modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
VitoCorleone72/Olivia
VitoCorleone72
2025-01-03T10:06:47Z
23
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-03T10:06:43Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/00149-1159619818.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: Olivia --- # Olivia <Gallery /> ## Trigger words You should use `Olivia` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/VitoCorleone72/Olivia/tree/main) them in the Files & versions tab.
mradermacher/ACultriX-7B-GGUF
mradermacher
2025-01-03T10:04:41Z
19
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:CultriX/ACultriX-7B", "base_model:quantized:CultriX/ACultriX-7B", "endpoints_compatible", "region:us" ]
null
2025-01-03T00:24:38Z
--- base_model: CultriX/ACultriX-7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/CultriX/ACultriX-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/ACultriX-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ACultriX-7B-GGUF/resolve/main/ACultriX-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
LeMoussel/FR-categories_multilingual-e5-base
LeMoussel
2025-01-03T10:04:20Z
131
0
transformers
[ "transformers", "tf", "xlm-roberta", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-03T10:03:06Z
--- library_name: transformers tags: - generated_from_keras_callback model-index: - name: FR-categories_multilingual-e5-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FR-categories_multilingual-e5-base This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.47.1 - TensorFlow 2.18.0 - Datasets 3.2.0 - Tokenizers 0.21.0
csikasote/mms-1b-swagen-combined-20hrs-model
csikasote
2025-01-03T10:02:21Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "swagen", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-03T08:52:54Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-swagen-combined-20hrs-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-1b-swagen-combined-20hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.2249 - Wer: 0.1913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 13.3661 | 0.0596 | 100 | 0.4504 | 0.2830 | | 0.6536 | 0.1193 | 200 | 0.2726 | 0.2036 | | 0.4925 | 0.1789 | 300 | 0.2521 | 0.1979 | | 0.5177 | 0.2385 | 400 | 0.2536 | 0.2035 | | 0.53 | 0.2982 | 500 | 0.2374 | 0.1964 | | 0.4791 | 0.3578 | 600 | 0.2359 | 0.1938 | | 0.4699 | 0.4174 | 700 | 0.2374 | 0.1982 | | 0.4791 | 0.4770 | 800 | 0.2356 | 0.1954 | | 0.4269 | 0.5367 | 900 | 0.2317 | 0.1951 | | 0.4646 | 0.5963 | 1000 | 0.2311 | 0.1958 | | 0.4492 | 0.6559 | 1100 | 0.2326 | 0.1954 | | 0.4438 | 0.7156 | 1200 | 0.2309 | 0.1924 | | 0.4551 | 0.7752 | 1300 | 0.2329 | 0.1951 | | 0.4828 | 0.8348 | 1400 | 0.2290 | 0.1895 | | 0.4502 | 0.8945 | 1500 | 0.2273 | 0.1915 | | 0.4818 | 0.9541 | 1600 | 0.2249 | 0.1913 | | 0.4286 | 1.0137 | 1700 | 0.2280 | 0.1918 | | 0.42 | 1.0733 | 1800 | 0.2303 | 0.1939 | | 0.4584 | 1.1330 | 1900 | 0.2288 | 0.1925 | | 0.4255 | 1.1926 | 2000 | 0.2249 | 0.1924 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
lesso11/fde22031-44ea-43f8-ac1d-6bebbfde5d49
lesso11
2025-01-03T10:01:19Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-03T09:58:35Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: fde22031-44ea-43f8-ac1d-6bebbfde5d49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: true chat_template: llama3 datasets: - data_files: - 7cab71aee4d2d374_train_data.json ds_type: json format: custom path: /workspace/input_data/7cab71aee4d2d374_train_data.json type: field_instruction: query field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso11/fde22031-44ea-43f8-ac1d-6bebbfde5d49 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/7cab71aee4d2d374_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fde22031-44ea-43f8-ac1d-6bebbfde5d49 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fde22031-44ea-43f8-ac1d-6bebbfde5d49 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # fde22031-44ea-43f8-ac1d-6bebbfde5d49 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7674 | 0.0017 | 1 | 11.7603 | | 11.7578 | 0.0150 | 9 | 11.7600 | | 11.7634 | 0.0299 | 18 | 11.7593 | | 11.7611 | 0.0449 | 27 | 11.7585 | | 11.7557 | 0.0599 | 36 | 11.7577 | | 11.7613 | 0.0748 | 45 | 11.7569 | | 11.7463 | 0.0898 | 54 | 11.7561 | | 11.7585 | 0.1047 | 63 | 11.7554 | | 11.7566 | 0.1197 | 72 | 11.7549 | | 11.7592 | 0.1347 | 81 | 11.7547 | | 11.7514 | 0.1496 | 90 | 11.7546 | | 11.7602 | 0.1646 | 99 | 11.7545 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Calyx_7B-i1-GGUF
mradermacher
2025-01-03T10:00:05Z
32
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "sft", "fine-tune", "roleplay", "en", "dataset:Himitsui/Lewd-Assistant-v1", "dataset:athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v1-SHUFFLED", "base_model:rmdhirr/Calyx_7B", "base_model:quantized:rmdhirr/Calyx_7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-03T08:59:06Z
--- base_model: rmdhirr/Calyx_7B datasets: - Himitsui/Lewd-Assistant-v1 - athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v1-SHUFFLED language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft - fine-tune - roleplay --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/rmdhirr/Calyx_7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Calyx_7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Calyx_7B-i1-GGUF/resolve/main/Calyx_7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF
mradermacher
2025-01-03T09:57:58Z
80
1
transformers
[ "transformers", "gguf", "en", "base_model:Hasnonname/Qwen2.5-14B-Kestrel-v0", "base_model:quantized:Hasnonname/Qwen2.5-14B-Kestrel-v0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T08:03:26Z
--- base_model: Hasnonname/Qwen2.5-14B-Kestrel-v0 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Hasnonname/Qwen2.5-14B-Kestrel-v0 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kestrel-v0-GGUF/resolve/main/Qwen2.5-14B-Kestrel-v0.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Triangle104/Deep-Throat-3B
Triangle104
2025-01-03T09:57:57Z
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "en", "base_model:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "base_model:merge:huihui-ai/Llama-3.2-3B-Instruct-abliterated", "base_model:prithivMLmods/Llama-Deepsync-3B", "base_model:merge:prithivMLmods/Llama-Deepsync-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T09:33:17Z
--- base_model: - prithivMLmods/Llama-Deepsync-3B - huihui-ai/Llama-3.2-3B-Instruct-abliterated library_name: transformers tags: - mergekit - merge license: llama3.2 language: - en --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details Attempt at creating a model that can complete text generation tasks that require deep reasoning, logical structuring, and problem-solving. But with some censorship removed. ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [prithivMLmods/Llama-Deepsync-3B](https://huggingface.co/prithivMLmods/Llama-Deepsync-3B) * [huihui-ai/Llama-3.2-3B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: prithivMLmods/Llama-Deepsync-3B - model: huihui-ai/Llama-3.2-3B-Instruct-abliterated merge_method: slerp base_model: prithivMLmods/Llama-Deepsync-3B dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] ```
ehristoforu/qwenfranken2.5-7b-it
ehristoforu
2025-01-03T09:52:09Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T09:49:33Z
--- base_model: - Qwen/Qwen2.5-7B-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Qwen/Qwen2.5-7B-Instruct layer_range: [0, 15] - sources: - model: Qwen/Qwen2.5-7B-Instruct layer_range: [15, 28] merge_method: passthrough dtype: float16 ```
VitoCorleone72/Anna
VitoCorleone72
2025-01-03T09:48:37Z
30
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-03T09:48:28Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/tmpm97w4pqr.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: anna --- # Anna <Gallery /> ## Trigger words You should use `anna` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/VitoCorleone72/Anna/tree/main) them in the Files & versions tab.
AbdullahKnn/results_t5base
AbdullahKnn
2025-01-03T09:48:17Z
170
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-02T00:25:51Z
--- library_name: transformers license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: results_t5base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results_t5base This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2853 - Rouge1: 0.1769 - Rouge2: 0.0613 - Rougel: 0.1403 - Rougelsum: 0.1403 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.45 | 0.24 | 3000 | 2.4080 | 0.171 | 0.0573 | 0.1357 | 0.1357 | 19.0 | | 2.5438 | 0.48 | 6000 | 2.3472 | 0.1756 | 0.0597 | 0.1389 | 0.1389 | 19.0 | | 2.3614 | 0.72 | 9000 | 2.3018 | 0.1773 | 0.0615 | 0.1407 | 0.1407 | 19.0 | | 2.3553 | 0.96 | 12000 | 2.2853 | 0.1769 | 0.0613 | 0.1403 | 0.1403 | 19.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
RyanYr/reflect_mini8B_Om2SftT2_Om2G8kOm2Ag40kIpsdpIter1T02_b0.1
RyanYr
2025-01-03T09:46:06Z
1,632
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6", "base_model:finetune:RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T06:04:47Z
--- base_model: RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6 library_name: transformers model_name: reflect_mini8B_Om2SftT2_Om2G8kOm2Ag40kIpsdpIter1T02_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT2_Om2G8kOm2Ag40kIpsdpIter1T02_b0.1 This model is a fine-tuned version of [RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6](https://huggingface.co/RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT2_Om2G8kOm2Ag40kIpsdpIter1T02_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/wgyq2m4c) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
fawzanaramam/Whisper-Small-Finetuned-on-Surah-Fatiha
fawzanaramam
2025-01-03T09:41:15Z
31
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "fine-tuned", "Quran", "arabic", "ar", "dataset:fawzanaramam/the-truth-1st-chapter", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-06-02T03:44:24Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - fine-tuned - Quran - automatic-speech-recognition - arabic - whisper datasets: - fawzanaramam/the-truth-1st-chapter metrics: - wer model-index: - name: Whisper Small Finetuned on Surah Fatiha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: The Truth 2.0 - Surah Fatiha type: fawzanaramam/the-truth-1st-chapter args: 'config: ar, split: train' metrics: - name: Word Error Rate (WER) type: wer value: 0.0 --- # Whisper Small Finetuned on Surah Fatiha This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small), transcribing Surah Fatiha, the first chapter of the Quran. It has been trained using *The Truth 2.0 - Surah Fatiha* dataset and achieves excellent results with a Word Error Rate (WER) of **0.0**, indicating perfect transcription on the evaluation set. ## Model Description Whisper Small is a transformer-based automatic speech recognition (ASR) model developed by OpenAI. By fine-tuning it on the *Surah Fatiha* dataset, this model becomes highly accurate in transcribing Quranic recitation. It is designed to assist in religious, educational, and research-oriented tasks that require precise Quranic transcription. ## Performance Metrics On the evaluation set, the model achieved: - **Loss**: 0.0088 - **Word Error Rate (WER)**: 0.0 These metrics showcase the model's exceptional performance and reliability in transcribing Surah Fatiha audio. ## Training Results The following table summarizes the training process and results: | **Training Loss** | **Epoch** | **Step** | **Validation Loss** | **WER** | |:------------------:|:---------:|:--------:|:-------------------:|:----------:| | No log | 0.5556 | 10 | 1.1057 | 96.2766 | | No log | 1.1111 | 20 | 0.3582 | 29.7872 | | 0.6771 | 1.6667 | 30 | 0.1882 | 23.4043 | | 0.6771 | 2.2222 | 40 | 0.0928 | 25.0 | | 0.0289 | 2.7778 | 50 | 0.0660 | 34.0426 | | 0.0289 | 3.3333 | 60 | 0.0484 | 32.9787 | | 0.0289 | 3.8889 | 70 | 0.0241 | 25.5319 | | 0.0056 | 4.4444 | 80 | 0.0184 | 28.7234 | | 0.0056 | 5.0 | 90 | 0.0111 | 0.0 | | 0.0019 | 5.5556 | 100 | 0.0088 | 0.0 | ## Intended Uses & Limitations ### Intended Uses - **Speech-to-text transcription** of Quranic recitation for Surah Fatiha. - Educational tools to assist in learning and practicing Quranic recitation. - Research and analysis of Quranic audio transcription methods. ### Limitations - This model is fine-tuned specifically for Surah Fatiha and may not generalize well to other chapters or non-Quranic Arabic audio. - Variability in audio quality, accents, or recitation styles might affect performance. - Optimal performance is achieved with high-quality audio inputs. ## Training and Evaluation Data The model was trained on *The Truth 2.0 - Surah Fatiha* dataset, which comprises high-quality audio recordings of Surah Fatiha and their corresponding transcripts. The dataset was meticulously curated to ensure the accuracy and authenticity of Quranic content. ## Training Procedure ### Training Hyperparameters The following hyperparameters were used during training: - **Learning Rate**: 1e-05 - **Training Batch Size**: 16 - **Evaluation Batch Size**: 8 - **Seed**: 42 - **Optimizer**: Adam (betas=(0.9, 0.999), epsilon=1e-08) - **Learning Rate Scheduler**: Linear - **Warmup Steps**: 10 - **Training Steps**: 100 - **Mixed Precision Training**: Native AMP ### Framework Versions - **Transformers**: 4.41.1 - **PyTorch**: 2.2.1+cu121 - **Datasets**: 2.19.1 - **Tokenizers**: 0.19.1
ram9801/distilgpt2-finetuned-wikitext2
ram9801
2025-01-03T09:37:28Z
217
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-02T12:48:45Z
--- library_name: transformers license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7487 | 1.0 | 2334 | 3.6663 | | 3.648 | 2.0 | 4668 | 3.6462 | | 3.6015 | 3.0 | 7002 | 3.6425 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
mradermacher/titulm-mpt-1b-v1.0-i1-GGUF
mradermacher
2025-01-03T09:32:55Z
58
0
transformers
[ "transformers", "gguf", "bn", "dataset:uonlp/CulturaX", "dataset:wikipedia", "base_model:hishab/titulm-mpt-1b-v1.0", "base_model:quantized:hishab/titulm-mpt-1b-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-03T08:54:19Z
--- base_model: hishab/titulm-mpt-1b-v1.0 datasets: - uonlp/CulturaX - wikipedia language: - bn library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/hishab/titulm-mpt-1b-v1.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ1_M.gguf) | i1-IQ1_M | 0.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ2_S.gguf) | i1-IQ2_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ2_M.gguf) | i1-IQ2_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q2_K.gguf) | i1-Q2_K | 0.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ3_S.gguf) | i1-IQ3_S | 0.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ3_M.gguf) | i1-IQ3_M | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q4_0.gguf) | i1-Q4_0 | 0.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q4_1.gguf) | i1-Q4_1 | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF/resolve/main/titulm-mpt-1b-v1.0.i1-Q6_K.gguf) | i1-Q6_K | 1.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Nitral-Archive/Nera_Noctis-r64-test_train-12B
Nitral-Archive
2025-01-03T09:31:11Z
8
0
null
[ "safetensors", "mistral", "en", "license:other", "region:us" ]
null
2025-01-02T13:43:02Z
--- license: other language: - en --- # Experimental test train, ymmv ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/89XJnlNNSsEfBjI1oHCVt.jpeg) ## "Sometimes, the brightest gems are found in the darkest places. For it is in the shadows where we learn to really see the light." # Prompt format: ChatML ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Instruct/Context import + Textgen preset combined available: [Presets Here](https://huggingface.co/Nitral-AI/Nera_Noctis-12B/tree/main/SillyTavern_Presets) # ST Example: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/QJwYuz7Mo5Niywo9iQ1eR.png)
mergekit-community/mergekit-dare_ties-woeufhp
mergekit-community
2025-01-03T09:28:53Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", "base_model:merge:nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", "base_model:unsloth/Llama-3.3-70B-Instruct", "base_model:merge:unsloth/Llama-3.3-70B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T08:56:30Z
--- base_model: - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF - unsloth/Llama-3.3-70B-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) as a base. ### Models Merged The following models were included in the merge: * [unsloth/Llama-3.3-70B-Instruct](https://huggingface.co/unsloth/Llama-3.3-70B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: unsloth/Llama-3.3-70B-Instruct parameters: density: 0.30 weight: 0.50 - model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF parameters: density: 0.50 weight: 0.75 merge_method: dare_ties base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF parameters: normalize: true int8_mask: true dtype: float16 ```
fawzanaramam/the-truth-amma-juz
fawzanaramam
2025-01-03T09:28:22Z
19
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "fine-tuned", "Quran", "arabic", "ar", "dataset:fawzanaramam/the-amma-juz", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-06-13T04:42:50Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - fine-tuned - Quran - automatic-speech-recognition - arabic - whisper datasets: - fawzanaramam/the-amma-juz model-index: - name: Whisper small Finetuned on Amma Juz of Quran results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: The Amma Juz Dataset type: fawzanaramam/the-amma-juz metrics: - type: eval_loss value: 0.0058 - type: eval_wer value: 1.1494 --- # Whisper Small Finetuned on Amma Juz of Quran This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small), specialized in transcribing Arabic audio with a focus on Quranic recitation from the *Amma Juz* dataset. This fine-tuning makes the model highly effective for tasks involving accurate recognition of Arabic speech, especially in religious and Quranic contexts. ## Model Description Whisper Small is a transformer-based model for automatic speech recognition (ASR), developed by OpenAI. By fine-tuning it on the *Amma Juz* dataset, this version achieves state-of-the-art results on transcribing Quranic recitations with minimal word error rates and high accuracy. The fine-tuned model retains the original capabilities of the Whisper architecture while being optimized for Arabic Quranic text. ## Performance Metrics On the evaluation set, the model achieved: - **Evaluation Loss**: 0.0058 - **Word Error Rate (WER)**: 1.1494% - **Evaluation Runtime**: 44.2766 seconds - **Evaluation Samples per Second**: 2.259 - **Evaluation Steps per Second**: 0.294 These metrics demonstrate the model's efficiency and accuracy when processing Quranic recitations. ## Intended Uses & Limitations ### Intended Uses - **Speech-to-text transcription** of Arabic Quranic recitation, specifically from the *Amma Juz*. - Research and educational purposes in the domain of Quranic studies. - Applications in tools for learning Quranic recitation. ### Limitations - The model is fine-tuned on Quranic recitation and may not perform as well on non-Quranic Arabic speech or general Arabic conversations. - Noise in audio inputs, variations in recitation style, or heavy accents might affect accuracy. - It is recommended to use clean and high-quality audio for optimal performance. ## Training and Evaluation Data The model was trained using the *Amma Juz* dataset, which comprises Quranic audio data and corresponding transcripts. This dataset was curated to ensure high-quality representation of Quranic recitations. ## Training Procedure ### Training Hyperparameters The following hyperparameters were used during training: - **Learning Rate**: 1e-05 - **Training Batch Size**: 16 - **Evaluation Batch Size**: 8 - **Seed**: 42 - **Optimizer**: Adam (betas=(0.9, 0.999), epsilon=1e-08) - **Learning Rate Scheduler**: Linear - **Warmup Steps**: 10 - **Number of Epochs**: 3.0 - **Mixed Precision Training**: Native AMP ### Framework Versions - **Transformers**: 4.41.1 - **PyTorch**: 2.2.1+cu121 - **Datasets**: 2.19.1 - **Tokenizers**: 0.19.1
VinserRas/gemma-2b-it-bnb-4bit-erudite-id
VinserRas
2025-01-03T09:25:34Z
80
0
transformers
[ "transformers", "pytorch", "safetensors", "gemma", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "id", "dataset:SweatGuard2/garuda-indonesian", "base_model:unsloth/gemma-2b-it-bnb-4bit", "base_model:finetune:unsloth/gemma-2b-it-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T09:16:16Z
--- base_model: unsloth/gemma-2b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma - trl - sft license: apache-2.0 language: - en - id datasets: - SweatGuard2/garuda-indonesian metrics: - character --- # Uploaded model - **Developed by:** VinserRas - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-it-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Shifa1301/banglish-to-bengali-model
Shifa1301
2025-01-03T09:22:19Z
104
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-03T09:21:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
anilguleroglu/llama-turkish-100m
anilguleroglu
2025-01-03T09:21:49Z
179
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-02T10:31:47Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: llama-turkish-100m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-turkish-100m This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
Nitral-AI/Nera_Noctis-12B
Nitral-AI
2025-01-03T09:20:50Z
70
11
null
[ "safetensors", "mistral", "en", "license:other", "region:us" ]
null
2025-01-01T02:01:24Z
--- license: other language: - en --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/89XJnlNNSsEfBjI1oHCVt.jpeg) ## "Sometimes, the brightest gems are found in the darkest places. For it is in the shadows where we learn to really see the light." ## Quants: Thanks to Bartowski!: [GGUF Available Here](https://huggingface.co/bartowski/Nera_Noctis-12B-GGUF) <3 [4bpw-exl2](https://huggingface.co/Nitral-AI/Nera_Noctis-12B-4bpw-exl2) # Prompt format: ChatML ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Instruct/Context import + Textgen preset combined available: [Presets Here](https://huggingface.co/Nitral-AI/Nera_Noctis-12B/tree/main/SillyTavern_Presets) # ST Example: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/QJwYuz7Mo5Niywo9iQ1eR.png)
VitoCorleone72/AB
VitoCorleone72
2025-01-03T09:20:44Z
244
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-03T09:20:42Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/1343113.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: alex --- # AB <Gallery /> ## Trigger words You should use `alex` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/VitoCorleone72/AB/tree/main) them in the Files & versions tab.
layonsan/flowertune-llm-google-t5-small
layonsan
2025-01-03T09:08:08Z
191
0
transformers
[ "transformers", "safetensors", "gguf", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-21T14:23:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Qwen-portuguese-luana-7b-i1-GGUF
mradermacher
2025-01-03T09:05:58Z
601
0
transformers
[ "transformers", "gguf", "Misral", "Portuguese", "7b", "chat", "portugues", "pt", "dataset:rhaymison/superset", "base_model:rhaymison/Qwen-portuguese-luana-7b", "base_model:quantized:rhaymison/Qwen-portuguese-luana-7b", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-03T08:12:47Z
--- base_model: rhaymison/Qwen-portuguese-luana-7b datasets: - rhaymison/superset language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - Misral - Portuguese - 7b - chat - portugues --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/rhaymison/Qwen-portuguese-luana-7b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.0 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q2_K.gguf) | i1-Q2_K | 3.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ3_S.gguf) | i1-IQ3_S | 3.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ3_M.gguf) | i1-IQ3_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q4_0.gguf) | i1-Q4_0 | 4.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q4_1.gguf) | i1-Q4_1 | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF/resolve/main/Qwen-portuguese-luana-7b.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/titulm-mpt-1b-v1.0-GGUF
mradermacher
2025-01-03T09:05:58Z
26
0
transformers
[ "transformers", "gguf", "bn", "dataset:uonlp/CulturaX", "dataset:wikipedia", "base_model:hishab/titulm-mpt-1b-v1.0", "base_model:quantized:hishab/titulm-mpt-1b-v1.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-03T00:06:53Z
--- base_model: hishab/titulm-mpt-1b-v1.0 datasets: - uonlp/CulturaX - wikipedia language: - bn library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/hishab/titulm-mpt-1b-v1.0 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.IQ4_XS.gguf) | IQ4_XS | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q4_K_M.gguf) | Q4_K_M | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q5_K_S.gguf) | Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q5_K_M.gguf) | Q5_K_M | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q6_K.gguf) | Q6_K | 1.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.Q8_0.gguf) | Q8_0 | 1.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/titulm-mpt-1b-v1.0-GGUF/resolve/main/titulm-mpt-1b-v1.0.f16.gguf) | f16 | 2.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Qwen-portuguese-luana-7b-GGUF
mradermacher
2025-01-03T09:00:40Z
85
0
transformers
[ "transformers", "gguf", "Misral", "Portuguese", "7b", "chat", "portugues", "pt", "dataset:rhaymison/superset", "base_model:rhaymison/Qwen-portuguese-luana-7b", "base_model:quantized:rhaymison/Qwen-portuguese-luana-7b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T07:31:41Z
--- base_model: rhaymison/Qwen-portuguese-luana-7b datasets: - rhaymison/superset language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - Misral - Portuguese - 7b - chat - portugues --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rhaymison/Qwen-portuguese-luana-7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q2_K.gguf) | Q2_K | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q3_K_S.gguf) | Q3_K_S | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q3_K_M.gguf) | Q3_K_M | 4.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q3_K_L.gguf) | Q3_K_L | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q4_K_M.gguf) | Q4_K_M | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q5_K_M.gguf) | Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.Q8_0.gguf) | Q8_0 | 8.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-portuguese-luana-7b-GGUF/resolve/main/Qwen-portuguese-luana-7b.f16.gguf) | f16 | 15.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
QuantFactory/Llama-Deepsync-3B-GGUF
QuantFactory
2025-01-03T08:57:05Z
166
2
transformers
[ "transformers", "gguf", "Llama", "Code", "CoT", "Math", "Deepsync", "3b", "ollama", "text-generation", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:prithivMLmods/Codepy-Deepthink-3B", "base_model:quantized:prithivMLmods/Codepy-Deepthink-3B", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-03T08:38:50Z
--- license: creativeml-openrail-m language: - en - de - fr - it - pt - hi - es - th base_model: - prithivMLmods/Codepy-Deepthink-3B pipeline_tag: text-generation library_name: transformers tags: - Llama - Code - CoT - Math - Deepsync - 3b - ollama --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Llama-Deepsync-3B-GGUF This is quantized version of [prithivMLmods/Llama-Deepsync-3B](https://huggingface.co/prithivMLmods/Llama-Deepsync-3B) created using llama.cpp # Original Model Card <pre align="center"> .___ ___________. __| _/____ ____ ______ _________.__. ____ ____ \_____ \_ |__ / __ |/ __ \_/ __ \\____ \/ ___< | |/ \_/ ___\ _(__ <| __ \ / /_/ \ ___/\ ___/| |_> >___ \ \___ | | \ \___ / \ \_\ \ \____ |\___ >\___ > __/____ >/ ____|___| /\___ > /______ /___ / \/ \/ \/|__| \/ \/ \/ \/ \/ \/ </pre> The **Llama-Deepsync-3B** is a fine-tuned version of the **Llama-3.2-3B-Instruct** base model, designed for text generation tasks that require deep reasoning, logical structuring, and problem-solving. This model leverages its optimized architecture to provide accurate and contextually relevant outputs for complex queries, making it ideal for applications in education, programming, and creative writing. With its robust natural language processing capabilities, **Llama-Deepsync-3B** excels in generating step-by-step solutions, creative content, and logical analyses. Its architecture integrates advanced understanding of both structured and unstructured data, ensuring precise text generation aligned with user inputs. - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. # **Model Architecture** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. # **Use with transformers** Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "prithivMLmods/Llama-Deepsync-3B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes) # **Run with Ollama [Ollama Run]** Ollama makes running machine learning models simple and efficient. Follow these steps to set up and run your GGUF models quickly. ## Quick Start: Step-by-Step Guide | Step | Description | Command / Instructions | |------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | **Install Ollama 🦙** | Download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your system. | | 2 | **Create Your Model File** | - Create a file named after your model, e.g., `metallama`. | | | | - Add the following line to specify the base model: | | | | ```bash | | | | FROM Llama-3.2-1B.F16.gguf | | | | ``` | | | | - Ensure the base model file is in the same directory. | | 3 | **Create and Patch the Model** | Run the following commands to create and verify your model: | | | | ```bash | | | | ollama create metallama -f ./metallama | | | | ollama list | | | | ``` | | 4 | **Run the Model** | Use the following command to start your model: | | | | ```bash | | | | ollama run metallama | | | | ``` | | 5 | **Interact with the Model** | Once the model is running, interact with it: | | | | ```plaintext | | | | >>> Tell me about Space X. | | | | Space X, the private aerospace company founded by Elon Musk, is revolutionizing space exploration... | | | | ``` | ## Conclusion With Ollama, running and interacting with models is seamless. Start experimenting today!
Shashwath01/Idefic_medical_VQA_merged_4bit
Shashwath01
2025-01-03T08:56:46Z
87
5
transformers
[ "transformers", "safetensors", "idefics", "image-text-to-text", "Medical Visual Question Answering", "VQA", "IDEFIC", "9B", "4 Bit", "LORA", "Combining base with Adapter models", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2024-02-24T12:18:00Z
--- library_name: transformers tags: - Medical Visual Question Answering - VQA - IDEFIC - 9B - 4 Bit - LORA - Combining base with Adapter models license: apache-2.0 --- # Contributed by: - Shashwath P - Shashank Ashok - Akilan Yohendiran # Total downloads all time - 2106 # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> The following model is an experimental fine tuned model of the IDEFIC 9B version, for medical Visual Question Answering. It uses a dataset combined from SLAKE and VQARAD. Check the following repository for the notebooks of training,merging and inference. https://github.com/Shashwathp/Idefic_medical_vqa ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [@Shashwath01,@Akill19,@Shashank91097 ] - **Model type:** [Multimodal, Visual Question Answering] - **Language(s) (NLP):** [English] - **License:** [Apache - 2.0] - **Finetuned from model [optional]:** [IDEFIC 9B] ### Dataset https://huggingface.co/datasets/Shashwath01/VQARAD_SLAKE ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/Shashwathp/Idefic_medical_vqa <!--- **Paper :** https://ieeexplore.ieee.org/document/10616779--> ## How to Get Started with the Model Check the below link to get started with inferencing. https://github.com/Shashwathp/Idefic_medical_vqa/blob/main/inference.ipynb <!--## Citation If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. [1] S. Punneshetty, S. Ashok, M. Niranjanamurthy, and S. V. N. Murthy, "Fine Tuning Idefic 9b With LORA for Multimodal Medical VQA," in *Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS)*, India, Apr. 2024, pp. 1-8. DOI: 10.1109/ICKECS61492.2024.10616779.-->
mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF
mradermacher
2025-01-03T08:54:22Z
39
1
transformers
[ "transformers", "gguf", "sv", "dataset:neph1/bellman-7b-finetune", "dataset:neph1/truthy-dpo-v0.1-swe", "base_model:neph1/bellman-7b-mistral-instruct-v0.2", "base_model:quantized:neph1/bellman-7b-mistral-instruct-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-02T23:50:43Z
--- base_model: neph1/bellman-7b-mistral-instruct-v0.2 datasets: - neph1/bellman-7b-finetune - neph1/truthy-dpo-v0.1-swe language: - sv library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/neph1/bellman-7b-mistral-instruct-v0.2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/bellman-7b-mistral-instruct-v0.2-GGUF/resolve/main/bellman-7b-mistral-instruct-v0.2.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ziippy/code-llama3-8B-text-to-sql-ver0.1
ziippy
2025-01-03T08:47:11Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-03T08:43:34Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VitoCorleone72/Plaza
VitoCorleone72
2025-01-03T08:46:16Z
118
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-03T08:46:15Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/00159-3381242384.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aubrey --- # Plaza <Gallery /> ## Trigger words You should use `aubrey` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/VitoCorleone72/Plaza/tree/main) them in the Files & versions tab.
csikasote/mms-1b-swagen-combined-15hrs-model
csikasote
2025-01-03T08:45:28Z
20
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "swagen", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-03T07:58:25Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-swagen-combined-15hrs-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-1b-swagen-combined-15hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Wer: 0.1929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.8801 | 0.0797 | 100 | 0.7377 | 0.4426 | | 0.6766 | 0.1594 | 200 | 0.2688 | 0.2006 | | 0.5153 | 0.2391 | 300 | 0.2484 | 0.1975 | | 0.526 | 0.3189 | 400 | 0.2398 | 0.1949 | | 0.4874 | 0.3986 | 500 | 0.2398 | 0.1958 | | 0.4666 | 0.4783 | 600 | 0.2358 | 0.1909 | | 0.4406 | 0.5580 | 700 | 0.2391 | 0.1944 | | 0.4689 | 0.6377 | 800 | 0.2334 | 0.1926 | | 0.462 | 0.7174 | 900 | 0.2293 | 0.1927 | | 0.4407 | 0.7971 | 1000 | 0.2293 | 0.1931 | | 0.4567 | 0.8768 | 1100 | 0.2298 | 0.1928 | | 0.4711 | 0.9566 | 1200 | 0.2305 | 0.1972 | | 0.4444 | 1.0359 | 1300 | 0.2307 | 0.1929 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
matrixportal/L3-Luna-8B-Q4_K_S-GGUF
matrixportal
2025-01-03T08:43:53Z
16
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Casual-Autopsy/L3-Luna-8B", "base_model:quantized:Casual-Autopsy/L3-Luna-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T08:43:31Z
--- base_model: Casual-Autopsy/L3-Luna-8B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # matrixportal/L3-Luna-8B-Q4_K_S-GGUF This model was converted to GGUF format from [`Casual-Autopsy/L3-Luna-8B`](https://huggingface.co/Casual-Autopsy/L3-Luna-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Casual-Autopsy/L3-Luna-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportal/L3-Luna-8B-Q4_K_S-GGUF --hf-file l3-luna-8b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportal/L3-Luna-8B-Q4_K_S-GGUF --hf-file l3-luna-8b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportal/L3-Luna-8B-Q4_K_S-GGUF --hf-file l3-luna-8b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportal/L3-Luna-8B-Q4_K_S-GGUF --hf-file l3-luna-8b-q4_k_s.gguf -c 2048 ```
nvidia/stt_pt_fastconformer_hybrid_large_pc
nvidia
2025-01-03T08:43:22Z
190
0
nemo
[ "nemo", "FastConformer", "NeMo", "Portuguese", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_16_0", "dataset:facebook/multilingual_librispeech", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2024-12-24T17:18:03Z
--- license: cc-by-nc-4.0 language: - pt metrics: - wer - cer pipeline_tag: automatic-speech-recognition library_name: nemo datasets: - mozilla-foundation/common_voice_16_0 - facebook/multilingual_librispeech tags: - FastConformer - NeMo - Portuguese --- # Model Overview ## Description: STT PT FastConformer Hybrid Transducer-CTC Large transcribes text in upper and lower case Portuguese alphabet along with spaces, period, comma, question mark. This collection contains the Brazilian Portuguese FastConformer Hybrid (Transducer and CTC) Large model (around 115M parameters) with punctuation and capitalization trained on around 2200h hours of Portuguese speech. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details. It utilizes a Google SentencePiece [1] tokenizer with a vocabulary size of 128. This model is ready for non-commercial use. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="nvidia/stt_pt_fastconformer_hybrid_large_pc") ``` ### Transcribing using Python Having instantiated the model, simply do: ``` asr_model.transcribe([path_to_audio_file]) ``` ### Transcribing many audio files Using Transducer mode inference: ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_pt_fastconformer_hybrid_large_pc" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` Using CTC mode inference: ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_pt_fastconformer_hybrid_large_pc" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" decoder_type="ctc" ``` ### Input This model accepts 16000 Hz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with joint Transducer and CTC decoder loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) and about Hybrid Transducer-CTC training here: [Hybrid Transducer-CTC](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#hybrid-transducer-ctc). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. The model was trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_to_text_finetune.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/asr_finetune/speech_to_text_finetune.yaml). The tokenizers for this model was built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). The model was initialized with the weights of [Spanish FastConformer Hybrid (Transducer and CTC) Large P&C model](https://huggingface.co/nvidia/stt_es_fastconformer_hybrid_large_pc) and fine-tuned to Portuguese using the labeled and unlabeled data(with pseudo-labels). The MLS dataset was used as unlabeled data as it does not contain punctuation and capitalization. ## Training Dataset: The model was trained on around 2200 hours of Portuguese speech data. - [Mozilla Common Voice 16.0 Portuguese](https://commonvoice.mozilla.org/en/datasets) [83h] - Data Collection Method: by Human - Labeling Method: by Human - [Multilingual Librispeech](https://www.openslr.org/94/) [160h] - Data Collection Method: by Human - Labeling Method: Pseudo-labels - Proprietary corpus [2000h] - Data Collection Method: by Human - Labeling Method: Pseudo-labels ## Testing Dataset: **Link:** 1. [Mozilla Common Voice 16(MCV16)](https://commonvoice.mozilla.org/en/datasets) <br> 2. [Multilingual Librispeech](https://www.openslr.org/94/) <br> ## Performance **Test Hardware:** A5000 GPU The performance of Automatic Speech Recognition models is measured using Character Error Rate (CER) and Word Error Rate (WER). The following table summarize the performance of the available model in this collection with the Transducer and CTC decoders. | Model | MCV %WER/CER test |MLS %WER/CER test | |-----------|--------------|---------------| | RNNT head | 12.03 / 3.20 | 24.78 / 5.92 | | CTC head | 12.83 / 3.39 | 25.7 / 6.18 | ### License/Terms of Use: The model weights are distributed under a research-friendly non-commercial CC BY-NC 4.0 license ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## References: [1] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) <br>
Edens-Gate/control-qwen-testing
Edens-Gate
2025-01-03T08:38:23Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T08:35:00Z
--- base_model: - Qwen/Qwen2.5-7B-Instruct library_name: transformers tags: - mergekit - merge --- # control-qwen This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method using [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) + /home/mango/Misc/outputs/checkpoint-3684 as a base. ### Models Merged The following models were included in the merge: ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: Qwen/Qwen2.5-7B-Instruct+/home/mango/Misc/outputs/checkpoint-3684 dtype: bfloat16 merge_method: passthrough models: - model: Qwen/Qwen2.5-7B-Instruct+/home/mango/Misc/outputs/checkpoint-3684 ```
studioghAI/1955-renault-4cv
studioghAI
2025-01-03T08:35:10Z
14
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-03T08:35:02Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: 55r4cv license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # 1955 renault 4cv A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `55r4cv` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
mergekit-community/mergekit-dare_ties-uyuzvch
mergekit-community
2025-01-03T08:29:32Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Infermatic/MN-12B-Inferor-v0.1", "base_model:merge:Infermatic/MN-12B-Inferor-v0.1", "base_model:TheDrummer/Rocinante-12B-v1.1", "base_model:merge:TheDrummer/Rocinante-12B-v1.1", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:merge:unsloth/Mistral-Nemo-Instruct-2407", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T08:24:12Z
--- base_model: - unsloth/Mistral-Nemo-Instruct-2407 - TheDrummer/Rocinante-12B-v1.1 - Infermatic/MN-12B-Inferor-v0.1 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) as a base. ### Models Merged The following models were included in the merge: * [TheDrummer/Rocinante-12B-v1.1](https://huggingface.co/TheDrummer/Rocinante-12B-v1.1) * [Infermatic/MN-12B-Inferor-v0.1](https://huggingface.co/Infermatic/MN-12B-Inferor-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: TheDrummer/Rocinante-12B-v1.1 parameters: density: 0.5 weight: 0.25 - model: unsloth/Mistral-Nemo-Instruct-2407 parameters: density: 0.5 weight: 0.5 - model: Infermatic/MN-12B-Inferor-v0.1 parameters: density: 0.5 weight: 0.75 merge_method: dare_ties base_model: unsloth/Mistral-Nemo-Instruct-2407 parameters: normalize: true int8_mask: true dtype: float16 ```
RioShiina/Llama-3.1-Swallow-70B-v0.1-exl2
RioShiina
2025-01-03T08:26:52Z
10
0
null
[ "ja", "en", "arxiv:2407.21783", "base_model:tokyotech-llm/Llama-3.1-Swallow-70B-v0.1", "base_model:quantized:tokyotech-llm/Llama-3.1-Swallow-70B-v0.1", "license:llama3.1", "region:us" ]
null
2024-10-11T07:44:48Z
--- base_model: tokyotech-llm/Llama-3.1-Swallow-70B-v0.1 base_model_relation: quantized license: llama3.1 language: - ja - en --- **[2.2bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-v0.1-exl2/tree/2.2bpw)** (high quality loss, only for 24GB vRAM test.) **[4.0bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-v0.1-exl2/tree/4.0bpw)** **[6.0bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-v0.1-exl2/tree/6.0bpw)** **[8.0bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-v0.1-exl2/tree/8.0bpw)** # Llama-3.1-Swallow-70B-v0.1-exl2 - Model creator: [tokyotech-llm](https://huggingface.co/tokyotech-llm) - Original model: [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) ### License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) ### Citations ```tex @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF
mradermacher
2025-01-03T08:25:33Z
22
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:zelk12/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B", "base_model:quantized:zelk12/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T07:50:00Z
--- base_model: zelk12/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/zelk12/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MU-gemma-2-MTM2MUMTM4-9B.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
RioShiina/Llama-3.1-Swallow-70B-Instruct-v0.1-exl2
RioShiina
2025-01-03T08:25:31Z
7
0
null
[ "ja", "en", "arxiv:2407.21783", "base_model:tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1", "base_model:quantized:tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1", "license:llama3.1", "region:us" ]
null
2024-10-11T07:45:03Z
--- base_model: tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1 base_model_relation: quantized license: llama3.1 language: - ja - en --- **[2.2bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-Instruct-v0.1-exl2/tree/2.2bpw)** (high quality loss, only for 24GB vRAM test.) **[4.0bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-Instruct-v0.1-exl2/tree/4.0bpw)** **[6.0bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-Instruct-v0.1-exl2/tree/6.0bpw)** **[8.0bpw](https://huggingface.co/rioshiina/Llama-3.1-Swallow-70B-Instruct-v0.1-exl2/tree/8.0bpw)** # Llama-3.1-Swallow-70B-Instruct-v0.1-exl2 - Model creator: [tokyotech-llm](https://huggingface.co/tokyotech-llm) - Original model: [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) ### License [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> あなたは誠実で優秀な日本人のアシスタントです。<|eot_id|><|start_header_id|>user<|end_header_id|> 東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ### Citations ```tex @inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, } ```
jimmylam6666/Mistral-Enmo-RPGPT-E3-Rank216-512-Q8_0-GGUF
jimmylam6666
2025-01-03T08:22:12Z
5
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:roy12715/Mistral-Enmo-RPGPT-E3-Rank216-512", "base_model:quantized:roy12715/Mistral-Enmo-RPGPT-E3-Rank216-512", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T08:21:14Z
--- base_model: roy12715/Mistral-Enmo-RPGPT-E3-Rank216-512 tags: - llama-cpp - gguf-my-repo --- # jimmylam6666/Mistral-Enmo-RPGPT-E3-Rank216-512-Q8_0-GGUF This model was converted to GGUF format from [`roy12715/Mistral-Enmo-RPGPT-E3-Rank216-512`](https://huggingface.co/roy12715/Mistral-Enmo-RPGPT-E3-Rank216-512) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/roy12715/Mistral-Enmo-RPGPT-E3-Rank216-512) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo jimmylam6666/Mistral-Enmo-RPGPT-E3-Rank216-512-Q8_0-GGUF --hf-file mistral-enmo-rpgpt-e3-rank216-512-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo jimmylam6666/Mistral-Enmo-RPGPT-E3-Rank216-512-Q8_0-GGUF --hf-file mistral-enmo-rpgpt-e3-rank216-512-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo jimmylam6666/Mistral-Enmo-RPGPT-E3-Rank216-512-Q8_0-GGUF --hf-file mistral-enmo-rpgpt-e3-rank216-512-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo jimmylam6666/Mistral-Enmo-RPGPT-E3-Rank216-512-Q8_0-GGUF --hf-file mistral-enmo-rpgpt-e3-rank216-512-q8_0.gguf -c 2048 ```
RioShiina/Llama-3-Swallow-70B-v0.1-exl2
RioShiina
2025-01-03T08:19:55Z
11
0
null
[ "ja", "en", "base_model:tokyotech-llm/Llama-3-Swallow-70B-v0.1", "base_model:quantized:tokyotech-llm/Llama-3-Swallow-70B-v0.1", "license:llama3", "region:us" ]
null
2024-10-14T01:56:29Z
--- base_model: tokyotech-llm/Llama-3-Swallow-70B-v0.1 base_model_relation: quantized license: llama3 language: - ja - en --- **[2.2bpw](https://huggingface.co/rioshiina/Llama-3-Swallow-70B-v0.1-exl2/tree/2.2bpw)** (high quality loss, only for 24GB vRAM test.) **[4.0bpw](https://huggingface.co/rioshiina/Llama-3-Swallow-70B-v0.1-exl2/tree/4.0bpw)** **[6.0bpw](https://huggingface.co/rioshiina/Llama-3-Swallow-70B-v0.1-exl2/tree/6.0bpw)** **[8.0bpw](https://huggingface.co/rioshiina/Llama-3-Swallow-70B-v0.1-exl2/tree/8.0bpw)** # Llama-3-Swallow-70B-v0.1-exl2 - Model creator: [tokyotech-llm](https://huggingface.co/tokyotech-llm) - Original model: [Llama-3-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1) ### License [META LLAMA 3 COMMUNITY LICENSE](https://llama.meta.com/llama3/license/) ### Citations ```tex @misc{llama3swallow, title={Llama 3 Swallow}, url={https://swallow-llm.github.io/llama3-swallow.en.html}, author={Swallow LLM}, year={2024}, } ``` ```tex @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ```
QuantFactory/YuLan-Mini-GGUF
QuantFactory
2025-01-03T08:19:30Z
170
2
transformers
[ "transformers", "gguf", "code", "math", "text-generation", "en", "zh", "dataset:yulan-team/YuLan-Mini-Datasets", "dataset:HuggingFaceFW/fineweb-edu", "dataset:bigcode/the-stack-v2", "dataset:mlfoundations/dclm-baseline-1.0", "dataset:math-ai/AutoMathText", "dataset:gair-prox/open-web-math-pro", "dataset:RUC-AIBOX/long_form_thought_data_5k", "dataset:internlm/Lean-Workbook", "dataset:internlm/Lean-Github", "dataset:deepseek-ai/DeepSeek-Prover-V1", "dataset:ScalableMath/Lean-STaR-base", "dataset:ScalableMath/Lean-STaR-plus", "dataset:ScalableMath/Lean-CoT-base", "dataset:ScalableMath/Lean-CoT-plus", "dataset:opencsg/chinese-fineweb-edu", "dataset:liwu/MNBVC", "dataset:vikp/textbook_quality_programming", "dataset:HuggingFaceTB/smollm-corpus", "dataset:OpenCoder-LLM/opc-annealing-corpus", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:OpenCoder-LLM/opc-sft-stage2", "dataset:XinyaoHu/AMPS_mathematica", "dataset:deepmind/math_dataset", "dataset:mrfakename/basic-math-10m", "dataset:microsoft/orca-math-word-problems-200k", "dataset:AI-MO/NuminaMath-CoT", "dataset:HuggingFaceTB/cosmopedia", "dataset:MU-NLPC/Calc-ape210k", "dataset:manu/project_gutenberg", "dataset:storytracer/LoC-PD-Books", "dataset:allenai/dolma", "arxiv:2412.17743", "license:mit", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-03T08:01:47Z
