0.400 - Weighted F1: 0.400 - Macro Precision: 0.375 - Micro Precision: 0.400 - Weighted Precision: 0.400 - Macro Recall: 0.375 - Micro Recall: 0.400 - Weighted Recall: 0.400
TerryYH/q-FrozenLake-v1-4x4-noSlippery
TerryYH
2023-03-27T16:33:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T16:33:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="TerryYH/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rageSpin/ppo-LunarLander-v2
rageSpin
2023-03-27T16:25:13Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T16:24:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.77 +/- 14.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mt5-small-esquad-qa-trimmed-es-60000
vocabtrimmer
2023-03-27T16:09:44Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T17:29:37Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa): `vocabtrimmer/mt5-small-esquad-qa-trimmed-es-60000` This model is a trimmed version of [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qa | vocabtrimmer/mt5-small-esquad-qa-trimmed-es-60000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 105,504,128 | | parameter_size_embedding | 256,103,424 | 61,442,048 | | vocab_size | 250,101 | 60,002 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 60000 | 2 |
rickbox/test-mu
rickbox
2023-03-27T16:07:45Z
30
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T16:04:47Z
--- license: creativeml-openrail-m ---
kmposkid1/a2c-PandaReachDense-v2
kmposkid1
2023-03-27T16:04:34Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T16:02:10Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.53 +/- 0.40 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pmgautam/Taxi-v3
pmgautam
2023-03-27T16:00:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T16:00:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pmgautam/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ckao1030/bloomify2
ckao1030
2023-03-27T15:57:34Z
29
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T15:55:04Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: bloomify2 --- ### bloomify2 Dreambooth model trained by ckao1030 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: bloomify2 (use that on your prompt) ![bloomify2 0](https://huggingface.co/ckao1030/bloomify2/resolve/main/concept_images/bloomify2_%281%29.jpg)![bloomify2 1](https://huggingface.co/ckao1030/bloomify2/resolve/main/concept_images/bloomify2_%282%29.jpg)![bloomify2 2](https://huggingface.co/ckao1030/bloomify2/resolve/main/concept_images/bloomify2_%283%29.jpg)![bloomify2 3](https://huggingface.co/ckao1030/bloomify2/resolve/main/concept_images/bloomify2_%284%29.jpg)![bloomify2 4](https://huggingface.co/ckao1030/bloomify2/resolve/main/concept_images/bloomify2_%285%29.jpg)![bloomify2 5](https://huggingface.co/ckao1030/bloomify2/resolve/main/concept_images/bloomify2_%286%29.jpg)
vocabtrimmer/mt5-small-esquad-qa-trimmed-es-30000
vocabtrimmer
2023-03-27T15:45:05Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T17:14:14Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa): `vocabtrimmer/mt5-small-esquad-qa-trimmed-es-30000` This model is a trimmed version of [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qa | vocabtrimmer/mt5-small-esquad-qa-trimmed-es-30000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 74,784,128 | | parameter_size_embedding | 256,103,424 | 30,722,048 | | vocab_size | 250,101 | 30,002 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 30000 | 2 |
rickbox/test
rickbox
2023-03-27T15:43:25Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T15:40:54Z
--- license: creativeml-openrail-m ---