--- license: mit library_name: transformers pipeline_tag: text-generation datasets: - yulan-team/YuLan-Mini-Datasets - HuggingFaceFW/fineweb-edu - bigcode/the-stack-v2 - mlfoundations/dclm-baseline-1.0 - math-ai/AutoMathText - gair-prox/open-web-math-pro - RUC-AIBOX/long_form_thought_data_5k - internlm/Lean-Workbook - internlm/Lean-Github - deepseek-ai/DeepSeek-Prover-V1 - ScalableMath/Lean-STaR-base - ScalableMath/Lean-STaR-plus - ScalableMath/Lean-CoT-base - ScalableMath/Lean-CoT-plus - opencsg/chinese-fineweb-edu - liwu/MNBVC - vikp/textbook_quality_programming - HuggingFaceTB/smollm-corpus - OpenCoder-LLM/opc-annealing-corpus - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - XinyaoHu/AMPS_mathematica - deepmind/math_dataset - mrfakename/basic-math-10m - microsoft/orca-math-word-problems-200k - AI-MO/NuminaMath-CoT - HuggingFaceTB/cosmopedia - MU-NLPC/Calc-ape210k - manu/project_gutenberg - storytracer/LoC-PD-Books - allenai/dolma language: - en - zh tags: - code - math arxiv: 2412.17743 model-index: - name: YuLan-Mini results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.640 verified: false - task: type: text-generation dataset: type: mbpp name: MBPP metrics: - name: pass@1 type: pass@1 value: 0.659 verified: false - task: type: text-generation dataset: type: math-500 name: MATH-500 metrics: - name: maj@1 type: maj@1 value: 0.378 verified: false - task: type: text-generation dataset: type: gsm8k name: GSM8K metrics: - name: maj@1 type: maj@1 value: 0.684 verified: false --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/YuLan-Mini-GGUF This is quantized version of [yulan-team/YuLan-Mini](https://huggingface.co/yulan-team/YuLan-Mini) created using llama.cpp # Original Model Card # Important Notice: This is a pre-trained **base model** without instruction-following capabilities. The **SFT version** will be released within a few weeks. <div align=center> <img src="assets/YuLan-logo.jpg" width="400px"> <h1>YuLan-Mini: An Open Data-efficient Language Model</h1> <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/LICENSE"><img src="https://img.shields.io/badge/License-MIT-blue" alt="license"></a> <a href="https://arxiv.org/abs/2412.17743" target="_blank"><img src=https://img.shields.io/badge/arXiv-b5212f.svg?logo=arxiv></a> <a href="https://huggingface.co/collections/yulan-team/yulan-mini-676d214b24376739b00d95f3"><img alt="Static Badge" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-blue?color=8A2BE2"></a> <a href="https://github.com/RUC-GSAI/YuLan-Mini" target="_blank"><img src="https://img.shields.io/github/stars/RUC-GSAI/YuLan-Mini"></a> </div> YuLan-Mini is a lightweight language model with 2.4 billion parameters. It achieves performance comparable to industry-leading models trained on significantly more data, despite being pre-trained on only 1.08T tokens. The model excels particularly in the domains of **mathematics** and **code**. To facilitate reproducibility, we will open-source the relevant pre-training resources. --- ## Model Downloads 🔗 > Model weights will be uploaded after final preparations. | Model | Context Length | SFT | |---------|----------------|-----| | [YuLan-Mini](https://huggingface.co/yulan-team/YuLan-Mini) (Recommended) | 28K | ❎ | | [YuLan-Mini-2.4B-4K](https://huggingface.co/yulan-team/YuLan-Mini-Intermediate-4K) | 4K | ❎ | | YuLan-Mini-Instruct | Comming soon | ✅ | --- ## Features 🌟 <div align=center> <img src="assets/main.png"> </div> Our pre-training methodology improves training efficiency through three key innovations: 1. an elaborately designed **data pipeline** that combines data cleaning with data schedule strategies; 2. a systematic **optimization method** that can effectively mitigate training instability; 3. an effective **annealing approach** that integrate targeted data selection and long context training. --- ## Behchmarks 🌟 | Models | Model Size | # Train Tokens | Context Length | MATH 500 | GSM 8K | Human Eval | MBPP | RACE Middle | RACE High | RULER | |:----------------|----------:|--------------:|--------------:|:--------|:------|:----------|:------|:-----------|:---------|:------| | MiniCPM | 2.6B | 1.06T | 4K | 15.00 | 53.83 | 50.00* | 47.31 | 56.61 | 44.27 | N/A | | Qwen-2 | 1.5B | 7T | 128K | 22.60 | 46.90* | 34.80* | 46.90* | 55.77 | 43.69 | 60.16 | | Qwen2.5 | 0.5B | 18T | 128K | 23.60 | 41.60* | 30.50* | 39.30* | 52.36 | 40.31 | 49.23 | | Qwen2.5 | 1.5B | 18T | 128K | **45.40** | **68.50\*** | 37.20* | 60.20* | **58.77** | 44.33 | <ins>68.26</ins> | | Gemma2 | 2.6B | 2T | 8K | 18.30* | 30.30* | 19.50* | 42.10* | - | - | N/A | | StableLM2 | 1.7B | 2T | 4K | - | 20.62 | 8.50* | 17.50 | 56.33 | **45.06** | N/A | | SmolLM2 | 1.7B | 11T | 8K | 11.80 | - | 23.35 | 45.00 | 55.77 | 43.06 | N/A | | Llama3.2 | 3.2B | 9T | 128K | 7.40 | - | 29.30 | 49.70 | 55.29 | 43.34 | **77.06** | | YuLan-Mini | 2.4B | 1.04T | 4K | 32.60 | 66.65 | <ins>61.60</ins> | **66.70** | 55.71 | 43.58 | N/A | | YuLan-Mini | 2.4B | 1.08T | 28K | <ins>37.80</ins> | <ins>68.46</ins> | **64.00** | <ins>65.90</ins>| <ins>57.18</ins> | <ins>44.57</ins> | 51.48 | | Models | LAMBADA | MMLU | CMMLU | CEval | HellaSwag | WinoGrande | StoryCloze | ARC-e | ARC-c | |:----------------|:-------|:-----|:-----|:-----|:----------|:-----------|:-----------|:-----|:-----| | MiniCPM-2.6B | 61.91 | 53.37 | 48.97 | 48.24 | 67.92 | 65.74 | 78.51 | 55.51 | 43.86 | | Qwen2-1.5B | 64.68 | 55.90 | **70.76** | **71.94** | 66.11 | 66.14 | 77.60 | 62.21 | 42.92 | | Qwen2.5-0.5B | 52.00 | 47.50 | 52.17 | 54.27 | 50.54 | 55.88 | 71.67 | 56.10 | 39.51 | | Qwen2.5-1.5B | 62.12 | <ins>60.71</ins> | <ins>67.82</ins> | <ins>69.05</ins> | 67.18 | 64.48 | 76.80 | **71.51** | <ins>53.41</ins> | | Gemma2-2.6B | - | 52.20*| - | 28.00*| <ins>74.60*</ins> | **71.50\*** | - | - | **55.70\***| | StableLM2-1.7B | 66.15 | 40.37 | 29.29 | 26.99 | 69.79 | 64.64 | <ins>78.56</ins> | 54.00 | 40.78 | | SmolLM2-1.7B | <ins>67.42</ins> | 51.91 | 33.46 | 35.10 | 72.96 | 67.40 | **79.32** | 44.82 | 35.49 | | Llama3.2-3B | **69.08** | **63.40** | 44.44 | 44.49 | **75.62** | <ins>67.48</ins> | 76.80 | <ins>70.12</ins> | 48.81 | | YuLan-Mini | 64.72 | 51.79 | 48.35 | 51.47 | 68.65 | 67.09 | 76.37 | 69.87 | 50.51 | | YuLan-Mini | 65.67 | 49.10 | 45.45 | 48.23 | 67.22 | 67.24 | 75.89 | 67.47 | 49.32 | --- ## Pre-Training Resources 🔧 To enhance research transparency and reproducibility, we are open-sourcing relevant [pre-training resources](https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain): <details><summary>1. Pre-training and Evaluation Code</summary> The pre-training and evaluation code will be released in a future update. </details> <details><summary>2. Intermediate Stage Checkpoints</summary> The intermediate stage checkpoints are released in <a href="https://huggingface.co/collections/yulan-team/yulan-mini-676d214b24376739b00d95f3">YuLan-Mini</a>. </details> <details><summary>3. Optimizer States Before Annealing</summary> <a href="https://huggingface.co/yulan-team/YuLan-Mini-Before-Annealing">YuLan-Mini-Before-Annealing</a> </details> <details><summary>4. The Used Open-Source Datasets </summary> <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain/datasets-list.md">Used-Datasets-List</a> </details> <details><summary>5. Data Distribution for every phase</summary> <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain/final.pdf"> <div align=center> <img src="assets/data_distribution_for_every_phase.png"> </div> </a> </details> <details><summary>6. Synthetic Data</summary> Data cleaning and synthesis pipeline: <div align=center> <img src="assets/data-pipeline.png"> </div> The synthetic data we are using is released in <a href="https://huggingface.co/collections/yulan-team/yulan-mini-676d214b24376739b00d95f3">YuLan-Mini-Datasets</a> </details> <details><summary>7. Intermediate Optimizer States</summary> Intermediate optimizer states will be released in a future update. </details> ### What you can do with these pre-training resources 1. **Pre-train** your own LLM. You can use [our data](https://huggingface.co/yulan-team/YuLan-Mini-Datasets) and curriculum to train a model that's just as powerful as YuLan-Mini. 2. Perform your own **learning rate annealing**. During the annealing phase, YuLan-Mini's learning ability is at its peak. You can resume training from [the checkpoint before annealing](https://huggingface.co/yulan-team/YuLan-Mini-Before-Annealing) and use your own dataset for learning rate annealing. 3. **Fine-tune** the Instruct version of the LLM. You can use the YuLan-Mini base model to train your own Instruct version. 4. **Training dynamics** research. You can use YuLan-Mini's intermediate checkpoints to explore internal changes during the pre-training process. 5. **Synthesize** your own data. You can use YuLan-Mini's [data pipeline](https://github.com/RUC-GSAI/YuLan-Mini) to clean and generate your own dataset. --- ## Quick Start 💻 Below is a simple example for inference using Huggingface: **Huggingface Inference Example** ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("yulan-team/YuLan-Mini") model = AutoModelForCausalLM.from_pretrained("yulan-team/YuLan-Mini", torch_dtype=torch.bfloat16) # Input text input_text = "Renmin University of China is" inputs = tokenizer(input_text, return_tensors="pt") # Completion output = model.generate(inputs["input_ids"], max_new_tokens=100) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` **vLLM Serve Example** ```bash vllm serve yulan-team/YuLan-Mini --dtype bfloat16 ``` **SGLang Serve Example** ```bash python -m sglang.launch_server --model-path yulan-team/YuLan-Mini --port 30000 --host 0.0.0.0 ``` --- ## The Team YuLan-Mini is developed and maintained by [AI Box, Renmin University of China](http://aibox.ruc.edu.cn/). ## License - The code in this repository is released under the [MIT License](./LICENSE). - Policies regarding the use of model weights, intermediate optimizer states, and training data will be announced in future updates. - Limitations: Despite our efforts to mitigate safety concerns and encourage the generation of ethical and lawful text, the probabilistic nature of language models may still lead to unexpected outputs. For instance, responses might contain bias, discrimination, or other harmful content. Please refrain from disseminating such content. We are not liable for any consequences arising from the spread of harmful information. ## Citation If you find YuLan-Mini helpful for your research or development, please cite [our technical report](https://arxiv.org/abs/2412.17743): ``` @misc{hu2024yulanmini, title={YuLan-Mini: An Open Data-efficient Language Model}, author={Yiwen Hu and Huatong Song and Jia Deng and Jiapeng Wang and Jie Chen and Kun Zhou and Yutao Zhu and Jinhao Jiang and Zican Dong and Wayne Xin Zhao and Ji-Rong Wen}, year={2024}, eprint={2412.17743}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.17743}, } ```
ericson333/myanton
ericson333
2025-01-03T08:18:49Z
46
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-03T07:55:25Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: myanton --- # Myanton <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `myanton` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ericson333/myanton', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Hemg/EMOTION-AI
Hemg
2025-01-03T08:13:28Z
126
1
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-03T04:25:20Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: EMOTION-AI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EMOTION-AI This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4780 - Accuracy: 0.5616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9982 | 271 | 1.5711 | 0.5464 | | 1.5442 | 2.0 | 543 | 1.4952 | 0.5638 | | 1.5442 | 2.9982 | 814 | 1.4755 | 0.5657 | | 1.3192 | 3.9926 | 1084 | 1.4780 | 0.5616 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF
mradermacher
2025-01-03T08:13:04Z
480
1
transformers
[ "transformers", "gguf", "roleplay", "conversational", "en", "base_model:allura-org/Qwen2.5-32b-RP-Ink", "base_model:quantized:allura-org/Qwen2.5-32b-RP-Ink", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-01T07:46:21Z
--- base_model: allura-org/Qwen2.5-32b-RP-Ink language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - roleplay - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/allura-org/Qwen2.5-32b-RP-Ink <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-32b-RP-Ink-i1-GGUF/resolve/main/Qwen2.5-32b-RP-Ink.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF
mradermacher
2025-01-03T08:13:04Z
22
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:zelk12/MT-Max-Merge_02012025163610-BI-gemma-2-9B", "base_model:quantized:zelk12/MT-Max-Merge_02012025163610-BI-gemma-2-9B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T06:53:28Z
--- base_model: zelk12/MT-Max-Merge_02012025163610-BI-gemma-2-9B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/zelk12/MT-Max-Merge_02012025163610-BI-gemma-2-9B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-BI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-BI-gemma-2-9B.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ontocord/riverbed
ontocord
2025-01-03T08:10:17Z
8
4
null
[ "license:apache-2.0", "region:us" ]
null
2023-05-13T05:21:40Z
--- license: apache-2.0 --- These are basic classifiers and a BM25 index of Wikipedia used for data tooling research. Using kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1's classifier (MIT) and TurkuNLP's register classifiers. ``` import fasttext, os if not os.path.exists("expert_classify.ftz"): os.system("wget http://dl.turkunlp.org/register-labeling-model/fasttext_model.bin") os.system("wget https://huggingface.co/ontocord/riverbed/resolve/main/rj_model.bin") os.system("wget https://huggingface.co/kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1/resolve/main/model_textbook_quality.bin") os.system("wget https://huggingface.co/ontocord/riverbed/resolve/main/expert_classify.ftz") ### red pajama filter. pred_label "__label__wiki" is data we do not wish to keep. red_pajama_model = fasttext.load_model("rj_model.bin") (pred_label, pred_prob) = red_pajama_model.predict(text) if pred_label == "__label__cc": pred_prob = 1 - pred_prob ### turkunlp registry labeler: https://github.com/TurkuNLP/register-labeling domain_model = fasttext.load_model("fasttext_model.bin") (pred_label, pred_prob) = domain_model.predict(text) ### Pile domain such as github, arxiv, etc. pile_model = fasttext.load_model("expert_classify.ftz") (pred_label, pred_prob) = pile_model.predict(text) ### Textbook quality - e.g., textbooks are all you need textbook_model = fasttext.load_model("model_textbook_quality.bin") (pred_label, pred_prob) = pile_model.predict(text) ``` See the files here: https://huggingface.co/ontocord/riverbed/tree/main This includes a a small whoosh search index of wikidata useful for background knowledge for LLMs. installation: ```import os if not os.path.exists("./wikidata_bm25_whoosh"): os.system("git clone https://huggingface.co/ontocord/riverbed") os.system("pip install -q whoosh") import whoosh.index as whoosh_index from whoosh.qparser import QueryParser from whoosh.analysis import StemmingAnalyzer, Filter class MyFilter(Filter): def __call__(self, tokens): for t in tokens: t.text = t.text.lower() if len(t.text) > 5: yield t t.text = t.text[:5] yield t try: if qp is None: assert False except: bm25_dir = "./riverbed" index = whoosh_index.open_dir(bm25_dir) searcher = index.searcher() qp = QueryParser("content", schema=index.schema) ```
Rich-J/subnet29_upload_c01_Jan3_2
Rich-J
2025-01-03T08:05:48Z
346
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:39:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jonny001/WBMH-v1.1
Jonny001
2025-01-03T08:05:42Z
2,537
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "NSFW", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-03T06:41:28Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - NSFW widget: - text: '-' output: url: images/1.jpg - text: '-' output: url: images/2.jpg - text: '-' output: url: images/3.jpg - text: '-' output: url: images/4.jpg - text: '-' output: url: images/5.jpg - text: '-' output: url: images/6.jpg - text: '-' output: url: images/7.jpg - text: '-' output: url: images/8.jpg - text: '-' output: url: images/9.jpg - text: '-' output: url: images/10.jpg - text: '-' output: url: images/11.jpg - text: '-' output: url: images/12.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- ### ⚠ This model has the capability to generate NSFW images. Use responsibly. # Sample Images <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Jonny001/WBMH-v1.1/tree/main) them in the Files & versions tab. ------------------------------------------------------------------------------------- ## Credits Click [Here](https://civitai.com/models/1092141/wbmh-flux)
kapsb2171/modernbert-llm-router
kapsb2171
2025-01-03T08:03:49Z
85
0
transformers
[ "transformers", "tensorboard", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-03T04:02:25Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 model-index: - name: modernbert-llm-router results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-llm-router This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 1.0 | 71 | 0.0000 | 1.0 | | 0.0453 | 2.0 | 142 | 0.0000 | 1.0 | | 0.0 | 3.0 | 213 | 0.0000 | 1.0 | | 0.0 | 4.0 | 284 | 0.0000 | 1.0 | | 0.0 | 5.0 | 355 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.0+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0
matrixportal/wiroai-turkish-llm-9b-Q4_K_M-GGUF
matrixportal
2025-01-03T08:00:17Z
38
1
transformers
[ "transformers", "gguf", "conversational", "llama-cpp", "gguf-my-repo", "text-generation", "tr", "base_model:WiroAI/wiroai-turkish-llm-9b", "base_model:quantized:WiroAI/wiroai-turkish-llm-9b", "license:gemma", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:59:53Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license tags: - conversational - llama-cpp - gguf-my-repo base_model: WiroAI/wiroai-turkish-llm-9b language: - tr model-index: - name: wiroai-turkish-llm-9b results: - task: type: multiple-choice dataset: name: MMLU_TR_V0.2 type: multiple-choice metrics: - type: 5-shot value: 0.5982 name: 5-shot verified: false - type: 0-shot value: 0.4991 name: 0-shot verified: false - type: 25-shot value: 0.5367 name: 25-shot verified: false - type: 10-shot value: 0.5701 name: 10-shot verified: false - type: 5-shot value: 0.6682 name: 5-shot verified: false - type: 5-shot value: 0.6058 name: 5-shot verified: false --- # matrixportal/wiroai-turkish-llm-9b-Q4_K_M-GGUF This model was converted to GGUF format from [`WiroAI/wiroai-turkish-llm-9b`](https://huggingface.co/WiroAI/wiroai-turkish-llm-9b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/WiroAI/wiroai-turkish-llm-9b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_M-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_M-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_M-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_M-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_m.gguf -c 2048 ```
mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF
mradermacher
2025-01-03T08:00:05Z
53
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:zelk12/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B", "base_model:quantized:zelk12/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T07:31:59Z
--- base_model: zelk12/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/zelk12/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-GP-gemma-2-MTg4MT5g4-9B.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
johahi/flashzoi-replicate-0
johahi
2025-01-03T07:58:18Z
4,269
0
null
[ "pytorch", "safetensors", "borzoi", "biology", "genomics", "license:mit", "region:us" ]
null
2024-10-25T13:16:06Z
--- license: mit tags: - biology - genomics ---
KoichiYasuoka/roberta-base-chinese-upos
KoichiYasuoka
2025-01-03T07:57:12Z
106
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "chinese", "pos", "dependency-parsing", "zh", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-base-chinese", "base_model:finetune:KoichiYasuoka/roberta-base-chinese", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-15T13:06:00Z
--- language: - "zh" tags: - "chinese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-chinese datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # roberta-base-chinese-upos ## Model Description This is a RoBERTa model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [roberta-base-chinese](https://huggingface.co/KoichiYasuoka/roberta-base-chinese). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-chinese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-chinese-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-chinese-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
KoichiYasuoka/deberta-xlarge-chinese-erlangshen-upos
KoichiYasuoka
2025-01-03T07:57:09Z
16
1
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "chinese", "pos", "dependency-parsing", "zh", "dataset:universal_dependencies", "base_model:IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese", "base_model:finetune:IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-03T09:09:49Z
--- language: - "zh" tags: - "chinese" - "token-classification" - "pos" - "dependency-parsing" base_model: IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" --- # deberta-xlarge-chinese-erlangshen-upos ## Model Description This is a DeBERTa(V2) model pre-trained on Chinese texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [Erlangshen-DeBERTa-v2-710M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-xlarge-chinese-erlangshen-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-xlarge-chinese-erlangshen-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-xlarge-chinese-erlangshen-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
KoichiYasuoka/chinese-bert-wwm-ext-upos
KoichiYasuoka
2025-01-03T07:56:57Z
112
8
transformers
[ "transformers", "pytorch", "bert", "token-classification", "chinese", "pos", "wikipedia", "dependency-parsing", "zh", "dataset:universal_dependencies", "base_model:hfl/chinese-bert-wwm-ext", "base_model:finetune:hfl/chinese-bert-wwm-ext", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - "zh" tags: - "chinese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" base_model: hfl/chinese-bert-wwm-ext datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" --- # chinese-bert-wwm-ext-upos ## Model Description This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-bert-wwm-ext-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-bert-wwm-ext-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/chinese-bert-wwm-ext-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
matrixportal/wiroai-turkish-llm-9b-Q4_K_S-GGUF
matrixportal
2025-01-03T07:56:37Z
11
0
transformers
[ "transformers", "gguf", "conversational", "llama-cpp", "gguf-my-repo", "text-generation", "tr", "base_model:WiroAI/wiroai-turkish-llm-9b", "base_model:quantized:WiroAI/wiroai-turkish-llm-9b", "license:gemma", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:56:12Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license tags: - conversational - llama-cpp - gguf-my-repo base_model: WiroAI/wiroai-turkish-llm-9b language: - tr model-index: - name: wiroai-turkish-llm-9b results: - task: type: multiple-choice dataset: name: MMLU_TR_V0.2 type: multiple-choice metrics: - type: 5-shot value: 0.5982 name: 5-shot verified: false - type: 0-shot value: 0.4991 name: 0-shot verified: false - type: 25-shot value: 0.5367 name: 25-shot verified: false - type: 10-shot value: 0.5701 name: 10-shot verified: false - type: 5-shot value: 0.6682 name: 5-shot verified: false - type: 5-shot value: 0.6058 name: 5-shot verified: false --- # matrixportal/wiroai-turkish-llm-9b-Q4_K_S-GGUF This model was converted to GGUF format from [`WiroAI/wiroai-turkish-llm-9b`](https://huggingface.co/WiroAI/wiroai-turkish-llm-9b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/WiroAI/wiroai-turkish-llm-9b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_S-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_S-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_S-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportal/wiroai-turkish-llm-9b-Q4_K_S-GGUF --hf-file wiroai-turkish-llm-9b-q4_k_s.gguf -c 2048 ```
tuanna08go/8d71750f-4381-4439-b4c9-b191859e6304
tuanna08go
2025-01-03T07:56:15Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-01-03T07:34:45Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 8d71750f-4381-4439-b4c9-b191859e6304 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2d8416ab23c11ed2_train_data.json ds_type: json format: custom path: /workspace/input_data/2d8416ab23c11ed2_train_data.json type: field_input: positive field_instruction: anchor field_output: negative format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/8d71750f-4381-4439-b4c9-b191859e6304 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/2d8416ab23c11ed2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8d71750f-4381-4439-b4c9-b191859e6304 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8d71750f-4381-4439-b4c9-b191859e6304 warmup_steps: 2 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8d71750f-4381-4439-b4c9-b191859e6304 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0222 | 1 | 1.8411 | | No log | 0.2 | 9 | 1.0835 | | 1.536 | 0.4 | 18 | 0.5607 | | 0.689 | 0.6 | 27 | 0.4736 | | 0.4522 | 0.8 | 36 | 0.4535 | | 0.443 | 1.0 | 45 | 0.4498 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AIR-hl/Qwen2.5-1.5B-SimPO
AIR-hl
2025-01-03T07:53:51Z
154
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "trl", "qwen", "simpo", "alignment", "custome", "chat", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:AIR-hl/Qwen2.5-1.5B-ultrachat200k", "base_model:finetune:AIR-hl/Qwen2.5-1.5B-ultrachat200k", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:35:11Z
--- license: apache-2.0 datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: - AIR-hl/Qwen2.5-1.5B-ultrachat200k pipeline_tag: text-generation tags: - trl - qwen - simpo - alignment - transformers - custome - chat --- # Qwen2.5-1.5B-SimPO ## Model Details - **Model type:** aligned model - **License:** Apache license 2.0 - **Finetuned from model:** [AIR-hl/Qwen2.5-1.5B-ultrachat200k](https://huggingface.co/AIR-hl/Qwen2.5-1.5B-ultrachat200k) - **Training data:** [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) - **Training framework:** [trl](https://github.com/huggingface/trl) ## Training Details devices: 4 * NPU 910B-64GB \ precision: bf16 mixed-precision \ global_batch_size: 128 ### Training Hyperparameters `beta`: 1 \ `gamma`: 0.1 \ `bf16`: True \ `learning_rate`: 1e-6 \ `lr_scheduler_type`: cosine \ `per_device_train_batch_size`: 16 \ `gradient_accumulation_steps`: 2 \ `torch_dtype`: bfloat16 \ `num_train_epochs`: 1 \ `max_prompt_length`: 512 \ `max_length`: 1024 \ `warmup_ratio`: 0.05 ### Results `init_train_loss`: 0.7551 \ `final_train_loss`: 0.6715 \ `accuracy`: 0.6375 \ `reward_margin`: 0.3633 ### Training script ```python import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from trl import ( CPOConfig, CPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE if __name__ == "__main__": parser = TrlParser((ScriptArguments, CPOConfig, ModelConfig)) script_args, training_args, model_config = parser.parse_args_and_config() torch_dtype = ( model_config.torch_dtype if model_config.torch_dtype in ["auto", None] else getattr(torch, model_config.torch_dtype) ) quantization_config = get_quantization_config(model_config) model_kwargs = dict( revision=model_config.model_revision, attn_implementation=model_config.attn_implementation, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained( model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs ) peft_config = get_peft_config(model_config) tokenizer = AutoTokenizer.from_pretrained( model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token if tokenizer.chat_template is None: tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE if script_args.ignore_bias_buffers: model._ddp_params_and_buffers_to_ignore = [ name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool ] dataset=load_dataset(script_args.dataset_name, split=script_args.dataset_train_split) dataset=dataset.select_columns(['prompt', 'chosen', 'rejected']) trainer = CPOTrainer( model, args=training_args, train_dataset=dataset, processing_class=tokenizer, peft_config=peft_config, ) trainer.train() trainer.save_model(training_args.output_dir) ```
QuantFactory/Triangulum-1B-GGUF
QuantFactory
2025-01-03T07:51:38Z
154
2
transformers
[ "transformers", "gguf", "triangulum_1b", "sft", "chain_of_thought", "ollama", "text-generation-inference", "llama_for_causal_lm", "reasoning", "CoT", "text-generation", "en", "de", "fr", "it", "pt", "hi", "es", "th", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-03T07:43:31Z
--- license: creativeml-openrail-m language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation tags: - triangulum_1b - sft - chain_of_thought - ollama - text-generation-inference - llama_for_causal_lm - reasoning - CoT library_name: transformers metrics: - code_eval - accuracy - competition_math - character --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Triangulum-1B-GGUF This is quantized version of [prithivMLmods/Triangulum-1B](https://huggingface.co/prithivMLmods/Triangulum-1B) created using llama.cpp # Original Model Card ![Triangulum-5b.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/By0OJ1lMvP5ZvVvfEGvz5.png) <pre align="center"> __ .__ .__ _/ |_ _______ |__|_____ ____ ____ __ __ | | __ __ _____ \ __\\_ __ \| |\__ \ / \ / ___\ | | \| | | | \ / \ | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \ |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| / \/ \//_____/ \/ </pre> # **Triangulum 1B: Multilingual Large Language Models (LLMs)** Triangulum 1B is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively. # **Key Features & Model Architecture** - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance. - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety. - **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts. --- - Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. # **Training Approach** 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities. 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets. 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes. # **How to use with transformers** Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "prithivMLmods/Triangulum-1B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` # **Demo Inference LlamaForCausalLM** ```python import torch from transformers import AutoTokenizer, LlamaForCausalLM # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-1B', trust_remote_code=True) model = LlamaForCausalLM.from_pretrained( "prithivMLmods/Triangulum-1B", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) # Define a list of system and user prompts prompts = [ """<|im_start|>system You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|> <|im_start|>user Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|> <|im_start|>assistant""" ] # Generate responses for each prompt for chat in prompts: print(f"Prompt:\n{chat}\n") input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response:\n{response}\n{'-'*80}\n") ``` # **Key Adjustments** 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt. 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice. 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility. You can expand the list of prompts to explore a variety of scenarios and responses. # **Use Cases for T5B** - Multilingual content generation - Question answering and dialogue systems - Text summarization and analysis - Translation and localization tasks # **Technical Details** Triangulum 1B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases. # **How to Run Triangulum 5B on Ollama Locally** ```markdown # How to Run Ollama Locally This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease. --- ## Example 1: How to Run the Triangulum-1B Model The **Triangulum-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants. ### Step 1: Download the Model First, download the **Triangulum-1B-F16.gguf** model using the following command: ```bash ollama run triangulum-1b-f16.gguf ``` ### Step 2: Model Initialization and Download Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following: ```plaintext pulling manifest pulling 8934d96d3f08... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████▏ 3.8 GB pulling 8c17c2ebb0ea... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████▏ 7.0 KB pulling 7c23fb36d801... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████▏ 4.8 KB pulling 2e0493f67d0c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████▏ 59 B pulling fa304d675061... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████▏ 91 B pulling 42ba7f8a01dd... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████▏ 557 B verifying sha256 digest writing manifest removing any unused layers success >>> Send a message (/? for help) ``` ### Step 3: Interact with the Model Once the model is ready, you can send a prompt. For example, let's ask: ```plaintext >>> What can you do for me? ``` If you asked the same question, you should receive a response like this: ```plaintext As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with: 1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture. 2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems. 3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases. 4. Translation: I can translate text from one language to another. 5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions. 6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing. 7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises. 8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss. Please let me know if there is anything specific you would like me to help you with. ``` ### Step 4: Exit the Program To exit the program, simply type: ```plaintext /exit ``` ## Example 2: Running Multi-Modal Models (Future Use) Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available. ## Notes on Using Quantized Models Quantized models like **triangulum-1b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference. 1. Ensure your system has sufficient VRAM or CPU resources. 2. Use the `.gguf` model format for compatibility with Ollama. # **Conclusion** Running the **Triangulum-5B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.
AIR-hl/Qwen2.5-1.5B-WPO
AIR-hl
2025-01-03T07:46:38Z
145
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "trl", "qwen", "wpo", "alignment", "custome", "chat", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:AIR-hl/Qwen2.5-1.5B-ultrachat200k", "base_model:finetune:AIR-hl/Qwen2.5-1.5B-ultrachat200k", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-02T05:47:11Z
--- license: apache-2.0 datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: - AIR-hl/Qwen2.5-1.5B-ultrachat200k pipeline_tag: text-generation tags: - trl - qwen - wpo - alignment - transformers - custome - chat --- # Qwen2.5-1.5B-WPO ## Model Details - **Model type:** aligned model - **License:** Apache license 2.0 - **Finetuned from model:** [AIR-hl/Qwen2.5-1.5B-ultrachat200k](https://huggingface.co/AIR-hl/Qwen2.5-1.5B-ultrachat200k) - **Training data:** [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) - **Training framework:** [trl](https://github.com/huggingface/trl) ## Training Details devices: 4 * NPU 910B-64GB \ precision: bf16 mixed-precision \ global_batch_size: 128 ### Training Hyperparameters `attn_implementation`: None \ `beta`: 0.01 \ `bf16`: True \ `learning_rate`: 1e-6 \ `lr_scheduler_type`: cosine \ `per_device_train_batch_size`: 8 \ `gradient_accumulation_steps`: 4 \ `torch_dtype`: bfloat16 \ `num_train_epochs`: 1 \ `max_prompt_length`: 512 \ `max_length`: 1024 \ `warmup_ratio`: 0.05 ### Results `init_train_loss`: 0.2410 \ `final_train_loss`: 0.1367 \ `accuracy`: 0.65 \ `reward_margin`: 0.2402 ### Training script ```python import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer import multiprocessing from trl import ( DPOConfig, DPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE if __name__ == "__main__": parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig)) script_args, training_args, model_config = parser.parse_args_and_config() torch_dtype = ( model_config.torch_dtype if model_config.torch_dtype in ["auto", None] else getattr(torch, model_config.torch_dtype) ) quantization_config = get_quantization_config(model_config) model_kwargs = dict( revision=model_config.model_revision, attn_implementation=model_config.attn_implementation, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained( model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs ) peft_config = get_peft_config(model_config) if peft_config is None: ref_model = AutoModelForCausalLM.from_pretrained( model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs ) else: ref_model = None tokenizer = AutoTokenizer.from_pretrained( model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token if tokenizer.chat_template is None: tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE if script_args.ignore_bias_buffers: model._ddp_params_and_buffers_to_ignore = [ name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool ] dataset = load_dataset(script_args.dataset_name, split=script_args.dataset_train_split) dataset=dataset.select_columns(['chosen', 'prompt', 'rejected']) trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, processing_class=tokenizer, peft_config=peft_config, ) trainer.train() trainer.save_model(training_args.output_dir) ```
Rich-J/subnet29_upload_c01_Jan3_0
Rich-J
2025-01-03T07:45:38Z
429
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:40:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KoichiYasuoka/roberta-base-thai-syllable-upos
KoichiYasuoka
2025-01-03T07:44:25Z
116
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "thai", "pos", "wikipedia", "dependency-parsing", "th", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-base-thai-syllable", "base_model:finetune:KoichiYasuoka/roberta-base-thai-syllable", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - "th" tags: - "thai" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-thai-syllable datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "หลายหัวดีกว่าหัวเดียว" --- # roberta-base-thai-syllable-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-syllable](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-syllable-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
joannakhek/SmolLM2-FT-MyDataset
joannakhek
2025-01-03T07:43:17Z
147
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "smol-course", "module_1", "trl", "sft", "conversational", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:42:46Z
--- base_model: HuggingFaceTB/SmolLM2-135M library_name: transformers model_name: SmolLM2-FT-MyDataset tags: - generated_from_trainer - smol-course - module_1 - trl - sft licence: license --- # Model Card for SmolLM2-FT-MyDataset This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joannakhek/SmolLM2-FT-MyDataset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.3 - Pytorch: 2.4.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF
mradermacher
2025-01-03T07:37:18Z
18
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:zelk12/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B", "base_model:quantized:zelk12/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T07:08:22Z
--- base_model: zelk12/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/zelk12/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MM-gemma-2-MT5g4MTM4-9B.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/electric-sheep-7b-alpha-GGUF
mradermacher
2025-01-03T07:28:20Z
52
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "en", "dataset:maldv/cyberpunk", "dataset:microsoft/orca-math-word-problems-200k", "dataset:Weyaxi/sci-datasets", "dataset:maldv/conversation-cixot", "base_model:maldv/electric-sheep-7b-alpha", "base_model:quantized:maldv/electric-sheep-7b-alpha", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T00:07:03Z
--- base_model: maldv/electric-sheep-7b-alpha datasets: - maldv/cyberpunk - microsoft/orca-math-word-problems-200k - Weyaxi/sci-datasets - maldv/conversation-cixot language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/maldv/electric-sheep-7b-alpha <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/electric-sheep-7b-alpha-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/electric-sheep-7b-alpha-GGUF/resolve/main/electric-sheep-7b-alpha.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
KoichiYasuoka/roberta-base-vietnamese-upos
KoichiYasuoka
2025-01-03T07:27:21Z
114
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "vietnamese", "pos", "dependency-parsing", "vi", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-base-vietnamese", "base_model:finetune:KoichiYasuoka/roberta-base-vietnamese", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-14T02:54:06Z
--- language: - "vi" tags: - "vietnamese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-vietnamese datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Hai cái đầu thì tốt hơn một." --- # roberta-base-vietnamese-upos ## Model Description This is a RoBERTa model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing, derived from [roberta-base-vietnamese](https://huggingface.co/KoichiYasuoka/roberta-base-vietnamese). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-vietnamese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-vietnamese-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("Hai cái đầu thì tốt hơn một.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-vietnamese-upos") print(nlp("Hai cái đầu thì tốt hơn một.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
HIT-TMG/KaLM-embedding-multilingual-mini-v1
HIT-TMG
2025-01-03T07:26:50Z
4,530
19
sentence-transformers
[ "sentence-transformers", "safetensors", "qwen2", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2501.01028", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-27T08:56:33Z
--- license: mit model-index: - name: KaLM-Embedding results: - dataset: config: en-ext name: MTEB AmazonCounterfactualClassification (en-ext) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 74.16041979010495 - type: ap value: 22.731316107205824 - type: ap_weighted value: 22.731316107205824 - type: f1 value: 61.311184650259634 - type: f1_weighted value: 78.92070802470501 - type: main_score value: 74.16041979010495 task: type: Classification - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 72.35820895522387 - type: ap value: 34.13026440006763 - type: ap_weighted value: 34.13026440006763 - type: f1 value: 65.91101941691169 - type: f1_weighted value: 74.90947851184335 - type: main_score value: 72.35820895522387 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 95.2693 - type: ap value: 93.69278757537118 - type: ap_weighted value: 93.69278757537118 - type: f1 value: 95.26705627226383 - type: f1_weighted value: 95.26705627226384 - type: main_score value: 95.2693 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 51.01 - type: f1 value: 48.69903082137716 - type: f1_weighted value: 48.69903082137716 - type: main_score value: 51.01 task: type: Classification - dataset: config: default name: MTEB ArguAna revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: main_score value: 56.713 - type: map_at_1 value: 31.436999999999998 - type: map_at_10 value: 47.632000000000005 - type: map_at_100 value: 48.418 - type: map_at_1000 value: 48.421 - type: map_at_20 value: 48.274 - type: map_at_3 value: 42.568 - type: map_at_5 value: 45.473 - type: mrr_at_1 value: 31.934566145092464 - type: mrr_at_10 value: 47.80803359750735 - type: mrr_at_100 value: 48.594181951484266 - type: mrr_at_1000 value: 48.59689299100106 - type: mrr_at_20 value: 48.450028297368256 - type: mrr_at_3 value: 42.7453769559033 - type: mrr_at_5 value: 45.625889046941744 - type: nauc_map_at_1000_diff1 value: 11.309764384647323 - type: nauc_map_at_1000_max value: -12.696935142377729 - type: nauc_map_at_1000_std value: -12.712119206533423 - type: nauc_map_at_100_diff1 value: 11.311862879869643 - type: nauc_map_at_100_max value: -12.688064356825764 - type: nauc_map_at_100_std value: -12.708245196445258 - type: nauc_map_at_10_diff1 value: 11.180369964075947 - type: nauc_map_at_10_max value: -12.557609097774142 - type: nauc_map_at_10_std value: -12.86587547951096 - type: nauc_map_at_1_diff1 value: 13.545199807116537 - type: nauc_map_at_1_max value: -15.05694303234355 - type: nauc_map_at_1_std value: -13.135999468701948 - type: nauc_map_at_20_diff1 value: 11.301805884587152 - type: nauc_map_at_20_max value: -12.580961418657783 - type: nauc_map_at_20_std value: -12.626994998566007 - type: nauc_map_at_3_diff1 value: 11.021077829815507 - type: nauc_map_at_3_max value: -13.20022886911152 - type: nauc_map_at_3_std value: -13.127711855412471 - type: nauc_map_at_5_diff1 value: 11.138694322935278 - type: nauc_map_at_5_max value: -12.748146823323433 - type: nauc_map_at_5_std value: -13.183789787796002 - type: nauc_mrr_at_1000_diff1 value: 9.677867008889587 - type: nauc_mrr_at_1000_max value: -13.420330905625857 - type: nauc_mrr_at_1000_std value: -12.792519437553008 - type: nauc_mrr_at_100_diff1 value: 9.680107626011944 - type: nauc_mrr_at_100_max value: -13.411410836965254 - type: nauc_mrr_at_100_std value: -12.788644939208261 - type: nauc_mrr_at_10_diff1 value: 9.589680890065521 - type: nauc_mrr_at_10_max value: -13.261739941834202 - type: nauc_mrr_at_10_std value: -12.944134710141187 - type: nauc_mrr_at_1_diff1 value: 12.085031779160564 - type: nauc_mrr_at_1_max value: -15.02002211766975 - type: nauc_mrr_at_1_std value: -13.355756268733016 - type: nauc_mrr_at_20_diff1 value: 9.677873154739816 - type: nauc_mrr_at_20_max value: -13.300790622622587 - type: nauc_mrr_at_20_std value: -12.707185337847148 - type: nauc_mrr_at_3_diff1 value: 9.472988614112802 - type: nauc_mrr_at_3_max value: -13.919505060412762 - type: nauc_mrr_at_3_std value: -13.164277574722277 - type: nauc_mrr_at_5_diff1 value: 9.467059127457365 - type: nauc_mrr_at_5_max value: -13.584824274866206 - type: nauc_mrr_at_5_std value: -13.199173673034172 - type: nauc_ndcg_at_1000_diff1 value: 11.117383537119457 - type: nauc_ndcg_at_1000_max value: -12.047108406166398 - type: nauc_ndcg_at_1000_std value: -12.4255053792295 - type: nauc_ndcg_at_100_diff1 value: 11.199092599092824 - type: nauc_ndcg_at_100_max value: -11.816562361312737 - type: nauc_ndcg_at_100_std value: -12.321599738274934 - type: nauc_ndcg_at_10_diff1 value: 10.619688096042301 - type: nauc_ndcg_at_10_max value: -10.991140718309158 - type: nauc_ndcg_at_10_std value: -12.913717053782964 - type: nauc_ndcg_at_1_diff1 value: 13.545199807116537 - type: nauc_ndcg_at_1_max value: -15.05694303234355 - type: nauc_ndcg_at_1_std value: -13.135999468701948 - type: nauc_ndcg_at_20_diff1 value: 11.079239059115043 - type: nauc_ndcg_at_20_max value: -11.107522795986476 - type: nauc_ndcg_at_20_std value: -11.917269092652596 - type: nauc_ndcg_at_3_diff1 value: 10.328082482022936 - type: nauc_ndcg_at_3_max value: -12.609971276627075 - type: nauc_ndcg_at_3_std value: -13.581875503621793 - type: nauc_ndcg_at_5_diff1 value: 10.598034768408395 - type: nauc_ndcg_at_5_max value: -11.664284036838387 - type: nauc_ndcg_at_5_std value: -13.738318585447246 - type: nauc_precision_at_1000_diff1 value: 3.733355117431035 - type: nauc_precision_at_1000_max value: 22.126811641224737 - type: nauc_precision_at_1000_std value: 77.22610895194498 - type: nauc_precision_at_100_diff1 value: 27.682371417569136 - type: nauc_precision_at_100_max value: 55.30719621706036 - type: nauc_precision_at_100_std value: 51.87386775498134 - type: nauc_precision_at_10_diff1 value: 7.322656348885176 - type: nauc_precision_at_10_max value: 0.2704135680738493 - type: nauc_precision_at_10_std value: -12.841217202927321 - type: nauc_precision_at_1_diff1 value: 13.545199807116537 - type: nauc_precision_at_1_max value: -15.05694303234355 - type: nauc_precision_at_1_std value: -13.135999468701948 - type: nauc_precision_at_20_diff1 value: 10.486079260481048 - type: nauc_precision_at_20_max value: 14.003109613986817 - type: nauc_precision_at_20_std value: 4.910816164725959 - type: nauc_precision_at_3_diff1 value: 8.271896718206264 - type: nauc_precision_at_3_max value: -10.827383320727357 - type: nauc_precision_at_3_std value: -15.106532989878312 - type: nauc_precision_at_5_diff1 value: 8.834654894956898 - type: nauc_precision_at_5_max value: -7.540039352361894 - type: nauc_precision_at_5_std value: -15.969132098353741 - type: nauc_recall_at_1000_diff1 value: 3.733355117431255 - type: nauc_recall_at_1000_max value: 22.126811641217202 - type: nauc_recall_at_1000_std value: 77.22610895193765 - type: nauc_recall_at_100_diff1 value: 27.682371417566458 - type: nauc_recall_at_100_max value: 55.30719621705814 - type: nauc_recall_at_100_std value: 51.8738677549813 - type: nauc_recall_at_10_diff1 value: 7.322656348885266 - type: nauc_recall_at_10_max value: 0.27041356807404016 - type: nauc_recall_at_10_std value: -12.841217202927096 - type: nauc_recall_at_1_diff1 value: 13.545199807116537 - type: nauc_recall_at_1_max value: -15.05694303234355 - type: nauc_recall_at_1_std value: -13.135999468701948 - type: nauc_recall_at_20_diff1 value: 10.486079260481167 - type: nauc_recall_at_20_max value: 14.003109613986972 - type: nauc_recall_at_20_std value: 4.910816164726593 - type: nauc_recall_at_3_diff1 value: 8.271896718206312 - type: nauc_recall_at_3_max value: -10.827383320727314 - type: nauc_recall_at_3_std value: -15.106532989878287 - type: nauc_recall_at_5_diff1 value: 8.834654894956909 - type: nauc_recall_at_5_max value: -7.540039352361923 - type: nauc_recall_at_5_std value: -15.969132098353715 - type: ndcg_at_1 value: 31.436999999999998 - type: ndcg_at_10 value: 56.713 - type: ndcg_at_100 value: 59.887 - type: ndcg_at_1000 value: 59.94500000000001 - type: ndcg_at_20 value: 58.98 - type: ndcg_at_3 value: 46.261 - type: ndcg_at_5 value: 51.501 - type: precision_at_1 value: 31.436999999999998 - type: precision_at_10 value: 8.578 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.73 - type: precision_at_3 value: 18.990000000000002 - type: precision_at_5 value: 13.94 - type: recall_at_1 value: 31.436999999999998 - type: recall_at_10 value: 85.775 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 94.595 - type: recall_at_3 value: 56.97 - type: recall_at_5 value: 69.70100000000001 task: type: Retrieval - dataset: config: default name: MTEB ArxivClusteringP2P revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: main_score value: 47.077382303485514 - type: v_measure value: 47.077382303485514 - type: v_measure_std value: 14.00039477846898 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: main_score value: 39.11589804504639 - type: v_measure value: 39.11589804504639 - type: v_measure_std value: 14.697039096668583 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: main_score value: 60.01096720382656 - type: map value: 60.01096720382656 - type: mrr value: 74.4235588972431 - type: nAUC_map_diff1 value: 14.296647950054817 - type: nAUC_map_max value: 21.720215707737303 - type: nAUC_map_std value: 18.20845510591147 - type: nAUC_mrr_diff1 value: 23.769639422872142 - type: nAUC_mrr_max value: 33.07785201075024 - type: nAUC_mrr_std value: 18.461570711690968 task: type: Reranking - dataset: config: default name: MTEB BIOSSES revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cosine_pearson value: 87.60987223075549 - type: cosine_spearman value: 86.23750714877664 - type: euclidean_pearson value: 86.21541799525612 - type: euclidean_spearman value: 86.23750714877664 - type: main_score value: 86.23750714877664 - type: manhattan_pearson value: 86.1758097383748 - type: manhattan_spearman value: 86.37365482930716 - type: pearson value: 87.60987223075549 - type: spearman value: 86.23750714877664 task: type: STS - dataset: config: default name: MTEB Banking77Classification revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 79.16883116883118 - type: f1 value: 78.34840435712427 - type: f1_weighted value: 78.3484043571243 - type: main_score value: 79.16883116883118 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: main_score value: 39.29881417268574 - type: v_measure value: 39.29881417268574 - type: v_measure_std value: 1.1874002185778423 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: main_score value: 33.9614529554878 - type: v_measure value: 33.9614529554878 - type: v_measure_std value: 0.6283058974037568 task: type: Clustering - dataset: config: default name: MTEB CQADupstackAndroidRetrieval revision: f46a197baaae43b4f621051089b82a364682dfeb split: test type: mteb/cqadupstack-android metrics: - type: main_score value: 51.891 - type: map_at_1 value: 33.335 - type: map_at_10 value: 45.206 - type: map_at_100 value: 46.794000000000004 - type: map_at_1000 value: 46.910000000000004 - type: map_at_20 value: 46.107 - type: map_at_3 value: 41.478 - type: map_at_5 value: 43.491 - type: mrr_at_1 value: 40.2002861230329 - type: mrr_at_10 value: 51.27449644617026 - type: mrr_at_100 value: 51.94262681998448 - type: mrr_at_1000 value: 51.98748435659779 - type: mrr_at_20 value: 51.679253979427365 - type: mrr_at_3 value: 48.545541249403904 - type: mrr_at_5 value: 50.26943252265138 - type: nauc_map_at_1000_diff1 value: 53.279892622864466 - type: nauc_map_at_1000_max value: 37.30026325175372 - type: nauc_map_at_1000_std value: -5.31272778840401 - type: nauc_map_at_100_diff1 value: 53.260255242354035 - type: nauc_map_at_100_max value: 37.34138849578408 - type: nauc_map_at_100_std value: -5.223853769998806 - type: nauc_map_at_10_diff1 value: 53.01168904143889 - type: nauc_map_at_10_max value: 36.52985848709173 - type: nauc_map_at_10_std value: -6.60737122397934 - type: nauc_map_at_1_diff1 value: 57.48774969135532 - type: nauc_map_at_1_max value: 32.87239964104006 - type: nauc_map_at_1_std value: -9.65950934039381 - type: nauc_map_at_20_diff1 value: 53.014218960477145 - type: nauc_map_at_20_max value: 36.95460780612761 - type: nauc_map_at_20_std value: -5.7846033314898975 - type: nauc_map_at_3_diff1 value: 53.386035964079085 - type: nauc_map_at_3_max value: 35.494196154327376 - type: nauc_map_at_3_std value: -7.761241655463379 - type: nauc_map_at_5_diff1 value: 52.52045589069632 - type: nauc_map_at_5_max value: 35.87189518536011 - type: nauc_map_at_5_std value: -7.280825988785475 - type: nauc_mrr_at_1000_diff1 value: 52.21043432899831 - type: nauc_mrr_at_1000_max value: 37.52636619273335 - type: nauc_mrr_at_1000_std value: -5.458572482733526 - type: nauc_mrr_at_100_diff1 value: 52.19543099780388 - type: nauc_mrr_at_100_max value: 37.528593941814115 - type: nauc_mrr_at_100_std value: -5.434274045688043 - type: nauc_mrr_at_10_diff1 value: 51.89698285990516 - type: nauc_mrr_at_10_max value: 37.444484137976744 - type: nauc_mrr_at_10_std value: -5.682595266827838 - type: nauc_mrr_at_1_diff1 value: 56.17142686081959 - type: nauc_mrr_at_1_max value: 36.815076888109125 - type: nauc_mrr_at_1_std value: -9.1961282634956 - type: nauc_mrr_at_20_diff1 value: 52.13365466798001 - type: nauc_mrr_at_20_max value: 37.47508491548877 - type: nauc_mrr_at_20_std value: -5.38723388397372 - type: nauc_mrr_at_3_diff1 value: 52.261215410063635 - type: nauc_mrr_at_3_max value: 38.06288987541818 - type: nauc_mrr_at_3_std value: -6.3586931672947555 - type: nauc_mrr_at_5_diff1 value: 51.361626281443954 - type: nauc_mrr_at_5_max value: 37.21931557944178 - type: nauc_mrr_at_5_std value: -6.2463983922879125 - type: nauc_ndcg_at_1000_diff1 value: 52.302043350366354 - type: nauc_ndcg_at_1000_max value: 38.20021133882071 - type: nauc_ndcg_at_1000_std value: -2.4092846074901835 - type: nauc_ndcg_at_100_diff1 value: 52.08002602041293 - type: nauc_ndcg_at_100_max value: 38.59011692167586 - type: nauc_ndcg_at_100_std value: -1.1028958529707618 - type: nauc_ndcg_at_10_diff1 value: 50.96919959110156 - type: nauc_ndcg_at_10_max value: 37.27781873450064 - type: nauc_ndcg_at_10_std value: -4.275751021315601 - type: nauc_ndcg_at_1_diff1 value: 56.17142686081959 - type: nauc_ndcg_at_1_max value: 36.815076888109125 - type: nauc_ndcg_at_1_std value: -9.1961282634956 - type: nauc_ndcg_at_20_diff1 value: 51.18802925052476 - type: nauc_ndcg_at_20_max value: 37.37541430996012 - type: nauc_ndcg_at_20_std value: -2.535809483675881 - type: nauc_ndcg_at_3_diff1 value: 51.55692622850066 - type: nauc_ndcg_at_3_max value: 38.161090909217535 - type: nauc_ndcg_at_3_std value: -5.451913542383229 - type: nauc_ndcg_at_5_diff1 value: 49.79865041898466 - type: nauc_ndcg_at_5_max value: 37.05367743749936 - type: nauc_ndcg_at_5_std value: -5.333995413688977 - type: nauc_precision_at_1000_diff1 value: -9.765182693652369 - type: nauc_precision_at_1000_max value: -6.187402469203501 - type: nauc_precision_at_1000_std value: -1.6165299667925566 - type: nauc_precision_at_100_diff1 value: -3.3699636809298488 - type: nauc_precision_at_100_max value: 10.763143757354227 - type: nauc_precision_at_100_std value: 14.6134300235666 - type: nauc_precision_at_10_diff1 value: 12.380848989838922 - type: nauc_precision_at_10_max value: 27.814295948898703 - type: nauc_precision_at_10_std value: 9.281809355379423 - type: nauc_precision_at_1_diff1 value: 56.17142686081959 - type: nauc_precision_at_1_max value: 36.815076888109125 - type: nauc_precision_at_1_std value: -9.1961282634956 - type: nauc_precision_at_20_diff1 value: 5.172974864217038 - type: nauc_precision_at_20_max value: 21.610380863767407 - type: nauc_precision_at_20_std value: 14.897216777831563 - type: nauc_precision_at_3_diff1 value: 32.62574902686228 - type: nauc_precision_at_3_max value: 38.23786681054578 - type: nauc_precision_at_3_std value: 1.5049286474387453 - type: nauc_precision_at_5_diff1 value: 20.157338510243537 - type: nauc_precision_at_5_max value: 33.504499592506924 - type: nauc_precision_at_5_std value: 5.128885224590291 - type: nauc_recall_at_1000_diff1 value: 52.32430518946571 - type: nauc_recall_at_1000_max value: 56.03264454563954 - type: nauc_recall_at_1000_std value: 59.06408303625301 - type: nauc_recall_at_100_diff1 value: 44.41661317138834 - type: nauc_recall_at_100_max value: 43.511654367641746 - type: nauc_recall_at_100_std value: 28.435889217482348 - type: nauc_recall_at_10_diff1 value: 41.091326330340564 - type: nauc_recall_at_10_max value: 32.634495610887825 - type: nauc_recall_at_10_std value: 0.4940136136777342 - type: nauc_recall_at_1_diff1 value: 57.48774969135532 - type: nauc_recall_at_1_max value: 32.87239964104006 - type: nauc_recall_at_1_std value: -9.65950934039381 - type: nauc_recall_at_20_diff1 value: 40.31827375470033 - type: nauc_recall_at_20_max value: 32.29591796577925 - type: nauc_recall_at_20_std value: 9.003204772501102 - type: nauc_recall_at_3_diff1 value: 45.516327838347145 - type: nauc_recall_at_3_max value: 34.64131339427055 - type: nauc_recall_at_3_std value: -4.883112425443149 - type: nauc_recall_at_5_diff1 value: 40.04821220854672 - type: nauc_recall_at_5_max value: 31.778912319343245 - type: nauc_recall_at_5_std value: -3.7415628516202455 - type: ndcg_at_1 value: 40.2 - type: ndcg_at_10 value: 51.891 - type: ndcg_at_100 value: 57.176 - type: ndcg_at_1000 value: 58.923 - type: ndcg_at_20 value: 54.069 - type: ndcg_at_3 value: 46.598 - type: ndcg_at_5 value: 49.09 - type: precision_at_1 value: 40.2 - type: precision_at_10 value: 9.914000000000001 - type: precision_at_100 value: 1.567 - type: precision_at_1000 value: 0.201 - type: precision_at_20 value: 5.88 - type: precision_at_3 value: 22.413 - type: precision_at_5 value: 16.166 - type: recall_at_1 value: 33.335 - type: recall_at_10 value: 64.551 - type: recall_at_100 value: 85.821 - type: recall_at_1000 value: 96.762 - type: recall_at_20 value: 72.174 - type: recall_at_3 value: 49.486000000000004 - type: recall_at_5 value: 56.333 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackEnglishRetrieval revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 split: test type: mteb/cqadupstack-english metrics: - type: main_score value: 47.743 - type: map_at_1 value: 30.749 - type: map_at_10 value: 41.893 - type: map_at_100 value: 43.074 - type: map_at_1000 value: 43.206 - type: map_at_20 value: 42.484 - type: map_at_3 value: 38.832 - type: map_at_5 value: 40.56 - type: mrr_at_1 value: 38.47133757961784 - type: mrr_at_10 value: 47.47879385299764 - type: mrr_at_100 value: 48.13041682690096 - type: mrr_at_1000 value: 48.16908094151714 - type: mrr_at_20 value: 47.83975520310091 - type: mrr_at_3 value: 45.24416135881104 - type: mrr_at_5 value: 46.4575371549894 - type: nauc_map_at_1000_diff1 value: 53.06462034979563 - type: nauc_map_at_1000_max value: 40.432105687788656 - type: nauc_map_at_1000_std value: 0.8039549983504692 - type: nauc_map_at_100_diff1 value: 53.05370086178664 - type: nauc_map_at_100_max value: 40.35039423002031 - type: nauc_map_at_100_std value: 0.6926327616039866 - type: nauc_map_at_10_diff1 value: 53.1830045138059 - type: nauc_map_at_10_max value: 39.627286670538595 - type: nauc_map_at_10_std value: -0.22464993353878815 - type: nauc_map_at_1_diff1 value: 56.871781522537766 - type: nauc_map_at_1_max value: 32.96704680744524 - type: nauc_map_at_1_std value: -5.921602493857661 - type: nauc_map_at_20_diff1 value: 53.145249746486044 - type: nauc_map_at_20_max value: 40.01420443810482 - type: nauc_map_at_20_std value: 0.08024012298451409 - type: nauc_map_at_3_diff1 value: 53.61256390241628 - type: nauc_map_at_3_max value: 37.718761042447355 - type: nauc_map_at_3_std value: -3.1494217572705643 - type: nauc_map_at_5_diff1 value: 53.42451370773802 - type: nauc_map_at_5_max value: 39.10211508999835 - type: nauc_map_at_5_std value: -1.3726005124064382 - type: nauc_mrr_at_1000_diff1 value: 52.366327228586826 - type: nauc_mrr_at_1000_max value: 42.79408822085321 - type: nauc_mrr_at_1000_std value: 5.269519433666342 - type: nauc_mrr_at_100_diff1 value: 52.35603052240957 - type: nauc_mrr_at_100_max value: 42.79000481880218 - type: nauc_mrr_at_100_std value: 5.2750737033839 - type: nauc_mrr_at_10_diff1 value: 52.39562273635053 - type: nauc_mrr_at_10_max value: 42.89003586620541 - type: nauc_mrr_at_10_std value: 5.271670669960424 - type: nauc_mrr_at_1_diff1 value: 55.23898880710424 - type: nauc_mrr_at_1_max value: 40.54533981737213 - type: nauc_mrr_at_1_std value: 2.8970042155061764 - type: nauc_mrr_at_20_diff1 value: 52.37981625369539 - type: nauc_mrr_at_20_max value: 42.84997042876778 - type: nauc_mrr_at_20_std value: 5.227463826093572 - type: nauc_mrr_at_3_diff1 value: 52.72571788614424 - type: nauc_mrr_at_3_max value: 42.345870917325726 - type: nauc_mrr_at_3_std value: 3.299097645280945 - type: nauc_mrr_at_5_diff1 value: 52.62188834616699 - type: nauc_mrr_at_5_max value: 42.903468515894396 - type: nauc_mrr_at_5_std value: 4.747245788723795 - type: nauc_ndcg_at_1000_diff1 value: 51.35755860941204 - type: nauc_ndcg_at_1000_max value: 42.52609999052394 - type: nauc_ndcg_at_1000_std value: 5.642311193436153 - type: nauc_ndcg_at_100_diff1 value: 51.28342511372341 - type: nauc_ndcg_at_100_max value: 42.37095542860874 - type: nauc_ndcg_at_100_std value: 5.438433970975347 - type: nauc_ndcg_at_10_diff1 value: 51.71963256563276 - type: nauc_ndcg_at_10_max value: 42.02346709779174 - type: nauc_ndcg_at_10_std value: 3.824062263424335 - type: nauc_ndcg_at_1_diff1 value: 55.23898880710424 - type: nauc_ndcg_at_1_max value: 40.54533981737213 - type: nauc_ndcg_at_1_std value: 2.8970042155061764 - type: nauc_ndcg_at_20_diff1 value: 51.62634477715352 - type: nauc_ndcg_at_20_max value: 42.29963927857424 - type: nauc_ndcg_at_20_std value: 3.9028710206367236 - type: nauc_ndcg_at_3_diff1 value: 52.222449202755016 - type: nauc_ndcg_at_3_max value: 41.46992245846295 - type: nauc_ndcg_at_3_std value: 1.0823436332685996 - type: nauc_ndcg_at_5_diff1 value: 52.16212705304167 - type: nauc_ndcg_at_5_max value: 42.13209332939894 - type: nauc_ndcg_at_5_std value: 2.4542588912655274 - type: nauc_precision_at_1000_diff1 value: -8.401668509217943 - type: nauc_precision_at_1000_max value: 15.032825183812085 - type: nauc_precision_at_1000_std value: 26.43305637512703 - type: nauc_precision_at_100_diff1 value: -1.8634808652246229 - type: nauc_precision_at_100_max value: 25.81140765391014 - type: nauc_precision_at_100_std value: 30.416905158069866 - type: nauc_precision_at_10_diff1 value: 17.41557757307102 - type: nauc_precision_at_10_max value: 39.14885850946607 - type: nauc_precision_at_10_std value: 24.95280377881581 - type: nauc_precision_at_1_diff1 value: 55.23898880710424 - type: nauc_precision_at_1_max value: 40.54533981737213 - type: nauc_precision_at_1_std value: 2.8970042155061764 - type: nauc_precision_at_20_diff1 value: 10.062640125327128 - type: nauc_precision_at_20_max value: 35.045402951191846 - type: nauc_precision_at_20_std value: 25.70168197296463 - type: nauc_precision_at_3_diff1 value: 33.46362110931572 - type: nauc_precision_at_3_max value: 41.412992322808925 - type: nauc_precision_at_3_std value: 11.979383703068118 - type: nauc_precision_at_5_diff1 value: 26.683507518187668 - type: nauc_precision_at_5_max value: 41.72280139069927 - type: nauc_precision_at_5_std value: 19.17798438251631 - type: nauc_recall_at_1000_diff1 value: 38.735635750923215 - type: nauc_recall_at_1000_max value: 44.86473643316888 - type: nauc_recall_at_1000_std value: 31.25373100446453 - type: nauc_recall_at_100_diff1 value: 40.57017590339941 - type: nauc_recall_at_100_max value: 41.58935193499359 - type: nauc_recall_at_100_std value: 19.64130480064006 - type: nauc_recall_at_10_diff1 value: 45.17360514460368 - type: nauc_recall_at_10_max value: 40.261115967269255 - type: nauc_recall_at_10_std value: 7.455967519438798 - type: nauc_recall_at_1_diff1 value: 56.871781522537766 - type: nauc_recall_at_1_max value: 32.96704680744524 - type: nauc_recall_at_1_std value: -5.921602493857661 - type: nauc_recall_at_20_diff1 value: 43.72345233115324 - type: nauc_recall_at_20_max value: 41.57606589762751 - type: nauc_recall_at_20_std value: 8.691613720578838 - type: nauc_recall_at_3_diff1 value: 49.05085474723903 - type: nauc_recall_at_3_max value: 37.76677336796684 - type: nauc_recall_at_3_std value: -2.60155821559317 - type: nauc_recall_at_5_diff1 value: 47.93530083560441 - type: nauc_recall_at_5_max value: 40.34510386143269 - type: nauc_recall_at_5_std value: 2.490510815950763 - type: ndcg_at_1 value: 38.471 - type: ndcg_at_10 value: 47.743 - type: ndcg_at_100 value: 52.105999999999995 - type: ndcg_at_1000 value: 54.047 - type: ndcg_at_20 value: 49.277 - type: ndcg_at_3 value: 43.423 - type: ndcg_at_5 value: 45.308 - type: precision_at_1 value: 38.471 - type: precision_at_10 value: 8.936 - type: precision_at_100 value: 1.439 - type: precision_at_1000 value: 0.191 - type: precision_at_20 value: 5.197 - type: precision_at_3 value: 21.21 - type: precision_at_5 value: 14.764 - type: recall_at_1 value: 30.749 - type: recall_at_10 value: 58.769000000000005 - type: recall_at_100 value: 77.12599999999999 - type: recall_at_1000 value: 89.131 - type: recall_at_20 value: 64.23299999999999 - type: recall_at_3 value: 45.722 - type: recall_at_5 value: 51.434999999999995 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGamingRetrieval revision: 4885aa143210c98657558c04aaf3dc47cfb54340 split: test type: mteb/cqadupstack-gaming metrics: - type: main_score value: 61.763999999999996 - type: map_at_1 value: 41.738 - type: map_at_10 value: 55.54900000000001 - type: map_at_100 value: 56.595 - type: map_at_1000 value: 56.641 - type: map_at_20 value: 56.211 - type: map_at_3 value: 52.11900000000001 - type: map_at_5 value: 54.11 - type: mrr_at_1 value: 47.460815047021946 - type: mrr_at_10 value: 58.77068716723895 - type: mrr_at_100 value: 59.38209751192344 - type: mrr_at_1000 value: 59.40317589090272 - type: mrr_at_20 value: 59.18129234953538 - type: mrr_at_3 value: 56.269592476489095 - type: mrr_at_5 value: 57.708463949843356 - type: nauc_map_at_1000_diff1 value: 51.887217799463734 - type: nauc_map_at_1000_max value: 38.476238579220265 - type: nauc_map_at_1000_std value: -8.909798628947804 - type: nauc_map_at_100_diff1 value: 51.89673571830934 - type: nauc_map_at_100_max value: 38.49528851775263 - type: nauc_map_at_100_std value: -8.889935720271557 - type: nauc_map_at_10_diff1 value: 51.91349178068071 - type: nauc_map_at_10_max value: 38.245010697659836 - type: nauc_map_at_10_std value: -9.52932907514524 - type: nauc_map_at_1_diff1 value: 55.367152126889216 - type: nauc_map_at_1_max value: 31.488529193663776 - type: nauc_map_at_1_std value: -11.70055580794173 - type: nauc_map_at_20_diff1 value: 51.85824325926638 - type: nauc_map_at_20_max value: 38.46667850988723 - type: nauc_map_at_20_std value: -9.073982957469298 - type: nauc_map_at_3_diff1 value: 52.453646927521646 - type: nauc_map_at_3_max value: 37.17158366121139 - type: nauc_map_at_3_std value: -11.075317328080358 - type: nauc_map_at_5_diff1 value: 52.18170093862806 - type: nauc_map_at_5_max value: 37.87875768077388 - type: nauc_map_at_5_std value: -10.419858401874496 - type: nauc_mrr_at_1000_diff1 value: 50.893763535986395 - type: nauc_mrr_at_1000_max value: 38.27283318452696 - type: nauc_mrr_at_1000_std value: -8.965768039001496 - type: nauc_mrr_at_100_diff1 value: 50.89248813810169 - type: nauc_mrr_at_100_max value: 38.28950132255245 - type: nauc_mrr_at_100_std value: -8.95128100093488 - type: nauc_mrr_at_10_diff1 value: 50.77022223657664 - type: nauc_mrr_at_10_max value: 38.375655546871265 - type: nauc_mrr_at_10_std value: -9.095822436312883 - type: nauc_mrr_at_1_diff1 value: 54.273269231030376 - type: nauc_mrr_at_1_max value: 35.215199363709694 - type: nauc_mrr_at_1_std value: -11.475700374314476 - type: nauc_mrr_at_20_diff1 value: 50.81456113949372 - type: nauc_mrr_at_20_max value: 38.302175737552055 - type: nauc_mrr_at_20_std value: -8.934574273523289 - type: nauc_mrr_at_3_diff1 value: 50.78862027858185 - type: nauc_mrr_at_3_max value: 37.897265642308774 - type: nauc_mrr_at_3_std value: -9.7051681225179 - type: nauc_mrr_at_5_diff1 value: 50.90492316147762 - type: nauc_mrr_at_5_max value: 38.53722687374221 - type: nauc_mrr_at_5_std value: -9.299890938504227 - type: nauc_ndcg_at_1000_diff1 value: 50.73638139548288 - type: nauc_ndcg_at_1000_max value: 39.85802557514683 - type: nauc_ndcg_at_1000_std value: -6.70113183960232 - type: nauc_ndcg_at_100_diff1 value: 50.779535406638765 - type: nauc_ndcg_at_100_max value: 40.394251354245036 - type: nauc_ndcg_at_100_std value: -6.17206367606794 - type: nauc_ndcg_at_10_diff1 value: 50.303282528711016 - type: nauc_ndcg_at_10_max value: 40.231987371813275 - type: nauc_ndcg_at_10_std value: -7.639018988100839 - type: nauc_ndcg_at_1_diff1 value: 54.273269231030376 - type: nauc_ndcg_at_1_max value: 35.215199363709694 - type: nauc_ndcg_at_1_std value: -11.475700374314476 - type: nauc_ndcg_at_20_diff1 value: 50.356050127103714 - type: nauc_ndcg_at_20_max value: 40.55568084242222 - type: nauc_ndcg_at_20_std value: -6.483107726038491 - type: nauc_ndcg_at_3_diff1 value: 51.05296014104886 - type: nauc_ndcg_at_3_max value: 38.43234794308373 - type: nauc_ndcg_at_3_std value: -10.439005270644946 - type: nauc_ndcg_at_5_diff1 value: 50.910744514124396 - type: nauc_ndcg_at_5_max value: 39.65997793063013 - type: nauc_ndcg_at_5_std value: -9.301232437151493 - type: nauc_precision_at_1000_diff1 value: -20.181933493165733 - type: nauc_precision_at_1000_max value: 2.578307678316095 - type: nauc_precision_at_1000_std value: 15.686799365012833 - type: nauc_precision_at_100_diff1 value: -13.795727875316347 - type: nauc_precision_at_100_max value: 9.709062354686774 - type: nauc_precision_at_100_std value: 18.961613263814677 - type: nauc_precision_at_10_diff1 value: 7.40872143060594 - type: nauc_precision_at_10_max value: 26.809993041042556 - type: nauc_precision_at_10_std value: 10.236067383032058 - type: nauc_precision_at_1_diff1 value: 54.273269231030376 - type: nauc_precision_at_1_max value: 35.215199363709694 - type: nauc_precision_at_1_std value: -11.475700374314476 - type: nauc_precision_at_20_diff1 value: -1.688941886501611 - type: nauc_precision_at_20_max value: 21.268201038992522 - type: nauc_precision_at_20_std value: 16.07376773498563 - type: nauc_precision_at_3_diff1 value: 28.74741840390366 - type: nauc_precision_at_3_max value: 35.76072260864896 - type: nauc_precision_at_3_std value: -3.417692124530744 - type: nauc_precision_at_5_diff1 value: 19.548619556271156 - type: nauc_precision_at_5_max value: 31.886919665943346 - type: nauc_precision_at_5_std value: 1.862934756145585 - type: nauc_recall_at_1000_diff1 value: 31.041694793670338 - type: nauc_recall_at_1000_max value: 63.91892534071412 - type: nauc_recall_at_1000_std value: 69.14154944882482 - type: nauc_recall_at_100_diff1 value: 43.49542559947028 - type: nauc_recall_at_100_max value: 56.03185734090638 - type: nauc_recall_at_100_std value: 22.095792306102354 - type: nauc_recall_at_10_diff1 value: 43.14512549298462 - type: nauc_recall_at_10_max value: 45.22069238009228 - type: nauc_recall_at_10_std value: -1.2112961961367767 - type: nauc_recall_at_1_diff1 value: 55.367152126889216 - type: nauc_recall_at_1_max value: 31.488529193663776 - type: nauc_recall_at_1_std value: -11.70055580794173 - type: nauc_recall_at_20_diff1 value: 41.80793189392197 - type: nauc_recall_at_20_max value: 48.68496142311243 - type: nauc_recall_at_20_std value: 7.150814199044829 - type: nauc_recall_at_3_diff1 value: 47.569484872499665 - type: nauc_recall_at_3_max value: 39.60379791030235 - type: nauc_recall_at_3_std value: -9.958304202022761 - type: nauc_recall_at_5_diff1 value: 46.3357445159555 - type: nauc_recall_at_5_max value: 42.69508638941086 - type: nauc_recall_at_5_std value: -6.991079788988482 - type: ndcg_at_1 value: 47.461 - type: ndcg_at_10 value: 61.763999999999996 - type: ndcg_at_100 value: 65.613 - type: ndcg_at_1000 value: 66.435 - type: ndcg_at_20 value: 63.577 - type: ndcg_at_3 value: 56.119 - type: ndcg_at_5 value: 58.897 - type: precision_at_1 value: 47.461 - type: precision_at_10 value: 9.925 - type: precision_at_100 value: 1.283 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_20 value: 5.542 - type: precision_at_3 value: 25.119999999999997 - type: precision_at_5 value: 17.204 - type: recall_at_1 value: 41.738 - type: recall_at_10 value: 76.78399999999999 - type: recall_at_100 value: 92.917 - type: recall_at_1000 value: 98.63499999999999 - type: recall_at_20 value: 83.313 - type: recall_at_3 value: 61.803 - type: recall_at_5 value: 68.49199999999999 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGisRetrieval revision: 5003b3064772da1887988e05400cf3806fe491f2 split: test type: mteb/cqadupstack-gis metrics: - type: main_score value: 37.997 - type: map_at_1 value: 24.316 - type: map_at_10 value: 32.673 - type: map_at_100 value: 33.757 - type: map_at_1000 value: 33.839999999999996 - type: map_at_20 value: 33.289 - type: map_at_3 value: 29.705 - type: map_at_5 value: 31.258999999999997 - type: mrr_at_1 value: 26.55367231638418 - type: mrr_at_10 value: 34.95045287418165 - type: mrr_at_100 value: 35.88860620376054 - type: mrr_at_1000 value: 35.94690680526854 - type: mrr_at_20 value: 35.51689167162481 - type: mrr_at_3 value: 32.090395480226 - type: mrr_at_5 value: 33.59887005649716 - type: nauc_map_at_1000_diff1 value: 40.05626085462073 - type: nauc_map_at_1000_max value: 27.805616301644108 - type: nauc_map_at_1000_std value: 2.70246695251992 - type: nauc_map_at_100_diff1 value: 40.059278877458546 - type: nauc_map_at_100_max value: 27.77648271649888 - type: nauc_map_at_100_std value: 2.722441305955515 - type: nauc_map_at_10_diff1 value: 40.31968856988776 - type: nauc_map_at_10_max value: 27.476489831549973 - type: nauc_map_at_10_std value: 2.317366284056495 - type: nauc_map_at_1_diff1 value: 44.48148871072693 - type: nauc_map_at_1_max value: 28.919146703924675 - type: nauc_map_at_1_std value: -0.1434376879249071 - type: nauc_map_at_20_diff1 value: 40.06730497906938 - type: nauc_map_at_20_max value: 27.668823515524004 - type: nauc_map_at_20_std value: 2.493103019008483 - type: nauc_map_at_3_diff1 value: 41.12772700221662 - type: nauc_map_at_3_max value: 27.174803787199824 - type: nauc_map_at_3_std value: -0.10118635015762467 - type: nauc_map_at_5_diff1 value: 40.77458823783091 - type: nauc_map_at_5_max value: 27.080426477470642 - type: nauc_map_at_5_std value: 1.485466402750173 - type: nauc_mrr_at_1000_diff1 value: 38.312224992745385 - type: nauc_mrr_at_1000_max value: 28.950414700386702 - type: nauc_mrr_at_1000_std value: 4.633122302505108 - type: nauc_mrr_at_100_diff1 value: 38.293568602643354 - type: nauc_mrr_at_100_max value: 28.935077067979293 - type: nauc_mrr_at_100_std value: 4.6507547334542005 - type: nauc_mrr_at_10_diff1 value: 38.43539906942557 - type: nauc_mrr_at_10_max value: 28.740524868553607 - type: nauc_mrr_at_10_std value: 4.465395711794246 - type: nauc_mrr_at_1_diff1 value: 42.806114694868 - type: nauc_mrr_at_1_max value: 30.818773809580115 - type: nauc_mrr_at_1_std value: 3.132175800569368 - type: nauc_mrr_at_20_diff1 value: 38.28878516887039 - type: nauc_mrr_at_20_max value: 28.88291682526864 - type: nauc_mrr_at_20_std value: 4.5635678164546 - type: nauc_mrr_at_3_diff1 value: 38.92127952259694 - type: nauc_mrr_at_3_max value: 28.807748404698803 - type: nauc_mrr_at_3_std value: 2.849609058088602 - type: nauc_mrr_at_5_diff1 value: 38.75107428963604 - type: nauc_mrr_at_5_max value: 28.497437908040883 - type: nauc_mrr_at_5_std value: 4.014347384415091 - type: nauc_ndcg_at_1000_diff1 value: 37.76456270291222 - type: nauc_ndcg_at_1000_max value: 28.89838003177218 - type: nauc_ndcg_at_1000_std value: 5.749873835705088 - type: nauc_ndcg_at_100_diff1 value: 37.364173569182555 - type: nauc_ndcg_at_100_max value: 28.188496756099386 - type: nauc_ndcg_at_100_std value: 6.336162952356489 - type: nauc_ndcg_at_10_diff1 value: 37.99346022671752 - type: nauc_ndcg_at_10_max value: 27.216283907868817 - type: nauc_ndcg_at_10_std value: 4.675349793835876 - type: nauc_ndcg_at_1_diff1 value: 42.806114694868 - type: nauc_ndcg_at_1_max value: 30.818773809580115 - type: nauc_ndcg_at_1_std value: 3.132175800569368 - type: nauc_ndcg_at_20_diff1 value: 37.15938715631981 - type: nauc_ndcg_at_20_max value: 27.79557864495994 - type: nauc_ndcg_at_20_std value: 5.100109928397954 - type: nauc_ndcg_at_3_diff1 value: 39.48583283953628 - type: nauc_ndcg_at_3_max value: 27.134700120340693 - type: nauc_ndcg_at_3_std value: 0.5675585179642199 - type: nauc_ndcg_at_5_diff1 value: 38.95882101952427 - type: nauc_ndcg_at_5_max value: 26.610181412750727 - type: nauc_ndcg_at_5_std value: 3.148006615861485 - type: nauc_precision_at_1000_diff1 value: -7.764948775245091 - type: nauc_precision_at_1000_max value: 20.155338612433443 - type: nauc_precision_at_1000_std value: 17.83459760938805 - type: nauc_precision_at_100_diff1 value: 6.237678147150076 - type: nauc_precision_at_100_max value: 23.771296767151856 - type: nauc_precision_at_100_std value: 22.753492059234574 - type: nauc_precision_at_10_diff1 value: 24.993500697049335 - type: nauc_precision_at_10_max value: 27.990139005076152 - type: nauc_precision_at_10_std value: 15.431533372397558 - type: nauc_precision_at_1_diff1 value: 42.806114694868 - type: nauc_precision_at_1_max value: 30.818773809580115 - type: nauc_precision_at_1_std value: 3.132175800569368 - type: nauc_precision_at_20_diff1 value: 17.590012469188235 - type: nauc_precision_at_20_max value: 29.169967468169116 - type: nauc_precision_at_20_std value: 17.493501613866094 - type: nauc_precision_at_3_diff1 value: 34.08623278149959 - type: nauc_precision_at_3_max value: 27.285348347045286 - type: nauc_precision_at_3_std value: 3.5484785893106574 - type: nauc_precision_at_5_diff1 value: 31.448816122094613 - type: nauc_precision_at_5_max value: 26.885293174661605 - type: nauc_precision_at_5_std value: 11.257484431730946 - type: nauc_recall_at_1000_diff1 value: 28.46487014213398 - type: nauc_recall_at_1000_max value: 44.900835555926356 - type: nauc_recall_at_1000_std value: 31.16409093849983 - type: nauc_recall_at_100_diff1 value: 26.72900863714146 - type: nauc_recall_at_100_max value: 26.941137208153993 - type: nauc_recall_at_100_std value: 22.621547900809624 - type: nauc_recall_at_10_diff1 value: 31.133823078109412 - type: nauc_recall_at_10_max value: 23.89984601851163 - type: nauc_recall_at_10_std value: 9.445198373476424 - type: nauc_recall_at_1_diff1 value: 44.48148871072693 - type: nauc_recall_at_1_max value: 28.919146703924675 - type: nauc_recall_at_1_std value: -0.1434376879249071 - type: nauc_recall_at_20_diff1 value: 27.26129142150393 - type: nauc_recall_at_20_max value: 25.6868355894244 - type: nauc_recall_at_20_std value: 11.26722787869625 - type: nauc_recall_at_3_diff1 value: 36.67176156769862 - type: nauc_recall_at_3_max value: 24.517784284441092 - type: nauc_recall_at_3_std value: -0.06621021628144753 - type: nauc_recall_at_5_diff1 value: 34.52566897138122 - type: nauc_recall_at_5_max value: 22.720135055519073 - type: nauc_recall_at_5_std value: 5.15363865803676 - type: ndcg_at_1 value: 26.554 - type: ndcg_at_10 value: 37.997 - type: ndcg_at_100 value: 43.305 - type: ndcg_at_1000 value: 45.282 - type: ndcg_at_20 value: 40.129 - type: ndcg_at_3 value: 32.057 - type: ndcg_at_5 value: 34.758 - type: precision_at_1 value: 26.554 - type: precision_at_10 value: 6.023 - type: precision_at_100 value: 0.918 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_20 value: 3.514 - type: precision_at_3 value: 13.559 - type: precision_at_5 value: 9.672 - type: recall_at_1 value: 24.316 - type: recall_at_10 value: 52.413 - type: recall_at_100 value: 76.80399999999999 - type: recall_at_1000 value: 91.623 - type: recall_at_20 value: 60.462 - type: recall_at_3 value: 36.351 - type: recall_at_5 value: 42.858000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackMathematicaRetrieval revision: 90fceea13679c63fe563ded68f3b6f06e50061de split: test type: mteb/cqadupstack-mathematica metrics: - type: main_score value: 28.412 - type: map_at_1 value: 14.859 - type: map_at_10 value: 22.944 - type: map_at_100 value: 24.301000000000002 - type: map_at_1000 value: 24.422 - type: map_at_20 value: 23.699 - type: map_at_3 value: 19.88 - type: map_at_5 value: 21.617 - type: mrr_at_1 value: 18.781094527363184 - type: mrr_at_10 value: 27.092316196793792 - type: mrr_at_100 value: 28.237861305761868 - type: mrr_at_1000 value: 28.309422454313843 - type: mrr_at_20 value: 27.796436582724766 - type: mrr_at_3 value: 24.191542288557226 - type: mrr_at_5 value: 25.97014925373134 - type: nauc_map_at_1000_diff1 value: 31.282762294834683 - type: nauc_map_at_1000_max value: 22.10753198129143 - type: nauc_map_at_1000_std value: 7.464766818611464 - type: nauc_map_at_100_diff1 value: 31.20876547623262 - type: nauc_map_at_100_max value: 22.04855783261337 - type: nauc_map_at_100_std value: 7.46756154956561 - type: nauc_map_at_10_diff1 value: 32.063025777530946 - type: nauc_map_at_10_max value: 22.192839864708276 - type: nauc_map_at_10_std value: 6.935246733242942 - type: nauc_map_at_1_diff1 value: 37.124675662048645 - type: nauc_map_at_1_max value: 21.705513335758486 - type: nauc_map_at_1_std value: 5.125960085146019 - type: nauc_map_at_20_diff1 value: 31.460350111051543 - type: nauc_map_at_20_max value: 22.01600381936477 - type: nauc_map_at_20_std value: 7.320346261837271 - type: nauc_map_at_3_diff1 value: 33.549284246016946 - type: nauc_map_at_3_max value: 21.3496504436454 - type: nauc_map_at_3_std value: 5.629135047549884 - type: nauc_map_at_5_diff1 value: 33.40126100368468 - type: nauc_map_at_5_max value: 22.07074975303988 - type: nauc_map_at_5_std value: 6.0009506331816915 - type: nauc_mrr_at_1000_diff1 value: 31.676659452959417 - type: nauc_mrr_at_1000_max value: 22.893987786799595 - type: nauc_mrr_at_1000_std value: 6.023049236283401 - type: nauc_mrr_at_100_diff1 value: 31.61103328375909 - type: nauc_mrr_at_100_max value: 22.868698340353365 - type: nauc_mrr_at_100_std value: 6.017352015320805 - type: nauc_mrr_at_10_diff1 value: 31.953429710735765 - type: nauc_mrr_at_10_max value: 22.88953587703519 - type: nauc_mrr_at_10_std value: 5.736962509390694 - type: nauc_mrr_at_1_diff1 value: 35.97635527682404 - type: nauc_mrr_at_1_max value: 22.800448037132163 - type: nauc_mrr_at_1_std value: 3.2117385280672455 - type: nauc_mrr_at_20_diff1 value: 31.595235519229487 - type: nauc_mrr_at_20_max value: 22.799886818509123 - type: nauc_mrr_at_20_std value: 6.072525408593461 - type: nauc_mrr_at_3_diff1 value: 33.18342375116275 - type: nauc_mrr_at_3_max value: 22.52374592963976 - type: nauc_mrr_at_3_std value: 4.767522697706218 - type: nauc_mrr_at_5_diff1 value: 33.119779061591515 - type: nauc_mrr_at_5_max value: 23.003248125501745 - type: nauc_mrr_at_5_std value: 4.976805747506817 - type: nauc_ndcg_at_1000_diff1 value: 28.292015382102793 - type: nauc_ndcg_at_1000_max value: 22.68404765768237 - type: nauc_ndcg_at_1000_std value: 9.589972055962098 - type: nauc_ndcg_at_100_diff1 value: 26.96479405167567 - type: nauc_ndcg_at_100_max value: 21.991567834408762 - type: nauc_ndcg_at_100_std value: 10.039949830937676 - type: nauc_ndcg_at_10_diff1 value: 29.467288216868713 - type: nauc_ndcg_at_10_max value: 22.44104565858907 - type: nauc_ndcg_at_10_std value: 8.461186039677754 - type: nauc_ndcg_at_1_diff1 value: 35.97635527682404 - type: nauc_ndcg_at_1_max value: 22.800448037132163 - type: nauc_ndcg_at_1_std value: 3.2117385280672455 - type: nauc_ndcg_at_20_diff1 value: 27.651039113853848 - type: nauc_ndcg_at_20_max value: 21.865976465118173 - type: nauc_ndcg_at_20_std value: 9.612409644962762 - type: nauc_ndcg_at_3_diff1 value: 32.261234884088516 - type: nauc_ndcg_at_3_max value: 21.569892122182054 - type: nauc_ndcg_at_3_std value: 5.934094272513952 - type: nauc_ndcg_at_5_diff1 value: 32.177187585868275 - type: nauc_ndcg_at_5_max value: 22.501692436415365 - type: nauc_ndcg_at_5_std value: 6.628292970421619 - type: nauc_precision_at_1000_diff1 value: -3.119953273272669 - type: nauc_precision_at_1000_max value: 1.1513386014161908 - type: nauc_precision_at_1000_std value: -2.164470131685831 - type: nauc_precision_at_100_diff1 value: 0.5849985774022525 - type: nauc_precision_at_100_max value: 10.237261683711365 - type: nauc_precision_at_100_std value: 9.57755547972335 - type: nauc_precision_at_10_diff1 value: 15.246412164216192 - type: nauc_precision_at_10_max value: 19.899416826328565 - type: nauc_precision_at_10_std value: 10.003123363456073 - type: nauc_precision_at_1_diff1 value: 35.97635527682404 - type: nauc_precision_at_1_max value: 22.800448037132163 - type: nauc_precision_at_1_std value: 3.2117385280672455 - type: nauc_precision_at_20_diff1 value: 7.606434579256874 - type: nauc_precision_at_20_max value: 15.445346072441597 - type: nauc_precision_at_20_std value: 11.538639325143942 - type: nauc_precision_at_3_diff1 value: 25.28573060963354 - type: nauc_precision_at_3_max value: 20.11025294163431 - type: nauc_precision_at_3_std value: 5.4367185562279525 - type: nauc_precision_at_5_diff1 value: 23.428693353532925 - type: nauc_precision_at_5_max value: 21.87288793778549 - type: nauc_precision_at_5_std value: 6.350278856507092 - type: nauc_recall_at_1000_diff1 value: 11.030800804748713 - type: nauc_recall_at_1000_max value: 28.207037540270484 - type: nauc_recall_at_1000_std value: 26.53322787470092 - type: nauc_recall_at_100_diff1 value: 9.45619750103627 - type: nauc_recall_at_100_max value: 18.641295313722722 - type: nauc_recall_at_100_std value: 19.89094444759181 - type: nauc_recall_at_10_diff1 value: 21.59965548683592 - type: nauc_recall_at_10_max value: 20.983235462917357 - type: nauc_recall_at_10_std value: 12.421019075877183 - type: nauc_recall_at_1_diff1 value: 37.124675662048645 - type: nauc_recall_at_1_max value: 21.705513335758486 - type: nauc_recall_at_1_std value: 5.125960085146019 - type: nauc_recall_at_20_diff1 value: 15.356277525370507 - type: nauc_recall_at_20_max value: 18.853996115586888 - type: nauc_recall_at_20_std value: 16.118805288983083 - type: nauc_recall_at_3_diff1 value: 28.945843357597685 - type: nauc_recall_at_3_max value: 19.8912702523286 - type: nauc_recall_at_3_std value: 7.5851361764687795 - type: nauc_recall_at_5_diff1 value: 28.36471699123168 - type: nauc_recall_at_5_max value: 21.17015525566982 - type: nauc_recall_at_5_std value: 8.24163064970665 - type: ndcg_at_1 value: 18.781 - type: ndcg_at_10 value: 28.412 - type: ndcg_at_100 value: 34.782999999999994 - type: ndcg_at_1000 value: 37.518 - type: ndcg_at_20 value: 30.962 - type: ndcg_at_3 value: 22.782 - type: ndcg_at_5 value: 25.568 - type: precision_at_1 value: 18.781 - type: precision_at_10 value: 5.498 - type: precision_at_100 value: 0.9979999999999999 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_20 value: 3.4389999999999996 - type: precision_at_3 value: 11.193999999999999 - type: precision_at_5 value: 8.607 - type: recall_at_1 value: 14.859 - type: recall_at_10 value: 41.229 - type: recall_at_100 value: 68.853 - type: recall_at_1000 value: 87.86 - type: recall_at_20 value: 50.333000000000006 - type: recall_at_3 value: 25.889 - type: recall_at_5 value: 32.798 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackPhysicsRetrieval revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 split: test type: mteb/cqadupstack-physics metrics: - type: main_score value: 46.627 - type: map_at_1 value: 29.110999999999997 - type: map_at_10 value: 40.157 - type: map_at_100 value: 41.5 - type: map_at_1000 value: 41.615 - type: map_at_20 value: 40.907 - type: map_at_3 value: 36.741 - type: map_at_5 value: 38.532 - type: mrr_at_1 value: 35.899903753609244 - type: mrr_at_10 value: 45.89913989336511 - type: mrr_at_100 value: 46.66580649720437 - type: mrr_at_1000 value: 46.71327306556841 - type: mrr_at_20 value: 46.35048991522675 - type: mrr_at_3 value: 43.10234199550849 - type: mrr_at_5 value: 44.623034969521925 - type: nauc_map_at_1000_diff1 value: 48.819197227113 - type: nauc_map_at_1000_max value: 30.225193936185452 - type: nauc_map_at_1000_std value: -0.11387170703748546 - type: nauc_map_at_100_diff1 value: 48.81653586975879 - type: nauc_map_at_100_max value: 30.18941718252035 - type: nauc_map_at_100_std value: -0.16136876140004403 - type: nauc_map_at_10_diff1 value: 49.02711545619007 - type: nauc_map_at_10_max value: 29.54513048209343 - type: nauc_map_at_10_std value: -1.0721344424269519 - type: nauc_map_at_1_diff1 value: 54.55373479956459 - type: nauc_map_at_1_max value: 28.68525621187728 - type: nauc_map_at_1_std value: -3.828505921327198 - type: nauc_map_at_20_diff1 value: 48.80329695009258 - type: nauc_map_at_20_max value: 29.98470278569913 - type: nauc_map_at_20_std value: -0.4907024448684188 - type: nauc_map_at_3_diff1 value: 49.49325346627698 - type: nauc_map_at_3_max value: 30.001118629451362 - type: nauc_map_at_3_std value: -1.8332855957955085 - type: nauc_map_at_5_diff1 value: 49.15308703989204 - type: nauc_map_at_5_max value: 29.9743736651634 - type: nauc_map_at_5_std value: -1.471848560457071 - type: nauc_mrr_at_1000_diff1 value: 49.6267405356935 - type: nauc_mrr_at_1000_max value: 31.775511464032213 - type: nauc_mrr_at_1000_std value: 2.1941676606625573 - type: nauc_mrr_at_100_diff1 value: 49.60865287375136 - type: nauc_mrr_at_100_max value: 31.766711114897124 - type: nauc_mrr_at_100_std value: 2.1958339273429597 - type: nauc_mrr_at_10_diff1 value: 49.731748265273836 - type: nauc_mrr_at_10_max value: 31.510802716434373 - type: nauc_mrr_at_10_std value: 1.850952038635735 - type: nauc_mrr_at_1_diff1 value: 54.326742857864915 - type: nauc_mrr_at_1_max value: 31.714793704362155 - type: nauc_mrr_at_1_std value: 1.4094420435868311 - type: nauc_mrr_at_20_diff1 value: 49.582036904653584 - type: nauc_mrr_at_20_max value: 31.71211967406404 - type: nauc_mrr_at_20_std value: 2.1307901281304202 - type: nauc_mrr_at_3_diff1 value: 49.99569893552195 - type: nauc_mrr_at_3_max value: 32.010092946562025 - type: nauc_mrr_at_3_std value: 1.4910063885459364 - type: nauc_mrr_at_5_diff1 value: 49.40329460354263 - type: nauc_mrr_at_5_max value: 31.990047727579483 - type: nauc_mrr_at_5_std value: 1.663734759562975 - type: nauc_ndcg_at_1000_diff1 value: 47.146065393209135 - type: nauc_ndcg_at_1000_max value: 31.637365672232075 - type: nauc_ndcg_at_1000_std value: 3.2425314915817105 - type: nauc_ndcg_at_100_diff1 value: 46.96953007559477 - type: nauc_ndcg_at_100_max value: 31.16768307276679 - type: nauc_ndcg_at_100_std value: 2.942488981572898 - type: nauc_ndcg_at_10_diff1 value: 47.63345306694598 - type: nauc_ndcg_at_10_max value: 29.371578333227998 - type: nauc_ndcg_at_10_std value: 0.06472978934137909 - type: nauc_ndcg_at_1_diff1 value: 54.326742857864915 - type: nauc_ndcg_at_1_max value: 31.714793704362155 - type: nauc_ndcg_at_1_std value: 1.4094420435868311 - type: nauc_ndcg_at_20_diff1 value: 46.81989380207635 - type: nauc_ndcg_at_20_max value: 30.412570241892183 - type: nauc_ndcg_at_20_std value: 1.5075658935703282 - type: nauc_ndcg_at_3_diff1 value: 48.410857274941726 - type: nauc_ndcg_at_3_max value: 31.365778148874384 - type: nauc_ndcg_at_3_std value: -0.3887448200634908 - type: nauc_ndcg_at_5_diff1 value: 47.65943245882207 - type: nauc_ndcg_at_5_max value: 30.786802287608232 - type: nauc_ndcg_at_5_std value: -0.3340427915788538 - type: nauc_precision_at_1000_diff1 value: -13.616360194561903 - type: nauc_precision_at_1000_max value: 4.606458024282346 - type: nauc_precision_at_1000_std value: 20.097753702338583 - type: nauc_precision_at_100_diff1 value: -3.8203411621014363 - type: nauc_precision_at_100_max value: 12.195338438332039 - type: nauc_precision_at_100_std value: 21.277772831047834 - type: nauc_precision_at_10_diff1 value: 17.41015815840667 - type: nauc_precision_at_10_max value: 20.49327554673419 - type: nauc_precision_at_10_std value: 14.317393694887748 - type: nauc_precision_at_1_diff1 value: 54.326742857864915 - type: nauc_precision_at_1_max value: 31.714793704362155 - type: nauc_precision_at_1_std value: 1.4094420435868311 - type: nauc_precision_at_20_diff1 value: 8.063727537918783 - type: nauc_precision_at_20_max value: 19.39335288125252 - type: nauc_precision_at_20_std value: 18.93106122331836 - type: nauc_precision_at_3_diff1 value: 32.705924980475146 - type: nauc_precision_at_3_max value: 30.24641865632296 - type: nauc_precision_at_3_std value: 7.195922370578724 - type: nauc_precision_at_5_diff1 value: 25.471170302890012 - type: nauc_precision_at_5_max value: 27.2559781097725 - type: nauc_precision_at_5_std value: 10.423480799933591 - type: nauc_recall_at_1000_diff1 value: 15.871912487469162 - type: nauc_recall_at_1000_max value: 41.69115237346833 - type: nauc_recall_at_1000_std value: 44.74346531949558 - type: nauc_recall_at_100_diff1 value: 32.150465708991376 - type: nauc_recall_at_100_max value: 28.9450065694084 - type: nauc_recall_at_100_std value: 16.12971379538094 - type: nauc_recall_at_10_diff1 value: 40.42003119650161 - type: nauc_recall_at_10_max value: 23.798461011276167 - type: nauc_recall_at_10_std value: -0.8906910654707625 - type: nauc_recall_at_1_diff1 value: 54.55373479956459 - type: nauc_recall_at_1_max value: 28.68525621187728 - type: nauc_recall_at_1_std value: -3.828505921327198 - type: nauc_recall_at_20_diff1 value: 36.08908544861558 - type: nauc_recall_at_20_max value: 26.51340931742042 - type: nauc_recall_at_20_std value: 4.67558978611164 - type: nauc_recall_at_3_diff1 value: 44.109094420929466 - type: nauc_recall_at_3_max value: 29.817084024730185 - type: nauc_recall_at_3_std value: -1.9280901477621615 - type: nauc_recall_at_5_diff1 value: 41.53929190979217 - type: nauc_recall_at_5_max value: 28.682740378721512 - type: nauc_recall_at_5_std value: -2.1436179905847705 - type: ndcg_at_1 value: 35.9 - type: ndcg_at_10 value: 46.627 - type: ndcg_at_100 value: 52.03 - type: ndcg_at_1000 value: 53.982 - type: ndcg_at_20 value: 48.748999999999995 - type: ndcg_at_3 value: 40.96 - type: ndcg_at_5 value: 43.389 - type: precision_at_1 value: 35.9 - type: precision_at_10 value: 8.652999999999999 - type: precision_at_100 value: 1.324 - type: precision_at_1000 value: 0.168 - type: precision_at_20 value: 5.053 - type: precision_at_3 value: 19.666 - type: precision_at_5 value: 13.879 - type: recall_at_1 value: 29.110999999999997 - type: recall_at_10 value: 60.21300000000001 - type: recall_at_100 value: 82.829 - type: recall_at_1000 value: 95.236 - type: recall_at_20 value: 67.506 - type: recall_at_3 value: 44.198 - type: recall_at_5 value: 50.62 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackProgrammersRetrieval revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 split: test type: mteb/cqadupstack-programmers metrics: - type: main_score value: 42.711 - type: map_at_1 value: 25.912000000000003 - type: map_at_10 value: 36.827 - type: map_at_100 value: 38.323 - type: map_at_1000 value: 38.426 - type: map_at_20 value: 37.674 - type: map_at_3 value: 33.815 - type: map_at_5 value: 35.253 - type: mrr_at_1 value: 31.621004566210047 - type: mrr_at_10 value: 41.63106110023917 - type: mrr_at_100 value: 42.68788468525227 - type: mrr_at_1000 value: 42.737936476792896 - type: mrr_at_20 value: 42.3034469946844 - type: mrr_at_3 value: 39.44063926940638 - type: mrr_at_5 value: 40.479452054794486 - type: nauc_map_at_1000_diff1 value: 41.21238459815453 - type: nauc_map_at_1000_max value: 31.731913362155538 - type: nauc_map_at_1000_std value: 4.095602573199812 - type: nauc_map_at_100_diff1 value: 41.2386060670619 - type: nauc_map_at_100_max value: 31.745863964229752 - type: nauc_map_at_100_std value: 4.152539294264819 - type: nauc_map_at_10_diff1 value: 41.06730435812859 - type: nauc_map_at_10_max value: 31.154866667403546 - type: nauc_map_at_10_std value: 3.352195309556991 - type: nauc_map_at_1_diff1 value: 46.719436307788634 - type: nauc_map_at_1_max value: 27.23331305118017 - type: nauc_map_at_1_std value: -3.294310698511136 - type: nauc_map_at_20_diff1 value: 41.02754767769435 - type: nauc_map_at_20_max value: 31.360864488023783 - type: nauc_map_at_20_std value: 3.738456116200237 - type: nauc_map_at_3_diff1 value: 41.6933203031956 - type: nauc_map_at_3_max value: 29.89624455457615 - type: nauc_map_at_3_std value: -0.01536463182866681 - type: nauc_map_at_5_diff1 value: 40.94567456109745 - type: nauc_map_at_5_max value: 30.458349943583702 - type: nauc_map_at_5_std value: 1.9655221641608267 - type: nauc_mrr_at_1000_diff1 value: 40.652351064681724 - type: nauc_mrr_at_1000_max value: 33.01007429614183 - type: nauc_mrr_at_1000_std value: 6.26143705110491 - type: nauc_mrr_at_100_diff1 value: 40.65741819780518 - type: nauc_mrr_at_100_max value: 33.01722581370414 - type: nauc_mrr_at_100_std value: 6.302551967295325 - type: nauc_mrr_at_10_diff1 value: 40.60567647703471 - type: nauc_mrr_at_10_max value: 32.94692660407874 - type: nauc_mrr_at_10_std value: 6.082085894261765 - type: nauc_mrr_at_1_diff1 value: 46.11518802989986 - type: nauc_mrr_at_1_max value: 31.625471357672307 - type: nauc_mrr_at_1_std value: 1.234566602020697 - type: nauc_mrr_at_20_diff1 value: 40.558484630555064 - type: nauc_mrr_at_20_max value: 32.97107821653968 - type: nauc_mrr_at_20_std value: 6.265323697745393 - type: nauc_mrr_at_3_diff1 value: 40.68096006055527 - type: nauc_mrr_at_3_max value: 32.53822188043154 - type: nauc_mrr_at_3_std value: 4.345818715177205 - type: nauc_mrr_at_5_diff1 value: 40.23796517179139 - type: nauc_mrr_at_5_max value: 32.56979439355811 - type: nauc_mrr_at_5_std value: 5.595951651809914 - type: nauc_ndcg_at_1000_diff1 value: 39.7027614173243 - type: nauc_ndcg_at_1000_max value: 33.498346699070375 - type: nauc_ndcg_at_1000_std value: 8.559325736291138 - type: nauc_ndcg_at_100_diff1 value: 39.97452504741169 - type: nauc_ndcg_at_100_max value: 33.89577471481737 - type: nauc_ndcg_at_100_std value: 10.167129337536283 - type: nauc_ndcg_at_10_diff1 value: 39.16788466313522 - type: nauc_ndcg_at_10_max value: 32.47905308816861 - type: nauc_ndcg_at_10_std value: 7.295048419911472 - type: nauc_ndcg_at_1_diff1 value: 46.11518802989986 - type: nauc_ndcg_at_1_max value: 31.625471357672307 - type: nauc_ndcg_at_1_std value: 1.234566602020697 - type: nauc_ndcg_at_20_diff1 value: 38.859039216458626 - type: nauc_ndcg_at_20_max value: 32.741280842100274 - type: nauc_ndcg_at_20_std value: 8.532519680049697 - type: nauc_ndcg_at_3_diff1 value: 39.50414846792753 - type: nauc_ndcg_at_3_max value: 31.436293574105246 - type: nauc_ndcg_at_3_std value: 2.7912054661515513 - type: nauc_ndcg_at_5_diff1 value: 38.70681148905142 - type: nauc_ndcg_at_5_max value: 31.437135456835662 - type: nauc_ndcg_at_5_std value: 5.162466911691187 - type: nauc_precision_at_1000_diff1 value: -3.3602607374185633 - type: nauc_precision_at_1000_max value: 4.971880762242277 - type: nauc_precision_at_1000_std value: 9.19452758668974 - type: nauc_precision_at_100_diff1 value: 7.510065324630119 - type: nauc_precision_at_100_max value: 20.08725395064176 - type: nauc_precision_at_100_std value: 24.3347599479104 - type: nauc_precision_at_10_diff1 value: 17.288987492657895 - type: nauc_precision_at_10_max value: 30.523796629978005 - type: nauc_precision_at_10_std value: 21.72855091830218 - type: nauc_precision_at_1_diff1 value: 46.11518802989986 - type: nauc_precision_at_1_max value: 31.625471357672307 - type: nauc_precision_at_1_std value: 1.234566602020697 - type: nauc_precision_at_20_diff1 value: 12.228489950055032 - type: nauc_precision_at_20_max value: 27.04368010402764 - type: nauc_precision_at_20_std value: 24.15754031166108 - type: nauc_precision_at_3_diff1 value: 26.83713388263207 - type: nauc_precision_at_3_max value: 33.23777507125749 - type: nauc_precision_at_3_std value: 10.323356806632543 - type: nauc_precision_at_5_diff1 value: 21.61560839260508 - type: nauc_precision_at_5_max value: 32.66946145310579 - type: nauc_precision_at_5_std value: 16.353775624744003 - type: nauc_recall_at_1000_diff1 value: 18.969678611942875 - type: nauc_recall_at_1000_max value: 44.65492230931943 - type: nauc_recall_at_1000_std value: 57.57661658969986 - type: nauc_recall_at_100_diff1 value: 32.144682780578435 - type: nauc_recall_at_100_max value: 39.039873233473685 - type: nauc_recall_at_100_std value: 41.27073159300163 - type: nauc_recall_at_10_diff1 value: 32.15567564970661 - type: nauc_recall_at_10_max value: 32.11964259760779 - type: nauc_recall_at_10_std value: 15.891022254121328 - type: nauc_recall_at_1_diff1 value: 46.719436307788634 - type: nauc_recall_at_1_max value: 27.23331305118017 - type: nauc_recall_at_1_std value: -3.294310698511136 - type: nauc_recall_at_20_diff1 value: 28.851896672624644 - type: nauc_recall_at_20_max value: 32.287799296155114 - type: nauc_recall_at_20_std value: 21.67937291007234 - type: nauc_recall_at_3_diff1 value: 34.39542239770237 - type: nauc_recall_at_3_max value: 28.587385654425223 - type: nauc_recall_at_3_std value: 3.1462139418981865 - type: nauc_recall_at_5_diff1 value: 31.662335151844633 - type: nauc_recall_at_5_max value: 29.169339984865907 - type: nauc_recall_at_5_std value: 9.423550205691733 - type: ndcg_at_1 value: 31.621 - type: ndcg_at_10 value: 42.711 - type: ndcg_at_100 value: 49.033 - type: ndcg_at_1000 value: 51.085 - type: ndcg_at_20 value: 45.443 - type: ndcg_at_3 value: 38.005 - type: ndcg_at_5 value: 39.751999999999995 - type: precision_at_1 value: 31.621 - type: precision_at_10 value: 7.968 - type: precision_at_100 value: 1.2890000000000001 - type: precision_at_1000 value: 0.163 - type: precision_at_20 value: 4.795 - type: precision_at_3 value: 18.379 - type: precision_at_5 value: 12.740000000000002 - type: recall_at_1 value: 25.912000000000003 - type: recall_at_10 value: 55.08 - type: recall_at_100 value: 81.922 - type: recall_at_1000 value: 95.543 - type: recall_at_20 value: 65.082 - type: recall_at_3 value: 41.899 - type: recall_at_5 value: 46.708 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval revision: CQADupstackRetrieval_is_a_combined_dataset split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 40.85841666666668 - type: ndcg_at_10 value: 40.85841666666668 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackStatsRetrieval revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a split: test type: mteb/cqadupstack-stats metrics: - type: main_score value: 35.053 - type: map_at_1 value: 23.291999999999998 - type: map_at_10 value: 30.61 - type: map_at_100 value: 31.549 - type: map_at_1000 value: 31.644 - type: map_at_20 value: 31.041999999999998 - type: map_at_3 value: 28.011999999999997 - type: map_at_5 value: 29.425 - type: mrr_at_1 value: 26.07361963190184 - type: mrr_at_10 value: 33.167421365274116 - type: mrr_at_100 value: 34.029277736438495 - type: mrr_at_1000 value: 34.09235069536584 - type: mrr_at_20 value: 33.59034373634008 - type: mrr_at_3 value: 30.7515337423313 - type: mrr_at_5 value: 32.08588957055215 - type: nauc_map_at_1000_diff1 value: 43.481986624980415 - type: nauc_map_at_1000_max value: 28.952163698686732 - type: nauc_map_at_1000_std value: 10.782598183324414 - type: nauc_map_at_100_diff1 value: 43.45584335416967 - type: nauc_map_at_100_max value: 28.911137574377232 - type: nauc_map_at_100_std value: 10.76701853563041 - type: nauc_map_at_10_diff1 value: 43.47116890578832 - type: nauc_map_at_10_max value: 28.653166569212946 - type: nauc_map_at_10_std value: 10.17426104854042 - type: nauc_map_at_1_diff1 value: 49.75958213376796 - type: nauc_map_at_1_max value: 24.470618320089454 - type: nauc_map_at_1_std value: 6.492564751094104 - type: nauc_map_at_20_diff1 value: 43.35481926885264 - type: nauc_map_at_20_max value: 28.699469771138414 - type: nauc_map_at_20_std value: 10.45940778146071 - type: nauc_map_at_3_diff1 value: 44.485234854591035 - type: nauc_map_at_3_max value: 28.38719705365597 - type: nauc_map_at_3_std value: 9.000376354032333 - type: nauc_map_at_5_diff1 value: 43.44946037663669 - type: nauc_map_at_5_max value: 28.476659272609623 - type: nauc_map_at_5_std value: 9.703474173706583 - type: nauc_mrr_at_1000_diff1 value: 45.954395007886525 - type: nauc_mrr_at_1000_max value: 31.50968463706721 - type: nauc_mrr_at_1000_std value: 13.707444407915146 - type: nauc_mrr_at_100_diff1 value: 45.93279568895946 - type: nauc_mrr_at_100_max value: 31.49035735663133 - type: nauc_mrr_at_100_std value: 13.696695107846951 - type: nauc_mrr_at_10_diff1 value: 46.00075381149564 - type: nauc_mrr_at_10_max value: 31.35587522300911 - type: nauc_mrr_at_10_std value: 13.319928784978059 - type: nauc_mrr_at_1_diff1 value: 53.86601247498458 - type: nauc_mrr_at_1_max value: 29.05934941003339 - type: nauc_mrr_at_1_std value: 10.991599490187589 - type: nauc_mrr_at_20_diff1 value: 45.86633939971638 - type: nauc_mrr_at_20_max value: 31.355545429804543 - type: nauc_mrr_at_20_std value: 13.461168244272576 - type: nauc_mrr_at_3_diff1 value: 47.46632656927442 - type: nauc_mrr_at_3_max value: 31.868101191363152 - type: nauc_mrr_at_3_std value: 13.134952192744528 - type: nauc_mrr_at_5_diff1 value: 46.216287976414655 - type: nauc_mrr_at_5_max value: 31.22808984287798 - type: nauc_mrr_at_5_std value: 13.052212637671804 - type: nauc_ndcg_at_1000_diff1 value: 41.636814427170584 - type: nauc_ndcg_at_1000_max value: 31.493143528814294 - type: nauc_ndcg_at_1000_std value: 14.770912529263397 - type: nauc_ndcg_at_100_diff1 value: 41.12015328320773 - type: nauc_ndcg_at_100_max value: 30.74936949964077 - type: nauc_ndcg_at_100_std value: 14.126317942292099 - type: nauc_ndcg_at_10_diff1 value: 41.363853256357004 - type: nauc_ndcg_at_10_max value: 29.967593685883593 - type: nauc_ndcg_at_10_std value: 11.745736297343958 - type: nauc_ndcg_at_1_diff1 value: 53.86601247498458 - type: nauc_ndcg_at_1_max value: 29.05934941003339 - type: nauc_ndcg_at_1_std value: 10.991599490187589 - type: nauc_ndcg_at_20_diff1 value: 40.75029632252196 - type: nauc_ndcg_at_20_max value: 29.8909640874289 - type: nauc_ndcg_at_20_std value: 12.454934718956409 - type: nauc_ndcg_at_3_diff1 value: 43.63306400143029 - type: nauc_ndcg_at_3_max value: 30.487292567301395 - type: nauc_ndcg_at_3_std value: 11.38385449149101 - type: nauc_ndcg_at_5_diff1 value: 41.60699357804944 - type: nauc_ndcg_at_5_max value: 29.677122670631594 - type: nauc_ndcg_at_5_std value: 11.219704931901058 - type: nauc_precision_at_1000_diff1 value: 14.098873228986914 - type: nauc_precision_at_1000_max value: 24.17087547157802 - type: nauc_precision_at_1000_std value: 19.888193749463685 - type: nauc_precision_at_100_diff1 value: 23.179467074556886 - type: nauc_precision_at_100_max value: 31.865564772690984 - type: nauc_precision_at_100_std value: 25.13985731761706 - type: nauc_precision_at_10_diff1 value: 32.107718641883146 - type: nauc_precision_at_10_max value: 34.91859600075913 - type: nauc_precision_at_10_std value: 22.79400955617237 - type: nauc_precision_at_1_diff1 value: 53.86601247498458 - type: nauc_precision_at_1_max value: 29.05934941003339 - type: nauc_precision_at_1_std value: 10.991599490187589 - type: nauc_precision_at_20_diff1 value: 29.993188469468002 - type: nauc_precision_at_20_max value: 35.296458769573086 - type: nauc_precision_at_20_std value: 24.20327572204019 - type: nauc_precision_at_3_diff1 value: 38.99151580407392 - type: nauc_precision_at_3_max value: 36.357023065975284 - type: nauc_precision_at_3_std value: 19.43463406590944 - type: nauc_precision_at_5_diff1 value: 34.334835167755124 - type: nauc_precision_at_5_max value: 35.54403568911307 - type: nauc_precision_at_5_std value: 21.297076675377635 - type: nauc_recall_at_1000_diff1 value: 21.37160644447469 - type: nauc_recall_at_1000_max value: 42.69368632941223 - type: nauc_recall_at_1000_std value: 44.69786965651591 - type: nauc_recall_at_100_diff1 value: 26.1829124199152 - type: nauc_recall_at_100_max value: 31.05778051148635 - type: nauc_recall_at_100_std value: 24.13788905724134 - type: nauc_recall_at_10_diff1 value: 32.277913345812316 - type: nauc_recall_at_10_max value: 29.95426768325743 - type: nauc_recall_at_10_std value: 12.182289596195755 - type: nauc_recall_at_1_diff1 value: 49.75958213376796 - type: nauc_recall_at_1_max value: 24.470618320089454 - type: nauc_recall_at_1_std value: 6.492564751094104 - type: nauc_recall_at_20_diff1 value: 28.594583651409373 - type: nauc_recall_at_20_max value: 28.61050190860186 - type: nauc_recall_at_20_std value: 14.453928140032604 - type: nauc_recall_at_3_diff1 value: 37.26827475373021 - type: nauc_recall_at_3_max value: 30.24664533196025 - type: nauc_recall_at_3_std value: 10.088814497838317 - type: nauc_recall_at_5_diff1 value: 33.012511168504346 - type: nauc_recall_at_5_max value: 28.863956457849227 - type: nauc_recall_at_5_std value: 10.866060080770383 - type: ndcg_at_1 value: 26.074 - type: ndcg_at_10 value: 35.053 - type: ndcg_at_100 value: 39.877 - type: ndcg_at_1000 value: 42.219 - type: ndcg_at_20 value: 36.553999999999995 - type: ndcg_at_3 value: 30.25 - type: ndcg_at_5 value: 32.46 - type: precision_at_1 value: 26.074 - type: precision_at_10 value: 5.675 - type: precision_at_100 value: 0.88 - type: precision_at_1000 value: 0.116 - type: precision_at_20 value: 3.213 - type: precision_at_3 value: 13.088 - type: precision_at_5 value: 9.325 - type: recall_at_1 value: 23.291999999999998 - type: recall_at_10 value: 46.148 - type: recall_at_100 value: 68.24799999999999 - type: recall_at_1000 value: 85.455 - type: recall_at_20 value: 51.734 - type: recall_at_3 value: 33.131 - type: recall_at_5 value: 38.546 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackTexRetrieval revision: 46989137a86843e03a6195de44b09deda022eec7 split: test type: mteb/cqadupstack-tex metrics: - type: main_score value: 27.525 - type: map_at_1 value: 15.812999999999999 - type: map_at_10 value: 22.878999999999998 - type: map_at_100 value: 23.992 - type: map_at_1000 value: 24.127000000000002 - type: map_at_20 value: 23.452 - type: map_at_3 value: 20.467 - type: map_at_5 value: 21.767 - type: mrr_at_1 value: 19.201651754989676 - type: mrr_at_10 value: 26.47224133975686 - type: mrr_at_100 value: 27.412766979166342 - type: mrr_at_1000 value: 27.49631476670978 - type: mrr_at_20 value: 26.9691663879413 - type: mrr_at_3 value: 24.013535214498745 - type: mrr_at_5 value: 25.441615049323303 - type: nauc_map_at_1000_diff1 value: 33.697813145909535 - type: nauc_map_at_1000_max value: 26.509494140027996 - type: nauc_map_at_1000_std value: 2.993849542775133 - type: nauc_map_at_100_diff1 value: 33.671087749349674 - type: nauc_map_at_100_max value: 26.472678055525336 - type: nauc_map_at_100_std value: 2.956494527720355 - type: nauc_map_at_10_diff1 value: 33.914740537035435 - type: nauc_map_at_10_max value: 26.5349486074814 - type: nauc_map_at_10_std value: 2.3474576992114304 - type: nauc_map_at_1_diff1 value: 39.451484530341254 - type: nauc_map_at_1_max value: 25.790802427354205 - type: nauc_map_at_1_std value: -1.8340911432347162 - type: nauc_map_at_20_diff1 value: 33.766215747904695 - type: nauc_map_at_20_max value: 26.440032024795805 - type: nauc_map_at_20_std value: 2.6591992745156485 - type: nauc_map_at_3_diff1 value: 34.80477662436832 - type: nauc_map_at_3_max value: 26.232579057821294 - type: nauc_map_at_3_std value: 1.0628053044692038 - type: nauc_map_at_5_diff1 value: 34.44953511091354 - type: nauc_map_at_5_max value: 26.329117036695354 - type: nauc_map_at_5_std value: 1.6829673952842554 - type: nauc_mrr_at_1000_diff1 value: 33.13732180476133 - type: nauc_mrr_at_1000_max value: 27.911825182206524 - type: nauc_mrr_at_1000_std value: 3.570486982023914 - type: nauc_mrr_at_100_diff1 value: 33.112653270534636 - type: nauc_mrr_at_100_max value: 27.897770062852732 - type: nauc_mrr_at_100_std value: 3.5920129247128028 - type: nauc_mrr_at_10_diff1 value: 33.27584578509099 - type: nauc_mrr_at_10_max value: 28.123344470902044 - type: nauc_mrr_at_10_std value: 3.1806023776161005 - type: nauc_mrr_at_1_diff1 value: 38.697906401251565 - type: nauc_mrr_at_1_max value: 27.526788964221176 - type: nauc_mrr_at_1_std value: -0.3872399197836332 - type: nauc_mrr_at_20_diff1 value: 33.14710189298942 - type: nauc_mrr_at_20_max value: 27.925418071214477 - type: nauc_mrr_at_20_std value: 3.410762781508218 - type: nauc_mrr_at_3_diff1 value: 33.87772552463924 - type: nauc_mrr_at_3_max value: 28.007003297502216 - type: nauc_mrr_at_3_std value: 1.9486591805981224 - type: nauc_mrr_at_5_diff1 value: 33.62067092202846 - type: nauc_mrr_at_5_max value: 28.14249070532696 - type: nauc_mrr_at_5_std value: 2.6447040667824218 - type: nauc_ndcg_at_1000_diff1 value: 31.23455010115525 - type: nauc_ndcg_at_1000_max value: 26.928025566178913 - type: nauc_ndcg_at_1000_std value: 6.941305960469611 - type: nauc_ndcg_at_100_diff1 value: 30.584344786502747 - type: nauc_ndcg_at_100_max value: 26.404821521795537 - type: nauc_ndcg_at_100_std value: 7.0334275625510925 - type: nauc_ndcg_at_10_diff1 value: 31.53451395934299 - type: nauc_ndcg_at_10_max value: 27.05918031675037 - type: nauc_ndcg_at_10_std value: 4.439717091540959 - type: nauc_ndcg_at_1_diff1 value: 38.697906401251565 - type: nauc_ndcg_at_1_max value: 27.526788964221176 - type: nauc_ndcg_at_1_std value: -0.3872399197836332 - type: nauc_ndcg_at_20_diff1 value: 31.12144557343197 - type: nauc_ndcg_at_20_max value: 26.542119575357965 - type: nauc_ndcg_at_20_std value: 5.3406069749732525 - type: nauc_ndcg_at_3_diff1 value: 33.01724233874462 - type: nauc_ndcg_at_3_max value: 27.140135730286946 - type: nauc_ndcg_at_3_std value: 1.9208853678075062 - type: nauc_ndcg_at_5_diff1 value: 32.55051796045806 - type: nauc_ndcg_at_5_max value: 26.955239421636346 - type: nauc_ndcg_at_5_std value: 3.0379868805913652 - type: nauc_precision_at_1000_diff1 value: 4.618759880285172 - type: nauc_precision_at_1000_max value: 15.135402391589992 - type: nauc_precision_at_1000_std value: 17.641125584501353 - type: nauc_precision_at_100_diff1 value: 10.39883535965785 - type: nauc_precision_at_100_max value: 20.08846103789256 - type: nauc_precision_at_100_std value: 19.449422467727224 - type: nauc_precision_at_10_diff1 value: 22.298962818126192 - type: nauc_precision_at_10_max value: 28.89863016237585 - type: nauc_precision_at_10_std value: 11.063401323032155 - type: nauc_precision_at_1_diff1 value: 38.697906401251565 - type: nauc_precision_at_1_max value: 27.526788964221176 - type: nauc_precision_at_1_std value: -0.3872399197836332 - type: nauc_precision_at_20_diff1 value: 19.176385926878414 - type: nauc_precision_at_20_max value: 25.917593281871675 - type: nauc_precision_at_20_std value: 13.11450466413103 - type: nauc_precision_at_3_diff1 value: 28.031695189128474 - type: nauc_precision_at_3_max value: 28.9642194082244 - type: nauc_precision_at_3_std value: 4.347834807504182 - type: nauc_precision_at_5_diff1 value: 26.272317529418892 - type: nauc_precision_at_5_max value: 29.150315424317114 - type: nauc_precision_at_5_std value: 6.880885398540699 - type: nauc_recall_at_1000_diff1 value: 17.4273150148978 - type: nauc_recall_at_1000_max value: 24.306401198860677 - type: nauc_recall_at_1000_std value: 29.662613615698568 - type: nauc_recall_at_100_diff1 value: 18.43107428764886 - type: nauc_recall_at_100_max value: 20.971000173192305 - type: nauc_recall_at_100_std value: 19.71647423515453 - type: nauc_recall_at_10_diff1 value: 24.16733448276029 - type: nauc_recall_at_10_max value: 24.352699469715134 - type: nauc_recall_at_10_std value: 8.209628518853242 - type: nauc_recall_at_1_diff1 value: 39.451484530341254 - type: nauc_recall_at_1_max value: 25.790802427354205 - type: nauc_recall_at_1_std value: -1.8340911432347162 - type: nauc_recall_at_20_diff1 value: 22.67002641081412 - type: nauc_recall_at_20_max value: 22.634810976567632 - type: nauc_recall_at_20_std value: 11.08185078231441 - type: nauc_recall_at_3_diff1 value: 28.883409519249298 - type: nauc_recall_at_3_max value: 25.08426193015333 - type: nauc_recall_at_3_std value: 3.332702402821052 - type: nauc_recall_at_5_diff1 value: 27.248817428767353 - type: nauc_recall_at_5_max value: 24.488697770907862 - type: nauc_recall_at_5_std value: 5.150559322926742 - type: ndcg_at_1 value: 19.201999999999998 - type: ndcg_at_10 value: 27.525 - type: ndcg_at_100 value: 32.917 - type: ndcg_at_1000 value: 36.071999999999996 - type: ndcg_at_20 value: 29.369 - type: ndcg_at_3 value: 22.997999999999998 - type: ndcg_at_5 value: 25.089 - type: precision_at_1 value: 19.201999999999998 - type: precision_at_10 value: 5.114 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_20 value: 3.068 - type: precision_at_3 value: 10.84 - type: precision_at_5 value: 8.039 - type: recall_at_1 value: 15.812999999999999 - type: recall_at_10 value: 38.011 - type: recall_at_100 value: 62.316 - type: recall_at_1000 value: 84.787 - type: recall_at_20 value: 44.796 - type: recall_at_3 value: 25.534000000000002 - type: recall_at_5 value: 30.869000000000003 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackUnixRetrieval revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 split: test type: mteb/cqadupstack-unix metrics: - type: main_score value: 40.521 - type: map_at_1 value: 25.471 - type: map_at_10 value: 35.022 - type: map_at_100 value: 36.189 - type: map_at_1000 value: 36.307 - type: map_at_20 value: 35.669000000000004 - type: map_at_3 value: 32.106 - type: map_at_5 value: 33.77 - type: mrr_at_1 value: 30.50373134328358 - type: mrr_at_10 value: 39.24503227908077 - type: mrr_at_100 value: 40.151748706499774 - type: mrr_at_1000 value: 40.22220003252721 - type: mrr_at_20 value: 39.8059758148897 - type: mrr_at_3 value: 36.73818407960197 - type: mrr_at_5 value: 38.1467661691542 - type: nauc_map_at_1000_diff1 value: 46.16248622121721 - type: nauc_map_at_1000_max value: 40.52646385518007 - type: nauc_map_at_1000_std value: 3.148266275747802 - type: nauc_map_at_100_diff1 value: 46.17396178097105 - type: nauc_map_at_100_max value: 40.54391828366793 - type: nauc_map_at_100_std value: 3.1465539515114047 - type: nauc_map_at_10_diff1 value: 46.235749959339614 - type: nauc_map_at_10_max value: 40.440734073263016 - type: nauc_map_at_10_std value: 2.8300771576177626 - type: nauc_map_at_1_diff1 value: 52.31836017894301 - type: nauc_map_at_1_max value: 39.98411755588766 - type: nauc_map_at_1_std value: -1.3807664175034557 - type: nauc_map_at_20_diff1 value: 46.22956225666944 - type: nauc_map_at_20_max value: 40.38149532254275 - type: nauc_map_at_20_std value: 2.9376913527139608 - type: nauc_map_at_3_diff1 value: 46.66513417112219 - type: nauc_map_at_3_max value: 39.42343560398367 - type: nauc_map_at_3_std value: 1.2211402555017814 - type: nauc_map_at_5_diff1 value: 46.458786087674014 - type: nauc_map_at_5_max value: 40.55062568009025 - type: nauc_map_at_5_std value: 2.874713984722366 - type: nauc_mrr_at_1000_diff1 value: 45.02880964596229 - type: nauc_mrr_at_1000_max value: 40.54670837151151 - type: nauc_mrr_at_1000_std value: 1.9361943758959246 - type: nauc_mrr_at_100_diff1 value: 45.0141231687371 - type: nauc_mrr_at_100_max value: 40.563093939846254 - type: nauc_mrr_at_100_std value: 1.95631717346565 - type: nauc_mrr_at_10_diff1 value: 45.02510345908053 - type: nauc_mrr_at_10_max value: 40.65201686211006 - type: nauc_mrr_at_10_std value: 1.765797491494287 - type: nauc_mrr_at_1_diff1 value: 50.97368399162673 - type: nauc_mrr_at_1_max value: 40.90768065197206 - type: nauc_mrr_at_1_std value: -1.4950717729817018 - type: nauc_mrr_at_20_diff1 value: 45.01757033486232 - type: nauc_mrr_at_20_max value: 40.469096874526066 - type: nauc_mrr_at_20_std value: 1.8814650823309433 - type: nauc_mrr_at_3_diff1 value: 45.41619994832078 - type: nauc_mrr_at_3_max value: 39.97134246014811 - type: nauc_mrr_at_3_std value: 0.351963662304222 - type: nauc_mrr_at_5_diff1 value: 45.1751735123411 - type: nauc_mrr_at_5_max value: 40.78799409404439 - type: nauc_mrr_at_5_std value: 1.9642777530569973 - type: nauc_ndcg_at_1000_diff1 value: 43.718675542961904 - type: nauc_ndcg_at_1000_max value: 40.77838921628359 - type: nauc_ndcg_at_1000_std value: 5.566597131514415 - type: nauc_ndcg_at_100_diff1 value: 43.60801649469792 - type: nauc_ndcg_at_100_max value: 41.178769387330796 - type: nauc_ndcg_at_100_std value: 6.049517999609993 - type: nauc_ndcg_at_10_diff1 value: 43.842412361059004 - type: nauc_ndcg_at_10_max value: 40.6519609548175 - type: nauc_ndcg_at_10_std value: 4.201266898997162 - type: nauc_ndcg_at_1_diff1 value: 50.97368399162673 - type: nauc_ndcg_at_1_max value: 40.90768065197206 - type: nauc_ndcg_at_1_std value: -1.4950717729817018 - type: nauc_ndcg_at_20_diff1 value: 43.85304850871846 - type: nauc_ndcg_at_20_max value: 40.32052013131906 - type: nauc_ndcg_at_20_std value: 4.728903608087234 - type: nauc_ndcg_at_3_diff1 value: 44.21918974277671 - type: nauc_ndcg_at_3_max value: 38.960642621790456 - type: nauc_ndcg_at_3_std value: 1.5413581396590283 - type: nauc_ndcg_at_5_diff1 value: 44.17111959292946 - type: nauc_ndcg_at_5_max value: 40.879393486870796 - type: nauc_ndcg_at_5_std value: 4.292430322369627 - type: nauc_precision_at_1000_diff1 value: -15.217116951096473 - type: nauc_precision_at_1000_max value: -3.2195266520788293 - type: nauc_precision_at_1000_std value: 3.9128797066726846 - type: nauc_precision_at_100_diff1 value: 0.3739578597713093 - type: nauc_precision_at_100_max value: 16.020214815116475 - type: nauc_precision_at_100_std value: 12.407216133940173 - type: nauc_precision_at_10_diff1 value: 22.78622694355213 - type: nauc_precision_at_10_max value: 30.934571158762775 - type: nauc_precision_at_10_std value: 7.387132441153662 - type: nauc_precision_at_1_diff1 value: 50.97368399162673 - type: nauc_precision_at_1_max value: 40.90768065197206 - type: nauc_precision_at_1_std value: -1.4950717729817018 - type: nauc_precision_at_20_diff1 value: 15.851699766979477 - type: nauc_precision_at_20_max value: 25.760376623349373 - type: nauc_precision_at_20_std value: 8.843769866250064 - type: nauc_precision_at_3_diff1 value: 33.40916192309544 - type: nauc_precision_at_3_max value: 34.62137182252703 - type: nauc_precision_at_3_std value: 2.6723118388566376 - type: nauc_precision_at_5_diff1 value: 29.839568032323736 - type: nauc_precision_at_5_max value: 35.79411746926457 - type: nauc_precision_at_5_std value: 8.075263629982045 - type: nauc_recall_at_1000_diff1 value: 22.684337017050314 - type: nauc_recall_at_1000_max value: 38.75083488225343 - type: nauc_recall_at_1000_std value: 46.20014728505404 - type: nauc_recall_at_100_diff1 value: 32.16637906784691 - type: nauc_recall_at_100_max value: 41.16460712003215 - type: nauc_recall_at_100_std value: 22.666195059036536 - type: nauc_recall_at_10_diff1 value: 35.53872376778553 - type: nauc_recall_at_10_max value: 38.239674930598554 - type: nauc_recall_at_10_std value: 8.764170731037375 - type: nauc_recall_at_1_diff1 value: 52.31836017894301 - type: nauc_recall_at_1_max value: 39.98411755588766 - type: nauc_recall_at_1_std value: -1.3807664175034557 - type: nauc_recall_at_20_diff1 value: 34.77159952615243 - type: nauc_recall_at_20_max value: 35.99268561688956 - type: nauc_recall_at_20_std value: 11.063781846789626 - type: nauc_recall_at_3_diff1 value: 38.59836732978252 - type: nauc_recall_at_3_max value: 36.14336770585555 - type: nauc_recall_at_3_std value: 3.330194066081952 - type: nauc_recall_at_5_diff1 value: 37.471534644016785 - type: nauc_recall_at_5_max value: 39.941421167584906 - type: nauc_recall_at_5_std value: 9.330375158059901 - type: ndcg_at_1 value: 30.503999999999998 - type: ndcg_at_10 value: 40.521 - type: ndcg_at_100 value: 45.869 - type: ndcg_at_1000 value: 48.381 - type: ndcg_at_20 value: 42.664 - type: ndcg_at_3 value: 35.537 - type: ndcg_at_5 value: 37.874 - type: precision_at_1 value: 30.503999999999998 - type: precision_at_10 value: 6.922000000000001 - type: precision_at_100 value: 1.087 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_20 value: 4.062 - type: precision_at_3 value: 16.448999999999998 - type: precision_at_5 value: 11.53 - type: recall_at_1 value: 25.471 - type: recall_at_10 value: 53.115 - type: recall_at_100 value: 76.247 - type: recall_at_1000 value: 93.633 - type: recall_at_20 value: 60.856 - type: recall_at_3 value: 39.149 - type: recall_at_5 value: 45.355000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWebmastersRetrieval revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: mteb/cqadupstack-webmasters metrics: - type: main_score value: 40.083999999999996 - type: map_at_1 value: 23.916 - type: map_at_10 value: 33.898 - type: map_at_100 value: 35.524 - type: map_at_1000 value: 35.763 - type: map_at_20 value: 34.699999999999996 - type: map_at_3 value: 30.72 - type: map_at_5 value: 32.444 - type: mrr_at_1 value: 27.865612648221344 - type: mrr_at_10 value: 38.110373925591325 - type: mrr_at_100 value: 39.103867355603136 - type: mrr_at_1000 value: 39.155682308778616 - type: mrr_at_20 value: 38.674497071725696 - type: mrr_at_3 value: 35.210803689064576 - type: mrr_at_5 value: 36.99934123847168 - type: nauc_map_at_1000_diff1 value: 43.04370425444575 - type: nauc_map_at_1000_max value: 30.664333341508517 - type: nauc_map_at_1000_std value: 13.255841990616501 - type: nauc_map_at_100_diff1 value: 43.30950288942624 - type: nauc_map_at_100_max value: 30.88701122881409 - type: nauc_map_at_100_std value: 13.044875063416047 - type: nauc_map_at_10_diff1 value: 43.13368196505275 - type: nauc_map_at_10_max value: 30.510777038103758 - type: nauc_map_at_10_std value: 11.718306205503097 - type: nauc_map_at_1_diff1 value: 51.34182005448936 - type: nauc_map_at_1_max value: 29.964954096304396 - type: nauc_map_at_1_std value: 7.929661027160745 - type: nauc_map_at_20_diff1 value: 43.31624587145438 - type: nauc_map_at_20_max value: 30.74154334111207 - type: nauc_map_at_20_std value: 12.32652647361836 - type: nauc_map_at_3_diff1 value: 43.1491545591217 - type: nauc_map_at_3_max value: 29.448225669130128 - type: nauc_map_at_3_std value: 9.735131796506169 - type: nauc_map_at_5_diff1 value: 43.33647018722699 - type: nauc_map_at_5_max value: 29.82004211927872 - type: nauc_map_at_5_std value: 10.811941747327253 - type: nauc_mrr_at_1000_diff1 value: 42.09165265772457 - type: nauc_mrr_at_1000_max value: 32.05875923131647 - type: nauc_mrr_at_1000_std value: 15.019814870801303 - type: nauc_mrr_at_100_diff1 value: 42.08967964203582 - type: nauc_mrr_at_100_max value: 32.07299417006864 - type: nauc_mrr_at_100_std value: 15.057319380447614 - type: nauc_mrr_at_10_diff1 value: 41.841369406148246 - type: nauc_mrr_at_10_max value: 31.767693589635538 - type: nauc_mrr_at_10_std value: 14.602638735669798 - type: nauc_mrr_at_1_diff1 value: 50.062677615419304 - type: nauc_mrr_at_1_max value: 33.35584104516006 - type: nauc_mrr_at_1_std value: 11.42115012466949 - type: nauc_mrr_at_20_diff1 value: 41.93352325907799 - type: nauc_mrr_at_20_max value: 32.015602545857945 - type: nauc_mrr_at_20_std value: 15.048275956047814 - type: nauc_mrr_at_3_diff1 value: 41.918393480229014 - type: nauc_mrr_at_3_max value: 31.253629045078224 - type: nauc_mrr_at_3_std value: 13.577771791747217 - type: nauc_mrr_at_5_diff1 value: 42.020303609879015 - type: nauc_mrr_at_5_max value: 31.71276631449414 - type: nauc_mrr_at_5_std value: 14.160071868742637 - type: nauc_ndcg_at_1000_diff1 value: 41.073313917406516 - type: nauc_ndcg_at_1000_max value: 31.874785583667343 - type: nauc_ndcg_at_1000_std value: 17.392846103885827 - type: nauc_ndcg_at_100_diff1 value: 41.36609192671821 - type: nauc_ndcg_at_100_max value: 32.1429966230732 - type: nauc_ndcg_at_100_std value: 17.635443742312578 - type: nauc_ndcg_at_10_diff1 value: 40.16969739206176 - type: nauc_ndcg_at_10_max value: 30.655050133517907 - type: nauc_ndcg_at_10_std value: 15.31416270805731 - type: nauc_ndcg_at_1_diff1 value: 50.062677615419304 - type: nauc_ndcg_at_1_max value: 33.35584104516006 - type: nauc_ndcg_at_1_std value: 11.42115012466949 - type: nauc_ndcg_at_20_diff1 value: 40.65149703452073 - type: nauc_ndcg_at_20_max value: 31.49158572383702 - type: nauc_ndcg_at_20_std value: 16.515600802503588 - type: nauc_ndcg_at_3_diff1 value: 40.978434285347326 - type: nauc_ndcg_at_3_max value: 30.152983643295965 - type: nauc_ndcg_at_3_std value: 12.216265569919356 - type: nauc_ndcg_at_5_diff1 value: 41.08935148839345 - type: nauc_ndcg_at_5_max value: 30.270289469266555 - type: nauc_ndcg_at_5_std value: 13.872257416203936 - type: nauc_precision_at_1000_diff1 value: -23.49105492946047 - type: nauc_precision_at_1000_max value: -14.82348334333618 - type: nauc_precision_at_1000_std value: 25.58547404406785 - type: nauc_precision_at_100_diff1 value: -7.981292902854982 - type: nauc_precision_at_100_max value: 0.3216310748533712 - type: nauc_precision_at_100_std value: 30.619279987080606 - type: nauc_precision_at_10_diff1 value: 16.699669745243195 - type: nauc_precision_at_10_max value: 24.848221992404866 - type: nauc_precision_at_10_std value: 25.483080484054128 - type: nauc_precision_at_1_diff1 value: 50.062677615419304 - type: nauc_precision_at_1_max value: 33.35584104516006 - type: nauc_precision_at_1_std value: 11.42115012466949 - type: nauc_precision_at_20_diff1 value: 9.661364668172661 - type: nauc_precision_at_20_max value: 18.15490912668976 - type: nauc_precision_at_20_std value: 28.942530404656207 - type: nauc_precision_at_3_diff1 value: 28.173149805964336 - type: nauc_precision_at_3_max value: 29.125517533363045 - type: nauc_precision_at_3_std value: 16.440247682256874 - type: nauc_precision_at_5_diff1 value: 26.337016666473417 - type: nauc_precision_at_5_max value: 27.91482399852503 - type: nauc_precision_at_5_std value: 20.584790906600297 - type: nauc_recall_at_1000_diff1 value: 25.27962582492483 - type: nauc_recall_at_1000_max value: 53.4157087239144 - type: nauc_recall_at_1000_std value: 64.84320824589436 - type: nauc_recall_at_100_diff1 value: 32.52503833916644 - type: nauc_recall_at_100_max value: 34.43578471306039 - type: nauc_recall_at_100_std value: 37.12451201750556 - type: nauc_recall_at_10_diff1 value: 30.854734920106758 - type: nauc_recall_at_10_max value: 27.70071769548424 - type: nauc_recall_at_10_std value: 18.679668303532377 - type: nauc_recall_at_1_diff1 value: 51.34182005448936 - type: nauc_recall_at_1_max value: 29.964954096304396 - type: nauc_recall_at_1_std value: 7.929661027160745 - type: nauc_recall_at_20_diff1 value: 31.67584335957749 - type: nauc_recall_at_20_max value: 30.819782365046017 - type: nauc_recall_at_20_std value: 24.91327729486532 - type: nauc_recall_at_3_diff1 value: 34.07385889318035 - type: nauc_recall_at_3_max value: 26.55094252259986 - type: nauc_recall_at_3_std value: 10.867282036873508 - type: nauc_recall_at_5_diff1 value: 33.23389303702456 - type: nauc_recall_at_5_max value: 26.993134299145368 - type: nauc_recall_at_5_std value: 14.066236376235505 - type: ndcg_at_1 value: 27.866000000000003 - type: ndcg_at_10 value: 40.083999999999996 - type: ndcg_at_100 value: 46.267 - type: ndcg_at_1000 value: 48.701 - type: ndcg_at_20 value: 42.34 - type: ndcg_at_3 value: 34.583999999999996 - type: ndcg_at_5 value: 37.264 - type: precision_at_1 value: 27.866000000000003 - type: precision_at_10 value: 7.707999999999999 - type: precision_at_100 value: 1.569 - type: precision_at_1000 value: 0.247 - type: precision_at_20 value: 4.852 - type: precision_at_3 value: 16.337 - type: precision_at_5 value: 12.055 - type: recall_at_1 value: 23.916 - type: recall_at_10 value: 52.903 - type: recall_at_100 value: 79.777 - type: recall_at_1000 value: 94.72 - type: recall_at_20 value: 61.312 - type: recall_at_3 value: 37.711 - type: recall_at_5 value: 44.603 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWordpressRetrieval revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack-wordpress metrics: - type: main_score value: 29.973 - type: map_at_1 value: 17.23 - type: map_at_10 value: 25.097 - type: map_at_100 value: 26.264 - type: map_at_1000 value: 26.369 - type: map_at_20 value: 25.796000000000003 - type: map_at_3 value: 22.487 - type: map_at_5 value: 23.977999999999998 - type: mrr_at_1 value: 19.038817005545287 - type: mrr_at_10 value: 27.142857142857142 - type: mrr_at_100 value: 28.18400454920016 - type: mrr_at_1000 value: 28.261243392575775 - type: mrr_at_20 value: 27.772863922037278 - type: mrr_at_3 value: 24.645717806531106 - type: mrr_at_5 value: 26.05052372150338 - type: nauc_map_at_1000_diff1 value: 30.011176313385096 - type: nauc_map_at_1000_max value: 30.68572568741437 - type: nauc_map_at_1000_std value: 6.891720154828985 - type: nauc_map_at_100_diff1 value: 30.0320356281249 - type: nauc_map_at_100_max value: 30.721766519272826 - type: nauc_map_at_100_std value: 6.887771590804904 - type: nauc_map_at_10_diff1 value: 30.18218019028145 - type: nauc_map_at_10_max value: 30.676695850605086 - type: nauc_map_at_10_std value: 6.35931077390129 - type: nauc_map_at_1_diff1 value: 36.65613803562446 - type: nauc_map_at_1_max value: 34.41372061280891 - type: nauc_map_at_1_std value: 5.643263116945109 - type: nauc_map_at_20_diff1 value: 29.97325431788116 - type: nauc_map_at_20_max value: 30.6373674319881 - type: nauc_map_at_20_std value: 6.627175965630369 - type: nauc_map_at_3_diff1 value: 30.86131371052504 - type: nauc_map_at_3_max value: 31.15523969829247 - type: nauc_map_at_3_std value: 5.567555712000783 - type: nauc_map_at_5_diff1 value: 30.848087000113118 - type: nauc_map_at_5_max value: 31.459896541460697 - type: nauc_map_at_5_std value: 5.518271061275222 - type: nauc_mrr_at_1000_diff1 value: 29.453047003985 - type: nauc_mrr_at_1000_max value: 30.19882876836656 - type: nauc_mrr_at_1000_std value: 6.626130218002384 - type: nauc_mrr_at_100_diff1 value: 29.44273618213682 - type: nauc_mrr_at_100_max value: 30.20792006793222 - type: nauc_mrr_at_100_std value: 6.6326270055928225 - type: nauc_mrr_at_10_diff1 value: 29.481500991416937 - type: nauc_mrr_at_10_max value: 30.166282832131248 - type: nauc_mrr_at_10_std value: 6.194497427521731 - type: nauc_mrr_at_1_diff1 value: 35.00165816992082 - type: nauc_mrr_at_1_max value: 33.779777100720864 - type: nauc_mrr_at_1_std value: 5.621116520393843 - type: nauc_mrr_at_20_diff1 value: 29.420661046476237 - type: nauc_mrr_at_20_max value: 30.096026694199697 - type: nauc_mrr_at_20_std value: 6.418490136892468 - type: nauc_mrr_at_3_diff1 value: 30.15562602647593 - type: nauc_mrr_at_3_max value: 31.24169802519362 - type: nauc_mrr_at_3_std value: 5.292177214159827 - type: nauc_mrr_at_5_diff1 value: 29.85812493582057 - type: nauc_mrr_at_5_max value: 30.84309432039849 - type: nauc_mrr_at_5_std value: 5.17373327205622 - type: nauc_ndcg_at_1000_diff1 value: 27.06661442385399 - type: nauc_ndcg_at_1000_max value: 28.96911571800487 - type: nauc_ndcg_at_1000_std value: 10.418806432871733 - type: nauc_ndcg_at_100_diff1 value: 27.146281316839314 - type: nauc_ndcg_at_100_max value: 29.044799456854186 - type: nauc_ndcg_at_100_std value: 10.508336096486618 - type: nauc_ndcg_at_10_diff1 value: 27.420874599878342 - type: nauc_ndcg_at_10_max value: 28.714090994664755 - type: nauc_ndcg_at_10_std value: 7.652695188853375 - type: nauc_ndcg_at_1_diff1 value: 35.00165816992082 - type: nauc_ndcg_at_1_max value: 33.779777100720864 - type: nauc_ndcg_at_1_std value: 5.621116520393843 - type: nauc_ndcg_at_20_diff1 value: 26.854270351760974 - type: nauc_ndcg_at_20_max value: 28.52303486745037 - type: nauc_ndcg_at_20_std value: 8.34449264443146 - type: nauc_ndcg_at_3_diff1 value: 28.683665095071454 - type: nauc_ndcg_at_3_max value: 30.21167815580974 - type: nauc_ndcg_at_3_std value: 5.57510161196495 - type: nauc_ndcg_at_5_diff1 value: 28.568200018893215 - type: nauc_ndcg_at_5_max value: 30.268878618614377 - type: nauc_ndcg_at_5_std value: 5.561108887007736 - type: nauc_precision_at_1000_diff1 value: -15.949370649937453 - type: nauc_precision_at_1000_max value: -12.55230242997234 - type: nauc_precision_at_1000_std value: 7.964001054475982 - type: nauc_precision_at_100_diff1 value: 3.8015059641621365 - type: nauc_precision_at_100_max value: 9.502394070121735 - type: nauc_precision_at_100_std value: 17.651392778848304 - type: nauc_precision_at_10_diff1 value: 18.272370317932598 - type: nauc_precision_at_10_max value: 22.250936689177696 - type: nauc_precision_at_10_std value: 11.326091089478126 - type: nauc_precision_at_1_diff1 value: 35.00165816992082 - type: nauc_precision_at_1_max value: 33.779777100720864 - type: nauc_precision_at_1_std value: 5.621116520393843 - type: nauc_precision_at_20_diff1 value: 14.701205402696422 - type: nauc_precision_at_20_max value: 19.479826509253293 - type: nauc_precision_at_20_std value: 11.944454432741377 - type: nauc_precision_at_3_diff1 value: 24.240226319020405 - type: nauc_precision_at_3_max value: 28.68870471669554 - type: nauc_precision_at_3_std value: 6.574024673506498 - type: nauc_precision_at_5_diff1 value: 23.17004836875319 - type: nauc_precision_at_5_max value: 28.191016385192867 - type: nauc_precision_at_5_std value: 6.514807345015352 - type: nauc_recall_at_1000_diff1 value: 3.893631175061775 - type: nauc_recall_at_1000_max value: 19.271373005950228 - type: nauc_recall_at_1000_std value: 45.08461198752793 - type: nauc_recall_at_100_diff1 value: 16.56155043674209 - type: nauc_recall_at_100_max value: 22.519466525026544 - type: nauc_recall_at_100_std value: 27.062281302347973 - type: nauc_recall_at_10_diff1 value: 19.666472561806202 - type: nauc_recall_at_10_max value: 22.619769621626244 - type: nauc_recall_at_10_std value: 11.00062407965151 - type: nauc_recall_at_1_diff1 value: 36.65613803562446 - type: nauc_recall_at_1_max value: 34.41372061280891 - type: nauc_recall_at_1_std value: 5.643263116945109 - type: nauc_recall_at_20_diff1 value: 16.971894573394206 - type: nauc_recall_at_20_max value: 21.44001516902887 - type: nauc_recall_at_20_std value: 13.106111366241002 - type: nauc_recall_at_3_diff1 value: 23.337485705564454 - type: nauc_recall_at_3_max value: 26.926134944792864 - type: nauc_recall_at_3_std value: 6.142956932796485 - type: nauc_recall_at_5_diff1 value: 23.052394072882375 - type: nauc_recall_at_5_max value: 27.026444224445406 - type: nauc_recall_at_5_std value: 5.735439526218693 - type: ndcg_at_1 value: 19.039 - type: ndcg_at_10 value: 29.973 - type: ndcg_at_100 value: 35.538 - type: ndcg_at_1000 value: 38.196999999999996 - type: ndcg_at_20 value: 32.352 - type: ndcg_at_3 value: 24.89 - type: ndcg_at_5 value: 27.427 - type: precision_at_1 value: 19.039 - type: precision_at_10 value: 5.009 - type: precision_at_100 value: 0.843 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_20 value: 3.05 - type: precision_at_3 value: 10.906 - type: precision_at_5 value: 8.059 - type: recall_at_1 value: 17.23 - type: recall_at_10 value: 42.886 - type: recall_at_100 value: 68.309 - type: recall_at_1000 value: 88.263 - type: recall_at_20 value: 52.039 - type: recall_at_3 value: 29.559 - type: recall_at_5 value: 35.49 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: main_score value: 23.837 - type: map_at_1 value: 9.273000000000001 - type: map_at_10 value: 16.492 - type: map_at_100 value: 18.236 - type: map_at_1000 value: 18.423000000000002 - type: map_at_20 value: 17.395 - type: map_at_3 value: 13.533999999999999 - type: map_at_5 value: 15.012 - type: mrr_at_1 value: 20.521172638436482 - type: mrr_at_10 value: 31.445194147148513 - type: mrr_at_100 value: 32.61483800330437 - type: mrr_at_1000 value: 32.664329496819654 - type: mrr_at_20 value: 32.17294028439281 - type: mrr_at_3 value: 28.013029315960875 - type: mrr_at_5 value: 29.863192182410366 - type: nauc_map_at_1000_diff1 value: 18.01650517854619 - type: nauc_map_at_1000_max value: 35.00555751580392 - type: nauc_map_at_1000_std value: 9.786398826312832 - type: nauc_map_at_100_diff1 value: 18.03109714032031 - type: nauc_map_at_100_max value: 35.02293343117481 - type: nauc_map_at_100_std value: 9.71347278319927 - type: nauc_map_at_10_diff1 value: 18.123527260203605 - type: nauc_map_at_10_max value: 34.59737571933771 - type: nauc_map_at_10_std value: 7.985244526477989 - type: nauc_map_at_1_diff1 value: 24.20116611812359 - type: nauc_map_at_1_max value: 30.142503127773175 - type: nauc_map_at_1_std value: 1.7528279249714371 - type: nauc_map_at_20_diff1 value: 17.92941292676869 - type: nauc_map_at_20_max value: 34.90561535201822 - type: nauc_map_at_20_std value: 8.806983271002245 - type: nauc_map_at_3_diff1 value: 19.621278199026627 - type: nauc_map_at_3_max value: 33.04953696007031 - type: nauc_map_at_3_std value: 4.743775272044947 - type: nauc_map_at_5_diff1 value: 17.84852616035865 - type: nauc_map_at_5_max value: 33.918937290902676 - type: nauc_map_at_5_std value: 6.43805539088188 - type: nauc_mrr_at_1000_diff1 value: 15.347525245361156 - type: nauc_mrr_at_1000_max value: 30.984286548888416 - type: nauc_mrr_at_1000_std value: 10.51729403704548 - type: nauc_mrr_at_100_diff1 value: 15.35190671644279 - type: nauc_mrr_at_100_max value: 30.991582390051992 - type: nauc_mrr_at_100_std value: 10.528113181960542 - type: nauc_mrr_at_10_diff1 value: 15.421448994451428 - type: nauc_mrr_at_10_max value: 31.13167396372901 - type: nauc_mrr_at_10_std value: 10.405474460265241 - type: nauc_mrr_at_1_diff1 value: 19.91098871041916 - type: nauc_mrr_at_1_max value: 28.199940386873457 - type: nauc_mrr_at_1_std value: 5.155228094170121 - type: nauc_mrr_at_20_diff1 value: 15.299643109767583 - type: nauc_mrr_at_20_max value: 31.01811956006181 - type: nauc_mrr_at_20_std value: 10.489072164322263 - type: nauc_mrr_at_3_diff1 value: 15.366450166527843 - type: nauc_mrr_at_3_max value: 30.34857432681673 - type: nauc_mrr_at_3_std value: 9.006900103817772 - type: nauc_mrr_at_5_diff1 value: 14.887486492755764 - type: nauc_mrr_at_5_max value: 31.064197475112508 - type: nauc_mrr_at_5_std value: 10.031368604363431 - type: nauc_ndcg_at_1000_diff1 value: 15.488355020463965 - type: nauc_ndcg_at_1000_max value: 35.599964683193356 - type: nauc_ndcg_at_1000_std value: 17.060985301144974 - type: nauc_ndcg_at_100_diff1 value: 15.854159478255767 - type: nauc_ndcg_at_100_max value: 35.68620327215392 - type: nauc_ndcg_at_100_std value: 16.291640368302122 - type: nauc_ndcg_at_10_diff1 value: 16.078556057593055 - type: nauc_ndcg_at_10_max value: 35.16683300045305 - type: nauc_ndcg_at_10_std value: 11.600026114771842 - type: nauc_ndcg_at_1_diff1 value: 19.91098871041916 - type: nauc_ndcg_at_1_max value: 28.199940386873457 - type: nauc_ndcg_at_1_std value: 5.155228094170121 - type: nauc_ndcg_at_20_diff1 value: 15.488844425483514 - type: nauc_ndcg_at_20_max value: 35.56107040983233 - type: nauc_ndcg_at_20_std value: 13.251910512661198 - type: nauc_ndcg_at_3_diff1 value: 16.74489883121594 - type: nauc_ndcg_at_3_max value: 32.389819879059544 - type: nauc_ndcg_at_3_std value: 7.493628842692248 - type: nauc_ndcg_at_5_diff1 value: 15.113032176867607 - type: nauc_ndcg_at_5_max value: 34.3779074616743 - type: nauc_ndcg_at_5_std value: 9.451124063087098 - type: nauc_precision_at_1000_diff1 value: -3.0336791429010397 - type: nauc_precision_at_1000_max value: 7.186757791081503 - type: nauc_precision_at_1000_std value: 24.207475517567993 - type: nauc_precision_at_100_diff1 value: 4.1799378860106025 - type: nauc_precision_at_100_max value: 19.734149092069195 - type: nauc_precision_at_100_std value: 27.14752823725515 - type: nauc_precision_at_10_diff1 value: 9.757385921354574 - type: nauc_precision_at_10_max value: 31.63967138734393 - type: nauc_precision_at_10_std value: 20.941862722792937 - type: nauc_precision_at_1_diff1 value: 19.91098871041916 - type: nauc_precision_at_1_max value: 28.199940386873457 - type: nauc_precision_at_1_std value: 5.155228094170121 - type: nauc_precision_at_20_diff1 value: 6.041242795339366 - type: nauc_precision_at_20_max value: 28.346626059960002 - type: nauc_precision_at_20_std value: 23.557255218471095 - type: nauc_precision_at_3_diff1 value: 12.29833478679591 - type: nauc_precision_at_3_max value: 32.28472659370561 - type: nauc_precision_at_3_std value: 12.302338064297853 - type: nauc_precision_at_5_diff1 value: 7.992994907910815 - type: nauc_precision_at_5_max value: 32.957822083112525 - type: nauc_precision_at_5_std value: 17.171509203185707 - type: nauc_recall_at_1000_diff1 value: 6.546403888329451 - type: nauc_recall_at_1000_max value: 30.05169708532201 - type: nauc_recall_at_1000_std value: 33.1025025789684 - type: nauc_recall_at_100_diff1 value: 10.063690002072539 - type: nauc_recall_at_100_max value: 30.33645832268982 - type: nauc_recall_at_100_std value: 24.88750198752349 - type: nauc_recall_at_10_diff1 value: 11.557048975359223 - type: nauc_recall_at_10_max value: 32.570077522651765 - type: nauc_recall_at_10_std value: 13.351992240284844 - type: nauc_recall_at_1_diff1 value: 24.20116611812359 - type: nauc_recall_at_1_max value: 30.142503127773175 - type: nauc_recall_at_1_std value: 1.7528279249714371 - type: nauc_recall_at_20_diff1 value: 10.023860910712143 - type: nauc_recall_at_20_max value: 31.966797882093502 - type: nauc_recall_at_20_std value: 16.292044481984295 - type: nauc_recall_at_3_diff1 value: 14.118820470249613 - type: nauc_recall_at_3_max value: 32.864946121706126 - type: nauc_recall_at_3_std value: 7.699657726962808 - type: nauc_recall_at_5_diff1 value: 10.13729414622558 - type: nauc_recall_at_5_max value: 33.482336846118045 - type: nauc_recall_at_5_std value: 10.497701399887017 - type: ndcg_at_1 value: 20.521 - type: ndcg_at_10 value: 23.837 - type: ndcg_at_100 value: 31.278 - type: ndcg_at_1000 value: 34.852 - type: ndcg_at_20 value: 26.653 - type: ndcg_at_3 value: 18.778 - type: ndcg_at_5 value: 20.535999999999998 - type: precision_at_1 value: 20.521 - type: precision_at_10 value: 7.582999999999999 - type: precision_at_100 value: 1.545 - type: precision_at_1000 value: 0.22100000000000003 - type: precision_at_20 value: 4.974 - type: precision_at_3 value: 13.941 - type: precision_at_5 value: 10.866000000000001 - type: recall_at_1 value: 9.273000000000001 - type: recall_at_10 value: 29.961 - type: recall_at_100 value: 55.855999999999995 - type: recall_at_1000 value: 75.972 - type: recall_at_20 value: 38.045 - type: recall_at_3 value: 17.666 - type: recall_at_5 value: 22.539 task: type: Retrieval - dataset: config: default name: MTEB DBPedia revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: main_score value: 36.77 - type: map_at_1 value: 7.879 - type: map_at_10 value: 17.448 - type: map_at_100 value: 24.615000000000002 - type: map_at_1000 value: 26.32 - type: map_at_20 value: 20.115 - type: map_at_3 value: 12.607 - type: map_at_5 value: 14.757000000000001 - type: mrr_at_1 value: 60.75000000000001 - type: mrr_at_10 value: 70.04662698412697 - type: mrr_at_100 value: 70.48374853904342 - type: mrr_at_1000 value: 70.48974912019449 - type: mrr_at_20 value: 70.35767608079914 - type: mrr_at_3 value: 68.04166666666667 - type: mrr_at_5 value: 69.39166666666667 - type: nauc_map_at_1000_diff1 value: 27.22615670354747 - type: nauc_map_at_1000_max value: 23.117379231999642 - type: nauc_map_at_1000_std value: 15.590590587924877 - type: nauc_map_at_100_diff1 value: 27.637835658039805 - type: nauc_map_at_100_max value: 19.836155567809612 - type: nauc_map_at_100_std value: 11.900741405093758 - type: nauc_map_at_10_diff1 value: 30.728419563300395 - type: nauc_map_at_10_max value: 6.106892959682543 - type: nauc_map_at_10_std value: -9.11825174887402 - type: nauc_map_at_1_diff1 value: 39.34845843129211 - type: nauc_map_at_1_max value: -2.7536297297258354 - type: nauc_map_at_1_std value: -21.149652784081006 - type: nauc_map_at_20_diff1 value: 29.37489889563395 - type: nauc_map_at_20_max value: 11.068671486589691 - type: nauc_map_at_20_std value: -1.9024556480454369 - type: nauc_map_at_3_diff1 value: 35.58217022040217 - type: nauc_map_at_3_max value: 0.2641479206106634 - type: nauc_map_at_3_std value: -17.942087104722955 - type: nauc_map_at_5_diff1 value: 32.07485536680787 - type: nauc_map_at_5_max value: 2.132142953478948 - type: nauc_map_at_5_std value: -13.959336639125317 - type: nauc_mrr_at_1000_diff1 value: 43.561171278954866 - type: nauc_mrr_at_1000_max value: 46.86561252904832 - type: nauc_mrr_at_1000_std value: 25.189090212812044 - type: nauc_mrr_at_100_diff1 value: 43.56311857767914 - type: nauc_mrr_at_100_max value: 46.87364039655639 - type: nauc_mrr_at_100_std value: 25.20188703419532 - type: nauc_mrr_at_10_diff1 value: 43.554694361118905 - type: nauc_mrr_at_10_max value: 46.728242258941464 - type: nauc_mrr_at_10_std value: 25.25356257708155 - type: nauc_mrr_at_1_diff1 value: 46.435352817539524 - type: nauc_mrr_at_1_max value: 46.0413071187664 - type: nauc_mrr_at_1_std value: 20.350129155245682 - type: nauc_mrr_at_20_diff1 value: 43.544595900767 - type: nauc_mrr_at_20_max value: 46.93717450668172 - type: nauc_mrr_at_20_std value: 25.25597416021791 - type: nauc_mrr_at_3_diff1 value: 42.553383214077115 - type: nauc_mrr_at_3_max value: 46.56975257676068 - type: nauc_mrr_at_3_std value: 24.70327599709596 - type: nauc_mrr_at_5_diff1 value: 43.33215737862213 - type: nauc_mrr_at_5_max value: 46.97620970583296 - type: nauc_mrr_at_5_std value: 25.529521260210203 - type: nauc_ndcg_at_1000_diff1 value: 27.589730901498775 - type: nauc_ndcg_at_1000_max value: 34.18730626989723 - type: nauc_ndcg_at_1000_std value: 27.79208958504551 - type: nauc_ndcg_at_100_diff1 value: 28.099956032480257 - type: nauc_ndcg_at_100_max value: 25.076317763406653 - type: nauc_ndcg_at_100_std value: 19.3393302641812 - type: nauc_ndcg_at_10_diff1 value: 28.10040050055288 - type: nauc_ndcg_at_10_max value: 27.463719470301168 - type: nauc_ndcg_at_10_std value: 13.569605959220086 - type: nauc_ndcg_at_1_diff1 value: 39.92817671769714 - type: nauc_ndcg_at_1_max value: 34.44662945106997 - type: nauc_ndcg_at_1_std value: 13.388099467140332 - type: nauc_ndcg_at_20_diff1 value: 27.800968512396306 - type: nauc_ndcg_at_20_max value: 23.78719275004937 - type: nauc_ndcg_at_20_std value: 11.933811285502157 - type: nauc_ndcg_at_3_diff1 value: 30.362495467731133 - type: nauc_ndcg_at_3_max value: 31.470527935112507 - type: nauc_ndcg_at_3_std value: 13.5264322754454 - type: nauc_ndcg_at_5_diff1 value: 27.596193051135042 - type: nauc_ndcg_at_5_max value: 28.879553439188545 - type: nauc_ndcg_at_5_std value: 14.002675908790085 - type: nauc_precision_at_1000_diff1 value: -5.902001497187656 - type: nauc_precision_at_1000_max value: 31.506103503010614 - type: nauc_precision_at_1000_std value: 30.37757126360957 - type: nauc_precision_at_100_diff1 value: -7.078812736371486 - type: nauc_precision_at_100_max value: 40.0935402905799 - type: nauc_precision_at_100_std value: 48.350060964069996 - type: nauc_precision_at_10_diff1 value: 2.9397070998315495 - type: nauc_precision_at_10_max value: 41.427281680892975 - type: nauc_precision_at_10_std value: 41.568474216601494 - type: nauc_precision_at_1_diff1 value: 46.435352817539524 - type: nauc_precision_at_1_max value: 46.0413071187664 - type: nauc_precision_at_1_std value: 20.350129155245682 - type: nauc_precision_at_20_diff1 value: -0.5003867750646896 - type: nauc_precision_at_20_max value: 43.11320479268452 - type: nauc_precision_at_20_std value: 46.31414266215817 - type: nauc_precision_at_3_diff1 value: 16.843701906002153 - type: nauc_precision_at_3_max value: 39.14348289333492 - type: nauc_precision_at_3_std value: 28.97286018704868 - type: nauc_precision_at_5_diff1 value: 7.4678851421555255 - type: nauc_precision_at_5_max value: 39.44725843015022 - type: nauc_precision_at_5_std value: 36.07126271213125 - type: nauc_recall_at_1000_diff1 value: 12.918659968294232 - type: nauc_recall_at_1000_max value: 18.912793350749517 - type: nauc_recall_at_1000_std value: 34.58765147591728 - type: nauc_recall_at_100_diff1 value: 17.75168890570515 - type: nauc_recall_at_100_max value: 9.431103175972714 - type: nauc_recall_at_100_std value: 18.236704585602688 - type: nauc_recall_at_10_diff1 value: 22.428401923490217 - type: nauc_recall_at_10_max value: -2.0581844217543095 - type: nauc_recall_at_10_std value: -12.095753965206086 - type: nauc_recall_at_1_diff1 value: 39.34845843129211 - type: nauc_recall_at_1_max value: -2.7536297297258354 - type: nauc_recall_at_1_std value: -21.149652784081006 - type: nauc_recall_at_20_diff1 value: 19.029969489215137 - type: nauc_recall_at_20_max value: 0.4313311185111767 - type: nauc_recall_at_20_std value: -4.001252650460747 - type: nauc_recall_at_3_diff1 value: 32.40881022483858 - type: nauc_recall_at_3_max value: -2.2448786906703293 - type: nauc_recall_at_3_std value: -18.736548322855686 - type: nauc_recall_at_5_diff1 value: 25.908532046267744 - type: nauc_recall_at_5_max value: -2.4645406246201174 - type: nauc_recall_at_5_std value: -14.819488134588758 - type: ndcg_at_1 value: 47.25 - type: ndcg_at_10 value: 36.77 - type: ndcg_at_100 value: 42.33 - type: ndcg_at_1000 value: 50.382000000000005 - type: ndcg_at_20 value: 36.51 - type: ndcg_at_3 value: 40.128 - type: ndcg_at_5 value: 38.031 - type: precision_at_1 value: 60.75000000000001 - type: precision_at_10 value: 29.549999999999997 - type: precision_at_100 value: 9.62 - type: precision_at_1000 value: 2.0580000000000003 - type: precision_at_20 value: 22.125 - type: precision_at_3 value: 44.833 - type: precision_at_5 value: 38.25 - type: recall_at_1 value: 7.879 - type: recall_at_10 value: 23.783 - type: recall_at_100 value: 51.193 - type: recall_at_1000 value: 75.995 - type: recall_at_20 value: 31.05 - type: recall_at_3 value: 14.16 - type: recall_at_5 value: 17.727 task: type: Retrieval - dataset: config: default name: MTEB EmotionClassification revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 53.94500000000001 - type: f1 value: 46.74955162106079 - type: f1_weighted value: 55.44564710432288 - type: main_score value: 53.94500000000001 task: type: Classification - dataset: config: default name: MTEB FEVER revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: main_score value: 84.127 - type: map_at_1 value: 69.831 - type: map_at_10 value: 79.589 - type: map_at_100 value: 79.77499999999999 - type: map_at_1000 value: 79.788 - type: map_at_20 value: 79.706 - type: map_at_3 value: 78.42099999999999 - type: map_at_5 value: 79.239 - type: mrr_at_1 value: 75.05250525052504 - type: mrr_at_10 value: 84.58987565423183 - type: mrr_at_100 value: 84.65851795351881 - type: mrr_at_1000 value: 84.65972718436838 - type: mrr_at_20 value: 84.64833916172947 - type: mrr_at_3 value: 83.64336433643345 - type: mrr_at_5 value: 84.34018401840153 - type: nauc_map_at_1000_diff1 value: 49.23229610937116 - type: nauc_map_at_1000_max value: 2.538940503744293 - type: nauc_map_at_1000_std value: -28.281666551373885 - type: nauc_map_at_100_diff1 value: 49.206748439493715 - type: nauc_map_at_100_max value: 2.5306616051352426 - type: nauc_map_at_100_std value: -28.278850840258357 - type: nauc_map_at_10_diff1 value: 49.09546754806344 - type: nauc_map_at_10_max value: 2.6113492488760803 - type: nauc_map_at_10_std value: -28.33173942793787 - type: nauc_map_at_1_diff1 value: 54.03823845678141 - type: nauc_map_at_1_max value: 0.7813055695400233 - type: nauc_map_at_1_std value: -29.69082254949428 - type: nauc_map_at_20_diff1 value: 49.13309291472015 - type: nauc_map_at_20_max value: 2.527699255933495 - type: nauc_map_at_20_std value: -28.273378648376767 - type: nauc_map_at_3_diff1 value: 49.16418319489923 - type: nauc_map_at_3_max value: 2.4530562838038668 - type: nauc_map_at_3_std value: -29.749466711737117 - type: nauc_map_at_5_diff1 value: 49.105002115323174 - type: nauc_map_at_5_max value: 2.730159330614642 - type: nauc_map_at_5_std value: -28.624757813540224 - type: nauc_mrr_at_1000_diff1 value: 63.27335919243411 - type: nauc_mrr_at_1000_max value: 4.374350066360141 - type: nauc_mrr_at_1000_std value: -39.057765474275875 - type: nauc_mrr_at_100_diff1 value: 63.27201389539822 - type: nauc_mrr_at_100_max value: 4.380072421865697 - type: nauc_mrr_at_100_std value: -39.05368757884141 - type: nauc_mrr_at_10_diff1 value: 63.24639295001365 - type: nauc_mrr_at_10_max value: 4.512012375528155 - type: nauc_mrr_at_10_std value: -39.12854460658675 - type: nauc_mrr_at_1_diff1 value: 65.10605165757288 - type: nauc_mrr_at_1_max value: 1.9283900321068632 - type: nauc_mrr_at_1_std value: -36.73128263177301 - type: nauc_mrr_at_20_diff1 value: 63.25714175532876 - type: nauc_mrr_at_20_max value: 4.401641881007041 - type: nauc_mrr_at_20_std value: -39.06295724502164 - type: nauc_mrr_at_3_diff1 value: 62.74870913078454 - type: nauc_mrr_at_3_max value: 4.451662631818057 - type: nauc_mrr_at_3_std value: -40.362052318194905 - type: nauc_mrr_at_5_diff1 value: 63.15462728579158 - type: nauc_mrr_at_5_max value: 4.651205798352267 - type: nauc_mrr_at_5_std value: -39.39561481114499 - type: nauc_ndcg_at_1000_diff1 value: 50.05516269906709 - type: nauc_ndcg_at_1000_max value: 3.402171494055581 - type: nauc_ndcg_at_1000_std value: -28.03925061760615 - type: nauc_ndcg_at_100_diff1 value: 49.3532420182713 - type: nauc_ndcg_at_100_max value: 3.2254197563689253 - type: nauc_ndcg_at_100_std value: -27.790242243156303 - type: nauc_ndcg_at_10_diff1 value: 48.83916695200456 - type: nauc_ndcg_at_10_max value: 3.526631254510631 - type: nauc_ndcg_at_10_std value: -28.107233038143935 - type: nauc_ndcg_at_1_diff1 value: 65.10605165757288 - type: nauc_ndcg_at_1_max value: 1.9283900321068632 - type: nauc_ndcg_at_1_std value: -36.73128263177301 - type: nauc_ndcg_at_20_diff1 value: 48.89391205041084 - type: nauc_ndcg_at_20_max value: 3.193109099886884 - type: nauc_ndcg_at_20_std value: -27.746898107657486 - type: nauc_ndcg_at_3_diff1 value: 49.700478041463256 - type: nauc_ndcg_at_3_max value: 3.5597079593645837 - type: nauc_ndcg_at_3_std value: -31.8276627401069 - type: nauc_ndcg_at_5_diff1 value: 49.13817289744641 - type: nauc_ndcg_at_5_max value: 3.9842988788044162 - type: nauc_ndcg_at_5_std value: -29.128133914203897 - type: nauc_precision_at_1000_diff1 value: -5.8168043702291445 - type: nauc_precision_at_1000_max value: 8.661081932948386 - type: nauc_precision_at_1000_std value: 7.898154314108613 - type: nauc_precision_at_100_diff1 value: -7.622708807398312 - type: nauc_precision_at_100_max value: 7.573802349665375 - type: nauc_precision_at_100_std value: 7.548940358658417 - type: nauc_precision_at_10_diff1 value: 3.651203107718887 - type: nauc_precision_at_10_max value: 12.027476444641824 - type: nauc_precision_at_10_std value: -3.8701414226488393 - type: nauc_precision_at_1_diff1 value: 65.10605165757288 - type: nauc_precision_at_1_max value: 1.9283900321068632 - type: nauc_precision_at_1_std value: -36.73128263177301 - type: nauc_precision_at_20_diff1 value: -4.51338283591896 - type: nauc_precision_at_20_max value: 8.574478979483608 - type: nauc_precision_at_20_std value: 3.8001684359605457 - type: nauc_precision_at_3_diff1 value: 35.12229883441577 - type: nauc_precision_at_3_max value: 11.461666197502227 - type: nauc_precision_at_3_std value: -34.430950046529375 - type: nauc_precision_at_5_diff1 value: 19.750032706257066 - type: nauc_precision_at_5_max value: 15.700101161283891 - type: nauc_precision_at_5_std value: -17.01470586200846 - type: nauc_recall_at_1000_diff1 value: 5.677803043632773 - type: nauc_recall_at_1000_max value: 6.013417206823954 - type: nauc_recall_at_1000_std value: 28.095710500813787 - type: nauc_recall_at_100_diff1 value: 6.062697689760903 - type: nauc_recall_at_100_max value: 2.918708091666672 - type: nauc_recall_at_100_std value: 15.009661326828391 - type: nauc_recall_at_10_diff1 value: 15.51901323813468 - type: nauc_recall_at_10_max value: 5.695538162226332 - type: nauc_recall_at_10_std value: -1.6573979540762098 - type: nauc_recall_at_1_diff1 value: 54.03823845678141 - type: nauc_recall_at_1_max value: 0.7813055695400233 - type: nauc_recall_at_1_std value: -29.69082254949428 - type: nauc_recall_at_20_diff1 value: 9.37823741228587 - type: nauc_recall_at_20_max value: 3.0566017916814943 - type: nauc_recall_at_20_std value: 6.9796184911386545 - type: nauc_recall_at_3_diff1 value: 32.07387343667272 - type: nauc_recall_at_3_max value: 4.789923667382424 - type: nauc_recall_at_3_std value: -24.74706115680205 - type: nauc_recall_at_5_diff1 value: 24.39694752709738 - type: nauc_recall_at_5_max value: 7.271133287879929 - type: nauc_recall_at_5_std value: -12.628276788882612 - type: ndcg_at_1 value: 75.053 - type: ndcg_at_10 value: 84.127 - type: ndcg_at_100 value: 84.77900000000001 - type: ndcg_at_1000 value: 85.028 - type: ndcg_at_20 value: 84.465 - type: ndcg_at_3 value: 82.179 - type: ndcg_at_5 value: 83.42399999999999 - type: precision_at_1 value: 75.053 - type: precision_at_10 value: 10.189 - type: precision_at_100 value: 1.068 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_20 value: 5.188000000000001 - type: precision_at_3 value: 31.813000000000002 - type: precision_at_5 value: 19.829 - type: recall_at_1 value: 69.831 - type: recall_at_10 value: 93.119 - type: recall_at_100 value: 95.649 - type: recall_at_1000 value: 97.245 - type: recall_at_20 value: 94.313 - type: recall_at_3 value: 87.787 - type: recall_at_5 value: 90.989 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: main_score value: 46.018 - type: map_at_1 value: 23.239 - type: map_at_10 value: 37.785000000000004 - type: map_at_100 value: 39.78 - type: map_at_1000 value: 39.947 - type: map_at_20 value: 38.873999999999995 - type: map_at_3 value: 32.686 - type: map_at_5 value: 35.725 - type: mrr_at_1 value: 45.21604938271605 - type: mrr_at_10 value: 53.81534146580441 - type: mrr_at_100 value: 54.57479873400386 - type: mrr_at_1000 value: 54.60767741375167 - type: mrr_at_20 value: 54.32374740680479 - type: mrr_at_3 value: 51.02880658436213 - type: mrr_at_5 value: 52.91152263374482 - type: nauc_map_at_1000_diff1 value: 37.39674307076189 - type: nauc_map_at_1000_max value: 29.499416637029057 - type: nauc_map_at_1000_std value: -3.159386284834724 - type: nauc_map_at_100_diff1 value: 37.38267938834233 - type: nauc_map_at_100_max value: 29.450591895687317 - type: nauc_map_at_100_std value: -3.189530866402903 - type: nauc_map_at_10_diff1 value: 37.202309092714685 - type: nauc_map_at_10_max value: 27.98261677114554 - type: nauc_map_at_10_std value: -4.0144873973773985 - type: nauc_map_at_1_diff1 value: 42.42289155172154 - type: nauc_map_at_1_max value: 20.126387750613056 - type: nauc_map_at_1_std value: -8.558059645904228 - type: nauc_map_at_20_diff1 value: 36.940935486049106 - type: nauc_map_at_20_max value: 28.790226950120985 - type: nauc_map_at_20_std value: -3.5487603793931752 - type: nauc_map_at_3_diff1 value: 38.447143857375835 - type: nauc_map_at_3_max value: 23.92233021843042 - type: nauc_map_at_3_std value: -7.139129825565484 - type: nauc_map_at_5_diff1 value: 38.516472169319144 - type: nauc_map_at_5_max value: 26.413918646667977 - type: nauc_map_at_5_std value: -5.636728555199194 - type: nauc_mrr_at_1000_diff1 value: 47.74750871610032 - type: nauc_mrr_at_1000_max value: 40.19499238606483 - type: nauc_mrr_at_1000_std value: 0.36032080608776107 - type: nauc_mrr_at_100_diff1 value: 47.73322151755956 - type: nauc_mrr_at_100_max value: 40.20877044107413 - type: nauc_mrr_at_100_std value: 0.3930328752369529 - type: nauc_mrr_at_10_diff1 value: 47.62649164813202 - type: nauc_mrr_at_10_max value: 40.31590127628367 - type: nauc_mrr_at_10_std value: 0.3376782526921225 - type: nauc_mrr_at_1_diff1 value: 50.71224023839513 - type: nauc_mrr_at_1_max value: 38.12334760187021 - type: nauc_mrr_at_1_std value: -3.744748522252006 - type: nauc_mrr_at_20_diff1 value: 47.65883289781366 - type: nauc_mrr_at_20_max value: 40.19386589459899 - type: nauc_mrr_at_20_std value: 0.3300453619949638 - type: nauc_mrr_at_3_diff1 value: 48.15037455271594 - type: nauc_mrr_at_3_max value: 39.63517811079612 - type: nauc_mrr_at_3_std value: -1.2604715431363336 - type: nauc_mrr_at_5_diff1 value: 47.82905935425148 - type: nauc_mrr_at_5_max value: 40.14477449232483 - type: nauc_mrr_at_5_std value: -0.6387351420113502 - type: nauc_ndcg_at_1000_diff1 value: 39.62042242051141 - type: nauc_ndcg_at_1000_max value: 34.95065768372776 - type: nauc_ndcg_at_1000_std value: 1.2093906933233651 - type: nauc_ndcg_at_100_diff1 value: 39.52715708377756 - type: nauc_ndcg_at_100_max value: 34.8176627511724 - type: nauc_ndcg_at_100_std value: 1.8417866916566914 - type: nauc_ndcg_at_10_diff1 value: 38.400363035149454 - type: nauc_ndcg_at_10_max value: 31.63896107204925 - type: nauc_ndcg_at_10_std value: -0.8705252027316186 - type: nauc_ndcg_at_1_diff1 value: 50.71224023839513 - type: nauc_ndcg_at_1_max value: 38.12334760187021 - type: nauc_ndcg_at_1_std value: -3.744748522252006 - type: nauc_ndcg_at_20_diff1 value: 38.12907512053514 - type: nauc_ndcg_at_20_max value: 32.497748011049474 - type: nauc_ndcg_at_20_std value: -0.1752936914305571 - type: nauc_ndcg_at_3_diff1 value: 39.46177721859432 - type: nauc_ndcg_at_3_max value: 31.939511307389072 - type: nauc_ndcg_at_3_std value: -3.0727677367802775 - type: nauc_ndcg_at_5_diff1 value: 39.58629354813809 - type: nauc_ndcg_at_5_max value: 31.534911396228782 - type: nauc_ndcg_at_5_std value: -2.8301665715597277 - type: nauc_precision_at_1000_diff1 value: -0.8786446062773204 - type: nauc_precision_at_1000_max value: 29.25589660407707 - type: nauc_precision_at_1000_std value: 17.455591524848746 - type: nauc_precision_at_100_diff1 value: 5.066275950497446 - type: nauc_precision_at_100_max value: 35.90713282516485 - type: nauc_precision_at_100_std value: 19.899761019511562 - type: nauc_precision_at_10_diff1 value: 14.251592016383505 - type: nauc_precision_at_10_max value: 38.742155587347575 - type: nauc_precision_at_10_std value: 14.243815134657725 - type: nauc_precision_at_1_diff1 value: 50.71224023839513 - type: nauc_precision_at_1_max value: 38.12334760187021 - type: nauc_precision_at_1_std value: -3.744748522252006 - type: nauc_precision_at_20_diff1 value: 9.33294574281467 - type: nauc_precision_at_20_max value: 37.78712899843252 - type: nauc_precision_at_20_std value: 15.69120289561787 - type: nauc_precision_at_3_diff1 value: 28.27816983802183 - type: nauc_precision_at_3_max value: 36.45541405683364 - type: nauc_precision_at_3_std value: 3.7608923567232626 - type: nauc_precision_at_5_diff1 value: 22.57043202085106 - type: nauc_precision_at_5_max value: 39.101539898099766 - type: nauc_precision_at_5_std value: 9.027858223250995 - type: nauc_recall_at_1000_diff1 value: 17.5612669956746 - type: nauc_recall_at_1000_max value: 25.889529932227624 - type: nauc_recall_at_1000_std value: 19.57316948655149 - type: nauc_recall_at_100_diff1 value: 28.46905271419406 - type: nauc_recall_at_100_max value: 31.153388889792833 - type: nauc_recall_at_100_std value: 17.27258409078373 - type: nauc_recall_at_10_diff1 value: 28.126929700808944 - type: nauc_recall_at_10_max value: 23.181744909761907 - type: nauc_recall_at_10_std value: 1.968185972587066 - type: nauc_recall_at_1_diff1 value: 42.42289155172154 - type: nauc_recall_at_1_max value: 20.126387750613056 - type: nauc_recall_at_1_std value: -8.558059645904228 - type: nauc_recall_at_20_diff1 value: 26.479542294303787 - type: nauc_recall_at_20_max value: 24.732180999052623 - type: nauc_recall_at_20_std value: 4.561070039093053 - type: nauc_recall_at_3_diff1 value: 33.630231249403565 - type: nauc_recall_at_3_max value: 19.866536816100318 - type: nauc_recall_at_3_std value: -6.902891630424277 - type: nauc_recall_at_5_diff1 value: 32.374300069152945 - type: nauc_recall_at_5_max value: 21.609786350615863 - type: nauc_recall_at_5_std value: -4.250570794176765 - type: ndcg_at_1 value: 45.216 - type: ndcg_at_10 value: 46.018 - type: ndcg_at_100 value: 52.81 - type: ndcg_at_1000 value: 55.437000000000005 - type: ndcg_at_20 value: 48.752 - type: ndcg_at_3 value: 41.143 - type: ndcg_at_5 value: 43.428 - type: precision_at_1 value: 45.216 - type: precision_at_10 value: 12.747 - type: precision_at_100 value: 1.9980000000000002 - type: precision_at_1000 value: 0.246 - type: precision_at_20 value: 7.523000000000001 - type: precision_at_3 value: 26.749000000000002 - type: precision_at_5 value: 20.617 - type: recall_at_1 value: 23.239 - type: recall_at_10 value: 53.64 - type: recall_at_100 value: 78.316 - type: recall_at_1000 value: 94.132 - type: recall_at_20 value: 62.17700000000001 - type: recall_at_3 value: 37.559 - type: recall_at_5 value: 45.605000000000004 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: main_score value: 67.836 - type: map_at_1 value: 38.292 - type: map_at_10 value: 58.48 - type: map_at_100 value: 59.382999999999996 - type: map_at_1000 value: 59.447 - type: map_at_20 value: 59.016999999999996 - type: map_at_3 value: 54.617000000000004 - type: map_at_5 value: 57.043 - type: mrr_at_1 value: 76.58338960162052 - type: mrr_at_10 value: 83.47652808591329 - type: mrr_at_100 value: 83.63380014525882 - type: mrr_at_1000 value: 83.63933777767011 - type: mrr_at_20 value: 83.57772328539731 - type: mrr_at_3 value: 82.44654512716605 - type: mrr_at_5 value: 83.17240603195998 - type: nauc_map_at_1000_diff1 value: 16.09417706349051 - type: nauc_map_at_1000_max value: 22.82046255671306 - type: nauc_map_at_1000_std value: -0.06797864025553367 - type: nauc_map_at_100_diff1 value: 16.05272819609321 - type: nauc_map_at_100_max value: 22.80861981190222 - type: nauc_map_at_100_std value: -0.05071783771856927 - type: nauc_map_at_10_diff1 value: 15.997779294340559 - type: nauc_map_at_10_max value: 22.615988267544513 - type: nauc_map_at_10_std value: -0.7600035230743971 - type: nauc_map_at_1_diff1 value: 69.24726718948668 - type: nauc_map_at_1_max value: 43.958413687770644 - type: nauc_map_at_1_std value: -12.056753426789658 - type: nauc_map_at_20_diff1 value: 15.939881445060319 - type: nauc_map_at_20_max value: 22.692668502577643 - type: nauc_map_at_20_std value: -0.283868450708954 - type: nauc_map_at_3_diff1 value: 18.213734472436414 - type: nauc_map_at_3_max value: 23.0443805721617 - type: nauc_map_at_3_std value: -3.327751624422928 - type: nauc_map_at_5_diff1 value: 16.680008500993083 - type: nauc_map_at_5_max value: 22.517396255963348 - type: nauc_map_at_5_std value: -1.98531389655906 - type: nauc_mrr_at_1000_diff1 value: 67.90848983786418 - type: nauc_mrr_at_1000_max value: 46.450918836314216 - type: nauc_mrr_at_1000_std value: -10.897096706171377 - type: nauc_mrr_at_100_diff1 value: 67.90978153374142 - type: nauc_mrr_at_100_max value: 46.45801498811678 - type: nauc_mrr_at_100_std value: -10.889452971557144 - type: nauc_mrr_at_10_diff1 value: 67.85232774207358 - type: nauc_mrr_at_10_max value: 46.519322725477366 - type: nauc_mrr_at_10_std value: -10.850819066119888 - type: nauc_mrr_at_1_diff1 value: 69.24726718948668 - type: nauc_mrr_at_1_max value: 43.958413687770644 - type: nauc_mrr_at_1_std value: -12.056753426789658 - type: nauc_mrr_at_20_diff1 value: 67.89964178495697 - type: nauc_mrr_at_20_max value: 46.511653631886404 - type: nauc_mrr_at_20_std value: -10.839214368831332 - type: nauc_mrr_at_3_diff1 value: 67.5836395057384 - type: nauc_mrr_at_3_max value: 46.669184506889465 - type: nauc_mrr_at_3_std value: -11.179530780325097 - type: nauc_mrr_at_5_diff1 value: 67.77665440172093 - type: nauc_mrr_at_5_max value: 46.573672833105725 - type: nauc_mrr_at_5_std value: -10.982788041572968 - type: nauc_ndcg_at_1000_diff1 value: 21.116945524743244 - type: nauc_ndcg_at_1000_max value: 26.331821580979415 - type: nauc_ndcg_at_1000_std value: 2.2115411230013993 - type: nauc_ndcg_at_100_diff1 value: 19.998679336096366 - type: nauc_ndcg_at_100_max value: 25.965625801662146 - type: nauc_ndcg_at_100_std value: 2.828817915487286 - type: nauc_ndcg_at_10_diff1 value: 19.806466897776797 - type: nauc_ndcg_at_10_max value: 25.419244862350304 - type: nauc_ndcg_at_10_std value: 0.2155926935521766 - type: nauc_ndcg_at_1_diff1 value: 69.24726718948668 - type: nauc_ndcg_at_1_max value: 43.958413687770644 - type: nauc_ndcg_at_1_std value: -12.056753426789658 - type: nauc_ndcg_at_20_diff1 value: 19.547932237059364 - type: nauc_ndcg_at_20_max value: 25.539888431109336 - type: nauc_ndcg_at_20_std value: 1.6229496555874041 - type: nauc_ndcg_at_3_diff1 value: 23.915468237770344 - type: nauc_ndcg_at_3_max value: 26.483987322133835 - type: nauc_ndcg_at_3_std value: -3.927672975648966 - type: nauc_ndcg_at_5_diff1 value: 21.285580255116123 - type: nauc_ndcg_at_5_max value: 25.39329283776291 - type: nauc_ndcg_at_5_std value: -1.9981992190798898 - type: nauc_precision_at_1000_diff1 value: -16.397996018930517 - type: nauc_precision_at_1000_max value: 12.038228696443355 - type: nauc_precision_at_1000_std value: 30.699566406872442 - type: nauc_precision_at_100_diff1 value: -11.55484201940981 - type: nauc_precision_at_100_max value: 13.542075140974724 - type: nauc_precision_at_100_std value: 24.606150356117055 - type: nauc_precision_at_10_diff1 value: -3.0258154194368907 - type: nauc_precision_at_10_max value: 15.656448807768248 - type: nauc_precision_at_10_std value: 8.819867674731508 - type: nauc_precision_at_1_diff1 value: 69.24726718948668 - type: nauc_precision_at_1_max value: 43.958413687770644 - type: nauc_precision_at_1_std value: -12.056753426789658 - type: nauc_precision_at_20_diff1 value: -6.346117648054698 - type: nauc_precision_at_20_max value: 14.67028697593907 - type: nauc_precision_at_20_std value: 14.430033095760397 - type: nauc_precision_at_3_diff1 value: 9.012431714387436 - type: nauc_precision_at_3_max value: 20.29633246829934 - type: nauc_precision_at_3_std value: -0.8697076229386467 - type: nauc_precision_at_5_diff1 value: 2.5992309960691435 - type: nauc_precision_at_5_max value: 16.960051232392598 - type: nauc_precision_at_5_std value: 3.0677906197565945 - type: nauc_recall_at_1000_diff1 value: -16.397996018930495 - type: nauc_recall_at_1000_max value: 12.038228696443342 - type: nauc_recall_at_1000_std value: 30.69956640687237 - type: nauc_recall_at_100_diff1 value: -11.55484201940982 - type: nauc_recall_at_100_max value: 13.542075140974749 - type: nauc_recall_at_100_std value: 24.60615035611708 - type: nauc_recall_at_10_diff1 value: -3.025815419436788 - type: nauc_recall_at_10_max value: 15.656448807768314 - type: nauc_recall_at_10_std value: 8.819867674731574 - type: nauc_recall_at_1_diff1 value: 69.24726718948668 - type: nauc_recall_at_1_max value: 43.958413687770644 - type: nauc_recall_at_1_std value: -12.056753426789658 - type: nauc_recall_at_20_diff1 value: -6.346117648054507 - type: nauc_recall_at_20_max value: 14.670286975939165 - type: nauc_recall_at_20_std value: 14.430033095760383 - type: nauc_recall_at_3_diff1 value: 9.012431714387384 - type: nauc_recall_at_3_max value: 20.296332468299312 - type: nauc_recall_at_3_std value: -0.8697076229386763 - type: nauc_recall_at_5_diff1 value: 2.599230996069216 - type: nauc_recall_at_5_max value: 16.960051232392622 - type: nauc_recall_at_5_std value: 3.0677906197565834 - type: ndcg_at_1 value: 76.583 - type: ndcg_at_10 value: 67.836 - type: ndcg_at_100 value: 70.884 - type: ndcg_at_1000 value: 72.085 - type: ndcg_at_20 value: 69.149 - type: ndcg_at_3 value: 62.434 - type: ndcg_at_5 value: 65.508 - type: precision_at_1 value: 76.583 - type: precision_at_10 value: 14.282 - type: precision_at_100 value: 1.6650000000000003 - type: precision_at_1000 value: 0.182 - type: precision_at_20 value: 7.564 - type: precision_at_3 value: 39.684999999999995 - type: precision_at_5 value: 26.239 - type: recall_at_1 value: 38.292 - type: recall_at_10 value: 71.411 - type: recall_at_100 value: 83.255 - type: recall_at_1000 value: 91.182 - type: recall_at_20 value: 75.645 - type: recall_at_3 value: 59.526999999999994 - type: recall_at_5 value: 65.598 task: type: Retrieval - dataset: config: default name: MTEB ImdbClassification revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 91.6012 - type: ap value: 88.68235390495911 - type: ap_weighted value: 88.68235390495911 - type: f1 value: 91.59668455015077 - type: f1_weighted value: 91.59668455015077 - type: main_score value: 91.6012 task: type: Classification - dataset: config: default name: MTEB MSMARCO revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: main_score value: 34.216 - type: map_at_1 value: 15.038000000000002 - type: map_at_10 value: 27.046 - type: map_at_100 value: 28.389999999999997 - type: map_at_1000 value: 28.444999999999997 - type: map_at_20 value: 27.872000000000003 - type: map_at_3 value: 22.834 - type: map_at_5 value: 25.153 - type: mrr_at_1 value: 15.4297994269341 - type: mrr_at_10 value: 27.478492973120332 - type: mrr_at_100 value: 28.777080396786463 - type: mrr_at_1000 value: 28.825658730635972 - type: mrr_at_20 value: 28.286636068476597 - type: mrr_at_3 value: 23.33333333333318 - type: mrr_at_5 value: 25.614851957975105 - type: nauc_map_at_1000_diff1 value: 27.54679600584162 - type: nauc_map_at_1000_max value: 0.41510056128863393 - type: nauc_map_at_1000_std value: -21.25666818469523 - type: nauc_map_at_100_diff1 value: 27.549865152926362 - type: nauc_map_at_100_max value: 0.41049620236650397 - type: nauc_map_at_100_std value: -21.23460305948801 - type: nauc_map_at_10_diff1 value: 27.46238928310728 - type: nauc_map_at_10_max value: 0.3112462662068356 - type: nauc_map_at_10_std value: -22.07687152339386 - type: nauc_map_at_1_diff1 value: 30.7476883639058 - type: nauc_map_at_1_max value: -0.5565808781243076 - type: nauc_map_at_1_std value: -19.834927817494012 - type: nauc_map_at_20_diff1 value: 27.545155440501322 - type: nauc_map_at_20_max value: 0.3473346558072676 - type: nauc_map_at_20_std value: -21.61961934965919 - type: nauc_map_at_3_diff1 value: 27.39879856077741 - type: nauc_map_at_3_max value: 0.06402240126581103 - type: nauc_map_at_3_std value: -21.617551469899993 - type: nauc_map_at_5_diff1 value: 27.301329953007926 - type: nauc_map_at_5_max value: 0.06942838790190704 - type: nauc_map_at_5_std value: -22.27190645444131 - type: nauc_mrr_at_1000_diff1 value: 27.270571100450564 - type: nauc_mrr_at_1000_max value: 0.5200299838701339 - type: nauc_mrr_at_1000_std value: -21.00132445753325 - type: nauc_mrr_at_100_diff1 value: 27.270120718986174 - type: nauc_mrr_at_100_max value: 0.522377923623997 - type: nauc_mrr_at_100_std value: -20.974058126628332 - type: nauc_mrr_at_10_diff1 value: 27.170393202051947 - type: nauc_mrr_at_10_max value: 0.48873943205852266 - type: nauc_mrr_at_10_std value: -21.738471675337966 - type: nauc_mrr_at_1_diff1 value: 30.283202962075705 - type: nauc_mrr_at_1_max value: -0.5898023407161855 - type: nauc_mrr_at_1_std value: -19.75269473049021 - type: nauc_mrr_at_20_diff1 value: 27.274300680490825 - type: nauc_mrr_at_20_max value: 0.5104058227528672 - type: nauc_mrr_at_20_std value: -21.30268935462482 - type: nauc_mrr_at_3_diff1 value: 27.10789072891654 - type: nauc_mrr_at_3_max value: 0.17628020950576678 - type: nauc_mrr_at_3_std value: -21.472874492804447 - type: nauc_mrr_at_5_diff1 value: 27.042048354996385 - type: nauc_mrr_at_5_max value: 0.20508452891098314 - type: nauc_mrr_at_5_std value: -22.006377363109006 - type: nauc_ndcg_at_1000_diff1 value: 27.150914472847965 - type: nauc_ndcg_at_1000_max value: 1.5041133804769482 - type: nauc_ndcg_at_1000_std value: -19.524926037821043 - type: nauc_ndcg_at_100_diff1 value: 27.228817990238145 - type: nauc_ndcg_at_100_max value: 1.5569549852164712 - type: nauc_ndcg_at_100_std value: -18.37783977195916 - type: nauc_ndcg_at_10_diff1 value: 26.974908852930785 - type: nauc_ndcg_at_10_max value: 0.9865201816077211 - type: nauc_ndcg_at_10_std value: -22.744315865574556 - type: nauc_ndcg_at_1_diff1 value: 30.283202962075705 - type: nauc_ndcg_at_1_max value: -0.5898023407161855 - type: nauc_ndcg_at_1_std value: -19.75269473049021 - type: nauc_ndcg_at_20_diff1 value: 27.256057260883644 - type: nauc_ndcg_at_20_max value: 1.1507498856530942 - type: nauc_ndcg_at_20_std value: -21.119059014816134 - type: nauc_ndcg_at_3_diff1 value: 26.65932420136448 - type: nauc_ndcg_at_3_max value: 0.36047390996708306 - type: nauc_ndcg_at_3_std value: -22.129146087673426 - type: nauc_ndcg_at_5_diff1 value: 26.553136747559307 - type: nauc_ndcg_at_5_max value: 0.3914050774004603 - type: nauc_ndcg_at_5_std value: -23.162245106694787 - type: nauc_precision_at_1000_diff1 value: -3.219536411196315 - type: nauc_precision_at_1000_max value: 18.58643056260195 - type: nauc_precision_at_1000_std value: 13.96483533268961 - type: nauc_precision_at_100_diff1 value: 15.240824308438475 - type: nauc_precision_at_100_max value: 12.873759519468777 - type: nauc_precision_at_100_std value: 12.669885011350335 - type: nauc_precision_at_10_diff1 value: 24.02551103443631 - type: nauc_precision_at_10_max value: 3.3412304054256636 - type: nauc_precision_at_10_std value: -23.53436237582242 - type: nauc_precision_at_1_diff1 value: 30.283202962075705 - type: nauc_precision_at_1_max value: -0.5898023407161855 - type: nauc_precision_at_1_std value: -19.75269473049021 - type: nauc_precision_at_20_diff1 value: 23.383618639354207 - type: nauc_precision_at_20_max value: 5.1273224302435505 - type: nauc_precision_at_20_std value: -16.069542485279715 - type: nauc_precision_at_3_diff1 value: 24.289430079622484 - type: nauc_precision_at_3_max value: 1.0047590622521345 - type: nauc_precision_at_3_std value: -23.3073066696005 - type: nauc_precision_at_5_diff1 value: 23.91964787477001 - type: nauc_precision_at_5_max value: 1.503705757938403 - type: nauc_precision_at_5_std value: -25.080465306807003 - type: nauc_recall_at_1000_diff1 value: 18.559018331553045 - type: nauc_recall_at_1000_max value: 41.916214927217126 - type: nauc_recall_at_1000_std value: 59.856708470758704 - type: nauc_recall_at_100_diff1 value: 26.471212604023354 - type: nauc_recall_at_100_max value: 10.077350060389897 - type: nauc_recall_at_100_std value: 14.153565507764215 - type: nauc_recall_at_10_diff1 value: 26.05741155724461 - type: nauc_recall_at_10_max value: 2.6492884997120534 - type: nauc_recall_at_10_std value: -24.546907108105746 - type: nauc_recall_at_1_diff1 value: 30.7476883639058 - type: nauc_recall_at_1_max value: -0.5565808781243076 - type: nauc_recall_at_1_std value: -19.834927817494012 - type: nauc_recall_at_20_diff1 value: 26.95859513457893 - type: nauc_recall_at_20_max value: 3.521141192333191 - type: nauc_recall_at_20_std value: -18.30474468147818 - type: nauc_recall_at_3_diff1 value: 25.01086599052385 - type: nauc_recall_at_3_max value: 0.9901526603339225 - type: nauc_recall_at_3_std value: -23.299664759244102 - type: nauc_recall_at_5_diff1 value: 24.792290263748747 - type: nauc_recall_at_5_max value: 0.9968092335084938 - type: nauc_recall_at_5_std value: -25.345195391263754 - type: ndcg_at_1 value: 15.43 - type: ndcg_at_10 value: 34.216 - type: ndcg_at_100 value: 40.815 - type: ndcg_at_1000 value: 42.202 - type: ndcg_at_20 value: 37.179 - type: ndcg_at_3 value: 25.588 - type: ndcg_at_5 value: 29.724 - type: precision_at_1 value: 15.43 - type: precision_at_10 value: 5.918 - type: precision_at_100 value: 0.922 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 3.5700000000000003 - type: precision_at_3 value: 11.442 - type: precision_at_5 value: 8.966000000000001 - type: recall_at_1 value: 15.038000000000002 - type: recall_at_10 value: 56.627 - type: recall_at_100 value: 87.399 - type: recall_at_1000 value: 98.009 - type: recall_at_20 value: 68.176 - type: recall_at_3 value: 33.056000000000004 - type: recall_at_5 value: 42.995 task: type: Retrieval - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 89.54172366621066 - type: f1 value: 88.86345617269791 - type: f1_weighted value: 89.39824737643146 - type: main_score value: 89.54172366621066 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 62.08162334701323 - type: f1 value: 43.12730019766516 - type: f1_weighted value: 63.781545502237925 - type: main_score value: 62.08162334701323 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 70.35642232683254 - type: f1 value: 68.72302949991845 - type: f1_weighted value: 69.3283349884127 - type: main_score value: 70.35642232683254 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 75.72965702757229 - type: f1 value: 75.45057853223203 - type: f1_weighted value: 75.51989582351723 - type: main_score value: 75.72965702757229 task: type: Classification - dataset: config: default name: MTEB MedrxivClusteringP2P revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: main_score value: 33.84359193475579 - type: v_measure value: 33.84359193475579 - type: v_measure_std value: 1.206510814601397 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: main_score value: 32.43240060668634 - type: v_measure value: 32.43240060668634 - type: v_measure_std value: 1.4462915088372668 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 split: test type: mteb/mind_small metrics: - type: main_score value: 32.17562277399934 - type: map value: 32.17562277399934 - type: mrr value: 33.359132186523716 - type: nAUC_map_diff1 value: 9.64301950935433 - type: nAUC_map_max value: -21.474489295623783 - type: nAUC_map_std value: -2.9044953039946035 - type: nAUC_mrr_diff1 value: 9.376542394215578 - type: nAUC_mrr_max value: -15.773926504219354 - type: nAUC_mrr_std value: -0.751930669185602 task: type: Reranking - dataset: config: default name: MTEB NFCorpus revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: main_score value: 33.816 - type: map_at_1 value: 4.893 - type: map_at_10 value: 12.154 - type: map_at_100 value: 15.486 - type: map_at_1000 value: 16.952 - type: map_at_20 value: 13.424 - type: map_at_3 value: 8.819 - type: map_at_5 value: 10.238999999999999 - type: mrr_at_1 value: 42.10526315789473 - type: mrr_at_10 value: 52.01742100348912 - type: mrr_at_100 value: 52.6554997087846 - type: mrr_at_1000 value: 52.69599552159355 - type: mrr_at_20 value: 52.51069271775405 - type: mrr_at_3 value: 49.79360165118682 - type: mrr_at_5 value: 50.86171310629517 - type: nauc_map_at_1000_diff1 value: 22.910384139189237 - type: nauc_map_at_1000_max value: 30.904545032635593 - type: nauc_map_at_1000_std value: 13.256381971531022 - type: nauc_map_at_100_diff1 value: 23.657922060794174 - type: nauc_map_at_100_max value: 30.463171555444095 - type: nauc_map_at_100_std value: 9.403207435293652 - type: nauc_map_at_10_diff1 value: 26.99577933867989 - type: nauc_map_at_10_max value: 25.74855919514706 - type: nauc_map_at_10_std value: -1.946481502724064 - type: nauc_map_at_1_diff1 value: 40.87773635213689 - type: nauc_map_at_1_max value: 18.50327114064488 - type: nauc_map_at_1_std value: -12.884353353702357 - type: nauc_map_at_20_diff1 value: 25.182212498762404 - type: nauc_map_at_20_max value: 27.726995459601568 - type: nauc_map_at_20_std value: 2.265717944376315 - type: nauc_map_at_3_diff1 value: 32.24473894835545 - type: nauc_map_at_3_max value: 19.73101542872105 - type: nauc_map_at_3_std value: -10.159375851390948 - type: nauc_map_at_5_diff1 value: 30.660429521421523 - type: nauc_map_at_5_max value: 22.777642402610702 - type: nauc_map_at_5_std value: -6.784458070696157 - type: nauc_mrr_at_1000_diff1 value: 35.540967575378694 - type: nauc_mrr_at_1000_max value: 43.94574660779749 - type: nauc_mrr_at_1000_std value: 24.857915852637742 - type: nauc_mrr_at_100_diff1 value: 35.54094740404627 - type: nauc_mrr_at_100_max value: 43.9872938663598 - type: nauc_mrr_at_100_std value: 24.908343520366564 - type: nauc_mrr_at_10_diff1 value: 35.499666044876456 - type: nauc_mrr_at_10_max value: 43.372579438993235 - type: nauc_mrr_at_10_std value: 24.55532928065396 - type: nauc_mrr_at_1_diff1 value: 38.71056728463544 - type: nauc_mrr_at_1_max value: 39.77501110624803 - type: nauc_mrr_at_1_std value: 18.0097891637449 - type: nauc_mrr_at_20_diff1 value: 35.4778364740954 - type: nauc_mrr_at_20_max value: 43.861500828057984 - type: nauc_mrr_at_20_std value: 24.844940828191785 - type: nauc_mrr_at_3_diff1 value: 36.14951749215073 - type: nauc_mrr_at_3_max value: 43.66290737939861 - type: nauc_mrr_at_3_std value: 23.797433124588736 - type: nauc_mrr_at_5_diff1 value: 35.43660972677152 - type: nauc_mrr_at_5_max value: 43.45685670163132 - type: nauc_mrr_at_5_std value: 24.304648467662023 - type: nauc_ndcg_at_1000_diff1 value: 22.759045127619025 - type: nauc_ndcg_at_1000_max value: 44.41137470197231 - type: nauc_ndcg_at_1000_std value: 31.38899922811944 - type: nauc_ndcg_at_100_diff1 value: 21.163726384696464 - type: nauc_ndcg_at_100_max value: 39.3884922679833 - type: nauc_ndcg_at_100_std value: 25.839289801954113 - type: nauc_ndcg_at_10_diff1 value: 22.897812670264933 - type: nauc_ndcg_at_10_max value: 36.65843413176893 - type: nauc_ndcg_at_10_std value: 24.11394501649861 - type: nauc_ndcg_at_1_diff1 value: 39.06334823564591 - type: nauc_ndcg_at_1_max value: 39.06248799073769 - type: nauc_ndcg_at_1_std value: 18.05518784959287 - type: nauc_ndcg_at_20_diff1 value: 21.898686330422414 - type: nauc_ndcg_at_20_max value: 35.78404933092488 - type: nauc_ndcg_at_20_std value: 24.304058306037895 - type: nauc_ndcg_at_3_diff1 value: 29.999089941995827 - type: nauc_ndcg_at_3_max value: 38.55806893862189 - type: nauc_ndcg_at_3_std value: 20.82150155152541 - type: nauc_ndcg_at_5_diff1 value: 26.920523658582933 - type: nauc_ndcg_at_5_max value: 37.903305784392835 - type: nauc_ndcg_at_5_std value: 22.36973654091273 - type: nauc_precision_at_1000_diff1 value: -4.736357828440193 - type: nauc_precision_at_1000_max value: 5.778552685188162 - type: nauc_precision_at_1000_std value: 36.06941146251687 - type: nauc_precision_at_100_diff1 value: -3.915151057855969 - type: nauc_precision_at_100_max value: 18.188180874141302 - type: nauc_precision_at_100_std value: 44.921932315349935 - type: nauc_precision_at_10_diff1 value: 6.335673291245972 - type: nauc_precision_at_10_max value: 33.54781851431339 - type: nauc_precision_at_10_std value: 36.77684118708833 - type: nauc_precision_at_1_diff1 value: 38.71056728463544 - type: nauc_precision_at_1_max value: 39.77501110624803 - type: nauc_precision_at_1_std value: 18.0097891637449 - type: nauc_precision_at_20_diff1 value: 2.937163642087222 - type: nauc_precision_at_20_max value: 28.379243786948336 - type: nauc_precision_at_20_std value: 40.35532758983976 - type: nauc_precision_at_3_diff1 value: 20.784494867231487 - type: nauc_precision_at_3_max value: 38.495138401646045 - type: nauc_precision_at_3_std value: 25.482915117972993 - type: nauc_precision_at_5_diff1 value: 15.127184520975657 - type: nauc_precision_at_5_max value: 37.30602533471322 - type: nauc_precision_at_5_std value: 29.930880073455175 - type: nauc_recall_at_1000_diff1 value: 2.3913140928424705 - type: nauc_recall_at_1000_max value: 20.737140424377333 - type: nauc_recall_at_1000_std value: 18.01670749520214 - type: nauc_recall_at_100_diff1 value: 7.687164842123094 - type: nauc_recall_at_100_max value: 23.62069259941976 - type: nauc_recall_at_100_std value: 14.411637818706472 - type: nauc_recall_at_10_diff1 value: 18.678074331558783 - type: nauc_recall_at_10_max value: 19.514135963995347 - type: nauc_recall_at_10_std value: -2.8989513830052713 - type: nauc_recall_at_1_diff1 value: 40.87773635213689 - type: nauc_recall_at_1_max value: 18.50327114064488 - type: nauc_recall_at_1_std value: -12.884353353702357 - type: nauc_recall_at_20_diff1 value: 14.926936076283534 - type: nauc_recall_at_20_max value: 22.342969389987594 - type: nauc_recall_at_20_std value: 2.6680867208648666 - type: nauc_recall_at_3_diff1 value: 26.592132793572855 - type: nauc_recall_at_3_max value: 16.71686152308387 - type: nauc_recall_at_3_std value: -10.161239210194816 - type: nauc_recall_at_5_diff1 value: 24.899494230211914 - type: nauc_recall_at_5_max value: 19.59649962842324 - type: nauc_recall_at_5_std value: -6.76370389227844 - type: ndcg_at_1 value: 40.867 - type: ndcg_at_10 value: 33.816 - type: ndcg_at_100 value: 31.239 - type: ndcg_at_1000 value: 39.879 - type: ndcg_at_20 value: 31.423000000000002 - type: ndcg_at_3 value: 38.911 - type: ndcg_at_5 value: 36.61 - type: precision_at_1 value: 42.105 - type: precision_at_10 value: 25.635 - type: precision_at_100 value: 8.176 - type: precision_at_1000 value: 2.092 - type: precision_at_20 value: 18.823999999999998 - type: precision_at_3 value: 37.461 - type: precision_at_5 value: 32.507999999999996 - type: recall_at_1 value: 4.893 - type: recall_at_10 value: 16.773 - type: recall_at_100 value: 32.958999999999996 - type: recall_at_1000 value: 64.094 - type: recall_at_20 value: 20.557 - type: recall_at_3 value: 10.263 - type: recall_at_5 value: 12.388 task: type: Retrieval - dataset: config: default name: MTEB NQ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: main_score value: 47.705999999999996 - type: map_at_1 value: 24.09 - type: map_at_10 value: 39.287 - type: map_at_100 value: 40.567 - type: map_at_1000 value: 40.6 - type: map_at_20 value: 40.148 - type: map_at_3 value: 34.302 - type: map_at_5 value: 37.206 - type: mrr_at_1 value: 27.28852838933951 - type: mrr_at_10 value: 41.73792740348356 - type: mrr_at_100 value: 42.700956318341376 - type: mrr_at_1000 value: 42.721500078814096 - type: mrr_at_20 value: 42.39774668731353 - type: mrr_at_3 value: 37.35032831208959 - type: mrr_at_5 value: 40.00965623792975 - type: nauc_map_at_1000_diff1 value: 26.995052198015408 - type: nauc_map_at_1000_max value: 15.20926829878716 - type: nauc_map_at_1000_std value: -7.419434404678649 - type: nauc_map_at_100_diff1 value: 26.98675665686633 - type: nauc_map_at_100_max value: 15.232441822080464 - type: nauc_map_at_100_std value: -7.3860325680943655 - type: nauc_map_at_10_diff1 value: 27.2055488472847 - type: nauc_map_at_10_max value: 15.22405773845232 - type: nauc_map_at_10_std value: -7.997911271237045 - type: nauc_map_at_1_diff1 value: 28.974098579091123 - type: nauc_map_at_1_max value: 11.321507460392628 - type: nauc_map_at_1_std value: -7.640518561754067 - type: nauc_map_at_20_diff1 value: 26.975519720067403 - type: nauc_map_at_20_max value: 15.270333199937241 - type: nauc_map_at_20_std value: -7.593162904909118 - type: nauc_map_at_3_diff1 value: 26.196529957905334 - type: nauc_map_at_3_max value: 13.478166583287848 - type: nauc_map_at_3_std value: -9.053865282739968 - type: nauc_map_at_5_diff1 value: 26.79122911875148 - type: nauc_map_at_5_max value: 14.282446217191469 - type: nauc_map_at_5_std value: -9.094186973353946 - type: nauc_mrr_at_1000_diff1 value: 26.759927337618993 - type: nauc_mrr_at_1000_max value: 14.825954255654228 - type: nauc_mrr_at_1000_std value: -6.105406137980129 - type: nauc_mrr_at_100_diff1 value: 26.74960844122087 - type: nauc_mrr_at_100_max value: 14.843683127357762 - type: nauc_mrr_at_100_std value: -6.076356380149935 - type: nauc_mrr_at_10_diff1 value: 26.944765214641325 - type: nauc_mrr_at_10_max value: 14.94642107131636 - type: nauc_mrr_at_10_std value: -6.336027654512049 - type: nauc_mrr_at_1_diff1 value: 28.63557135887537 - type: nauc_mrr_at_1_max value: 11.997480919271911 - type: nauc_mrr_at_1_std value: -6.415779575057592 - type: nauc_mrr_at_20_diff1 value: 26.707684527732884 - type: nauc_mrr_at_20_max value: 14.891955656316206 - type: nauc_mrr_at_20_std value: -6.170926409650526 - type: nauc_mrr_at_3_diff1 value: 26.09833571219951 - type: nauc_mrr_at_3_max value: 13.619335397303093 - type: nauc_mrr_at_3_std value: -6.99260621640241 - type: nauc_mrr_at_5_diff1 value: 26.509106156499758 - type: nauc_mrr_at_5_max value: 14.309307369143232 - type: nauc_mrr_at_5_std value: -7.036129929142912 - type: nauc_ndcg_at_1000_diff1 value: 26.58998518885675 - type: nauc_ndcg_at_1000_max value: 16.730704716377872 - type: nauc_ndcg_at_1000_std value: -5.39551318704605 - type: nauc_ndcg_at_100_diff1 value: 26.367304449158542 - type: nauc_ndcg_at_100_max value: 17.497911381186437 - type: nauc_ndcg_at_100_std value: -4.274806854701229 - type: nauc_ndcg_at_10_diff1 value: 27.275827813350823 - type: nauc_ndcg_at_10_max value: 17.61502848669633 - type: nauc_ndcg_at_10_std value: -6.706786953638304 - type: nauc_ndcg_at_1_diff1 value: 28.73750705322627 - type: nauc_ndcg_at_1_max value: 12.034842420318594 - type: nauc_ndcg_at_1_std value: -6.331175328355812 - type: nauc_ndcg_at_20_diff1 value: 26.334025198409822 - type: nauc_ndcg_at_20_max value: 17.855473370518965 - type: nauc_ndcg_at_20_std value: -5.403020940844481 - type: nauc_ndcg_at_3_diff1 value: 25.45388148358677 - type: nauc_ndcg_at_3_max value: 14.079983701064627 - type: nauc_ndcg_at_3_std value: -8.890083252778314 - type: nauc_ndcg_at_5_diff1 value: 26.33612130048854 - type: nauc_ndcg_at_5_max value: 15.450244767383477 - type: nauc_ndcg_at_5_std value: -9.054428820466049 - type: nauc_precision_at_1000_diff1 value: -5.4513464358643935 - type: nauc_precision_at_1000_max value: 5.371939619810606 - type: nauc_precision_at_1000_std value: 14.8654667034019 - type: nauc_precision_at_100_diff1 value: -1.3987377525099691 - type: nauc_precision_at_100_max value: 13.911794092689838 - type: nauc_precision_at_100_std value: 21.429657983736398 - type: nauc_precision_at_10_diff1 value: 17.11455042469293 - type: nauc_precision_at_10_max value: 22.09155979887235 - type: nauc_precision_at_10_std value: 4.5779383691575335 - type: nauc_precision_at_1_diff1 value: 28.73750705322627 - type: nauc_precision_at_1_max value: 12.034842420318594 - type: nauc_precision_at_1_std value: -6.331175328355812 - type: nauc_precision_at_20_diff1 value: 8.866920301402327 - type: nauc_precision_at_20_max value: 20.465524038064146 - type: nauc_precision_at_20_std value: 11.77414197569535 - type: nauc_precision_at_3_diff1 value: 20.723368404844305 - type: nauc_precision_at_3_max value: 16.257890926808553 - type: nauc_precision_at_3_std value: -6.290754270412709 - type: nauc_precision_at_5_diff1 value: 20.209421398374488 - type: nauc_precision_at_5_max value: 18.627423971893325 - type: nauc_precision_at_5_std value: -4.6989054258140355 - type: nauc_recall_at_1000_diff1 value: 16.326550389848265 - type: nauc_recall_at_1000_max value: 72.55345747292822 - type: nauc_recall_at_1000_std value: 63.7692611505317 - type: nauc_recall_at_100_diff1 value: 16.03698346212984 - type: nauc_recall_at_100_max value: 50.432030846802064 - type: nauc_recall_at_100_std value: 43.37937315409283 - type: nauc_recall_at_10_diff1 value: 26.91743922623231 - type: nauc_recall_at_10_max value: 26.28334350051652 - type: nauc_recall_at_10_std value: -3.6769327984943248 - type: nauc_recall_at_1_diff1 value: 28.974098579091123 - type: nauc_recall_at_1_max value: 11.321507460392628 - type: nauc_recall_at_1_std value: -7.640518561754067 - type: nauc_recall_at_20_diff1 value: 21.32293933043855 - type: nauc_recall_at_20_max value: 31.996089227364994 - type: nauc_recall_at_20_std value: 5.0730478086085995 - type: nauc_recall_at_3_diff1 value: 22.708520483632753 - type: nauc_recall_at_3_max value: 14.897940279836913 - type: nauc_recall_at_3_std value: -10.081304729280403 - type: nauc_recall_at_5_diff1 value: 24.140285353276628 - type: nauc_recall_at_5_max value: 17.99130898455 - type: nauc_recall_at_5_std value: -11.006510541854203 - type: ndcg_at_1 value: 27.26 - type: ndcg_at_10 value: 47.705999999999996 - type: ndcg_at_100 value: 53.016 - type: ndcg_at_1000 value: 53.715 - type: ndcg_at_20 value: 50.498 - type: ndcg_at_3 value: 38.124 - type: ndcg_at_5 value: 43.097 - type: precision_at_1 value: 27.26 - type: precision_at_10 value: 8.447000000000001 - type: precision_at_100 value: 1.139 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 4.874 - type: precision_at_3 value: 17.835 - type: precision_at_5 value: 13.517000000000001 - type: recall_at_1 value: 24.09 - type: recall_at_10 value: 71.10600000000001 - type: recall_at_100 value: 93.953 - type: recall_at_1000 value: 99.073 - type: recall_at_20 value: 81.523 - type: recall_at_3 value: 46.174 - type: recall_at_5 value: 57.677 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: test type: mteb/quora metrics: - type: main_score value: 89.676 - type: map_at_1 value: 72.103 - type: map_at_10 value: 86.14500000000001 - type: map_at_100 value: 86.765 - type: map_at_1000 value: 86.776 - type: map_at_20 value: 86.562 - type: map_at_3 value: 83.214 - type: map_at_5 value: 85.103 - type: mrr_at_1 value: 83.05 - type: mrr_at_10 value: 88.93702380952368 - type: mrr_at_100 value: 89.01863878447548 - type: mrr_at_1000 value: 89.01885795102484 - type: mrr_at_20 value: 88.99974718680856 - type: mrr_at_3 value: 88.08333333333313 - type: mrr_at_5 value: 88.71633333333311 - type: nauc_map_at_1000_diff1 value: 78.13997479130329 - type: nauc_map_at_1000_max value: 33.16799361159121 - type: nauc_map_at_1000_std value: -55.1863277755837 - type: nauc_map_at_100_diff1 value: 78.14023553984367 - type: nauc_map_at_100_max value: 33.13369714413867 - type: nauc_map_at_100_std value: -55.23540842004624 - type: nauc_map_at_10_diff1 value: 78.37080186192892 - type: nauc_map_at_10_max value: 32.57134371768262 - type: nauc_map_at_10_std value: -57.373890318858635 - type: nauc_map_at_1_diff1 value: 81.43018798912361 - type: nauc_map_at_1_max value: 25.19409927583946 - type: nauc_map_at_1_std value: -48.22311263550707 - type: nauc_map_at_20_diff1 value: 78.2531228519997 - type: nauc_map_at_20_max value: 32.93544556033276 - type: nauc_map_at_20_std value: -56.1055098795547 - type: nauc_map_at_3_diff1 value: 78.87676183243428 - type: nauc_map_at_3_max value: 30.20611964511498 - type: nauc_map_at_3_std value: -58.43976419533779 - type: nauc_map_at_5_diff1 value: 78.74187209420451 - type: nauc_map_at_5_max value: 31.54047365144067 - type: nauc_map_at_5_std value: -58.97219700125237 - type: nauc_mrr_at_1000_diff1 value: 78.95748141758239 - type: nauc_mrr_at_1000_max value: 35.915215848182335 - type: nauc_mrr_at_1000_std value: -51.60783225234237 - type: nauc_mrr_at_100_diff1 value: 78.95727688352294 - type: nauc_mrr_at_100_max value: 35.915856450202206 - type: nauc_mrr_at_100_std value: -51.60782742807526 - type: nauc_mrr_at_10_diff1 value: 78.97062716064038 - type: nauc_mrr_at_10_max value: 35.98944352252478 - type: nauc_mrr_at_10_std value: -51.77952280125023 - type: nauc_mrr_at_1_diff1 value: 79.56130369111403 - type: nauc_mrr_at_1_max value: 35.942655751158995 - type: nauc_mrr_at_1_std value: -48.53333294529543 - type: nauc_mrr_at_20_diff1 value: 78.96215019750328 - type: nauc_mrr_at_20_max value: 35.91684162704735 - type: nauc_mrr_at_20_std value: -51.67122079763854 - type: nauc_mrr_at_3_diff1 value: 78.70330923531215 - type: nauc_mrr_at_3_max value: 35.87542341241571 - type: nauc_mrr_at_3_std value: -51.87635339239034 - type: nauc_mrr_at_5_diff1 value: 78.99544950827739 - type: nauc_mrr_at_5_max value: 35.965125484837266 - type: nauc_mrr_at_5_std value: -52.11029578138711 - type: nauc_ndcg_at_1000_diff1 value: 78.10303471223646 - type: nauc_ndcg_at_1000_max value: 34.72596142439839 - type: nauc_ndcg_at_1000_std value: -53.2962525848089 - type: nauc_ndcg_at_100_diff1 value: 78.06267135641467 - type: nauc_ndcg_at_100_max value: 34.54419033520112 - type: nauc_ndcg_at_100_std value: -53.5392586501254 - type: nauc_ndcg_at_10_diff1 value: 78.17567073559658 - type: nauc_ndcg_at_10_max value: 33.787109792594144 - type: nauc_ndcg_at_10_std value: -57.23628218329926 - type: nauc_ndcg_at_1_diff1 value: 79.5420688434198 - type: nauc_ndcg_at_1_max value: 36.07066857529557 - type: nauc_ndcg_at_1_std value: -48.48781152561791 - type: nauc_ndcg_at_20_diff1 value: 78.21739679352075 - type: nauc_ndcg_at_20_max value: 34.04005309785922 - type: nauc_ndcg_at_20_std value: -55.65001368252659 - type: nauc_ndcg_at_3_diff1 value: 77.47445949226606 - type: nauc_ndcg_at_3_max value: 32.77007174469541 - type: nauc_ndcg_at_3_std value: -56.260910342535894 - type: nauc_ndcg_at_5_diff1 value: 78.15994882398387 - type: nauc_ndcg_at_5_max value: 33.11497252066444 - type: nauc_ndcg_at_5_std value: -58.346472568678664 - type: nauc_precision_at_1000_diff1 value: -45.22108856190449 - type: nauc_precision_at_1000_max value: -3.769158876252231 - type: nauc_precision_at_1000_std value: 43.723870330086925 - type: nauc_precision_at_100_diff1 value: -45.23758967194308 - type: nauc_precision_at_100_max value: -4.363166810337138 - type: nauc_precision_at_100_std value: 42.94820379534783 - type: nauc_precision_at_10_diff1 value: -40.752163951230585 - type: nauc_precision_at_10_max value: -1.6169274191392247 - type: nauc_precision_at_10_std value: 29.249486658726266 - type: nauc_precision_at_1_diff1 value: 79.5420688434198 - type: nauc_precision_at_1_max value: 36.07066857529557 - type: nauc_precision_at_1_std value: -48.48781152561791 - type: nauc_precision_at_20_diff1 value: -43.52965345142954 - type: nauc_precision_at_20_max value: -3.410765512192599 - type: nauc_precision_at_20_std value: 36.265002036696245 - type: nauc_precision_at_3_diff1 value: -21.947123522182608 - type: nauc_precision_at_3_max value: 6.055908914766165 - type: nauc_precision_at_3_std value: 6.408586281581511 - type: nauc_precision_at_5_diff1 value: -34.130820418059265 - type: nauc_precision_at_5_max value: 1.1109424247006825 - type: nauc_precision_at_5_std value: 18.488513018473114 - type: nauc_recall_at_1000_diff1 value: 47.996662934260556 - type: nauc_recall_at_1000_max value: 11.574413075464337 - type: nauc_recall_at_1000_std value: -39.2955614699843 - type: nauc_recall_at_100_diff1 value: 64.12162282642701 - type: nauc_recall_at_100_max value: 17.595341249984035 - type: nauc_recall_at_100_std value: -74.41045136381057 - type: nauc_recall_at_10_diff1 value: 75.16961616005102 - type: nauc_recall_at_10_max value: 28.68309207235788 - type: nauc_recall_at_10_std value: -82.81198733010936 - type: nauc_recall_at_1_diff1 value: 81.43018798912361 - type: nauc_recall_at_1_max value: 25.19409927583946 - type: nauc_recall_at_1_std value: -48.22311263550707 - type: nauc_recall_at_20_diff1 value: 75.94655772120838 - type: nauc_recall_at_20_max value: 26.033082267707137 - type: nauc_recall_at_20_std value: -87.8035845729173 - type: nauc_recall_at_3_diff1 value: 75.18135051463966 - type: nauc_recall_at_3_max value: 25.829788998048713 - type: nauc_recall_at_3_std value: -66.40001628991527 - type: nauc_recall_at_5_diff1 value: 75.32388475941752 - type: nauc_recall_at_5_max value: 26.600470217631152 - type: nauc_recall_at_5_std value: -76.75029218302441 - type: ndcg_at_1 value: 83.06 - type: ndcg_at_10 value: 89.676 - type: ndcg_at_100 value: 90.745 - type: ndcg_at_1000 value: 90.802 - type: ndcg_at_20 value: 90.293 - type: ndcg_at_3 value: 87.01299999999999 - type: ndcg_at_5 value: 88.578 - type: precision_at_1 value: 83.06 - type: precision_at_10 value: 13.599 - type: precision_at_100 value: 1.54 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.2139999999999995 - type: precision_at_3 value: 38.067 - type: precision_at_5 value: 25.06 - type: recall_at_1 value: 72.103 - type: recall_at_10 value: 96.269 - type: recall_at_100 value: 99.776 - type: recall_at_1000 value: 99.995 - type: recall_at_20 value: 98.20400000000001 - type: recall_at_3 value: 88.59700000000001 - type: recall_at_5 value: 93.015 task: type: Retrieval - dataset: config: default name: MTEB RedditClustering revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: main_score value: 57.6315484268519 - type: v_measure value: 57.6315484268519 - type: v_measure_std value: 4.96160605448604 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 split: test type: mteb/reddit-clustering-p2p metrics: - type: main_score value: 65.10459556169661 - type: v_measure value: 65.10459556169661 - type: v_measure_std value: 12.297830143436506 task: type: Clustering - dataset: config: default name: MTEB SCIDOCS revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 split: test type: mteb/scidocs metrics: - type: main_score value: 20.241 - type: map_at_1 value: 4.585 - type: map_at_10 value: 12.179 - type: map_at_100 value: 14.185 - type: map_at_1000 value: 14.485999999999999 - type: map_at_20 value: 13.211 - type: map_at_3 value: 8.671 - type: map_at_5 value: 10.312000000000001 - type: mrr_at_1 value: 22.7 - type: mrr_at_10 value: 33.75805555555551 - type: mrr_at_100 value: 34.817297940294345 - type: mrr_at_1000 value: 34.883397077676406 - type: mrr_at_20 value: 34.38700212283411 - type: mrr_at_3 value: 30.483333333333306 - type: mrr_at_5 value: 32.408333333333275 - type: nauc_map_at_1000_diff1 value: 14.799522136525983 - type: nauc_map_at_1000_max value: 34.787460217244785 - type: nauc_map_at_1000_std value: 18.09344563882231 - type: nauc_map_at_100_diff1 value: 14.768945434423111 - type: nauc_map_at_100_max value: 34.7296008481421 - type: nauc_map_at_100_std value: 17.862302470008842 - type: nauc_map_at_10_diff1 value: 14.144901666255635 - type: nauc_map_at_10_max value: 32.717524928702204 - type: nauc_map_at_10_std value: 14.61297873647561 - type: nauc_map_at_1_diff1 value: 24.110400950369463 - type: nauc_map_at_1_max value: 28.717709149236846 - type: nauc_map_at_1_std value: 9.47019097868293 - type: nauc_map_at_20_diff1 value: 14.60910237598006 - type: nauc_map_at_20_max value: 34.41168874995483 - type: nauc_map_at_20_std value: 16.8281730049661 - type: nauc_map_at_3_diff1 value: 16.927638840219913 - type: nauc_map_at_3_max value: 30.943529346638215 - type: nauc_map_at_3_std value: 8.770011702871889 - type: nauc_map_at_5_diff1 value: 15.149404949142397 - type: nauc_map_at_5_max value: 32.21505246043176 - type: nauc_map_at_5_std value: 11.327982631457365 - type: nauc_mrr_at_1000_diff1 value: 20.74353214383309 - type: nauc_mrr_at_1000_max value: 32.03632971500104 - type: nauc_mrr_at_1000_std value: 13.888511855973434 - type: nauc_mrr_at_100_diff1 value: 20.729669159574993 - type: nauc_mrr_at_100_max value: 32.04616144275277 - type: nauc_mrr_at_100_std value: 13.909503435758552 - type: nauc_mrr_at_10_diff1 value: 20.68902799696533 - type: nauc_mrr_at_10_max value: 32.06338386152125 - type: nauc_mrr_at_10_std value: 13.774587429590262 - type: nauc_mrr_at_1_diff1 value: 23.923563127598772 - type: nauc_mrr_at_1_max value: 28.66045286040102 - type: nauc_mrr_at_1_std value: 9.324543818990804 - type: nauc_mrr_at_20_diff1 value: 20.75062648249425 - type: nauc_mrr_at_20_max value: 32.07720087059192 - type: nauc_mrr_at_20_std value: 13.99626011275507 - type: nauc_mrr_at_3_diff1 value: 21.28016610687942 - type: nauc_mrr_at_3_max value: 31.378222612242958 - type: nauc_mrr_at_3_std value: 11.873532774618438 - type: nauc_mrr_at_5_diff1 value: 20.553867571063165 - type: nauc_mrr_at_5_max value: 32.0086355849153 - type: nauc_mrr_at_5_std value: 13.390002782582572 - type: nauc_ndcg_at_1000_diff1 value: 16.18725835208729 - type: nauc_ndcg_at_1000_max value: 36.31956949239469 - type: nauc_ndcg_at_1000_std value: 24.60962249502986 - type: nauc_ndcg_at_100_diff1 value: 16.080952256468766 - type: nauc_ndcg_at_100_max value: 36.836773125169934 - type: nauc_ndcg_at_100_std value: 23.486496647173155 - type: nauc_ndcg_at_10_diff1 value: 14.992050388748346 - type: nauc_ndcg_at_10_max value: 33.69147398978967 - type: nauc_ndcg_at_10_std value: 17.50282505569243 - type: nauc_ndcg_at_1_diff1 value: 23.923563127598772 - type: nauc_ndcg_at_1_max value: 28.66045286040102 - type: nauc_ndcg_at_1_std value: 9.324543818990804 - type: nauc_ndcg_at_20_diff1 value: 15.823547784233455 - type: nauc_ndcg_at_20_max value: 36.18197091556912 - type: nauc_ndcg_at_20_std value: 20.836130350813587 - type: nauc_ndcg_at_3_diff1 value: 17.463404815086445 - type: nauc_ndcg_at_3_max value: 31.775390145640543 - type: nauc_ndcg_at_3_std value: 10.613295919918224 - type: nauc_ndcg_at_5_diff1 value: 15.58999290484695 - type: nauc_ndcg_at_5_max value: 32.98927404083336 - type: nauc_ndcg_at_5_std value: 13.95090164575397 - type: nauc_precision_at_1000_diff1 value: 8.606689567686072 - type: nauc_precision_at_1000_max value: 25.80568112038825 - type: nauc_precision_at_1000_std value: 33.49354016345421 - type: nauc_precision_at_100_diff1 value: 11.096364034281708 - type: nauc_precision_at_100_max value: 33.095554194808315 - type: nauc_precision_at_100_std value: 30.31514346435903 - type: nauc_precision_at_10_diff1 value: 10.362661293325996 - type: nauc_precision_at_10_max value: 32.23480074406134 - type: nauc_precision_at_10_std value: 21.320659854598354 - type: nauc_precision_at_1_diff1 value: 23.923563127598772 - type: nauc_precision_at_1_max value: 28.66045286040102 - type: nauc_precision_at_1_std value: 9.324543818990804 - type: nauc_precision_at_20_diff1 value: 11.731217258112276 - type: nauc_precision_at_20_max value: 35.49265680709476 - type: nauc_precision_at_20_std value: 26.68721816769851 - type: nauc_precision_at_3_diff1 value: 14.622634083058628 - type: nauc_precision_at_3_max value: 32.8256707695311 - type: nauc_precision_at_3_std value: 11.441812061728767 - type: nauc_precision_at_5_diff1 value: 11.382590357991592 - type: nauc_precision_at_5_max value: 33.40649468969605 - type: nauc_precision_at_5_std value: 16.422568951127378 - type: nauc_recall_at_1000_diff1 value: 8.277183806243393 - type: nauc_recall_at_1000_max value: 25.520354250846594 - type: nauc_recall_at_1000_std value: 34.48676735616856 - type: nauc_recall_at_100_diff1 value: 10.8973527517937 - type: nauc_recall_at_100_max value: 32.78606622733229 - type: nauc_recall_at_100_std value: 30.54756167683916 - type: nauc_recall_at_10_diff1 value: 10.241195369539595 - type: nauc_recall_at_10_max value: 31.93427995053164 - type: nauc_recall_at_10_std value: 21.22066565209421 - type: nauc_recall_at_1_diff1 value: 24.110400950369463 - type: nauc_recall_at_1_max value: 28.717709149236846 - type: nauc_recall_at_1_std value: 9.47019097868293 - type: nauc_recall_at_20_diff1 value: 11.486528161594357 - type: nauc_recall_at_20_max value: 35.08150781519915 - type: nauc_recall_at_20_std value: 26.533619286721965 - type: nauc_recall_at_3_diff1 value: 14.409769092274422 - type: nauc_recall_at_3_max value: 32.60821765433334 - type: nauc_recall_at_3_std value: 11.348744265520075 - type: nauc_recall_at_5_diff1 value: 11.156286383427009 - type: nauc_recall_at_5_max value: 33.060053009570325 - type: nauc_recall_at_5_std value: 16.305557433000203 - type: ndcg_at_1 value: 22.7 - type: ndcg_at_10 value: 20.241 - type: ndcg_at_100 value: 28.005000000000003 - type: ndcg_at_1000 value: 33.337 - type: ndcg_at_20 value: 23.035 - type: ndcg_at_3 value: 19.225 - type: ndcg_at_5 value: 16.73 - type: precision_at_1 value: 22.7 - type: precision_at_10 value: 10.58 - type: precision_at_100 value: 2.176 - type: precision_at_1000 value: 0.345 - type: precision_at_20 value: 6.9 - type: precision_at_3 value: 18.2 - type: precision_at_5 value: 14.799999999999999 - type: recall_at_1 value: 4.585 - type: recall_at_10 value: 21.462 - type: recall_at_100 value: 44.196999999999996 - type: recall_at_1000 value: 70.1 - type: recall_at_20 value: 28.006999999999998 - type: recall_at_3 value: 11.078000000000001 - type: recall_at_5 value: 15.018 task: type: Retrieval - dataset: config: default name: MTEB SICK-R revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: cosine_pearson value: 84.36926725932263 - type: cosine_spearman value: 79.92986896006748 - type: euclidean_pearson value: 81.60738350267255 - type: euclidean_spearman value: 79.92986857077926 - type: main_score value: 79.92986896006748 - type: manhattan_pearson value: 81.5923069536872 - type: manhattan_spearman value: 79.73172626220187 - type: pearson value: 84.36926725932263 - type: spearman value: 79.92986896006748 task: type: STS - dataset: config: default name: MTEB STS12 revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cosine_pearson value: 85.34145297379273 - type: cosine_spearman value: 76.66847347731301 - type: euclidean_pearson value: 81.43408805079034 - type: euclidean_spearman value: 76.6680945379484 - type: main_score value: 76.66847347731301 - type: manhattan_pearson value: 81.69812210080966 - type: manhattan_spearman value: 77.00962684551284 - type: pearson value: 85.34145297379273 - type: spearman value: 76.66847347731301 task: type: STS - dataset: config: default name: MTEB STS13 revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cosine_pearson value: 84.5234167909779 - type: cosine_spearman value: 84.86841413445535 - type: euclidean_pearson value: 84.17741655183796 - type: euclidean_spearman value: 84.86841405901674 - type: main_score value: 84.86841413445535 - type: manhattan_pearson value: 84.15491829147086 - type: manhattan_spearman value: 84.93066841323679 - type: pearson value: 84.5234167909779 - type: spearman value: 84.86841413445535 task: type: STS - dataset: config: default name: MTEB STS14 revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cosine_pearson value: 83.42559938022957 - type: cosine_spearman value: 80.10636060670153 - type: euclidean_pearson value: 82.31695543050009 - type: euclidean_spearman value: 80.10637586616073 - type: main_score value: 80.10636060670153 - type: manhattan_pearson value: 82.15731596876633 - type: manhattan_spearman value: 80.02499151302123 - type: pearson value: 83.42559938022957 - type: spearman value: 80.10636060670153 task: type: STS - dataset: config: default name: MTEB STS15 revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cosine_pearson value: 87.98708135949613 - type: cosine_spearman value: 88.69670049389599 - type: euclidean_pearson value: 87.73091071499016 - type: euclidean_spearman value: 88.69669966606001 - type: main_score value: 88.69670049389599 - type: manhattan_pearson value: 87.52276751048582 - type: manhattan_spearman value: 88.5214230554986 - type: pearson value: 87.98708135949613 - type: spearman value: 88.69670049389599 task: type: STS - dataset: config: default name: MTEB STS16 revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cosine_pearson value: 83.38330950325803 - type: cosine_spearman value: 84.62194600310691 - type: euclidean_pearson value: 83.4921014845454 - type: euclidean_spearman value: 84.62194539439683 - type: main_score value: 84.62194600310691 - type: manhattan_pearson value: 83.27754689500482 - type: manhattan_spearman value: 84.37797144965002 - type: pearson value: 83.38330950325803 - type: spearman value: 84.62194600310691 task: type: STS - dataset: config: en-ar name: MTEB STS17 (en-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 64.3970938916265 - type: cosine_spearman value: 64.20857293171593 - type: euclidean_pearson value: 64.70484646950464 - type: euclidean_spearman value: 64.20857293171593 - type: main_score value: 64.20857293171593 - type: manhattan_pearson value: 63.61585574374933 - type: manhattan_spearman value: 62.52898030084564 - type: pearson value: 64.3970938916265 - type: spearman value: 64.20857293171593 task: type: STS - dataset: config: en-de name: MTEB STS17 (en-de) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 78.3035787778662 - type: cosine_spearman value: 78.85326338385796 - type: euclidean_pearson value: 78.59090666313418 - type: euclidean_spearman value: 78.85326338385796 - type: main_score value: 78.85326338385796 - type: manhattan_pearson value: 78.4961035895383 - type: manhattan_spearman value: 78.42104373908565 - type: pearson value: 78.3035787778662 - type: spearman value: 78.85326338385796 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 88.20922919233338 - type: cosine_spearman value: 87.94347302365394 - type: euclidean_pearson value: 87.98965741145625 - type: euclidean_spearman value: 87.94347302365394 - type: main_score value: 87.94347302365394 - type: manhattan_pearson value: 87.94636580768939 - type: manhattan_spearman value: 87.82077364455115 - type: pearson value: 88.20922919233338 - type: spearman value: 87.94347302365394 task: type: STS - dataset: config: en-tr name: MTEB STS17 (en-tr) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 58.50589296592958 - type: cosine_spearman value: 57.045627811103 - type: euclidean_pearson value: 58.54066429107441 - type: euclidean_spearman value: 57.045627811103 - type: main_score value: 57.045627811103 - type: manhattan_pearson value: 57.77923152721202 - type: manhattan_spearman value: 55.832507020505886 - type: pearson value: 58.50589296592958 - type: spearman value: 57.045627811103 task: type: STS - dataset: config: es-en name: MTEB STS17 (es-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 79.01593420315352 - type: cosine_spearman value: 79.86309144376173 - type: euclidean_pearson value: 78.85136309334905 - type: euclidean_spearman value: 79.86309144376173 - type: main_score value: 79.86309144376173 - type: manhattan_pearson value: 78.87419337945624 - type: manhattan_spearman value: 80.0980944874198 - type: pearson value: 79.01593420315352 - type: spearman value: 79.86309144376173 task: type: STS - dataset: config: fr-en name: MTEB STS17 (fr-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 79.67432399995894 - type: cosine_spearman value: 79.12303288340163 - type: euclidean_pearson value: 79.721668775324 - type: euclidean_spearman value: 79.12303288340163 - type: main_score value: 79.12303288340163 - type: manhattan_pearson value: 79.33800466555394 - type: manhattan_spearman value: 78.30603645374914 - type: pearson value: 79.67432399995894 - type: spearman value: 79.12303288340163 task: type: STS - dataset: config: it-en name: MTEB STS17 (it-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 78.92024449526863 - type: cosine_spearman value: 79.06471992660374 - type: euclidean_pearson value: 78.85388657114522 - type: euclidean_spearman value: 79.06471992660374 - type: main_score value: 79.06471992660374 - type: manhattan_pearson value: 78.56658857806735 - type: manhattan_spearman value: 78.5908742980949 - type: pearson value: 78.92024449526863 - type: spearman value: 79.06471992660374 task: type: STS - dataset: config: nl-en name: MTEB STS17 (nl-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 76.64708509569135 - type: cosine_spearman value: 75.76775070804274 - type: euclidean_pearson value: 76.69358579979829 - type: euclidean_spearman value: 75.76775070804274 - type: main_score value: 75.76775070804274 - type: manhattan_pearson value: 76.28750520391006 - type: manhattan_spearman value: 75.30493726054976 - type: pearson value: 76.64708509569135 - type: spearman value: 75.76775070804274 task: type: STS - dataset: config: en name: MTEB STS22 (en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 69.07403446182418 - type: cosine_spearman value: 68.99668192503603 - type: euclidean_pearson value: 70.82685591260719 - type: euclidean_spearman value: 68.99668192503603 - type: main_score value: 68.99668192503603 - type: manhattan_pearson value: 70.94201332797343 - type: manhattan_spearman value: 68.98821773218067 - type: pearson value: 69.07403446182418 - type: spearman value: 68.99668192503603 task: type: STS - dataset: config: de-en name: MTEB STS22 (de-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 65.95032307094047 - type: cosine_spearman value: 63.15571038787516 - type: euclidean_pearson value: 68.31815956207403 - type: euclidean_spearman value: 63.15571038787516 - type: main_score value: 63.15571038787516 - type: manhattan_pearson value: 69.57471678363024 - type: manhattan_spearman value: 63.78770917466211 - type: pearson value: 65.95032307094047 - type: spearman value: 63.15571038787516 task: type: STS - dataset: config: es-en name: MTEB STS22 (es-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 76.57985370197574 - type: cosine_spearman value: 78.61171041249278 - type: euclidean_pearson value: 77.64916374513423 - type: euclidean_spearman value: 78.61182871621082 - type: main_score value: 78.61171041249278 - type: manhattan_pearson value: 79.45516154600577 - type: manhattan_spearman value: 79.81770224017768 - type: pearson value: 76.57985370197574 - type: spearman value: 78.61171041249278 task: type: STS - dataset: config: pl-en name: MTEB STS22 (pl-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 78.66979183071325 - type: cosine_spearman value: 76.74899167835852 - type: euclidean_pearson value: 78.89780095637012 - type: euclidean_spearman value: 76.74899167835852 - type: main_score value: 76.74899167835852 - type: manhattan_pearson value: 79.18536398264527 - type: manhattan_spearman value: 77.8533686712189 - type: pearson value: 78.66979183071325 - type: spearman value: 76.74899167835852 task: type: STS - dataset: config: zh-en name: MTEB STS22 (zh-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 75.65018415517595 - type: cosine_spearman value: 74.96983110528109 - type: euclidean_pearson value: 77.0199252096022 - type: euclidean_spearman value: 75.05313744822759 - type: main_score value: 74.96983110528109 - type: manhattan_pearson value: 77.28747618528581 - type: manhattan_spearman value: 74.95188542213391 - type: pearson value: 75.65018415517595 - type: spearman value: 74.96983110528109 task: type: STS - dataset: config: default name: MTEB STSBenchmark revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cosine_pearson value: 84.89952732150343 - type: cosine_spearman value: 86.06896054399277 - type: euclidean_pearson value: 85.69195853460913 - type: euclidean_spearman value: 86.06896054399277 - type: main_score value: 86.06896054399277 - type: manhattan_pearson value: 85.56550688049849 - type: manhattan_spearman value: 85.96422284827248 - type: pearson value: 84.89952732150343 - type: spearman value: 86.06896054399277 task: type: STS - dataset: config: default name: MTEB SciDocsRR revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: main_score value: 81.89447973144247 - type: map value: 81.89447973144247 - type: mrr value: 95.02511830943203 - type: nAUC_map_diff1 value: 3.3432260393863147 - type: nAUC_map_max value: 54.252667154593915 - type: nAUC_map_std value: 68.86046114121041 - type: nAUC_mrr_diff1 value: 48.53496653582678 - type: nAUC_mrr_max value: 85.71793394587537 - type: nAUC_mrr_std value: 80.13736591117815 task: type: Reranking - dataset: config: default name: MTEB SciFact revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: main_score value: 73.055 - type: map_at_1 value: 57.760999999999996 - type: map_at_10 value: 68.73700000000001 - type: map_at_100 value: 69.248 - type: map_at_1000 value: 69.271 - type: map_at_20 value: 69.059 - type: map_at_3 value: 66.235 - type: map_at_5 value: 67.843 - type: mrr_at_1 value: 60.66666666666667 - type: mrr_at_10 value: 69.7063492063492 - type: mrr_at_100 value: 70.13874332314896 - type: mrr_at_1000 value: 70.16105806682286 - type: mrr_at_20 value: 69.97925265738732 - type: mrr_at_3 value: 68.0 - type: mrr_at_5 value: 69.16666666666667 - type: nauc_map_at_1000_diff1 value: 70.43790903123511 - type: nauc_map_at_1000_max value: 54.58438799194478 - type: nauc_map_at_1000_std value: -2.3233833924225875 - type: nauc_map_at_100_diff1 value: 70.43647328927425 - type: nauc_map_at_100_max value: 54.60393233697298 - type: nauc_map_at_100_std value: -2.296496281894915 - type: nauc_map_at_10_diff1 value: 70.36871958614046 - type: nauc_map_at_10_max value: 54.67011099551128 - type: nauc_map_at_10_std value: -2.7009625352656426 - type: nauc_map_at_1_diff1 value: 74.99352374397856 - type: nauc_map_at_1_max value: 50.00344836993502 - type: nauc_map_at_1_std value: -8.698012201837718 - type: nauc_map_at_20_diff1 value: 70.28211747093155 - type: nauc_map_at_20_max value: 54.553120080500996 - type: nauc_map_at_20_std value: -2.5857819931480246 - type: nauc_map_at_3_diff1 value: 71.42267536616798 - type: nauc_map_at_3_max value: 54.14853872152404 - type: nauc_map_at_3_std value: -3.3672073293896654 - type: nauc_map_at_5_diff1 value: 70.5522364898511 - type: nauc_map_at_5_max value: 53.82183956625946 - type: nauc_map_at_5_std value: -3.8112884869905086 - type: nauc_mrr_at_1000_diff1 value: 70.31304494231345 - type: nauc_mrr_at_1000_max value: 55.634864405262206 - type: nauc_mrr_at_1000_std value: -0.9073602724006471 - type: nauc_mrr_at_100_diff1 value: 70.31169722312256 - type: nauc_mrr_at_100_max value: 55.653794547616464 - type: nauc_mrr_at_100_std value: -0.8812919296154862 - type: nauc_mrr_at_10_diff1 value: 70.20728957800745 - type: nauc_mrr_at_10_max value: 55.82409315449895 - type: nauc_mrr_at_10_std value: -1.075930464035488 - type: nauc_mrr_at_1_diff1 value: 74.42858144028513 - type: nauc_mrr_at_1_max value: 54.28150936595816 - type: nauc_mrr_at_1_std value: -2.2125887288127233 - type: nauc_mrr_at_20_diff1 value: 70.12751951178618 - type: nauc_mrr_at_20_max value: 55.646395586345186 - type: nauc_mrr_at_20_std value: -1.0679937201638918 - type: nauc_mrr_at_3_diff1 value: 70.83694438588687 - type: nauc_mrr_at_3_max value: 56.13927732102838 - type: nauc_mrr_at_3_std value: -0.7791089874218045 - type: nauc_mrr_at_5_diff1 value: 70.10204767208957 - type: nauc_mrr_at_5_max value: 55.42591427914719 - type: nauc_mrr_at_5_std value: -1.4764758924309185 - type: nauc_ndcg_at_1000_diff1 value: 69.51940238503862 - type: nauc_ndcg_at_1000_max value: 55.49401934363413 - type: nauc_ndcg_at_1000_std value: -0.6435033619960048 - type: nauc_ndcg_at_100_diff1 value: 69.42773837942757 - type: nauc_ndcg_at_100_max value: 56.08697787789855 - type: nauc_ndcg_at_100_std value: 0.34308668749330745 - type: nauc_ndcg_at_10_diff1 value: 68.78081835695725 - type: nauc_ndcg_at_10_max value: 56.23279741387973 - type: nauc_ndcg_at_10_std value: -1.6400901664189715 - type: nauc_ndcg_at_1_diff1 value: 74.42858144028513 - type: nauc_ndcg_at_1_max value: 54.28150936595816 - type: nauc_ndcg_at_1_std value: -2.2125887288127233 - type: nauc_ndcg_at_20_diff1 value: 68.4553683006882 - type: nauc_ndcg_at_20_max value: 55.74277759291753 - type: nauc_ndcg_at_20_std value: -1.3736010194196164 - type: nauc_ndcg_at_3_diff1 value: 70.04684155763836 - type: nauc_ndcg_at_3_max value: 56.23593815133674 - type: nauc_ndcg_at_3_std value: -1.2617917976885795 - type: nauc_ndcg_at_5_diff1 value: 68.88128875602627 - type: nauc_ndcg_at_5_max value: 54.62301571910928 - type: nauc_ndcg_at_5_std value: -3.5841002369184762 - type: nauc_precision_at_1000_diff1 value: -27.57874055213611 - type: nauc_precision_at_1000_max value: 10.69254261980662 - type: nauc_precision_at_1000_std value: 41.58262996451408 - type: nauc_precision_at_100_diff1 value: -12.950536107683561 - type: nauc_precision_at_100_max value: 21.16371708839723 - type: nauc_precision_at_100_std value: 40.951527751953684 - type: nauc_precision_at_10_diff1 value: 8.091679678786514 - type: nauc_precision_at_10_max value: 33.20925347609484 - type: nauc_precision_at_10_std value: 25.770968101717557 - type: nauc_precision_at_1_diff1 value: 74.42858144028513 - type: nauc_precision_at_1_max value: 54.28150936595816 - type: nauc_precision_at_1_std value: -2.2125887288127233 - type: nauc_precision_at_20_diff1 value: -1.0200005991193168 - type: nauc_precision_at_20_max value: 27.432174703186323 - type: nauc_precision_at_20_std value: 29.095729277961407 - type: nauc_precision_at_3_diff1 value: 38.35291080418228 - type: nauc_precision_at_3_max value: 49.66103007615846 - type: nauc_precision_at_3_std value: 20.088808571059758 - type: nauc_precision_at_5_diff1 value: 21.518579003608927 - type: nauc_precision_at_5_max value: 38.7296114841025 - type: nauc_precision_at_5_std value: 19.47619911691762 - type: nauc_recall_at_1000_diff1 value: 42.25023342670368 - type: nauc_recall_at_1000_max value: 21.825396825396062 - type: nauc_recall_at_1000_std value: 33.84687208216713 - type: nauc_recall_at_100_diff1 value: 62.536570183629024 - type: nauc_recall_at_100_max value: 70.01867413632091 - type: nauc_recall_at_100_std value: 37.06504824151885 - type: nauc_recall_at_10_diff1 value: 61.1644854039766 - type: nauc_recall_at_10_max value: 61.074517296862396 - type: nauc_recall_at_10_std value: -0.5423227215261704 - type: nauc_recall_at_1_diff1 value: 74.99352374397856 - type: nauc_recall_at_1_max value: 50.00344836993502 - type: nauc_recall_at_1_std value: -8.698012201837718 - type: nauc_recall_at_20_diff1 value: 56.37978951869162 - type: nauc_recall_at_20_max value: 58.84099235231809 - type: nauc_recall_at_20_std value: 1.2224630005733186 - type: nauc_recall_at_3_diff1 value: 66.74850639308315 - type: nauc_recall_at_3_max value: 58.157377341361084 - type: nauc_recall_at_3_std value: -1.8661963986343983 - type: nauc_recall_at_5_diff1 value: 61.806012486501395 - type: nauc_recall_at_5_max value: 54.41470702166602 - type: nauc_recall_at_5_std value: -7.114468350278654 - type: ndcg_at_1 value: 60.667 - type: ndcg_at_10 value: 73.055 - type: ndcg_at_100 value: 75.312 - type: ndcg_at_1000 value: 75.874 - type: ndcg_at_20 value: 74.166 - type: ndcg_at_3 value: 69.211 - type: ndcg_at_5 value: 71.438 - type: precision_at_1 value: 60.667 - type: precision_at_10 value: 9.700000000000001 - type: precision_at_100 value: 1.08 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_20 value: 5.083 - type: precision_at_3 value: 27.444000000000003 - type: precision_at_5 value: 18.0 - type: recall_at_1 value: 57.760999999999996 - type: recall_at_10 value: 84.88900000000001 - type: recall_at_100 value: 95.0 - type: recall_at_1000 value: 99.333 - type: recall_at_20 value: 89.22200000000001 - type: recall_at_3 value: 74.933 - type: recall_at_5 value: 80.511 task: type: Retrieval - dataset: config: default name: MTEB SprintDuplicateQuestions revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: cosine_accuracy value: 99.8029702970297 - type: cosine_accuracy_threshold value: 74.40159320831299 - type: cosine_ap value: 94.58107371506443 - type: cosine_f1 value: 90.01505268439539 - type: cosine_f1_threshold value: 74.40159320831299 - type: cosine_precision value: 90.33232628398792 - type: cosine_recall value: 89.7 - type: dot_accuracy value: 99.8029702970297 - type: dot_accuracy_threshold value: 74.40159320831299 - type: dot_ap value: 94.58108694234896 - type: dot_f1 value: 90.01505268439539 - type: dot_f1_threshold value: 74.40159320831299 - type: dot_precision value: 90.33232628398792 - type: dot_recall value: 89.7 - type: euclidean_accuracy value: 99.8029702970297 - type: euclidean_accuracy_threshold value: 71.55194282531738 - type: euclidean_ap value: 94.58107371506446 - type: euclidean_f1 value: 90.01505268439539 - type: euclidean_f1_threshold value: 71.55194282531738 - type: euclidean_precision value: 90.33232628398792 - type: euclidean_recall value: 89.7 - type: main_score value: 94.91386698713322 - type: manhattan_accuracy value: 99.8108910891089 - type: manhattan_accuracy_threshold value: 1696.7340469360352 - type: manhattan_ap value: 94.91386698713322 - type: manhattan_f1 value: 90.4927824788452 - type: manhattan_f1_threshold value: 1696.7340469360352 - type: manhattan_precision value: 90.08919722497522 - type: manhattan_recall value: 90.9 - type: max_ap value: 94.91386698713322 - type: max_f1 value: 90.4927824788452 - type: max_precision value: 90.33232628398792 - type: max_recall value: 90.9 - type: similarity_accuracy value: 99.8029702970297 - type: similarity_accuracy_threshold value: 74.40159320831299 - type: similarity_ap value: 94.58107371506443 - type: similarity_f1 value: 90.01505268439539 - type: similarity_f1_threshold value: 74.40159320831299 - type: similarity_precision value: 90.33232628398792 - type: similarity_recall value: 89.7 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: main_score value: 67.22104632684339 - type: v_measure value: 67.22104632684339 - type: v_measure_std value: 4.510073189377009 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: main_score value: 33.69502959609247 - type: v_measure value: 33.69502959609247 - type: v_measure_std value: 1.7351941868223697 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: main_score value: 49.33572386600858 - type: map value: 49.33572386600858 - type: mrr value: 50.25399743230625 - type: nAUC_map_diff1 value: 36.68702916524911 - type: nAUC_map_max value: 15.78050039369413 - type: nAUC_map_std value: 9.735729247790866 - type: nAUC_mrr_diff1 value: 36.82154498603323 - type: nAUC_mrr_max value: 16.371339214758713 - type: nAUC_mrr_std value: 9.929514279072379 task: type: Reranking - dataset: config: default name: MTEB SummEval revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cosine_pearson value: 28.78169000462832 - type: cosine_spearman value: 29.152425546074824 - type: dot_pearson value: 28.781692477370914 - type: dot_spearman value: 29.152370579886423 - type: main_score value: 29.152425546074824 - type: pearson value: 28.78169000462832 - type: spearman value: 29.152425546074824 task: type: Summarization - dataset: config: default name: MTEB TRECCOVID revision: bb9466bac8153a0349341eb1b22e06409e78ef4e split: test type: mteb/trec-covid metrics: - type: main_score value: 78.374 - type: map_at_1 value: 0.22100000000000003 - type: map_at_10 value: 1.9980000000000002 - type: map_at_100 value: 12.812000000000001 - type: map_at_1000 value: 31.823 - type: map_at_20 value: 3.6859999999999995 - type: map_at_3 value: 0.656 - type: map_at_5 value: 1.0670000000000002 - type: mrr_at_1 value: 84.0 - type: mrr_at_10 value: 90.56666666666666 - type: mrr_at_100 value: 90.56666666666666 - type: mrr_at_1000 value: 90.56666666666666 - type: mrr_at_20 value: 90.56666666666666 - type: mrr_at_3 value: 89.66666666666667 - type: mrr_at_5 value: 90.56666666666666 - type: nauc_map_at_1000_diff1 value: 2.825877135411271 - type: nauc_map_at_1000_max value: 40.607799285634 - type: nauc_map_at_1000_std value: 75.56929127733711 - type: nauc_map_at_100_diff1 value: 17.09931837591714 - type: nauc_map_at_100_max value: 26.017672927390556 - type: nauc_map_at_100_std value: 47.97065512030576 - type: nauc_map_at_10_diff1 value: 18.2493061824924 - type: nauc_map_at_10_max value: 14.631430140768051 - type: nauc_map_at_10_std value: 6.843536754351145 - type: nauc_map_at_1_diff1 value: 22.577139455591702 - type: nauc_map_at_1_max value: 0.15518062954687648 - type: nauc_map_at_1_std value: 4.518832555249529 - type: nauc_map_at_20_diff1 value: 13.380363593233845 - type: nauc_map_at_20_max value: 14.364050402931303 - type: nauc_map_at_20_std value: 14.97367017439393 - type: nauc_map_at_3_diff1 value: 15.885210137428182 - type: nauc_map_at_3_max value: 3.562057528491576 - type: nauc_map_at_3_std value: 2.378758614671768 - type: nauc_map_at_5_diff1 value: 14.49860277826242 - type: nauc_map_at_5_max value: 7.729805934487601 - type: nauc_map_at_5_std value: 1.4105962147738722 - type: nauc_mrr_at_1000_diff1 value: 56.881060817300266 - type: nauc_mrr_at_1000_max value: 41.11734189808372 - type: nauc_mrr_at_1000_std value: 50.43684357282267 - type: nauc_mrr_at_100_diff1 value: 56.881060817300266 - type: nauc_mrr_at_100_max value: 41.11734189808372 - type: nauc_mrr_at_100_std value: 50.43684357282267 - type: nauc_mrr_at_10_diff1 value: 56.881060817300266 - type: nauc_mrr_at_10_max value: 41.11734189808372 - type: nauc_mrr_at_10_std value: 50.43684357282267 - type: nauc_mrr_at_1_diff1 value: 58.64629356897393 - type: nauc_mrr_at_1_max value: 32.48649975454101 - type: nauc_mrr_at_1_std value: 43.955571919489394 - type: nauc_mrr_at_20_diff1 value: 56.881060817300266 - type: nauc_mrr_at_20_max value: 41.11734189808372 - type: nauc_mrr_at_20_std value: 50.43684357282267 - type: nauc_mrr_at_3_diff1 value: 53.77571146801908 - type: nauc_mrr_at_3_max value: 45.26470680316847 - type: nauc_mrr_at_3_std value: 53.000845308537706 - type: nauc_mrr_at_5_diff1 value: 56.881060817300266 - type: nauc_mrr_at_5_max value: 41.11734189808372 - type: nauc_mrr_at_5_std value: 50.43684357282267 - type: nauc_ndcg_at_1000_diff1 value: 5.706304837276804 - type: nauc_ndcg_at_1000_max value: 40.29128039047473 - type: nauc_ndcg_at_1000_std value: 71.00623045997143 - type: nauc_ndcg_at_100_diff1 value: 5.781640210958165 - type: nauc_ndcg_at_100_max value: 43.91454038788984 - type: nauc_ndcg_at_100_std value: 73.38353180392235 - type: nauc_ndcg_at_10_diff1 value: 26.9639013902839 - type: nauc_ndcg_at_10_max value: 54.33014371697244 - type: nauc_ndcg_at_10_std value: 47.792741117341144 - type: nauc_ndcg_at_1_diff1 value: 54.66632834306011 - type: nauc_ndcg_at_1_max value: 30.289266683582845 - type: nauc_ndcg_at_1_std value: 33.96599847754379 - type: nauc_ndcg_at_20_diff1 value: 17.30631583279515 - type: nauc_ndcg_at_20_max value: 51.11318537065157 - type: nauc_ndcg_at_20_std value: 58.77421488656353 - type: nauc_ndcg_at_3_diff1 value: 29.77344612486348 - type: nauc_ndcg_at_3_max value: 37.42364187792375 - type: nauc_ndcg_at_3_std value: 41.1907099151911 - type: nauc_ndcg_at_5_diff1 value: 26.050198501250804 - type: nauc_ndcg_at_5_max value: 47.51636664318881 - type: nauc_ndcg_at_5_std value: 42.27162971112885 - type: nauc_precision_at_1000_diff1 value: -5.147193986603446 - type: nauc_precision_at_1000_max value: 35.2107091684719 - type: nauc_precision_at_1000_std value: 46.18948291863976 - type: nauc_precision_at_100_diff1 value: 8.820554100487717 - type: nauc_precision_at_100_max value: 45.45756541797819 - type: nauc_precision_at_100_std value: 76.13204940288823 - type: nauc_precision_at_10_diff1 value: 24.200964449927067 - type: nauc_precision_at_10_max value: 63.97368322679529 - type: nauc_precision_at_10_std value: 51.453029793278795 - type: nauc_precision_at_1_diff1 value: 58.64629356897393 - type: nauc_precision_at_1_max value: 32.48649975454101 - type: nauc_precision_at_1_std value: 43.955571919489394 - type: nauc_precision_at_20_diff1 value: 9.308587936619213 - type: nauc_precision_at_20_max value: 48.79243631270248 - type: nauc_precision_at_20_std value: 62.069859056289864 - type: nauc_precision_at_3_diff1 value: 33.581669226830584 - type: nauc_precision_at_3_max value: 56.22119815668209 - type: nauc_precision_at_3_std value: 51.94572452636975 - type: nauc_precision_at_5_diff1 value: 27.412098506105657 - type: nauc_precision_at_5_max value: 62.44729045506555 - type: nauc_precision_at_5_std value: 44.765099619080445 - type: nauc_recall_at_1000_diff1 value: -1.1672849905619294 - type: nauc_recall_at_1000_max value: 30.24145654488767 - type: nauc_recall_at_1000_std value: 59.841775004234165 - type: nauc_recall_at_100_diff1 value: 14.955315589973456 - type: nauc_recall_at_100_max value: 14.182437740698777 - type: nauc_recall_at_100_std value: 34.85010900316272 - type: nauc_recall_at_10_diff1 value: 13.823849163501494 - type: nauc_recall_at_10_max value: 7.576291042005819 - type: nauc_recall_at_10_std value: 1.4227650589393714 - type: nauc_recall_at_1_diff1 value: 22.577139455591702 - type: nauc_recall_at_1_max value: 0.15518062954687648 - type: nauc_recall_at_1_std value: 4.518832555249529 - type: nauc_recall_at_20_diff1 value: 9.577895424349496 - type: nauc_recall_at_20_max value: 4.326841788680218 - type: nauc_recall_at_20_std value: 8.40592602308462 - type: nauc_recall_at_3_diff1 value: 11.099599191623701 - type: nauc_recall_at_3_max value: 1.8660565345942584 - type: nauc_recall_at_3_std value: -0.5969085344249611 - type: nauc_recall_at_5_diff1 value: 8.674608384913736 - type: nauc_recall_at_5_max value: 3.730380788869587 - type: nauc_recall_at_5_std value: -3.4877352049852024 - type: ndcg_at_1 value: 80.0 - type: ndcg_at_10 value: 78.374 - type: ndcg_at_100 value: 63.385000000000005 - type: ndcg_at_1000 value: 57.406 - type: ndcg_at_20 value: 75.795 - type: ndcg_at_3 value: 80.419 - type: ndcg_at_5 value: 80.157 - type: precision_at_1 value: 84.0 - type: precision_at_10 value: 84.0 - type: precision_at_100 value: 65.88000000000001 - type: precision_at_1000 value: 25.502000000000002 - type: precision_at_20 value: 80.30000000000001 - type: precision_at_3 value: 86.667 - type: precision_at_5 value: 86.4 - type: recall_at_1 value: 0.22100000000000003 - type: recall_at_10 value: 2.179 - type: recall_at_100 value: 15.934000000000001 - type: recall_at_1000 value: 54.458 - type: recall_at_20 value: 4.144 - type: recall_at_3 value: 0.6859999999999999 - type: recall_at_5 value: 1.1320000000000001 task: type: Retrieval - dataset: config: default name: MTEB Touche2020 revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: main_score value: 28.907 - type: map_at_1 value: 2.675 - type: map_at_10 value: 12.215 - type: map_at_100 value: 18.7 - type: map_at_1000 value: 20.398 - type: map_at_20 value: 15.078 - type: map_at_3 value: 6.241 - type: map_at_5 value: 8.289 - type: mrr_at_1 value: 32.6530612244898 - type: mrr_at_10 value: 50.01133786848071 - type: mrr_at_100 value: 50.77517365675259 - type: mrr_at_1000 value: 50.77517365675259 - type: mrr_at_20 value: 50.588814902724664 - type: mrr_at_3 value: 45.578231292517 - type: mrr_at_5 value: 48.53741496598638 - type: nauc_map_at_1000_diff1 value: -5.684538294981354 - type: nauc_map_at_1000_max value: -33.46305720843361 - type: nauc_map_at_1000_std value: 1.9671166101260358 - type: nauc_map_at_100_diff1 value: -3.9527668773790374 - type: nauc_map_at_100_max value: -33.547343271958304 - type: nauc_map_at_100_std value: -1.4543726200894687 - type: nauc_map_at_10_diff1 value: -3.6912102827982975 - type: nauc_map_at_10_max value: -37.051501400243644 - type: nauc_map_at_10_std value: -18.58369649223091 - type: nauc_map_at_1_diff1 value: 8.542642521750217 - type: nauc_map_at_1_max value: -42.118453460843014 - type: nauc_map_at_1_std value: -21.4477651608444 - type: nauc_map_at_20_diff1 value: -4.1294483682157335 - type: nauc_map_at_20_max value: -32.055300714683774 - type: nauc_map_at_20_std value: -13.633460827906779 - type: nauc_map_at_3_diff1 value: 4.166012812499575 - type: nauc_map_at_3_max value: -44.421760913346375 - type: nauc_map_at_3_std value: -22.934729762627693 - type: nauc_map_at_5_diff1 value: 5.0705280599427285 - type: nauc_map_at_5_max value: -39.880207516910055 - type: nauc_map_at_5_std value: -19.089070592204358 - type: nauc_mrr_at_1000_diff1 value: 8.136502099178854 - type: nauc_mrr_at_1000_max value: -54.053135657703564 - type: nauc_mrr_at_1000_std value: 0.8410793475356224 - type: nauc_mrr_at_100_diff1 value: 8.136502099178854 - type: nauc_mrr_at_100_max value: -54.053135657703564 - type: nauc_mrr_at_100_std value: 0.8410793475356224 - type: nauc_mrr_at_10_diff1 value: 7.021058071372796 - type: nauc_mrr_at_10_max value: -55.576671480124475 - type: nauc_mrr_at_10_std value: 2.659844175871393 - type: nauc_mrr_at_1_diff1 value: 21.763874961879942 - type: nauc_mrr_at_1_max value: -42.10185605661237 - type: nauc_mrr_at_1_std value: -6.492292167140558 - type: nauc_mrr_at_20_diff1 value: 8.441891181402887 - type: nauc_mrr_at_20_max value: -54.466795585812235 - type: nauc_mrr_at_20_std value: 0.916114699709143 - type: nauc_mrr_at_3_diff1 value: 7.551389256661414 - type: nauc_mrr_at_3_max value: -46.97364074837694 - type: nauc_mrr_at_3_std value: 1.0411397370775466 - type: nauc_mrr_at_5_diff1 value: 5.235804734715955 - type: nauc_mrr_at_5_max value: -54.37509495435838 - type: nauc_mrr_at_5_std value: 2.779654633655762 - type: nauc_ndcg_at_1000_diff1 value: -15.397449719696779 - type: nauc_ndcg_at_1000_max value: -43.619552110596665 - type: nauc_ndcg_at_1000_std value: 26.3557588044005 - type: nauc_ndcg_at_100_diff1 value: -8.064551008407328 - type: nauc_ndcg_at_100_max value: -45.62898014606384 - type: nauc_ndcg_at_100_std value: 19.02252139372526 - type: nauc_ndcg_at_10_diff1 value: -4.128778098656938 - type: nauc_ndcg_at_10_max value: -47.533595647961825 - type: nauc_ndcg_at_10_std value: -3.3387983790901616 - type: nauc_ndcg_at_1_diff1 value: 15.241311807512584 - type: nauc_ndcg_at_1_max value: -41.98413041761103 - type: nauc_ndcg_at_1_std value: -1.7966111564973624 - type: nauc_ndcg_at_20_diff1 value: -5.70487127711277 - type: nauc_ndcg_at_20_max value: -43.296928773082485 - type: nauc_ndcg_at_20_std value: -4.953768651191041 - type: nauc_ndcg_at_3_diff1 value: 10.059341497787937 - type: nauc_ndcg_at_3_max value: -40.68501908879975 - type: nauc_ndcg_at_3_std value: -3.6931074797187877 - type: nauc_ndcg_at_5_diff1 value: 7.526983752941929 - type: nauc_ndcg_at_5_max value: -43.365397576700275 - type: nauc_ndcg_at_5_std value: 0.32616836825174683 - type: nauc_precision_at_1000_diff1 value: -7.438317571660842 - type: nauc_precision_at_1000_max value: 34.73241001748508 - type: nauc_precision_at_1000_std value: 36.25365158109604 - type: nauc_precision_at_100_diff1 value: -4.627005077446657 - type: nauc_precision_at_100_max value: -15.93628289282409 - type: nauc_precision_at_100_std value: 68.61386525027707 - type: nauc_precision_at_10_diff1 value: -10.52039936457346 - type: nauc_precision_at_10_max value: -43.34615042118174 - type: nauc_precision_at_10_std value: 9.318534549691767 - type: nauc_precision_at_1_diff1 value: 21.763874961879942 - type: nauc_precision_at_1_max value: -42.10185605661237 - type: nauc_precision_at_1_std value: -6.492292167140558 - type: nauc_precision_at_20_diff1 value: -2.287812706503246 - type: nauc_precision_at_20_max value: -28.10959274429549 - type: nauc_precision_at_20_std value: 16.788667831779485 - type: nauc_precision_at_3_diff1 value: 11.569650243424755 - type: nauc_precision_at_3_max value: -41.668998559185844 - type: nauc_precision_at_3_std value: -0.3803285872339615 - type: nauc_precision_at_5_diff1 value: 7.598490650206377 - type: nauc_precision_at_5_max value: -41.68148813885381 - type: nauc_precision_at_5_std value: 7.354258555131649 - type: nauc_recall_at_1000_diff1 value: -50.220542196994636 - type: nauc_recall_at_1000_max value: -16.95193388500635 - type: nauc_recall_at_1000_std value: 69.28134193017735 - type: nauc_recall_at_100_diff1 value: -15.415419361213853 - type: nauc_recall_at_100_max value: -33.60910097372997 - type: nauc_recall_at_100_std value: 35.403748730364256 - type: nauc_recall_at_10_diff1 value: -14.144822663337028 - type: nauc_recall_at_10_max value: -38.11986778901871 - type: nauc_recall_at_10_std value: -13.87707926888663 - type: nauc_recall_at_1_diff1 value: 8.542642521750217 - type: nauc_recall_at_1_max value: -42.118453460843014 - type: nauc_recall_at_1_std value: -21.4477651608444 - type: nauc_recall_at_20_diff1 value: -12.3394417307943 - type: nauc_recall_at_20_max value: -32.75019884128939 - type: nauc_recall_at_20_std value: -6.875770812126497 - type: nauc_recall_at_3_diff1 value: -0.907011119452535 - type: nauc_recall_at_3_max value: -42.06461204250678 - type: nauc_recall_at_3_std value: -18.765470997666945 - type: nauc_recall_at_5_diff1 value: -1.063588562013453 - type: nauc_recall_at_5_max value: -39.15779594344513 - type: nauc_recall_at_5_std value: -14.839683507905466 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 28.907 - type: ndcg_at_100 value: 40.211000000000006 - type: ndcg_at_1000 value: 51.482000000000006 - type: ndcg_at_20 value: 29.804000000000002 - type: ndcg_at_3 value: 30.802000000000003 - type: ndcg_at_5 value: 29.511 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 26.531 - type: precision_at_100 value: 8.224 - type: precision_at_1000 value: 1.576 - type: precision_at_20 value: 20.102 - type: precision_at_3 value: 34.014 - type: precision_at_5 value: 30.203999999999997 - type: recall_at_1 value: 2.675 - type: recall_at_10 value: 19.750999999999998 - type: recall_at_100 value: 50.365 - type: recall_at_1000 value: 84.773 - type: recall_at_20 value: 27.632 - type: recall_at_3 value: 7.578 - type: recall_at_5 value: 11.346 task: type: Retrieval - dataset: config: default name: MTEB ToxicConversationsClassification revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 70.810546875 - type: ap value: 14.252152092007437 - type: ap_weighted value: 14.252152092007437 - type: f1 value: 54.48430687519361 - type: f1_weighted value: 77.28107973539473 - type: main_score value: 70.810546875 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 62.66553480475382 - type: f1 value: 62.053566222838384 - type: f1_weighted value: 60.48069640139468 - type: main_score value: 62.66553480475382 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: main_score value: 49.676842982432774 - type: v_measure value: 49.676842982432774 - type: v_measure_std value: 1.3041225457855343 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: cosine_accuracy value: 85.07480479227513 - type: cosine_accuracy_threshold value: 78.39158177375793 - type: cosine_ap value: 70.92737526837412 - type: cosine_f1 value: 66.1954959271682 - type: cosine_f1_threshold value: 74.12481307983398 - type: cosine_precision value: 60.61869240895129 - type: cosine_recall value: 72.9023746701847 - type: dot_accuracy value: 85.07480479227513 - type: dot_accuracy_threshold value: 78.39158773422241 - type: dot_ap value: 70.92737601494514 - type: dot_f1 value: 66.1954959271682 - type: dot_f1_threshold value: 74.12482500076294 - type: dot_precision value: 60.61869240895129 - type: dot_recall value: 72.9023746701847 - type: euclidean_accuracy value: 85.07480479227513 - type: euclidean_accuracy_threshold value: 65.73951244354248 - type: euclidean_ap value: 70.92738137519932 - type: euclidean_f1 value: 66.1954959271682 - type: euclidean_f1_threshold value: 71.93772792816162 - type: euclidean_precision value: 60.61869240895129 - type: euclidean_recall value: 72.9023746701847 - type: main_score value: 70.92738137519932 - type: manhattan_accuracy value: 84.89002801454372 - type: manhattan_accuracy_threshold value: 1543.7227249145508 - type: manhattan_ap value: 70.45819704836475 - type: manhattan_f1 value: 65.75607397558322 - type: manhattan_f1_threshold value: 1691.067886352539 - type: manhattan_precision value: 60.673656033905864 - type: manhattan_recall value: 71.76781002638522 - type: max_ap value: 70.92738137519932 - type: max_f1 value: 66.1954959271682 - type: max_precision value: 60.673656033905864 - type: max_recall value: 72.9023746701847 - type: similarity_accuracy value: 85.07480479227513 - type: similarity_accuracy_threshold value: 78.39158177375793 - type: similarity_ap value: 70.92737526837412 - type: similarity_f1 value: 66.1954959271682 - type: similarity_f1_threshold value: 74.12481307983398 - type: similarity_precision value: 60.61869240895129 - type: similarity_recall value: 72.9023746701847 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: cosine_accuracy value: 89.32355338223309 - type: cosine_accuracy_threshold value: 72.50972986221313 - type: cosine_ap value: 86.74895762701595 - type: cosine_f1 value: 79.21738810635873 - type: cosine_f1_threshold value: 69.94493007659912 - type: cosine_precision value: 75.82905020066183 - type: cosine_recall value: 82.9226978749615 - type: dot_accuracy value: 89.32355338223309 - type: dot_accuracy_threshold value: 72.50974178314209 - type: dot_ap value: 86.74894970312789 - type: dot_f1 value: 79.21738810635873 - type: dot_f1_threshold value: 69.94493007659912 - type: dot_precision value: 75.82905020066183 - type: dot_recall value: 82.9226978749615 - type: euclidean_accuracy value: 89.32355338223309 - type: euclidean_accuracy_threshold value: 74.14885759353638 - type: euclidean_ap value: 86.74893799074754 - type: euclidean_f1 value: 79.21738810635873 - type: euclidean_f1_threshold value: 77.53072381019592 - type: euclidean_precision value: 75.82905020066183 - type: euclidean_recall value: 82.9226978749615 - type: main_score value: 86.74895762701595 - type: manhattan_accuracy value: 89.28474405247022 - type: manhattan_accuracy_threshold value: 1725.102424621582 - type: manhattan_ap value: 86.69699016049593 - type: manhattan_f1 value: 79.00847425990219 - type: manhattan_f1_threshold value: 1807.0615768432617 - type: manhattan_precision value: 76.68671642872673 - type: manhattan_recall value: 81.4752078842008 - type: max_ap value: 86.74895762701595 - type: max_f1 value: 79.21738810635873 - type: max_precision value: 76.68671642872673 - type: max_recall value: 82.9226978749615 - type: similarity_accuracy value: 89.32355338223309 - type: similarity_accuracy_threshold value: 72.50972986221313 - type: similarity_ap value: 86.74895762701595 - type: similarity_f1 value: 79.21738810635873 - type: similarity_f1_threshold value: 69.94493007659912 - type: similarity_precision value: 75.82905020066183 - type: similarity_recall value: 82.9226978749615 task: type: PairClassification - dataset: config: default name: MTEB AFQMC revision: b44c3b011063adb25877c13823db83bb193913c4 split: validation type: C-MTEB/AFQMC metrics: - type: cosine_pearson value: 38.29145368837485 - type: cosine_spearman value: 39.41056570139273 - type: euclidean_pearson value: 38.0651461534699 - type: euclidean_spearman value: 39.41056569992215 - type: main_score value: 39.41056570139273 - type: manhattan_pearson value: 37.70876309636298 - type: manhattan_spearman value: 39.04864822187025 - type: pearson value: 38.29145368837485 - type: spearman value: 39.41056570139273 task: type: STS - dataset: config: default name: MTEB ATEC revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 split: test type: C-MTEB/ATEC metrics: - type: cosine_pearson value: 46.47704725371303 - type: cosine_spearman value: 46.9183608596495 - type: euclidean_pearson value: 49.36420417260176 - type: euclidean_spearman value: 46.91835860770197 - type: main_score value: 46.9183608596495 - type: manhattan_pearson value: 49.124318954541145 - type: manhattan_spearman value: 46.69432997494852 - type: pearson value: 46.47704725371303 - type: spearman value: 46.9183608596495 task: type: STS - dataset: config: zh name: MTEB AmazonReviewsClassification (zh) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 41.858000000000004 - type: f1 value: 38.04731113109237 - type: f1_weighted value: 38.04731113109237 - type: main_score value: 41.858000000000004 task: type: Classification - dataset: config: default name: MTEB BQ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 split: test type: C-MTEB/BQ metrics: - type: cosine_pearson value: 51.2270285721989 - type: cosine_spearman value: 51.53381532349815 - type: euclidean_pearson value: 50.83672339980501 - type: euclidean_spearman value: 51.53382225123762 - type: main_score value: 51.53381532349815 - type: manhattan_pearson value: 50.481897254555655 - type: manhattan_spearman value: 51.165938122581764 - type: pearson value: 51.2270285721989 - type: spearman value: 51.53381532349815 task: type: STS - dataset: config: default name: MTEB CLSClusteringP2P revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 split: test type: C-MTEB/CLSClusteringP2P metrics: - type: main_score value: 42.6351765343486 - type: v_measure value: 42.6351765343486 - type: v_measure_std value: 0.8266776246358534 task: type: Clustering - dataset: config: default name: MTEB CLSClusteringS2S revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f split: test type: C-MTEB/CLSClusteringS2S metrics: - type: main_score value: 39.14026434895999 - type: v_measure value: 39.14026434895999 - type: v_measure_std value: 0.8843326244130124 task: type: Clustering - dataset: config: default name: MTEB CMedQAv1 revision: 8d7f1e942507dac42dc58017c1a001c3717da7df split: test type: C-MTEB/CMedQAv1-reranking metrics: - type: main_score value: 81.62649518330059 - type: map value: 81.62649518330059 - type: mrr value: 84.59920634920634 - type: nAUC_map_diff1 value: 57.57622865226385 - type: nAUC_map_max value: 64.24578070815535 - type: nAUC_map_std value: 25.825835637398292 - type: nAUC_mrr_diff1 value: 64.506555321586 - type: nAUC_mrr_max value: 73.72849839805279 - type: nAUC_mrr_std value: 33.50231715071016 task: type: Reranking - dataset: config: default name: MTEB CMedQAv2 revision: 23d186750531a14a0357ca22cd92d712fd512ea0 split: test type: C-MTEB/CMedQAv2-reranking metrics: - type: main_score value: 82.6884842555647 - type: map value: 82.6884842555647 - type: mrr value: 85.7413492063492 - type: nAUC_map_diff1 value: 62.227875149480674 - type: nAUC_map_max value: 65.39899447833739 - type: nAUC_map_std value: 22.232770911289762 - type: nAUC_mrr_diff1 value: 71.02339957841794 - type: nAUC_mrr_max value: 75.79106833222022 - type: nAUC_mrr_std value: 31.922312297325313 task: type: Reranking - dataset: config: default name: MTEB CmedqaRetrieval revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 split: dev type: C-MTEB/CmedqaRetrieval metrics: - type: main_score value: 41.912 - type: map_at_1 value: 24.154 - type: map_at_10 value: 35.771 - type: map_at_100 value: 37.361 - type: map_at_1000 value: 37.501 - type: map_at_20 value: 36.614000000000004 - type: map_at_3 value: 32.208999999999996 - type: map_at_5 value: 34.135 - type: mrr_at_1 value: 36.959239809952486 - type: mrr_at_10 value: 44.68076344482939 - type: mrr_at_100 value: 45.58051326135588 - type: mrr_at_1000 value: 45.63875894256334 - type: mrr_at_20 value: 45.18303299514746 - type: mrr_at_3 value: 42.55230474285231 - type: mrr_at_5 value: 43.73134950404267 - type: nauc_map_at_1000_diff1 value: 48.19593787339997 - type: nauc_map_at_1000_max value: 45.80793623720016 - type: nauc_map_at_1000_std value: -4.498738770651924 - type: nauc_map_at_100_diff1 value: 48.14822061537294 - type: nauc_map_at_100_max value: 45.766276109027565 - type: nauc_map_at_100_std value: -4.531921171029137 - type: nauc_map_at_10_diff1 value: 48.056275142802576 - type: nauc_map_at_10_max value: 44.86133659352232 - type: nauc_map_at_10_std value: -5.678734969973419 - type: nauc_map_at_1_diff1 value: 54.126770601702304 - type: nauc_map_at_1_max value: 36.294268209121014 - type: nauc_map_at_1_std value: -8.314309694617984 - type: nauc_map_at_20_diff1 value: 48.040597097872464 - type: nauc_map_at_20_max value: 45.361480980577554 - type: nauc_map_at_20_std value: -5.1056219220416414 - type: nauc_map_at_3_diff1 value: 48.824963816099306 - type: nauc_map_at_3_max value: 42.59637253351721 - type: nauc_map_at_3_std value: -7.142494643007989 - type: nauc_map_at_5_diff1 value: 48.39295465854973 - type: nauc_map_at_5_max value: 43.81282348287875 - type: nauc_map_at_5_std value: -6.551989013310646 - type: nauc_mrr_at_1000_diff1 value: 55.254016903996884 - type: nauc_mrr_at_1000_max value: 53.09878029734 - type: nauc_mrr_at_1000_std value: -0.71508532680536 - type: nauc_mrr_at_100_diff1 value: 55.22345420339283 - type: nauc_mrr_at_100_max value: 53.09592092707568 - type: nauc_mrr_at_100_std value: -0.6931227079570508 - type: nauc_mrr_at_10_diff1 value: 55.18285620712305 - type: nauc_mrr_at_10_max value: 53.0128131412299 - type: nauc_mrr_at_10_std value: -0.9419014092991297 - type: nauc_mrr_at_1_diff1 value: 61.53750424643732 - type: nauc_mrr_at_1_max value: 54.24674408902589 - type: nauc_mrr_at_1_std value: -1.9080737950338242 - type: nauc_mrr_at_20_diff1 value: 55.1955850013467 - type: nauc_mrr_at_20_max value: 53.04094140836042 - type: nauc_mrr_at_20_std value: -0.8063521557954811 - type: nauc_mrr_at_3_diff1 value: 56.11946877115898 - type: nauc_mrr_at_3_max value: 53.46308123387505 - type: nauc_mrr_at_3_std value: -1.25039802843073 - type: nauc_mrr_at_5_diff1 value: 55.59945526594265 - type: nauc_mrr_at_5_max value: 53.094458463158546 - type: nauc_mrr_at_5_std value: -1.1485696186251675 - type: nauc_ndcg_at_1000_diff1 value: 48.630394030057936 - type: nauc_ndcg_at_1000_max value: 49.067370003850804 - type: nauc_ndcg_at_1000_std value: -0.6379826555665533 - type: nauc_ndcg_at_100_diff1 value: 47.4242704726565 - type: nauc_ndcg_at_100_max value: 48.72472432340327 - type: nauc_ndcg_at_100_std value: -0.16567922191922693 - type: nauc_ndcg_at_10_diff1 value: 47.16820763109196 - type: nauc_ndcg_at_10_max value: 46.69185085844686 - type: nauc_ndcg_at_10_std value: -3.793946471519526 - type: nauc_ndcg_at_1_diff1 value: 61.53750424643732 - type: nauc_ndcg_at_1_max value: 54.24674408902589 - type: nauc_ndcg_at_1_std value: -1.9080737950338242 - type: nauc_ndcg_at_20_diff1 value: 47.062085251805165 - type: nauc_ndcg_at_20_max value: 47.36804459443504 - type: nauc_ndcg_at_20_std value: -2.6790807434003154 - type: nauc_ndcg_at_3_diff1 value: 49.37353194021333 - type: nauc_ndcg_at_3_max value: 48.35156335077874 - type: nauc_ndcg_at_3_std value: -3.3398102492848656 - type: nauc_ndcg_at_5_diff1 value: 48.0947159130794 - type: nauc_ndcg_at_5_max value: 46.680994331148504 - type: nauc_ndcg_at_5_std value: -4.043874632127286 - type: nauc_precision_at_1000_diff1 value: 6.109079873705322 - type: nauc_precision_at_1000_max value: 29.504954981504778 - type: nauc_precision_at_1000_std value: 22.93941750032271 - type: nauc_precision_at_100_diff1 value: 11.927597721886762 - type: nauc_precision_at_100_max value: 39.33748646673334 - type: nauc_precision_at_100_std value: 23.95901745749321 - type: nauc_precision_at_10_diff1 value: 24.82917619008383 - type: nauc_precision_at_10_max value: 48.25909614877216 - type: nauc_precision_at_10_std value: 10.250143723179713 - type: nauc_precision_at_1_diff1 value: 61.53750424643732 - type: nauc_precision_at_1_max value: 54.24674408902589 - type: nauc_precision_at_1_std value: -1.9080737950338242 - type: nauc_precision_at_20_diff1 value: 20.46788631872044 - type: nauc_precision_at_20_max value: 45.80722239546835 - type: nauc_precision_at_20_std value: 14.720113784118633 - type: nauc_precision_at_3_diff1 value: 36.57074097596536 - type: nauc_precision_at_3_max value: 52.82030883151323 - type: nauc_precision_at_3_std value: 3.9283920700632526 - type: nauc_precision_at_5_diff1 value: 31.217047808074472 - type: nauc_precision_at_5_max value: 51.092762871371654 - type: nauc_precision_at_5_std value: 6.51063180919143 - type: nauc_recall_at_1000_diff1 value: 31.30321342816756 - type: nauc_recall_at_1000_max value: 55.469754854393486 - type: nauc_recall_at_1000_std value: 46.627360786810655 - type: nauc_recall_at_100_diff1 value: 26.36814612505595 - type: nauc_recall_at_100_max value: 41.98698104560196 - type: nauc_recall_at_100_std value: 16.01155635795268 - type: nauc_recall_at_10_diff1 value: 34.230500025598566 - type: nauc_recall_at_10_max value: 38.46622774541338 - type: nauc_recall_at_10_std value: -3.5976451821598636 - type: nauc_recall_at_1_diff1 value: 54.126770601702304 - type: nauc_recall_at_1_max value: 36.294268209121014 - type: nauc_recall_at_1_std value: -8.314309694617984 - type: nauc_recall_at_20_diff1 value: 31.92600233159853 - type: nauc_recall_at_20_max value: 39.151276414762634 - type: nauc_recall_at_20_std value: -0.008185757782290744 - type: nauc_recall_at_3_diff1 value: 40.983135298326175 - type: nauc_recall_at_3_max value: 39.282144240448105 - type: nauc_recall_at_3_std value: -6.478558331383442 - type: nauc_recall_at_5_diff1 value: 37.96561121548906 - type: nauc_recall_at_5_max value: 38.25573176800016 - type: nauc_recall_at_5_std value: -5.896110553981627 - type: ndcg_at_1 value: 36.958999999999996 - type: ndcg_at_10 value: 41.912 - type: ndcg_at_100 value: 48.412 - type: ndcg_at_1000 value: 51.076 - type: ndcg_at_20 value: 44.237 - type: ndcg_at_3 value: 37.596000000000004 - type: ndcg_at_5 value: 39.257 - type: precision_at_1 value: 36.958999999999996 - type: precision_at_10 value: 9.222 - type: precision_at_100 value: 1.456 - type: precision_at_1000 value: 0.18 - type: precision_at_20 value: 5.404 - type: precision_at_3 value: 21.346999999999998 - type: precision_at_5 value: 15.204 - type: recall_at_1 value: 24.154 - type: recall_at_10 value: 51.13799999999999 - type: recall_at_100 value: 78.44200000000001 - type: recall_at_1000 value: 96.607 - type: recall_at_20 value: 59.01499999999999 - type: recall_at_3 value: 37.645 - type: recall_at_5 value: 43.24 task: type: Retrieval - dataset: config: default name: MTEB Cmnli revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 split: validation type: C-MTEB/CMNLI metrics: - type: cosine_accuracy value: 70.24654239326519 - type: cosine_accuracy_threshold value: 65.65687656402588 - type: cosine_ap value: 76.97337656087815 - type: cosine_f1 value: 72.89293849658314 - type: cosine_f1_threshold value: 58.187782764434814 - type: cosine_precision value: 63.230240549828174 - type: cosine_recall value: 86.04161795651157 - type: dot_accuracy value: 70.24654239326519 - type: dot_accuracy_threshold value: 65.65687656402588 - type: dot_ap value: 76.99306253217402 - type: dot_f1 value: 72.89293849658314 - type: dot_f1_threshold value: 58.18778872489929 - type: dot_precision value: 63.230240549828174 - type: dot_recall value: 86.04161795651157 - type: euclidean_accuracy value: 70.24654239326519 - type: euclidean_accuracy_threshold value: 82.8771710395813 - type: euclidean_ap value: 76.97337656087815 - type: euclidean_f1 value: 72.89293849658314 - type: euclidean_f1_threshold value: 91.44638776779175 - type: euclidean_precision value: 63.230240549828174 - type: euclidean_recall value: 86.04161795651157 - type: main_score value: 76.99306253217402 - type: manhattan_accuracy value: 69.74143114852676 - type: manhattan_accuracy_threshold value: 1963.1107330322266 - type: manhattan_ap value: 76.44289061856252 - type: manhattan_f1 value: 72.70526528142021 - type: manhattan_f1_threshold value: 2121.240234375 - type: manhattan_precision value: 63.93471704807522 - type: manhattan_recall value: 84.26467149871405 - type: max_ap value: 76.99306253217402 - type: max_f1 value: 72.89293849658314 - type: max_precision value: 63.93471704807522 - type: max_recall value: 86.04161795651157 - type: similarity_accuracy value: 70.24654239326519 - type: similarity_accuracy_threshold value: 65.65687656402588 - type: similarity_ap value: 76.97337656087815 - type: similarity_f1 value: 72.89293849658314 - type: similarity_f1_threshold value: 58.187782764434814 - type: similarity_precision value: 63.230240549828174 - type: similarity_recall value: 86.04161795651157 task: type: PairClassification - dataset: config: default name: MTEB CovidRetrieval revision: 1271c7809071a13532e05f25fb53511ffce77117 split: dev type: C-MTEB/CovidRetrieval metrics: - type: main_score value: 82.09100000000001 - type: map_at_1 value: 69.679 - type: map_at_10 value: 78.188 - type: map_at_100 value: 78.432 - type: map_at_1000 value: 78.435 - type: map_at_20 value: 78.358 - type: map_at_3 value: 76.458 - type: map_at_5 value: 77.525 - type: mrr_at_1 value: 69.86301369863014 - type: mrr_at_10 value: 78.1891966481008 - type: mrr_at_100 value: 78.43100887014927 - type: mrr_at_1000 value: 78.43409905944281 - type: mrr_at_20 value: 78.3583713625236 - type: mrr_at_3 value: 76.5015806111697 - type: mrr_at_5 value: 77.5816649104321 - type: nauc_map_at_1000_diff1 value: 78.7565094457952 - type: nauc_map_at_1000_max value: 43.44153271106606 - type: nauc_map_at_1000_std value: -43.35643127411659 - type: nauc_map_at_100_diff1 value: 78.75464512949722 - type: nauc_map_at_100_max value: 43.44614729899657 - type: nauc_map_at_100_std value: -43.35662894001264 - type: nauc_map_at_10_diff1 value: 78.6150484744859 - type: nauc_map_at_10_max value: 43.22212591985456 - type: nauc_map_at_10_std value: -43.68204084683379 - type: nauc_map_at_1_diff1 value: 81.86147718901591 - type: nauc_map_at_1_max value: 43.27595769557031 - type: nauc_map_at_1_std value: -40.832434398434316 - type: nauc_map_at_20_diff1 value: 78.72313916367459 - type: nauc_map_at_20_max value: 43.527065459801754 - type: nauc_map_at_20_std value: -43.299315170766626 - type: nauc_map_at_3_diff1 value: 78.6799910684285 - type: nauc_map_at_3_max value: 42.319407684110274 - type: nauc_map_at_3_std value: -45.537423149362695 - type: nauc_map_at_5_diff1 value: 78.25825961555257 - type: nauc_map_at_5_max value: 42.66902641451189 - type: nauc_map_at_5_std value: -44.2482231636208 - type: nauc_mrr_at_1000_diff1 value: 78.77840881732628 - type: nauc_mrr_at_1000_max value: 43.75052183199315 - type: nauc_mrr_at_1000_std value: -42.89324434781183 - type: nauc_mrr_at_100_diff1 value: 78.7765411998645 - type: nauc_mrr_at_100_max value: 43.755086077231056 - type: nauc_mrr_at_100_std value: -42.89351661301109 - type: nauc_mrr_at_10_diff1 value: 78.63610310385711 - type: nauc_mrr_at_10_max value: 43.52324483162967 - type: nauc_mrr_at_10_std value: -43.23477882995708 - type: nauc_mrr_at_1_diff1 value: 81.65699303519479 - type: nauc_mrr_at_1_max value: 44.202391758796914 - type: nauc_mrr_at_1_std value: -39.36327383599781 - type: nauc_mrr_at_20_diff1 value: 78.7443733650774 - type: nauc_mrr_at_20_max value: 43.83081490577578 - type: nauc_mrr_at_20_std value: -42.848142406550764 - type: nauc_mrr_at_3_diff1 value: 78.64356391070008 - type: nauc_mrr_at_3_max value: 42.76861798176099 - type: nauc_mrr_at_3_std value: -44.84496156914284 - type: nauc_mrr_at_5_diff1 value: 78.22192606452634 - type: nauc_mrr_at_5_max value: 43.12757659228294 - type: nauc_mrr_at_5_std value: -43.471573840955344 - type: nauc_ndcg_at_1000_diff1 value: 78.1838616987732 - type: nauc_ndcg_at_1000_max value: 43.859382162396884 - type: nauc_ndcg_at_1000_std value: -43.30653697283926 - type: nauc_ndcg_at_100_diff1 value: 78.13119295479274 - type: nauc_ndcg_at_100_max value: 44.01086911321529 - type: nauc_ndcg_at_100_std value: -43.24874302093996 - type: nauc_ndcg_at_10_diff1 value: 77.48152464096923 - type: nauc_ndcg_at_10_max value: 43.264264169510504 - type: nauc_ndcg_at_10_std value: -44.580175112852835 - type: nauc_ndcg_at_1_diff1 value: 81.43455985468403 - type: nauc_ndcg_at_1_max value: 44.252000550874484 - type: nauc_ndcg_at_1_std value: -39.38237995087698 - type: nauc_ndcg_at_20_diff1 value: 77.85410963490207 - type: nauc_ndcg_at_20_max value: 44.68578065287876 - type: nauc_ndcg_at_20_std value: -42.87046493321746 - type: nauc_ndcg_at_3_diff1 value: 77.55400028908774 - type: nauc_ndcg_at_3_max value: 41.47690499246867 - type: nauc_ndcg_at_3_std value: -47.96239510251043 - type: nauc_ndcg_at_5_diff1 value: 76.55817027861454 - type: nauc_ndcg_at_5_max value: 42.01696124525059 - type: nauc_ndcg_at_5_std value: -45.6385058409844 - type: nauc_precision_at_1000_diff1 value: -28.009627138628257 - type: nauc_precision_at_1000_max value: 29.24459991455739 - type: nauc_precision_at_1000_std value: 58.852174419737146 - type: nauc_precision_at_100_diff1 value: -6.814208555904227 - type: nauc_precision_at_100_max value: 38.58450802218331 - type: nauc_precision_at_100_std value: 39.48885778925581 - type: nauc_precision_at_10_diff1 value: 42.69404009383913 - type: nauc_precision_at_10_max value: 39.72607044424161 - type: nauc_precision_at_10_std value: -22.31713351851116 - type: nauc_precision_at_1_diff1 value: 81.43455985468403 - type: nauc_precision_at_1_max value: 44.252000550874484 - type: nauc_precision_at_1_std value: -39.38237995087698 - type: nauc_precision_at_20_diff1 value: 31.218498932644845 - type: nauc_precision_at_20_max value: 55.11413173622635 - type: nauc_precision_at_20_std value: 7.702910966907561 - type: nauc_precision_at_3_diff1 value: 67.07260136293569 - type: nauc_precision_at_3_max value: 37.464338835123904 - type: nauc_precision_at_3_std value: -51.72773522807322 - type: nauc_precision_at_5_diff1 value: 57.11817879149 - type: nauc_precision_at_5_max value: 37.78607913838418 - type: nauc_precision_at_5_std value: -41.3489934177573 - type: nauc_recall_at_1000_diff1 value: 58.37811197433529 - type: nauc_recall_at_1000_max value: 77.70125019980898 - type: nauc_recall_at_1000_std value: -7.415635097287519 - type: nauc_recall_at_100_diff1 value: 64.57899134001917 - type: nauc_recall_at_100_max value: 74.20013410570942 - type: nauc_recall_at_100_std value: -20.672136729747088 - type: nauc_recall_at_10_diff1 value: 67.93094200727559 - type: nauc_recall_at_10_max value: 43.42164333462216 - type: nauc_recall_at_10_std value: -53.33541950399078 - type: nauc_recall_at_1_diff1 value: 81.86147718901591 - type: nauc_recall_at_1_max value: 43.27595769557031 - type: nauc_recall_at_1_std value: -40.832434398434316 - type: nauc_recall_at_20_diff1 value: 67.50567004840833 - type: nauc_recall_at_20_max value: 68.28046074793383 - type: nauc_recall_at_20_std value: -29.574869314866653 - type: nauc_recall_at_3_diff1 value: 73.0577497285433 - type: nauc_recall_at_3_max value: 36.948110275313425 - type: nauc_recall_at_3_std value: -59.30189498397615 - type: nauc_recall_at_5_diff1 value: 66.98956370201739 - type: nauc_recall_at_5_max value: 37.16579792310329 - type: nauc_recall_at_5_std value: -54.60597345402122 - type: ndcg_at_1 value: 69.968 - type: ndcg_at_10 value: 82.09100000000001 - type: ndcg_at_100 value: 83.177 - type: ndcg_at_1000 value: 83.258 - type: ndcg_at_20 value: 82.68799999999999 - type: ndcg_at_3 value: 78.666 - type: ndcg_at_5 value: 80.613 - type: precision_at_1 value: 69.968 - type: precision_at_10 value: 9.504999999999999 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.101 - type: precision_at_20 value: 4.868 - type: precision_at_3 value: 28.486 - type: precision_at_5 value: 18.082 - type: recall_at_1 value: 69.679 - type: recall_at_10 value: 94.099 - type: recall_at_100 value: 98.946 - type: recall_at_1000 value: 99.579 - type: recall_at_20 value: 96.417 - type: recall_at_3 value: 84.958 - type: recall_at_5 value: 89.726 task: type: Retrieval - dataset: config: default name: MTEB DuRetrieval revision: a1a333e290fe30b10f3f56498e3a0d911a693ced split: dev type: C-MTEB/DuRetrieval metrics: - type: main_score value: 82.093 - type: map_at_1 value: 23.294 - type: map_at_10 value: 73.087 - type: map_at_100 value: 76.378 - type: map_at_1000 value: 76.429 - type: map_at_20 value: 75.645 - type: map_at_3 value: 49.49 - type: map_at_5 value: 62.79900000000001 - type: mrr_at_1 value: 82.65 - type: mrr_at_10 value: 88.56652777777776 - type: mrr_at_100 value: 88.65106019759902 - type: mrr_at_1000 value: 88.65548524359767 - type: mrr_at_20 value: 88.62234385196844 - type: mrr_at_3 value: 88.0333333333333 - type: mrr_at_5 value: 88.43083333333333 - type: nauc_map_at_1000_diff1 value: 3.017682068149073 - type: nauc_map_at_1000_max value: 43.31894144534087 - type: nauc_map_at_1000_std value: 14.103477261758462 - type: nauc_map_at_100_diff1 value: 3.01786018428549 - type: nauc_map_at_100_max value: 43.304578781010584 - type: nauc_map_at_100_std value: 14.104821995278524 - type: nauc_map_at_10_diff1 value: 6.00776493567358 - type: nauc_map_at_10_max value: 40.050232117264265 - type: nauc_map_at_10_std value: 3.8907867883058964 - type: nauc_map_at_1_diff1 value: 40.656271709573616 - type: nauc_map_at_1_max value: -6.665245760519005 - type: nauc_map_at_1_std value: -29.384443787821894 - type: nauc_map_at_20_diff1 value: 3.462215302112235 - type: nauc_map_at_20_max value: 42.97592478608055 - type: nauc_map_at_20_std value: 11.923153462330815 - type: nauc_map_at_3_diff1 value: 24.857326825495797 - type: nauc_map_at_3_max value: 7.79715123136744 - type: nauc_map_at_3_std value: -24.158608608669 - type: nauc_map_at_5_diff1 value: 16.134527943963175 - type: nauc_map_at_5_max value: 21.945455683828534 - type: nauc_map_at_5_std value: -15.417311822489824 - type: nauc_mrr_at_1000_diff1 value: 22.608720258580345 - type: nauc_mrr_at_1000_max value: 57.14809743855488 - type: nauc_mrr_at_1000_std value: 26.500042115342154 - type: nauc_mrr_at_100_diff1 value: 22.60822245173703 - type: nauc_mrr_at_100_max value: 57.16085387711407 - type: nauc_mrr_at_100_std value: 26.52114951859548 - type: nauc_mrr_at_10_diff1 value: 22.698266613067958 - type: nauc_mrr_at_10_max value: 57.405277806586454 - type: nauc_mrr_at_10_std value: 26.753463349560942 - type: nauc_mrr_at_1_diff1 value: 25.116149229327394 - type: nauc_mrr_at_1_max value: 50.18786123051239 - type: nauc_mrr_at_1_std value: 17.896523926314035 - type: nauc_mrr_at_20_diff1 value: 22.63109662240636 - type: nauc_mrr_at_20_max value: 57.25789480886964 - type: nauc_mrr_at_20_std value: 26.628848293894535 - type: nauc_mrr_at_3_diff1 value: 22.29030169026751 - type: nauc_mrr_at_3_max value: 57.78690245871875 - type: nauc_mrr_at_3_std value: 26.961874143079275 - type: nauc_mrr_at_5_diff1 value: 22.539256613417436 - type: nauc_mrr_at_5_max value: 57.640952298152946 - type: nauc_mrr_at_5_std value: 27.166131522241564 - type: nauc_ndcg_at_1000_diff1 value: 4.335459030896887 - type: nauc_ndcg_at_1000_max value: 51.40790109857344 - type: nauc_ndcg_at_1000_std value: 25.223663033428558 - type: nauc_ndcg_at_100_diff1 value: 3.756968920629851 - type: nauc_ndcg_at_100_max value: 51.23131481991569 - type: nauc_ndcg_at_100_std value: 25.896007604039635 - type: nauc_ndcg_at_10_diff1 value: 3.7299699790096703 - type: nauc_ndcg_at_10_max value: 47.98647382256022 - type: nauc_ndcg_at_10_std value: 17.025514680687277 - type: nauc_ndcg_at_1_diff1 value: 25.116149229327394 - type: nauc_ndcg_at_1_max value: 50.18786123051239 - type: nauc_ndcg_at_1_std value: 17.896523926314035 - type: nauc_ndcg_at_20_diff1 value: 3.692033975506179 - type: nauc_ndcg_at_20_max value: 50.70003527682141 - type: nauc_ndcg_at_20_std value: 22.512279629260227 - type: nauc_ndcg_at_3_diff1 value: 5.101141943602369 - type: nauc_ndcg_at_3_max value: 44.526033252737705 - type: nauc_ndcg_at_3_std value: 17.21985170533644 - type: nauc_ndcg_at_5_diff1 value: 5.128269340707157 - type: nauc_ndcg_at_5_max value: 40.74953442421861 - type: nauc_ndcg_at_5_std value: 10.54615337986913 - type: nauc_precision_at_1000_diff1 value: -28.088666590713135 - type: nauc_precision_at_1000_max value: 23.005522720304104 - type: nauc_precision_at_1000_std value: 50.173926122648524 - type: nauc_precision_at_100_diff1 value: -28.968645059600682 - type: nauc_precision_at_100_max value: 25.04622827770351 - type: nauc_precision_at_100_std value: 52.230491589978115 - type: nauc_precision_at_10_diff1 value: -30.253268763729245 - type: nauc_precision_at_10_max value: 38.44381775116214 - type: nauc_precision_at_10_std value: 47.93579661356217 - type: nauc_precision_at_1_diff1 value: 25.116149229327394 - type: nauc_precision_at_1_max value: 50.18786123051239 - type: nauc_precision_at_1_std value: 17.896523926314035 - type: nauc_precision_at_20_diff1 value: -29.78333017605082 - type: nauc_precision_at_20_max value: 30.724852767715742 - type: nauc_precision_at_20_std value: 51.556480994031176 - type: nauc_precision_at_3_diff1 value: -19.839530913679052 - type: nauc_precision_at_3_max value: 46.97201811029464 - type: nauc_precision_at_3_std value: 32.763601276627426 - type: nauc_precision_at_5_diff1 value: -26.491574031749167 - type: nauc_precision_at_5_max value: 43.298145808496955 - type: nauc_precision_at_5_std value: 37.30863792820846 - type: nauc_recall_at_1000_diff1 value: -30.13364129325676 - type: nauc_recall_at_1000_max value: 73.24128272106563 - type: nauc_recall_at_1000_std value: 78.93831159982587 - type: nauc_recall_at_100_diff1 value: -18.765607920053267 - type: nauc_recall_at_100_max value: 54.712120419339364 - type: nauc_recall_at_100_std value: 57.767960027082566 - type: nauc_recall_at_10_diff1 value: -0.6052835404182173 - type: nauc_recall_at_10_max value: 39.946898924388954 - type: nauc_recall_at_10_std value: 4.709923580866511 - type: nauc_recall_at_1_diff1 value: 40.656271709573616 - type: nauc_recall_at_1_max value: -6.665245760519005 - type: nauc_recall_at_1_std value: -29.384443787821894 - type: nauc_recall_at_20_diff1 value: -5.962280989061532 - type: nauc_recall_at_20_max value: 50.09170736630004 - type: nauc_recall_at_20_std value: 29.458350383857574 - type: nauc_recall_at_3_diff1 value: 22.545894407841793 - type: nauc_recall_at_3_max value: 2.6193977834875533 - type: nauc_recall_at_3_std value: -26.87014769293195 - type: nauc_recall_at_5_diff1 value: 13.352272138382745 - type: nauc_recall_at_5_max value: 14.75948274133919 - type: nauc_recall_at_5_std value: -20.70760567642474 - type: ndcg_at_1 value: 82.65 - type: ndcg_at_10 value: 82.093 - type: ndcg_at_100 value: 85.75500000000001 - type: ndcg_at_1000 value: 86.247 - type: ndcg_at_20 value: 84.218 - type: ndcg_at_3 value: 79.259 - type: ndcg_at_5 value: 78.691 - type: precision_at_1 value: 82.65 - type: precision_at_10 value: 40.21 - type: precision_at_100 value: 4.761 - type: precision_at_1000 value: 0.488 - type: precision_at_20 value: 22.303 - type: precision_at_3 value: 71.48299999999999 - type: precision_at_5 value: 60.83 - type: recall_at_1 value: 23.294 - type: recall_at_10 value: 84.98599999999999 - type: recall_at_100 value: 96.441 - type: recall_at_1000 value: 99.005 - type: recall_at_20 value: 91.263 - type: recall_at_3 value: 52.888000000000005 - type: recall_at_5 value: 69.48100000000001 task: type: Retrieval - dataset: config: default name: MTEB EcomRetrieval revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 split: dev type: C-MTEB/EcomRetrieval metrics: - type: main_score value: 62.514 - type: map_at_1 value: 46.800000000000004 - type: map_at_10 value: 57.108000000000004 - type: map_at_100 value: 57.665 - type: map_at_1000 value: 57.68600000000001 - type: map_at_20 value: 57.469 - type: map_at_3 value: 54.167 - type: map_at_5 value: 56.077 - type: mrr_at_1 value: 46.800000000000004 - type: mrr_at_10 value: 57.10785714285714 - type: mrr_at_100 value: 57.66479182756831 - type: mrr_at_1000 value: 57.685955034269185 - type: mrr_at_20 value: 57.46916307505702 - type: mrr_at_3 value: 54.16666666666663 - type: mrr_at_5 value: 56.07666666666664 - type: nauc_map_at_1000_diff1 value: 61.542672828066 - type: nauc_map_at_1000_max value: 31.85700200032805 - type: nauc_map_at_1000_std value: -11.620181705591662 - type: nauc_map_at_100_diff1 value: 61.53813237491788 - type: nauc_map_at_100_max value: 31.874036133018084 - type: nauc_map_at_100_std value: -11.59724786321096 - type: nauc_map_at_10_diff1 value: 61.38313778334582 - type: nauc_map_at_10_max value: 31.740467380708182 - type: nauc_map_at_10_std value: -12.100842206709821 - type: nauc_map_at_1_diff1 value: 63.66949701943299 - type: nauc_map_at_1_max value: 28.133811910672573 - type: nauc_map_at_1_std value: -14.453510006377535 - type: nauc_map_at_20_diff1 value: 61.5638057215127 - type: nauc_map_at_20_max value: 31.904214948036756 - type: nauc_map_at_20_std value: -11.719473194737628 - type: nauc_map_at_3_diff1 value: 61.19354745729959 - type: nauc_map_at_3_max value: 29.813217610060548 - type: nauc_map_at_3_std value: -13.883839488771295 - type: nauc_map_at_5_diff1 value: 61.08733612041498 - type: nauc_map_at_5_max value: 31.255100654464012 - type: nauc_map_at_5_std value: -12.09065665533858 - type: nauc_mrr_at_1000_diff1 value: 61.542672828066 - type: nauc_mrr_at_1000_max value: 31.85700200032805 - type: nauc_mrr_at_1000_std value: -11.620181705591662 - type: nauc_mrr_at_100_diff1 value: 61.53813237491788 - type: nauc_mrr_at_100_max value: 31.874036133018084 - type: nauc_mrr_at_100_std value: -11.59724786321096 - type: nauc_mrr_at_10_diff1 value: 61.38313778334582 - type: nauc_mrr_at_10_max value: 31.740467380708182 - type: nauc_mrr_at_10_std value: -12.100842206709821 - type: nauc_mrr_at_1_diff1 value: 63.66949701943299 - type: nauc_mrr_at_1_max value: 28.133811910672573 - type: nauc_mrr_at_1_std value: -14.453510006377535 - type: nauc_mrr_at_20_diff1 value: 61.5638057215127 - type: nauc_mrr_at_20_max value: 31.904214948036756 - type: nauc_mrr_at_20_std value: -11.719473194737628 - type: nauc_mrr_at_3_diff1 value: 61.19354745729959 - type: nauc_mrr_at_3_max value: 29.813217610060548 - type: nauc_mrr_at_3_std value: -13.883839488771295 - type: nauc_mrr_at_5_diff1 value: 61.08733612041498 - type: nauc_mrr_at_5_max value: 31.255100654464012 - type: nauc_mrr_at_5_std value: -12.09065665533858 - type: nauc_ndcg_at_1000_diff1 value: 61.404354519031024 - type: nauc_ndcg_at_1000_max value: 34.5568056709905 - type: nauc_ndcg_at_1000_std value: -8.194258261068375 - type: nauc_ndcg_at_100_diff1 value: 61.31111013617605 - type: nauc_ndcg_at_100_max value: 35.081274620942295 - type: nauc_ndcg_at_100_std value: -7.567587216846379 - type: nauc_ndcg_at_10_diff1 value: 60.796642472721004 - type: nauc_ndcg_at_10_max value: 34.413253540105245 - type: nauc_ndcg_at_10_std value: -10.263251244353334 - type: nauc_ndcg_at_1_diff1 value: 63.66949701943299 - type: nauc_ndcg_at_1_max value: 28.133811910672573 - type: nauc_ndcg_at_1_std value: -14.453510006377535 - type: nauc_ndcg_at_20_diff1 value: 61.439123475952975 - type: nauc_ndcg_at_20_max value: 35.038091592005536 - type: nauc_ndcg_at_20_std value: -8.792780272975662 - type: nauc_ndcg_at_3_diff1 value: 60.2950660942529 - type: nauc_ndcg_at_3_max value: 30.257013442417087 - type: nauc_ndcg_at_3_std value: -13.671873921177202 - type: nauc_ndcg_at_5_diff1 value: 60.04926753266181 - type: nauc_ndcg_at_5_max value: 33.00050110783418 - type: nauc_ndcg_at_5_std value: -10.293915982801868 - type: nauc_precision_at_1000_diff1 value: 65.86104527280983 - type: nauc_precision_at_1000_max value: 92.22150398620967 - type: nauc_precision_at_1000_std value: 80.3718068423948 - type: nauc_precision_at_100_diff1 value: 61.343931511998676 - type: nauc_precision_at_100_max value: 77.89479428134884 - type: nauc_precision_at_100_std value: 53.242509124861904 - type: nauc_precision_at_10_diff1 value: 58.498529223685814 - type: nauc_precision_at_10_max value: 48.5105315454464 - type: nauc_precision_at_10_std value: -0.8844333821952514 - type: nauc_precision_at_1_diff1 value: 63.66949701943299 - type: nauc_precision_at_1_max value: 28.133811910672573 - type: nauc_precision_at_1_std value: -14.453510006377535 - type: nauc_precision_at_20_diff1 value: 62.21692302833121 - type: nauc_precision_at_20_max value: 56.42904519756148 - type: nauc_precision_at_20_std value: 11.768421717570398 - type: nauc_precision_at_3_diff1 value: 57.386050314704676 - type: nauc_precision_at_3_max value: 31.63922112989413 - type: nauc_precision_at_3_std value: -12.983862277916117 - type: nauc_precision_at_5_diff1 value: 56.111301892551865 - type: nauc_precision_at_5_max value: 39.97271825396829 - type: nauc_precision_at_5_std value: -2.9622634310133646 - type: nauc_recall_at_1000_diff1 value: 65.86104527280992 - type: nauc_recall_at_1000_max value: 92.22150398620987 - type: nauc_recall_at_1000_std value: 80.37180684239502 - type: nauc_recall_at_100_diff1 value: 61.34393151199862 - type: nauc_recall_at_100_max value: 77.89479428134887 - type: nauc_recall_at_100_std value: 53.242509124862025 - type: nauc_recall_at_10_diff1 value: 58.49852922368592 - type: nauc_recall_at_10_max value: 48.51053154544651 - type: nauc_recall_at_10_std value: -0.8844333821952685 - type: nauc_recall_at_1_diff1 value: 63.66949701943299 - type: nauc_recall_at_1_max value: 28.133811910672573 - type: nauc_recall_at_1_std value: -14.453510006377535 - type: nauc_recall_at_20_diff1 value: 62.216923028331315 - type: nauc_recall_at_20_max value: 56.429045197561635 - type: nauc_recall_at_20_std value: 11.768421717570599 - type: nauc_recall_at_3_diff1 value: 57.38605031470464 - type: nauc_recall_at_3_max value: 31.639221129894047 - type: nauc_recall_at_3_std value: -12.983862277916192 - type: nauc_recall_at_5_diff1 value: 56.111301892551865 - type: nauc_recall_at_5_max value: 39.97271825396825 - type: nauc_recall_at_5_std value: -2.962263431013432 - type: ndcg_at_1 value: 46.800000000000004 - type: ndcg_at_10 value: 62.514 - type: ndcg_at_100 value: 65.22 - type: ndcg_at_1000 value: 65.717 - type: ndcg_at_20 value: 63.778999999999996 - type: ndcg_at_3 value: 56.58800000000001 - type: ndcg_at_5 value: 60.039 - type: precision_at_1 value: 46.800000000000004 - type: precision_at_10 value: 7.960000000000001 - type: precision_at_100 value: 0.923 - type: precision_at_1000 value: 0.096 - type: precision_at_20 value: 4.2250000000000005 - type: precision_at_3 value: 21.2 - type: precision_at_5 value: 14.399999999999999 - type: recall_at_1 value: 46.800000000000004 - type: recall_at_10 value: 79.60000000000001 - type: recall_at_100 value: 92.30000000000001 - type: recall_at_1000 value: 96.1 - type: recall_at_20 value: 84.5 - type: recall_at_3 value: 63.6 - type: recall_at_5 value: 72.0 task: type: Retrieval - dataset: config: default name: MTEB IFlyTek revision: 421605374b29664c5fc098418fe20ada9bd55f8a split: validation type: C-MTEB/IFlyTek-classification metrics: - type: accuracy value: 49.018853405155824 - type: f1 value: 36.34797570897239 - type: f1_weighted value: 46.595946626038284 - type: main_score value: 49.018853405155824 task: type: Classification - dataset: config: default name: MTEB JDReview revision: b7c64bd89eb87f8ded463478346f76731f07bf8b split: test type: C-MTEB/JDReview-classification metrics: - type: accuracy value: 80.76923076923077 - type: ap value: 43.91219315273788 - type: ap_weighted value: 43.91219315273788 - type: f1 value: 74.3959076760867 - type: f1_weighted value: 82.41054854790659 - type: main_score value: 80.76923076923077 task: type: Classification - dataset: config: default name: MTEB LCQMC revision: 17f9b096f80380fce5ed12a9be8be7784b337daf split: test type: C-MTEB/LCQMC metrics: - type: cosine_pearson value: 66.42169614903062 - type: cosine_spearman value: 69.6209380589209 - type: euclidean_pearson value: 68.13684291689385 - type: euclidean_spearman value: 69.62093584082648 - type: main_score value: 69.6209380589209 - type: manhattan_pearson value: 67.98872700847923 - type: manhattan_spearman value: 69.46732039256112 - type: pearson value: 66.42169614903062 - type: spearman value: 69.6209380589209 task: type: STS - dataset: config: default name: MTEB MMarcoReranking revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 split: dev type: C-MTEB/Mmarco-reranking metrics: - type: main_score value: 28.40392786552284 - type: map value: 28.40392786552284 - type: mrr value: 26.729761904761908 - type: nAUC_map_diff1 value: 11.013649297702722 - type: nAUC_map_max value: 10.17419646298121 - type: nAUC_map_std value: -0.8563449479185579 - type: nAUC_mrr_diff1 value: 10.279159084348438 - type: nAUC_mrr_max value: 9.945986054772508 - type: nAUC_mrr_std value: -0.7829405326492496 task: type: Reranking - dataset: config: default name: MTEB MMarcoRetrieval revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 split: dev type: C-MTEB/MMarcoRetrieval metrics: - type: main_score value: 78.527 - type: map_at_1 value: 65.179 - type: map_at_10 value: 74.603 - type: map_at_100 value: 74.957 - type: map_at_1000 value: 74.967 - type: map_at_20 value: 74.857 - type: map_at_3 value: 72.611 - type: map_at_5 value: 73.916 - type: mrr_at_1 value: 67.44985673352436 - type: mrr_at_10 value: 75.1962125346795 - type: mrr_at_100 value: 75.50889677029757 - type: mrr_at_1000 value: 75.51801374083685 - type: mrr_at_20 value: 75.42326193241115 - type: mrr_at_3 value: 73.4670487106018 - type: mrr_at_5 value: 74.58166189111732 - type: nauc_map_at_1000_diff1 value: 77.3975532985191 - type: nauc_map_at_1000_max value: 38.64013999373193 - type: nauc_map_at_1000_std value: -18.151216910688003 - type: nauc_map_at_100_diff1 value: 77.39458303918599 - type: nauc_map_at_100_max value: 38.65525502999619 - type: nauc_map_at_100_std value: -18.12441923873744 - type: nauc_map_at_10_diff1 value: 77.23576973574656 - type: nauc_map_at_10_max value: 38.79698916303308 - type: nauc_map_at_10_std value: -18.205472833807896 - type: nauc_map_at_1_diff1 value: 79.56817309653695 - type: nauc_map_at_1_max value: 30.973318622760697 - type: nauc_map_at_1_std value: -24.193358631119697 - type: nauc_map_at_20_diff1 value: 77.345553469177 - type: nauc_map_at_20_max value: 38.72033702371551 - type: nauc_map_at_20_std value: -18.10235546630277 - type: nauc_map_at_3_diff1 value: 77.1519821962318 - type: nauc_map_at_3_max value: 37.252293129620995 - type: nauc_map_at_3_std value: -19.84875198107134 - type: nauc_map_at_5_diff1 value: 77.2287177052444 - type: nauc_map_at_5_max value: 38.476432730452075 - type: nauc_map_at_5_std value: -18.833903805578974 - type: nauc_mrr_at_1000_diff1 value: 77.60661485922789 - type: nauc_mrr_at_1000_max value: 39.26857638609446 - type: nauc_mrr_at_1000_std value: -17.210038373130672 - type: nauc_mrr_at_100_diff1 value: 77.6047988273367 - type: nauc_mrr_at_100_max value: 39.28361327448562 - type: nauc_mrr_at_100_std value: -17.182790454560294 - type: nauc_mrr_at_10_diff1 value: 77.44371207652814 - type: nauc_mrr_at_10_max value: 39.432881586168236 - type: nauc_mrr_at_10_std value: -17.187536228701045 - type: nauc_mrr_at_1_diff1 value: 80.1195041268915 - type: nauc_mrr_at_1_max value: 34.89315898346597 - type: nauc_mrr_at_1_std value: -22.677099986196357 - type: nauc_mrr_at_20_diff1 value: 77.56988644291731 - type: nauc_mrr_at_20_max value: 39.36167345604126 - type: nauc_mrr_at_20_std value: -17.145663178457347 - type: nauc_mrr_at_3_diff1 value: 77.39068122320302 - type: nauc_mrr_at_3_max value: 38.47661490489044 - type: nauc_mrr_at_3_std value: -18.43635735134857 - type: nauc_mrr_at_5_diff1 value: 77.4281674181642 - type: nauc_mrr_at_5_max value: 39.25097124947119 - type: nauc_mrr_at_5_std value: -17.602522743868 - type: nauc_ndcg_at_1000_diff1 value: 76.95670356559812 - type: nauc_ndcg_at_1000_max value: 40.6770789376407 - type: nauc_ndcg_at_1000_std value: -14.94643027722271 - type: nauc_ndcg_at_100_diff1 value: 76.87957397912506 - type: nauc_ndcg_at_100_max value: 41.19597481618689 - type: nauc_ndcg_at_100_std value: -13.986176551639787 - type: nauc_ndcg_at_10_diff1 value: 76.10924614757609 - type: nauc_ndcg_at_10_max value: 41.944551608825854 - type: nauc_ndcg_at_10_std value: -14.226261266280796 - type: nauc_ndcg_at_1_diff1 value: 80.1195041268915 - type: nauc_ndcg_at_1_max value: 34.89315898346597 - type: nauc_ndcg_at_1_std value: -22.677099986196357 - type: nauc_ndcg_at_20_diff1 value: 76.54328645801156 - type: nauc_ndcg_at_20_max value: 41.74852133446564 - type: nauc_ndcg_at_20_std value: -13.721836426277093 - type: nauc_ndcg_at_3_diff1 value: 76.10773063555531 - type: nauc_ndcg_at_3_max value: 38.87928533895388 - type: nauc_ndcg_at_3_std value: -17.814064081229805 - type: nauc_ndcg_at_5_diff1 value: 76.12333455766735 - type: nauc_ndcg_at_5_max value: 41.0111924070866 - type: nauc_ndcg_at_5_std value: -15.867928392632393 - type: nauc_precision_at_1000_diff1 value: -16.14969196445021 - type: nauc_precision_at_1000_max value: 19.73159766274731 - type: nauc_precision_at_1000_std value: 27.142682237659233 - type: nauc_precision_at_100_diff1 value: -2.7404602427028384 - type: nauc_precision_at_100_max value: 29.32737928846563 - type: nauc_precision_at_100_std value: 31.47152367892466 - type: nauc_precision_at_10_diff1 value: 22.989404353424035 - type: nauc_precision_at_10_max value: 41.47175896072229 - type: nauc_precision_at_10_std value: 17.23968993050545 - type: nauc_precision_at_1_diff1 value: 80.1195041268915 - type: nauc_precision_at_1_max value: 34.89315898346597 - type: nauc_precision_at_1_std value: -22.677099986196357 - type: nauc_precision_at_20_diff1 value: 11.7431142315164 - type: nauc_precision_at_20_max value: 37.384349885824264 - type: nauc_precision_at_20_std value: 25.87695876238002 - type: nauc_precision_at_3_diff1 value: 47.30485784652924 - type: nauc_precision_at_3_max value: 39.30794798179377 - type: nauc_precision_at_3_std value: -3.0460303025064817 - type: nauc_precision_at_5_diff1 value: 35.666358661107026 - type: nauc_precision_at_5_max value: 41.154619102386434 - type: nauc_precision_at_5_std value: 6.165343239340201 - type: nauc_recall_at_1000_diff1 value: 70.47489516037629 - type: nauc_recall_at_1000_max value: 86.38892936750754 - type: nauc_recall_at_1000_std value: 71.41939627488728 - type: nauc_recall_at_100_diff1 value: 71.35454604674862 - type: nauc_recall_at_100_max value: 78.8056119793468 - type: nauc_recall_at_100_std value: 56.673602022438885 - type: nauc_recall_at_10_diff1 value: 68.01157430899912 - type: nauc_recall_at_10_max value: 61.03890280082228 - type: nauc_recall_at_10_std value: 10.215903390979168 - type: nauc_recall_at_1_diff1 value: 79.56817309653695 - type: nauc_recall_at_1_max value: 30.973318622760697 - type: nauc_recall_at_1_std value: -24.193358631119697 - type: nauc_recall_at_20_diff1 value: 68.89627277773923 - type: nauc_recall_at_20_max value: 68.37263311017512 - type: nauc_recall_at_20_std value: 26.936453327892735 - type: nauc_recall_at_3_diff1 value: 71.48557875771924 - type: nauc_recall_at_3_max value: 42.86820384579516 - type: nauc_recall_at_3_std value: -12.098244840151215 - type: nauc_recall_at_5_diff1 value: 70.2043239041581 - type: nauc_recall_at_5_max value: 51.32402340231743 - type: nauc_recall_at_5_std value: -3.7213044749573516 - type: ndcg_at_1 value: 67.45 - type: ndcg_at_10 value: 78.527 - type: ndcg_at_100 value: 80.022 - type: ndcg_at_1000 value: 80.295 - type: ndcg_at_20 value: 79.387 - type: ndcg_at_3 value: 74.775 - type: ndcg_at_5 value: 76.955 - type: precision_at_1 value: 67.45 - type: precision_at_10 value: 9.576 - type: precision_at_100 value: 1.03 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 4.968 - type: precision_at_3 value: 28.247 - type: precision_at_5 value: 18.12 - type: recall_at_1 value: 65.179 - type: recall_at_10 value: 90.059 - type: recall_at_100 value: 96.612 - type: recall_at_1000 value: 98.761 - type: recall_at_20 value: 93.345 - type: recall_at_3 value: 80.158 - type: recall_at_5 value: 85.33 task: type: Retrieval - dataset: config: zh-CN name: MTEB MassiveIntentClassification (zh-CN) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 66.3987895090787 - type: f1 value: 64.01687665476737 - type: f1_weighted value: 65.22982874187167 - type: main_score value: 66.3987895090787 task: type: Classification - dataset: config: zh-TW name: MTEB MassiveIntentClassification (zh-TW) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 57.36045729657027 - type: f1 value: 56.21747468274314 - type: f1_weighted value: 55.328390649701 - type: main_score value: 57.36045729657027 task: type: Classification - dataset: config: zh-CN name: MTEB MassiveScenarioClassification (zh-CN) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 72.56893073301949 - type: f1 value: 72.51154136026366 - type: f1_weighted value: 72.06311963012884 - type: main_score value: 72.56893073301949 task: type: Classification - dataset: config: zh-TW name: MTEB MassiveScenarioClassification (zh-TW) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 65.85406859448555 - type: f1 value: 66.48372498308458 - type: f1_weighted value: 64.55871847643539 - type: main_score value: 65.85406859448555 task: type: Classification - dataset: config: default name: MTEB MedicalRetrieval revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 split: dev type: C-MTEB/MedicalRetrieval metrics: - type: main_score value: 56.908 - type: map_at_1 value: 48.9 - type: map_at_10 value: 54.25 - type: map_at_100 value: 54.83 - type: map_at_1000 value: 54.882 - type: map_at_20 value: 54.56100000000001 - type: map_at_3 value: 52.849999999999994 - type: map_at_5 value: 53.68000000000001 - type: mrr_at_1 value: 48.8 - type: mrr_at_10 value: 54.199801587301565 - type: mrr_at_100 value: 54.77998734976407 - type: mrr_at_1000 value: 54.83211631195485 - type: mrr_at_20 value: 54.5113749215181 - type: mrr_at_3 value: 52.79999999999999 - type: mrr_at_5 value: 53.62999999999998 - type: nauc_map_at_1000_diff1 value: 77.0640933059526 - type: nauc_map_at_1000_max value: 63.16274968632399 - type: nauc_map_at_1000_std value: 18.619837049196065 - type: nauc_map_at_100_diff1 value: 77.04445583336185 - type: nauc_map_at_100_max value: 63.15706393184247 - type: nauc_map_at_100_std value: 18.64155998589979 - type: nauc_map_at_10_diff1 value: 77.22712088218655 - type: nauc_map_at_10_max value: 63.30058912930664 - type: nauc_map_at_10_std value: 18.160155214919893 - type: nauc_map_at_1_diff1 value: 80.61224354354235 - type: nauc_map_at_1_max value: 62.572123712325435 - type: nauc_map_at_1_std value: 14.871521237919676 - type: nauc_map_at_20_diff1 value: 77.07286173147263 - type: nauc_map_at_20_max value: 63.202977088050595 - type: nauc_map_at_20_std value: 18.57384319939196 - type: nauc_map_at_3_diff1 value: 77.7109995359582 - type: nauc_map_at_3_max value: 63.78258137206212 - type: nauc_map_at_3_std value: 18.042684958317746 - type: nauc_map_at_5_diff1 value: 77.5173268034033 - type: nauc_map_at_5_max value: 63.60896273345633 - type: nauc_map_at_5_std value: 18.337375109892935 - type: nauc_mrr_at_1000_diff1 value: 77.20209036966065 - type: nauc_mrr_at_1000_max value: 62.97580811011348 - type: nauc_mrr_at_1000_std value: 18.44115737398761 - type: nauc_mrr_at_100_diff1 value: 77.18226388841661 - type: nauc_mrr_at_100_max value: 62.97038456010131 - type: nauc_mrr_at_100_std value: 18.463125747032876 - type: nauc_mrr_at_10_diff1 value: 77.36328933490991 - type: nauc_mrr_at_10_max value: 63.11563976266347 - type: nauc_mrr_at_10_std value: 17.9835435088557 - type: nauc_mrr_at_1_diff1 value: 80.86832719436983 - type: nauc_mrr_at_1_max value: 62.2229505238464 - type: nauc_mrr_at_1_std value: 14.538993917649432 - type: nauc_mrr_at_20_diff1 value: 77.2097698787093 - type: nauc_mrr_at_20_max value: 63.017080064318556 - type: nauc_mrr_at_20_std value: 18.39623244159318 - type: nauc_mrr_at_3_diff1 value: 77.84444444444445 - type: nauc_mrr_at_3_max value: 63.60112488521577 - type: nauc_mrr_at_3_std value: 17.869513314967858 - type: nauc_mrr_at_5_diff1 value: 77.65216072112915 - type: nauc_mrr_at_5_max value: 63.425697442969195 - type: nauc_mrr_at_5_std value: 18.162393013741234 - type: nauc_ndcg_at_1000_diff1 value: 75.47130124736644 - type: nauc_ndcg_at_1000_max value: 62.72720721246217 - type: nauc_ndcg_at_1000_std value: 21.168388385323816 - type: nauc_ndcg_at_100_diff1 value: 74.89812399955154 - type: nauc_ndcg_at_100_max value: 62.474891176235936 - type: nauc_ndcg_at_100_std value: 21.705385352598352 - type: nauc_ndcg_at_10_diff1 value: 75.69785924655157 - type: nauc_ndcg_at_10_max value: 62.99877901137755 - type: nauc_ndcg_at_10_std value: 19.277137244210792 - type: nauc_ndcg_at_1_diff1 value: 80.61224354354235 - type: nauc_ndcg_at_1_max value: 62.572123712325435 - type: nauc_ndcg_at_1_std value: 14.871521237919676 - type: nauc_ndcg_at_20_diff1 value: 75.0990592321159 - type: nauc_ndcg_at_20_max value: 62.6109408298258 - type: nauc_ndcg_at_20_std value: 20.860473361161567 - type: nauc_ndcg_at_3_diff1 value: 76.8207938549394 - type: nauc_ndcg_at_3_max value: 64.06713431084022 - type: nauc_ndcg_at_3_std value: 19.115482194273362 - type: nauc_ndcg_at_5_diff1 value: 76.46349661203512 - type: nauc_ndcg_at_5_max value: 63.75385264512038 - type: nauc_ndcg_at_5_std value: 19.66201253273682 - type: nauc_precision_at_1000_diff1 value: 59.81158632607264 - type: nauc_precision_at_1000_max value: 59.760023412349916 - type: nauc_precision_at_1000_std value: 62.485193082207935 - type: nauc_precision_at_100_diff1 value: 62.08543769977759 - type: nauc_precision_at_100_max value: 57.926010729102806 - type: nauc_precision_at_100_std value: 43.01747151823387 - type: nauc_precision_at_10_diff1 value: 70.17035828112795 - type: nauc_precision_at_10_max value: 61.55881019301375 - type: nauc_precision_at_10_std value: 22.977660426034763 - type: nauc_precision_at_1_diff1 value: 80.61224354354235 - type: nauc_precision_at_1_max value: 62.572123712325435 - type: nauc_precision_at_1_std value: 14.871521237919676 - type: nauc_precision_at_20_diff1 value: 66.83361017733561 - type: nauc_precision_at_20_max value: 59.54232843146045 - type: nauc_precision_at_20_std value: 30.852559940015073 - type: nauc_precision_at_3_diff1 value: 74.15534470940514 - type: nauc_precision_at_3_max value: 64.88848804069414 - type: nauc_precision_at_3_std value: 22.362855802878954 - type: nauc_precision_at_5_diff1 value: 73.13872413328627 - type: nauc_precision_at_5_max value: 64.11963501694296 - type: nauc_precision_at_5_std value: 23.897642502455515 - type: nauc_recall_at_1000_diff1 value: 59.81158632607252 - type: nauc_recall_at_1000_max value: 59.76002341234993 - type: nauc_recall_at_1000_std value: 62.48519308220787 - type: nauc_recall_at_100_diff1 value: 62.08543769977762 - type: nauc_recall_at_100_max value: 57.92601072910286 - type: nauc_recall_at_100_std value: 43.01747151823391 - type: nauc_recall_at_10_diff1 value: 70.170358281128 - type: nauc_recall_at_10_max value: 61.55881019301381 - type: nauc_recall_at_10_std value: 22.97766042603487 - type: nauc_recall_at_1_diff1 value: 80.61224354354235 - type: nauc_recall_at_1_max value: 62.572123712325435 - type: nauc_recall_at_1_std value: 14.871521237919676 - type: nauc_recall_at_20_diff1 value: 66.83361017733564 - type: nauc_recall_at_20_max value: 59.54232843146045 - type: nauc_recall_at_20_std value: 30.85255994001517 - type: nauc_recall_at_3_diff1 value: 74.15534470940513 - type: nauc_recall_at_3_max value: 64.88848804069413 - type: nauc_recall_at_3_std value: 22.362855802878926 - type: nauc_recall_at_5_diff1 value: 73.13872413328633 - type: nauc_recall_at_5_max value: 64.11963501694305 - type: nauc_recall_at_5_std value: 23.897642502455604 - type: ndcg_at_1 value: 48.9 - type: ndcg_at_10 value: 56.908 - type: ndcg_at_100 value: 59.992999999999995 - type: ndcg_at_1000 value: 61.583 - type: ndcg_at_20 value: 58.044 - type: ndcg_at_3 value: 54.051 - type: ndcg_at_5 value: 55.54 - type: precision_at_1 value: 48.9 - type: precision_at_10 value: 6.529999999999999 - type: precision_at_100 value: 0.803 - type: precision_at_1000 value: 0.093 - type: precision_at_20 value: 3.49 - type: precision_at_3 value: 19.167 - type: precision_at_5 value: 12.22 - type: recall_at_1 value: 48.9 - type: recall_at_10 value: 65.3 - type: recall_at_100 value: 80.30000000000001 - type: recall_at_1000 value: 93.30000000000001 - type: recall_at_20 value: 69.8 - type: recall_at_3 value: 57.49999999999999 - type: recall_at_5 value: 61.1 task: type: Retrieval - dataset: config: default name: MTEB MultilingualSentiment revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a split: test type: C-MTEB/MultilingualSentiment-classification metrics: - type: accuracy value: 73.31666666666668 - type: f1 value: 72.28836634231243 - type: f1_weighted value: 72.28836634231241 - type: main_score value: 73.31666666666668 task: type: Classification - dataset: config: default name: MTEB Ocnli revision: 66e76a618a34d6d565d5538088562851e6daa7ec split: validation type: C-MTEB/OCNLI metrics: - type: cosine_accuracy value: 67.02761234434217 - type: cosine_accuracy_threshold value: 65.14335870742798 - type: cosine_ap value: 69.4885294263304 - type: cosine_f1 value: 71.27996381727725 - type: cosine_f1_threshold value: 58.83575081825256 - type: cosine_precision value: 62.34177215189873 - type: cosine_recall value: 83.21013727560718 - type: dot_accuracy value: 67.02761234434217 - type: dot_accuracy_threshold value: 65.14337062835693 - type: dot_ap value: 69.4885294263304 - type: dot_f1 value: 71.27996381727725 - type: dot_f1_threshold value: 58.83575677871704 - type: dot_precision value: 62.34177215189873 - type: dot_recall value: 83.21013727560718 - type: euclidean_accuracy value: 67.02761234434217 - type: euclidean_accuracy_threshold value: 83.49447250366211 - type: euclidean_ap value: 69.4885294263304 - type: euclidean_f1 value: 71.27996381727725 - type: euclidean_f1_threshold value: 90.7350480556488 - type: euclidean_precision value: 62.34177215189873 - type: euclidean_recall value: 83.21013727560718 - type: main_score value: 69.4885294263304 - type: manhattan_accuracy value: 66.91932864103953 - type: manhattan_accuracy_threshold value: 1951.8356323242188 - type: manhattan_ap value: 69.02432804239183 - type: manhattan_f1 value: 70.89991589571069 - type: manhattan_f1_threshold value: 2201.4184951782227 - type: manhattan_precision value: 58.909853249475894 - type: manhattan_recall value: 89.01795142555439 - type: max_ap value: 69.4885294263304 - type: max_f1 value: 71.27996381727725 - type: max_precision value: 62.34177215189873 - type: max_recall value: 89.01795142555439 - type: similarity_accuracy value: 67.02761234434217 - type: similarity_accuracy_threshold value: 65.14335870742798 - type: similarity_ap value: 69.4885294263304 - type: similarity_f1 value: 71.27996381727725 - type: similarity_f1_threshold value: 58.83575081825256 - type: similarity_precision value: 62.34177215189873 - type: similarity_recall value: 83.21013727560718 task: type: PairClassification - dataset: config: default name: MTEB OnlineShopping revision: e610f2ebd179a8fda30ae534c3878750a96db120 split: test type: C-MTEB/OnlineShopping-classification metrics: - type: accuracy value: 90.09 - type: ap value: 88.76450265603408 - type: ap_weighted value: 88.76450265603408 - type: f1 value: 90.08779175324347 - type: f1_weighted value: 90.08719838771795 - type: main_score value: 90.09 task: type: Classification - dataset: config: default name: MTEB PAWSX revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 split: test type: C-MTEB/PAWSX metrics: - type: cosine_pearson value: 14.271650876491588 - type: cosine_spearman value: 15.088934657692937 - type: euclidean_pearson value: 17.64991910323611 - type: euclidean_spearman value: 15.11015719401991 - type: main_score value: 15.088934657692937 - type: manhattan_pearson value: 17.627416265380024 - type: manhattan_spearman value: 15.186102501045864 - type: pearson value: 14.271650876491588 - type: spearman value: 15.088934657692937 task: type: STS - dataset: config: default name: MTEB QBQTC revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 split: test type: C-MTEB/QBQTC metrics: - type: cosine_pearson value: 31.42374000164117 - type: cosine_spearman value: 34.11139115201034 - type: euclidean_pearson value: 31.86846452982553 - type: euclidean_spearman value: 34.11160345676575 - type: main_score value: 34.11139115201034 - type: manhattan_pearson value: 31.78171047507477 - type: manhattan_spearman value: 34.03769440675436 - type: pearson value: 31.42374000164117 - type: spearman value: 34.11139115201034 task: type: STS - dataset: config: zh name: MTEB STS22 (zh) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 70.18092147138205 - type: cosine_spearman value: 69.90638729067848 - type: euclidean_pearson value: 68.5214594150794 - type: euclidean_spearman value: 69.8926146345444 - type: main_score value: 69.90638729067848 - type: manhattan_pearson value: 68.96098064777406 - type: manhattan_spearman value: 70.49810937340672 - type: pearson value: 70.18092147138205 - type: spearman value: 69.90638729067848 task: type: STS - dataset: config: zh-en name: MTEB STS22 (zh-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 75.65018415517595 - type: cosine_spearman value: 74.96983110528109 - type: euclidean_pearson value: 77.0199252096022 - type: euclidean_spearman value: 75.05313744822759 - type: main_score value: 74.96983110528109 - type: manhattan_pearson value: 77.28747618528581 - type: manhattan_spearman value: 74.95188542213391 - type: pearson value: 75.65018415517595 - type: spearman value: 74.96983110528109 task: type: STS - dataset: config: default name: MTEB STSB revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 split: test type: C-MTEB/STSB metrics: - type: cosine_pearson value: 78.99516686642797 - type: cosine_spearman value: 79.32633637626917 - type: euclidean_pearson value: 78.21051836357536 - type: euclidean_spearman value: 79.32612616365205 - type: main_score value: 79.32633637626917 - type: manhattan_pearson value: 78.18343539953231 - type: manhattan_spearman value: 79.33355463587682 - type: pearson value: 78.99516686642797 - type: spearman value: 79.32633637626917 task: type: STS - dataset: config: default name: MTEB T2Reranking revision: 76631901a18387f85eaa53e5450019b87ad58ef9 split: dev type: C-MTEB/T2Reranking metrics: - type: main_score value: 66.50583475592573 - type: map value: 66.50583475592573 - type: mrr value: 76.66814435094733 - type: nAUC_map_diff1 value: -7.531687895205624 - type: nAUC_map_max value: 31.536810866173976 - type: nAUC_map_std value: 0.584045198013492 - type: nAUC_mrr_diff1 value: -5.20389538556461 - type: nAUC_mrr_max value: 26.230205943854155 - type: nAUC_mrr_std value: -2.321422405480513 task: type: Reranking - dataset: config: default name: MTEB T2Retrieval revision: 8731a845f1bf500a4f111cf1070785c793d10e64 split: dev type: C-MTEB/T2Retrieval metrics: - type: main_score value: 84.048 - type: map_at_1 value: 27.250000000000004 - type: map_at_10 value: 76.43799999999999 - type: map_at_100 value: 80.066 - type: map_at_1000 value: 80.136 - type: map_at_20 value: 79.194 - type: map_at_3 value: 53.787 - type: map_at_5 value: 66.06 - type: mrr_at_1 value: 89.4660704892162 - type: mrr_at_10 value: 92.02673022274553 - type: mrr_at_100 value: 92.11951616133179 - type: mrr_at_1000 value: 92.12325682782645 - type: mrr_at_20 value: 92.08937202287764 - type: mrr_at_3 value: 91.55853644280776 - type: mrr_at_5 value: 91.85947454556089 - type: nauc_map_at_1000_diff1 value: 14.991306664519879 - type: nauc_map_at_1000_max value: 50.14205870015166 - type: nauc_map_at_1000_std value: 20.531935138410972 - type: nauc_map_at_100_diff1 value: 14.981377145101368 - type: nauc_map_at_100_max value: 50.0447401180562 - type: nauc_map_at_100_std value: 20.47654947572488 - type: nauc_map_at_10_diff1 value: 18.790069500020213 - type: nauc_map_at_10_max value: 37.18636615175541 - type: nauc_map_at_10_std value: 4.309216124710264 - type: nauc_map_at_1_diff1 value: 50.94702228516873 - type: nauc_map_at_1_max value: -23.434673439743328 - type: nauc_map_at_1_std value: -36.270013046647115 - type: nauc_map_at_20_diff1 value: 15.442991212547918 - type: nauc_map_at_20_max value: 47.53165224906053 - type: nauc_map_at_20_std value: 17.091479886176085 - type: nauc_map_at_3_diff1 value: 37.34355641131019 - type: nauc_map_at_3_max value: -9.627767798276931 - type: nauc_map_at_3_std value: -33.623788261136816 - type: nauc_map_at_5_diff1 value: 30.08255691506382 - type: nauc_map_at_5_max value: 7.523532625631027 - type: nauc_map_at_5_std value: -22.873284280648562 - type: nauc_mrr_at_1000_diff1 value: 48.948136368672685 - type: nauc_mrr_at_1000_max value: 79.31242146814085 - type: nauc_mrr_at_1000_std value: 42.09118789494853 - type: nauc_mrr_at_100_diff1 value: 48.95105601935127 - type: nauc_mrr_at_100_max value: 79.31972489396628 - type: nauc_mrr_at_100_std value: 42.10749180847621 - type: nauc_mrr_at_10_diff1 value: 48.909737017066334 - type: nauc_mrr_at_10_max value: 79.438878924473 - type: nauc_mrr_at_10_std value: 42.22609309864849 - type: nauc_mrr_at_1_diff1 value: 49.17057164590014 - type: nauc_mrr_at_1_max value: 75.50607518284367 - type: nauc_mrr_at_1_std value: 36.14082103331818 - type: nauc_mrr_at_20_diff1 value: 48.972145239401705 - type: nauc_mrr_at_20_max value: 79.37286170468568 - type: nauc_mrr_at_20_std value: 42.15361640253828 - type: nauc_mrr_at_3_diff1 value: 48.73407413089388 - type: nauc_mrr_at_3_max value: 79.31526640124694 - type: nauc_mrr_at_3_std value: 41.87832848049768 - type: nauc_mrr_at_5_diff1 value: 48.92974709753988 - type: nauc_mrr_at_5_max value: 79.52029263445817 - type: nauc_mrr_at_5_std value: 42.2387927929394 - type: nauc_ndcg_at_1000_diff1 value: 19.852159219940212 - type: nauc_ndcg_at_1000_max value: 61.78867818911231 - type: nauc_ndcg_at_1000_std value: 33.12786556649802 - type: nauc_ndcg_at_100_diff1 value: 19.3709781000508 - type: nauc_ndcg_at_100_max value: 60.84802300919614 - type: nauc_ndcg_at_100_std value: 33.09600270707079 - type: nauc_ndcg_at_10_diff1 value: 18.890624683095215 - type: nauc_ndcg_at_10_max value: 52.07035400648073 - type: nauc_ndcg_at_10_std value: 21.215632742092755 - type: nauc_ndcg_at_1_diff1 value: 49.17057164590014 - type: nauc_ndcg_at_1_max value: 75.50607518284367 - type: nauc_ndcg_at_1_std value: 36.14082103331818 - type: nauc_ndcg_at_20_diff1 value: 19.15746849253811 - type: nauc_ndcg_at_20_max value: 55.82176951048079 - type: nauc_ndcg_at_20_std value: 26.477040534373803 - type: nauc_ndcg_at_3_diff1 value: 15.61757086504063 - type: nauc_ndcg_at_3_max value: 66.07148250075376 - type: nauc_ndcg_at_3_std value: 33.08315717230347 - type: nauc_ndcg_at_5_diff1 value: 15.934068427718106 - type: nauc_ndcg_at_5_max value: 59.64275100530712 - type: nauc_ndcg_at_5_std value: 28.197929106012136 - type: nauc_precision_at_1000_diff1 value: -32.14239275674187 - type: nauc_precision_at_1000_max value: 49.003598734673425 - type: nauc_precision_at_1000_std value: 60.77307108185476 - type: nauc_precision_at_100_diff1 value: -32.110716229470334 - type: nauc_precision_at_100_max value: 50.85328281382415 - type: nauc_precision_at_100_std value: 62.32808109717699 - type: nauc_precision_at_10_diff1 value: -31.837193489485628 - type: nauc_precision_at_10_max value: 55.83705208493232 - type: nauc_precision_at_10_std value: 57.50283019666919 - type: nauc_precision_at_1_diff1 value: 49.17057164590014 - type: nauc_precision_at_1_max value: 75.50607518284367 - type: nauc_precision_at_1_std value: 36.14082103331818 - type: nauc_precision_at_20_diff1 value: -32.044968169611735 - type: nauc_precision_at_20_max value: 53.82174008549685 - type: nauc_precision_at_20_std value: 61.46528672131028 - type: nauc_precision_at_3_diff1 value: -26.261125878602332 - type: nauc_precision_at_3_max value: 66.0859983928659 - type: nauc_precision_at_3_std value: 48.83715827055477 - type: nauc_precision_at_5_diff1 value: -31.13291937399241 - type: nauc_precision_at_5_max value: 61.01429282172497 - type: nauc_precision_at_5_std value: 52.76320524351461 - type: nauc_recall_at_1000_diff1 value: 6.214349212436889 - type: nauc_recall_at_1000_max value: 59.08096875098299 - type: nauc_recall_at_1000_std value: 62.01528677223324 - type: nauc_recall_at_100_diff1 value: 9.456254682836157 - type: nauc_recall_at_100_max value: 53.09669357470267 - type: nauc_recall_at_100_std value: 47.19170803245384 - type: nauc_recall_at_10_diff1 value: 17.067819451151244 - type: nauc_recall_at_10_max value: 26.995954619298562 - type: nauc_recall_at_10_std value: -1.358304137922756 - type: nauc_recall_at_1_diff1 value: 50.94702228516873 - type: nauc_recall_at_1_max value: -23.434673439743328 - type: nauc_recall_at_1_std value: -36.270013046647115 - type: nauc_recall_at_20_diff1 value: 12.166170322330789 - type: nauc_recall_at_20_max value: 41.98372262379903 - type: nauc_recall_at_20_std value: 21.231284446488473 - type: nauc_recall_at_3_diff1 value: 35.585610972927654 - type: nauc_recall_at_3_max value: -14.184820983265075 - type: nauc_recall_at_3_std value: -36.14847855262556 - type: nauc_recall_at_5_diff1 value: 29.050625754040084 - type: nauc_recall_at_5_max value: -1.0410932842186966 - type: nauc_recall_at_5_std value: -28.261646321102425 - type: ndcg_at_1 value: 89.46600000000001 - type: ndcg_at_10 value: 84.048 - type: ndcg_at_100 value: 87.69 - type: ndcg_at_1000 value: 88.369 - type: ndcg_at_20 value: 85.819 - type: ndcg_at_3 value: 85.473 - type: ndcg_at_5 value: 84.048 - type: precision_at_1 value: 89.46600000000001 - type: precision_at_10 value: 41.772 - type: precision_at_100 value: 4.993 - type: precision_at_1000 value: 0.515 - type: precision_at_20 value: 23.202 - type: precision_at_3 value: 74.779 - type: precision_at_5 value: 62.63999999999999 - type: recall_at_1 value: 27.250000000000004 - type: recall_at_10 value: 82.934 - type: recall_at_100 value: 94.815 - type: recall_at_1000 value: 98.294 - type: recall_at_20 value: 88.883 - type: recall_at_3 value: 55.458 - type: recall_at_5 value: 69.465 task: type: Retrieval - dataset: config: default name: MTEB TNews revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 split: validation type: C-MTEB/TNews-classification metrics: - type: accuracy value: 51.577000000000005 - type: f1 value: 49.3938790995325 - type: f1_weighted value: 51.49872910589875 - type: main_score value: 51.577000000000005 task: type: Classification - dataset: config: default name: MTEB ThuNewsClusteringP2P revision: 5798586b105c0434e4f0fe5e767abe619442cf93 split: test type: C-MTEB/ThuNewsClusteringP2P metrics: - type: main_score value: 61.3311446133969 - type: v_measure value: 61.3311446133969 - type: v_measure_std value: 1.4292037065102101 task: type: Clustering - dataset: config: default name: MTEB ThuNewsClusteringS2S revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d split: test type: C-MTEB/ThuNewsClusteringS2S metrics: - type: main_score value: 56.41668748695762 - type: v_measure value: 56.41668748695762 - type: v_measure_std value: 1.096715523512711 task: type: Clustering - dataset: config: default name: MTEB VideoRetrieval revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 split: dev type: C-MTEB/VideoRetrieval metrics: - type: main_score value: 70.078 - type: map_at_1 value: 55.60000000000001 - type: map_at_10 value: 65.45100000000001 - type: map_at_100 value: 65.972 - type: map_at_1000 value: 65.983 - type: map_at_20 value: 65.807 - type: map_at_3 value: 63.233 - type: map_at_5 value: 64.66300000000001 - type: mrr_at_1 value: 55.60000000000001 - type: mrr_at_10 value: 65.4510714285715 - type: mrr_at_100 value: 65.97165962076099 - type: mrr_at_1000 value: 65.98320753283919 - type: mrr_at_20 value: 65.80718845439051 - type: mrr_at_3 value: 63.23333333333338 - type: mrr_at_5 value: 64.6633333333334 - type: nauc_map_at_1000_diff1 value: 61.870954535069615 - type: nauc_map_at_1000_max value: 23.090300594918375 - type: nauc_map_at_1000_std value: -37.76103949466824 - type: nauc_map_at_100_diff1 value: 61.86086531015621 - type: nauc_map_at_100_max value: 23.103916177822935 - type: nauc_map_at_100_std value: -37.754472602108585 - type: nauc_map_at_10_diff1 value: 61.95721168001316 - type: nauc_map_at_10_max value: 22.895572163222226 - type: nauc_map_at_10_std value: -38.336243891701066 - type: nauc_map_at_1_diff1 value: 64.2441219535636 - type: nauc_map_at_1_max value: 20.64015444888544 - type: nauc_map_at_1_std value: -35.13259877775077 - type: nauc_map_at_20_diff1 value: 61.843808986063124 - type: nauc_map_at_20_max value: 23.043585376021333 - type: nauc_map_at_20_std value: -37.96548127355041 - type: nauc_map_at_3_diff1 value: 61.69619207556679 - type: nauc_map_at_3_max value: 23.42210304941044 - type: nauc_map_at_3_std value: -38.25191353860321 - type: nauc_map_at_5_diff1 value: 61.86402019020591 - type: nauc_map_at_5_max value: 22.978407043164168 - type: nauc_map_at_5_std value: -38.543794878087006 - type: nauc_mrr_at_1000_diff1 value: 61.870954535069615 - type: nauc_mrr_at_1000_max value: 23.090300594918375 - type: nauc_mrr_at_1000_std value: -37.76103949466824 - type: nauc_mrr_at_100_diff1 value: 61.86086531015621 - type: nauc_mrr_at_100_max value: 23.103916177822935 - type: nauc_mrr_at_100_std value: -37.754472602108585 - type: nauc_mrr_at_10_diff1 value: 61.95721168001316 - type: nauc_mrr_at_10_max value: 22.895572163222226 - type: nauc_mrr_at_10_std value: -38.336243891701066 - type: nauc_mrr_at_1_diff1 value: 64.2441219535636 - type: nauc_mrr_at_1_max value: 20.64015444888544 - type: nauc_mrr_at_1_std value: -35.13259877775077 - type: nauc_mrr_at_20_diff1 value: 61.843808986063124 - type: nauc_mrr_at_20_max value: 23.043585376021333 - type: nauc_mrr_at_20_std value: -37.96548127355041 - type: nauc_mrr_at_3_diff1 value: 61.69619207556679 - type: nauc_mrr_at_3_max value: 23.42210304941044 - type: nauc_mrr_at_3_std value: -38.25191353860321 - type: nauc_mrr_at_5_diff1 value: 61.86402019020591 - type: nauc_mrr_at_5_max value: 22.978407043164168 - type: nauc_mrr_at_5_std value: -38.543794878087006 - type: nauc_ndcg_at_1000_diff1 value: 61.29794077219897 - type: nauc_ndcg_at_1000_max value: 24.418905186535554 - type: nauc_ndcg_at_1000_std value: -36.38675333575123 - type: nauc_ndcg_at_100_diff1 value: 61.01225965851154 - type: nauc_ndcg_at_100_max value: 24.921415589027195 - type: nauc_ndcg_at_100_std value: -36.16549229025807 - type: nauc_ndcg_at_10_diff1 value: 61.49476150514672 - type: nauc_ndcg_at_10_max value: 23.679233291979195 - type: nauc_ndcg_at_10_std value: -39.526250662147326 - type: nauc_ndcg_at_1_diff1 value: 64.2441219535636 - type: nauc_ndcg_at_1_max value: 20.64015444888544 - type: nauc_ndcg_at_1_std value: -35.13259877775077 - type: nauc_ndcg_at_20_diff1 value: 61.056344259506254 - type: nauc_ndcg_at_20_max value: 24.4681696774435 - type: nauc_ndcg_at_20_std value: -38.002129299338705 - type: nauc_ndcg_at_3_diff1 value: 60.9695336204443 - type: nauc_ndcg_at_3_max value: 24.561743086278764 - type: nauc_ndcg_at_3_std value: -39.34620193890538 - type: nauc_ndcg_at_5_diff1 value: 61.28536259871331 - type: nauc_ndcg_at_5_max value: 23.821597091549947 - type: nauc_ndcg_at_5_std value: -39.921602604282256 - type: nauc_precision_at_1000_diff1 value: 47.896936552397904 - type: nauc_precision_at_1000_max value: 66.38433151038132 - type: nauc_precision_at_1000_std value: 60.53532524120673 - type: nauc_precision_at_100_diff1 value: 44.28363938167843 - type: nauc_precision_at_100_max value: 64.24732856105429 - type: nauc_precision_at_100_std value: 17.97489366116728 - type: nauc_precision_at_10_diff1 value: 59.41726414200426 - type: nauc_precision_at_10_max value: 27.71264331511937 - type: nauc_precision_at_10_std value: -45.74776538959631 - type: nauc_precision_at_1_diff1 value: 64.2441219535636 - type: nauc_precision_at_1_max value: 20.64015444888544 - type: nauc_precision_at_1_std value: -35.13259877775077 - type: nauc_precision_at_20_diff1 value: 54.97651111807045 - type: nauc_precision_at_20_max value: 36.89454610531955 - type: nauc_precision_at_20_std value: -34.89329336495018 - type: nauc_precision_at_3_diff1 value: 58.51696906840075 - type: nauc_precision_at_3_max value: 28.574341882931513 - type: nauc_precision_at_3_std value: -43.137791865257384 - type: nauc_precision_at_5_diff1 value: 59.104993686253025 - type: nauc_precision_at_5_max value: 27.228062999541013 - type: nauc_precision_at_5_std value: -45.6178316381737 - type: nauc_recall_at_1000_diff1 value: 47.89693655239931 - type: nauc_recall_at_1000_max value: 66.38433151038168 - type: nauc_recall_at_1000_std value: 60.53532524120724 - type: nauc_recall_at_100_diff1 value: 44.28363938167848 - type: nauc_recall_at_100_max value: 64.24732856105405 - type: nauc_recall_at_100_std value: 17.974893661168153 - type: nauc_recall_at_10_diff1 value: 59.417264142004434 - type: nauc_recall_at_10_max value: 27.7126433151196 - type: nauc_recall_at_10_std value: -45.74776538959598 - type: nauc_recall_at_1_diff1 value: 64.2441219535636 - type: nauc_recall_at_1_max value: 20.64015444888544 - type: nauc_recall_at_1_std value: -35.13259877775077 - type: nauc_recall_at_20_diff1 value: 54.97651111807084 - type: nauc_recall_at_20_max value: 36.89454610531971 - type: nauc_recall_at_20_std value: -34.89329336495006 - type: nauc_recall_at_3_diff1 value: 58.51696906840065 - type: nauc_recall_at_3_max value: 28.574341882931524 - type: nauc_recall_at_3_std value: -43.13779186525737 - type: nauc_recall_at_5_diff1 value: 59.104993686253046 - type: nauc_recall_at_5_max value: 27.228062999540985 - type: nauc_recall_at_5_std value: -45.617831638173556 - type: ndcg_at_1 value: 55.60000000000001 - type: ndcg_at_10 value: 70.078 - type: ndcg_at_100 value: 72.489 - type: ndcg_at_1000 value: 72.794 - type: ndcg_at_20 value: 71.354 - type: ndcg_at_3 value: 65.645 - type: ndcg_at_5 value: 68.189 - type: precision_at_1 value: 55.60000000000001 - type: precision_at_10 value: 8.450000000000001 - type: precision_at_100 value: 0.955 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.475 - type: precision_at_3 value: 24.2 - type: precision_at_5 value: 15.740000000000002 - type: recall_at_1 value: 55.60000000000001 - type: recall_at_10 value: 84.5 - type: recall_at_100 value: 95.5 - type: recall_at_1000 value: 97.89999999999999 - type: recall_at_20 value: 89.5 - type: recall_at_3 value: 72.6 - type: recall_at_5 value: 78.7 task: type: Retrieval - dataset: config: default name: MTEB Waimai revision: 339287def212450dcaa9df8c22bf93e9980c7023 split: test type: C-MTEB/waimai-classification metrics: - type: accuracy value: 85.75999999999999 - type: ap value: 68.22514159752903 - type: ap_weighted value: 68.22514159752903 - type: f1 value: 83.93158616293009 - type: f1_weighted value: 85.8229689427759 - type: main_score value: 85.75999999999999 task: type: Classification - dataset: config: default name: MTEB AlloProfClusteringP2P revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: main_score value: 66.69235568790974 - type: v_measure value: 66.69235568790974 - type: v_measure_std value: 2.537794350741746 task: type: Clustering - dataset: config: default name: MTEB AlloProfClusteringS2S revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: main_score value: 49.27280056656315 - type: v_measure value: 49.27280056656315 - type: v_measure_std value: 3.2810861239751716 task: type: Clustering - dataset: config: default name: MTEB AlloprofReranking revision: 65393d0d7a08a10b4e348135e824f385d420b0fd split: test type: lyon-nlp/mteb-fr-reranking-alloprof-s2p metrics: - type: main_score value: 74.05051363767075 - type: map value: 74.05051363767075 - type: mrr value: 75.32834046111249 - type: nAUC_map_diff1 value: 53.43142734542149 - type: nAUC_map_max value: 10.45363593380914 - type: nAUC_map_std value: 18.04797969501808 - type: nAUC_mrr_diff1 value: 52.84895215306421 - type: nAUC_mrr_max value: 11.161569184920731 - type: nAUC_mrr_std value: 18.116278051231706 task: type: Reranking - dataset: config: default name: MTEB AlloprofRetrieval revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd split: test type: lyon-nlp/alloprof metrics: - type: main_score value: 46.752 - type: map_at_1 value: 29.404000000000003 - type: map_at_10 value: 40.695 - type: map_at_100 value: 41.638999999999996 - type: map_at_1000 value: 41.686 - type: map_at_20 value: 41.293 - type: map_at_3 value: 37.464 - type: map_at_5 value: 39.314 - type: mrr_at_1 value: 29.404145077720205 - type: mrr_at_10 value: 40.69454724895149 - type: mrr_at_100 value: 41.6387718358502 - type: mrr_at_1000 value: 41.686352032537386 - type: mrr_at_20 value: 41.29302173047876 - type: mrr_at_3 value: 37.46401842256771 - type: mrr_at_5 value: 39.314191134139456 - type: nauc_map_at_1000_diff1 value: 36.81140646424009 - type: nauc_map_at_1000_max value: 32.558382675482015 - type: nauc_map_at_1000_std value: 1.3209245482601717 - type: nauc_map_at_100_diff1 value: 36.80623533104676 - type: nauc_map_at_100_max value: 32.58259240121919 - type: nauc_map_at_100_std value: 1.3357049662565006 - type: nauc_map_at_10_diff1 value: 36.701137264179415 - type: nauc_map_at_10_max value: 32.39187216040168 - type: nauc_map_at_10_std value: 1.080168559171855 - type: nauc_map_at_1_diff1 value: 41.17578040220583 - type: nauc_map_at_1_max value: 29.250697582326456 - type: nauc_map_at_1_std value: 0.015878420007215115 - type: nauc_map_at_20_diff1 value: 36.78320606729714 - type: nauc_map_at_20_max value: 32.62394229122364 - type: nauc_map_at_20_std value: 1.2875500759697867 - type: nauc_map_at_3_diff1 value: 36.61724743709236 - type: nauc_map_at_3_max value: 31.439128101338948 - type: nauc_map_at_3_std value: 0.6643615364760862 - type: nauc_map_at_5_diff1 value: 36.51290373132519 - type: nauc_map_at_5_max value: 32.06362001986431 - type: nauc_map_at_5_std value: 1.0077803528775056 - type: nauc_mrr_at_1000_diff1 value: 36.81140646424009 - type: nauc_mrr_at_1000_max value: 32.558382675482015 - type: nauc_mrr_at_1000_std value: 1.3209245482601717 - type: nauc_mrr_at_100_diff1 value: 36.80623533104676 - type: nauc_mrr_at_100_max value: 32.58259240121919 - type: nauc_mrr_at_100_std value: 1.3357049662565006 - type: nauc_mrr_at_10_diff1 value: 36.701137264179415 - type: nauc_mrr_at_10_max value: 32.39187216040168 - type: nauc_mrr_at_10_std value: 1.080168559171855 - type: nauc_mrr_at_1_diff1 value: 41.17578040220583 - type: nauc_mrr_at_1_max value: 29.250697582326456 - type: nauc_mrr_at_1_std value: 0.015878420007215115 - type: nauc_mrr_at_20_diff1 value: 36.78320606729714 - type: nauc_mrr_at_20_max value: 32.62394229122364 - type: nauc_mrr_at_20_std value: 1.2875500759697867 - type: nauc_mrr_at_3_diff1 value: 36.61724743709236 - type: nauc_mrr_at_3_max value: 31.439128101338948 - type: nauc_mrr_at_3_std value: 0.6643615364760862 - type: nauc_mrr_at_5_diff1 value: 36.51290373132519 - type: nauc_mrr_at_5_max value: 32.06362001986431 - type: nauc_mrr_at_5_std value: 1.0077803528775056 - type: nauc_ndcg_at_1000_diff1 value: 36.24076511538488 - type: nauc_ndcg_at_1000_max value: 34.064413351133496 - type: nauc_ndcg_at_1000_std value: 2.4530947188501884 - type: nauc_ndcg_at_100_diff1 value: 36.0927603024548 - type: nauc_ndcg_at_100_max value: 34.98071528431376 - type: nauc_ndcg_at_100_std value: 3.2048812019743806 - type: nauc_ndcg_at_10_diff1 value: 35.48231357450575 - type: nauc_ndcg_at_10_max value: 34.23901754126376 - type: nauc_ndcg_at_10_std value: 1.8216358086555313 - type: nauc_ndcg_at_1_diff1 value: 41.17578040220583 - type: nauc_ndcg_at_1_max value: 29.250697582326456 - type: nauc_ndcg_at_1_std value: 0.015878420007215115 - type: nauc_ndcg_at_20_diff1 value: 35.762077351924866 - type: nauc_ndcg_at_20_max value: 35.131282428172504 - type: nauc_ndcg_at_20_std value: 2.6314418022317088 - type: nauc_ndcg_at_3_diff1 value: 35.20458098278931 - type: nauc_ndcg_at_3_max value: 32.10452974167028 - type: nauc_ndcg_at_3_std value: 0.8794682266965334 - type: nauc_ndcg_at_5_diff1 value: 34.98508114807989 - type: nauc_ndcg_at_5_max value: 33.262089912366264 - type: nauc_ndcg_at_5_std value: 1.5319350722125793 - type: nauc_precision_at_1000_diff1 value: 44.666620982624345 - type: nauc_precision_at_1000_max value: 75.29393255580452 - type: nauc_precision_at_1000_std value: 55.59900299317424 - type: nauc_precision_at_100_diff1 value: 34.231014793455486 - type: nauc_precision_at_100_max value: 57.643182221569056 - type: nauc_precision_at_100_std value: 24.69069946083384 - type: nauc_precision_at_10_diff1 value: 31.574888849159986 - type: nauc_precision_at_10_max value: 41.421761956959116 - type: nauc_precision_at_10_std value: 4.763962617424729 - type: nauc_precision_at_1_diff1 value: 41.17578040220583 - type: nauc_precision_at_1_max value: 29.250697582326456 - type: nauc_precision_at_1_std value: 0.015878420007215115 - type: nauc_precision_at_20_diff1 value: 32.180018178061836 - type: nauc_precision_at_20_max value: 47.75245184649933 - type: nauc_precision_at_20_std value: 9.788615791772633 - type: nauc_precision_at_3_diff1 value: 31.174995495672274 - type: nauc_precision_at_3_max value: 33.99858581358525 - type: nauc_precision_at_3_std value: 1.4974582520924251 - type: nauc_precision_at_5_diff1 value: 30.35676602203525 - type: nauc_precision_at_5_max value: 37.047443567623354 - type: nauc_precision_at_5_std value: 3.2312689286293024 - type: nauc_recall_at_1000_diff1 value: 44.666620982624515 - type: nauc_recall_at_1000_max value: 75.29393255580267 - type: nauc_recall_at_1000_std value: 55.59900299317372 - type: nauc_recall_at_100_diff1 value: 34.23101479345545 - type: nauc_recall_at_100_max value: 57.64318222156907 - type: nauc_recall_at_100_std value: 24.690699460833915 - type: nauc_recall_at_10_diff1 value: 31.574888849159976 - type: nauc_recall_at_10_max value: 41.42176195695914 - type: nauc_recall_at_10_std value: 4.763962617424782 - type: nauc_recall_at_1_diff1 value: 41.17578040220583 - type: nauc_recall_at_1_max value: 29.250697582326456 - type: nauc_recall_at_1_std value: 0.015878420007215115 - type: nauc_recall_at_20_diff1 value: 32.18001817806187 - type: nauc_recall_at_20_max value: 47.75245184649934 - type: nauc_recall_at_20_std value: 9.788615791772733 - type: nauc_recall_at_3_diff1 value: 31.17499549567227 - type: nauc_recall_at_3_max value: 33.99858581358531 - type: nauc_recall_at_3_std value: 1.4974582520924073 - type: nauc_recall_at_5_diff1 value: 30.356766022035238 - type: nauc_recall_at_5_max value: 37.047443567623354 - type: nauc_recall_at_5_std value: 3.2312689286292806 - type: ndcg_at_1 value: 29.404000000000003 - type: ndcg_at_10 value: 46.752 - type: ndcg_at_100 value: 51.43 - type: ndcg_at_1000 value: 52.76499999999999 - type: ndcg_at_20 value: 48.92 - type: ndcg_at_3 value: 40.106 - type: ndcg_at_5 value: 43.445 - type: precision_at_1 value: 29.404000000000003 - type: precision_at_10 value: 6.601999999999999 - type: precision_at_100 value: 0.881 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 3.728 - type: precision_at_3 value: 15.918 - type: precision_at_5 value: 11.174000000000001 - type: recall_at_1 value: 29.404000000000003 - type: recall_at_10 value: 66.019 - type: recall_at_100 value: 88.126 - type: recall_at_1000 value: 98.791 - type: recall_at_20 value: 74.568 - type: recall_at_3 value: 47.754999999999995 - type: recall_at_5 value: 55.872 task: type: Retrieval - dataset: config: fr name: MTEB AmazonReviewsClassification (fr) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 44.847999999999985 - type: f1 value: 41.93605853189159 - type: f1_weighted value: 41.93605853189159 - type: main_score value: 44.847999999999985 task: type: Classification - dataset: config: default name: MTEB BSARDRetrieval revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 split: test type: maastrichtlawtech/bsard metrics: - type: main_score value: 58.559000000000005 - type: map_at_1 value: 10.36 - type: map_at_10 value: 16.758 - type: map_at_100 value: 17.716 - type: map_at_1000 value: 17.816000000000003 - type: map_at_20 value: 17.221 - type: map_at_3 value: 14.565 - type: map_at_5 value: 15.870999999999999 - type: mrr_at_1 value: 10.36036036036036 - type: mrr_at_10 value: 16.758186758186753 - type: mrr_at_100 value: 17.715800685239955 - type: mrr_at_1000 value: 17.816056728488995 - type: mrr_at_20 value: 17.221227569524782 - type: mrr_at_3 value: 14.564564564564561 - type: mrr_at_5 value: 15.870870870870865 - type: nauc_map_at_1000_diff1 value: 13.581189454277641 - type: nauc_map_at_1000_max value: 23.489691228117813 - type: nauc_map_at_1000_std value: 5.6307865456405395 - type: nauc_map_at_100_diff1 value: 13.454198011114709 - type: nauc_map_at_100_max value: 23.45922415373145 - type: nauc_map_at_100_std value: 5.616848031628102 - type: nauc_map_at_10_diff1 value: 13.320234520737017 - type: nauc_map_at_10_max value: 23.234237599237463 - type: nauc_map_at_10_std value: 4.544384095472259 - type: nauc_map_at_1_diff1 value: 19.723683325024975 - type: nauc_map_at_1_max value: 20.464053097615416 - type: nauc_map_at_1_std value: 2.099858103167991 - type: nauc_map_at_20_diff1 value: 13.743084308870731 - type: nauc_map_at_20_max value: 23.529304709994932 - type: nauc_map_at_20_std value: 5.326637193786957 - type: nauc_map_at_3_diff1 value: 11.829713917206632 - type: nauc_map_at_3_max value: 20.982180859889315 - type: nauc_map_at_3_std value: 2.6604076449483416 - type: nauc_map_at_5_diff1 value: 13.25993802690841 - type: nauc_map_at_5_max value: 21.63314647686895 - type: nauc_map_at_5_std value: 2.762539517745844 - type: nauc_mrr_at_1000_diff1 value: 13.581189454277641 - type: nauc_mrr_at_1000_max value: 23.489691228117813 - type: nauc_mrr_at_1000_std value: 5.6307865456405395 - type: nauc_mrr_at_100_diff1 value: 13.454198011114709 - type: nauc_mrr_at_100_max value: 23.45922415373145 - type: nauc_mrr_at_100_std value: 5.616848031628102 - type: nauc_mrr_at_10_diff1 value: 13.320234520737017 - type: nauc_mrr_at_10_max value: 23.234237599237463 - type: nauc_mrr_at_10_std value: 4.544384095472259 - type: nauc_mrr_at_1_diff1 value: 19.723683325024975 - type: nauc_mrr_at_1_max value: 20.464053097615416 - type: nauc_mrr_at_1_std value: 2.099858103167991 - type: nauc_mrr_at_20_diff1 value: 13.743084308870731 - type: nauc_mrr_at_20_max value: 23.529304709994932 - type: nauc_mrr_at_20_std value: 5.326637193786957 - type: nauc_mrr_at_3_diff1 value: 11.829713917206632 - type: nauc_mrr_at_3_max value: 20.982180859889315 - type: nauc_mrr_at_3_std value: 2.6604076449483416 - type: nauc_mrr_at_5_diff1 value: 13.25993802690841 - type: nauc_mrr_at_5_max value: 21.63314647686895 - type: nauc_mrr_at_5_std value: 2.762539517745844 - type: nauc_ndcg_at_1000_diff1 value: 13.707503108989783 - type: nauc_ndcg_at_1000_max value: 25.949859334474194 - type: nauc_ndcg_at_1000_std value: 11.30077185095291 - type: nauc_ndcg_at_100_diff1 value: 11.488652396242538 - type: nauc_ndcg_at_100_max value: 25.577496900047457 - type: nauc_ndcg_at_100_std value: 11.594574152798417 - type: nauc_ndcg_at_10_diff1 value: 12.238261856743057 - type: nauc_ndcg_at_10_max value: 25.70940084264975 - type: nauc_ndcg_at_10_std value: 6.674709323258127 - type: nauc_ndcg_at_1_diff1 value: 19.723683325024975 - type: nauc_ndcg_at_1_max value: 20.464053097615416 - type: nauc_ndcg_at_1_std value: 2.099858103167991 - type: nauc_ndcg_at_20_diff1 value: 13.554982508741379 - type: nauc_ndcg_at_20_max value: 26.121920197241778 - type: nauc_ndcg_at_20_std value: 8.855936872536278 - type: nauc_ndcg_at_3_diff1 value: 9.59924858769597 - type: nauc_ndcg_at_3_max value: 21.202502594505308 - type: nauc_ndcg_at_3_std value: 2.9122811723533566 - type: nauc_ndcg_at_5_diff1 value: 12.117243393169327 - type: nauc_ndcg_at_5_max value: 22.382086327774463 - type: nauc_ndcg_at_5_std value: 3.068185747546371 - type: nauc_precision_at_1000_diff1 value: 21.314687056528214 - type: nauc_precision_at_1000_max value: 35.85736416644202 - type: nauc_precision_at_1000_std value: 41.215589583356014 - type: nauc_precision_at_100_diff1 value: 4.841538567838315 - type: nauc_precision_at_100_max value: 29.796025601556465 - type: nauc_precision_at_100_std value: 31.66461426950881 - type: nauc_precision_at_10_diff1 value: 10.2769925656981 - type: nauc_precision_at_10_max value: 31.610465042792512 - type: nauc_precision_at_10_std value: 11.729838363348398 - type: nauc_precision_at_1_diff1 value: 19.723683325024975 - type: nauc_precision_at_1_max value: 20.464053097615416 - type: nauc_precision_at_1_std value: 2.099858103167991 - type: nauc_precision_at_20_diff1 value: 14.122666091725545 - type: nauc_precision_at_20_max value: 31.813794575630656 - type: nauc_precision_at_20_std value: 17.44031269111964 - type: nauc_precision_at_3_diff1 value: 4.41887012868526 - type: nauc_precision_at_3_max value: 21.73037689396608 - type: nauc_precision_at_3_std value: 3.5177146563010777 - type: nauc_precision_at_5_diff1 value: 9.911736958870145 - type: nauc_precision_at_5_max value: 24.17828887763417 - type: nauc_precision_at_5_std value: 3.758711226096333 - type: nauc_recall_at_1000_diff1 value: 21.314687056528154 - type: nauc_recall_at_1000_max value: 35.85736416644197 - type: nauc_recall_at_1000_std value: 41.21558958335586 - type: nauc_recall_at_100_diff1 value: 4.841538567838269 - type: nauc_recall_at_100_max value: 29.79602560155637 - type: nauc_recall_at_100_std value: 31.66461426950869 - type: nauc_recall_at_10_diff1 value: 10.276992565698032 - type: nauc_recall_at_10_max value: 31.610465042792473 - type: nauc_recall_at_10_std value: 11.729838363348378 - type: nauc_recall_at_1_diff1 value: 19.723683325024975 - type: nauc_recall_at_1_max value: 20.464053097615416 - type: nauc_recall_at_1_std value: 2.099858103167991 - type: nauc_recall_at_20_diff1 value: 14.122666091725526 - type: nauc_recall_at_20_max value: 31.813794575630638 - type: nauc_recall_at_20_std value: 17.440312691119587 - type: nauc_recall_at_3_diff1 value: 4.4188701286852785 - type: nauc_recall_at_3_max value: 21.7303768939661 - type: nauc_recall_at_3_std value: 3.5177146563010853 - type: nauc_recall_at_5_diff1 value: 9.911736958870106 - type: nauc_recall_at_5_max value: 24.178288877634106 - type: nauc_recall_at_5_std value: 3.758711226096281 - type: ndcg_at_1 value: 10.36 - type: ndcg_at_10 value: 20.471 - type: ndcg_at_100 value: 25.777 - type: ndcg_at_1000 value: 28.593000000000004 - type: ndcg_at_20 value: 22.246 - type: ndcg_at_3 value: 15.916 - type: ndcg_at_5 value: 18.3 - type: precision_at_1 value: 10.36 - type: precision_at_10 value: 3.243 - type: precision_at_100 value: 0.586 - type: precision_at_1000 value: 0.08099999999999999 - type: precision_at_20 value: 1.982 - type: precision_at_3 value: 6.607 - type: precision_at_5 value: 5.135 - type: recall_at_1 value: 10.36 - type: recall_at_10 value: 32.432 - type: recall_at_100 value: 58.559000000000005 - type: recall_at_1000 value: 81.081 - type: recall_at_20 value: 39.64 - type: recall_at_3 value: 19.82 - type: recall_at_5 value: 25.676 task: type: Retrieval - dataset: config: default name: MTEB HALClusteringS2S revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 split: test type: lyon-nlp/clustering-hal-s2s metrics: - type: main_score value: 26.918470641446472 - type: v_measure value: 26.918470641446472 - type: v_measure_std value: 2.717665658348912 task: type: Clustering - dataset: config: fr name: MTEB MLSUMClusteringP2P (fr) revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: reciTAL/mlsum metrics: - type: main_score value: 45.581413658149 - type: v_measure value: 45.581413658149 - type: v_measure_std value: 1.646260736751199 task: type: Clustering - dataset: config: fr name: MTEB MLSUMClusteringS2S (fr) revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: reciTAL/mlsum metrics: - type: main_score value: 44.45455749734905 - type: v_measure value: 44.45455749734905 - type: v_measure_std value: 1.935205028548908 task: type: Clustering - dataset: config: fr name: MTEB MTOPDomainClassification (fr) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 80.14719699342312 - type: f1 value: 79.68802657402165 - type: f1_weighted value: 79.85763712873417 - type: main_score value: 80.14719699342312 task: type: Classification - dataset: config: fr name: MTEB MTOPIntentClassification (fr) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 50.241152521139995 - type: f1 value: 34.39524038805554 - type: f1_weighted value: 53.93775073819592 - type: main_score value: 50.241152521139995 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClassification (fra) revision: 18193f187b92da67168c655c9973a165ed9593dd split: test type: mteb/masakhanews metrics: - type: accuracy value: 83.34123222748818 - type: f1 value: 79.48624508308065 - type: f1_weighted value: 83.20210238500908 - type: main_score value: 83.34123222748818 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClusteringP2P (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: main_score value: 71.51218291988776 - type: v_measure value: 71.51218291988776 - type: v_measure_std value: 35.6439739308977 task: type: Clustering - dataset: config: fra name: MTEB MasakhaNEWSClusteringS2S (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: main_score value: 60.155743100795725 - type: v_measure value: 60.155743100795725 - type: v_measure_std value: 28.180226808833797 task: type: Clustering - dataset: config: fr name: MTEB MassiveIntentClassification (fr) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 59.048419636852735 - type: f1 value: 55.77513997227217 - type: f1_weighted value: 57.65743868976365 - type: main_score value: 59.048419636852735 task: type: Classification - dataset: config: fr name: MTEB MassiveScenarioClassification (fr) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 67.2932078009415 - type: f1 value: 66.85444841091169 - type: f1_weighted value: 66.78952167770717 - type: main_score value: 67.2932078009415 task: type: Classification - dataset: config: fr name: MTEB MintakaRetrieval (fr) revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e split: test type: jinaai/mintakaqa metrics: - type: main_score value: 27.400000000000002 - type: map_at_1 value: 15.479000000000001 - type: map_at_10 value: 23.213 - type: map_at_100 value: 24.285 - type: map_at_1000 value: 24.397 - type: map_at_20 value: 23.741 - type: map_at_3 value: 20.973 - type: map_at_5 value: 22.212 - type: mrr_at_1 value: 15.47911547911548 - type: mrr_at_10 value: 23.21331071331073 - type: mrr_at_100 value: 24.28515184787565 - type: mrr_at_1000 value: 24.396606382776362 - type: mrr_at_20 value: 23.74068872679202 - type: mrr_at_3 value: 20.973245973245938 - type: mrr_at_5 value: 22.211984711984677 - type: nauc_map_at_1000_diff1 value: 23.49190518969821 - type: nauc_map_at_1000_max value: 21.816535185868748 - type: nauc_map_at_1000_std value: 7.898426575861743 - type: nauc_map_at_100_diff1 value: 23.455942061154243 - type: nauc_map_at_100_max value: 21.80945301878854 - type: nauc_map_at_100_std value: 7.903289282168091 - type: nauc_map_at_10_diff1 value: 23.674951138068714 - type: nauc_map_at_10_max value: 21.969792385911845 - type: nauc_map_at_10_std value: 7.889585005426794 - type: nauc_map_at_1_diff1 value: 29.069568522388433 - type: nauc_map_at_1_max value: 19.942608291469913 - type: nauc_map_at_1_std value: 3.1283142332992635 - type: nauc_map_at_20_diff1 value: 23.45502400622297 - type: nauc_map_at_20_max value: 21.830527331051552 - type: nauc_map_at_20_std value: 7.994053361768913 - type: nauc_map_at_3_diff1 value: 24.982668301358444 - type: nauc_map_at_3_max value: 21.883837899231867 - type: nauc_map_at_3_std value: 6.615976792964795 - type: nauc_map_at_5_diff1 value: 24.09866390229764 - type: nauc_map_at_5_max value: 21.614008493220986 - type: nauc_map_at_5_std value: 7.272332396807288 - type: nauc_mrr_at_1000_diff1 value: 23.49190518969821 - type: nauc_mrr_at_1000_max value: 21.816535185868748 - type: nauc_mrr_at_1000_std value: 7.898426575861743 - type: nauc_mrr_at_100_diff1 value: 23.455942061154243 - type: nauc_mrr_at_100_max value: 21.80945301878854 - type: nauc_mrr_at_100_std value: 7.903289282168091 - type: nauc_mrr_at_10_diff1 value: 23.674951138068714 - type: nauc_mrr_at_10_max value: 21.969792385911845 - type: nauc_mrr_at_10_std value: 7.889585005426794 - type: nauc_mrr_at_1_diff1 value: 29.069568522388433 - type: nauc_mrr_at_1_max value: 19.942608291469913 - type: nauc_mrr_at_1_std value: 3.1283142332992635 - type: nauc_mrr_at_20_diff1 value: 23.45502400622297 - type: nauc_mrr_at_20_max value: 21.830527331051552 - type: nauc_mrr_at_20_std value: 7.994053361768913 - type: nauc_mrr_at_3_diff1 value: 24.982668301358444 - type: nauc_mrr_at_3_max value: 21.883837899231867 - type: nauc_mrr_at_3_std value: 6.615976792964795 - type: nauc_mrr_at_5_diff1 value: 24.09866390229764 - type: nauc_mrr_at_5_max value: 21.614008493220986 - type: nauc_mrr_at_5_std value: 7.272332396807288 - type: nauc_ndcg_at_1000_diff1 value: 21.92872678950541 - type: nauc_ndcg_at_1000_max value: 22.388970258338958 - type: nauc_ndcg_at_1000_std value: 9.807006541293186 - type: nauc_ndcg_at_100_diff1 value: 20.903304276761364 - type: nauc_ndcg_at_100_max value: 22.209897726716065 - type: nauc_ndcg_at_100_std value: 10.075543107880176 - type: nauc_ndcg_at_10_diff1 value: 21.508944950669097 - type: nauc_ndcg_at_10_max value: 22.709862035037514 - type: nauc_ndcg_at_10_std value: 10.00450608801698 - type: nauc_ndcg_at_1_diff1 value: 29.069568522388433 - type: nauc_ndcg_at_1_max value: 19.942608291469913 - type: nauc_ndcg_at_1_std value: 3.1283142332992635 - type: nauc_ndcg_at_20_diff1 value: 20.803145422787512 - type: nauc_ndcg_at_20_max value: 22.310429618526772 - type: nauc_ndcg_at_20_std value: 10.366058782551438 - type: nauc_ndcg_at_3_diff1 value: 23.913619145125207 - type: nauc_ndcg_at_3_max value: 22.441574203993245 - type: nauc_ndcg_at_3_std value: 7.691311158754716 - type: nauc_ndcg_at_5_diff1 value: 22.4840009470751 - type: nauc_ndcg_at_5_max value: 22.024641703222514 - type: nauc_ndcg_at_5_std value: 8.803747702599477 - type: nauc_precision_at_1000_diff1 value: 17.037870101460467 - type: nauc_precision_at_1000_max value: 42.30306938098229 - type: nauc_precision_at_1000_std value: 54.251307689225115 - type: nauc_precision_at_100_diff1 value: 12.076659360813839 - type: nauc_precision_at_100_max value: 23.254576247061777 - type: nauc_precision_at_100_std value: 17.80398606936446 - type: nauc_precision_at_10_diff1 value: 16.05902741145243 - type: nauc_precision_at_10_max value: 24.536458909415416 - type: nauc_precision_at_10_std value: 15.281423796153165 - type: nauc_precision_at_1_diff1 value: 29.069568522388433 - type: nauc_precision_at_1_max value: 19.942608291469913 - type: nauc_precision_at_1_std value: 3.1283142332992635 - type: nauc_precision_at_20_diff1 value: 13.618514792543918 - type: nauc_precision_at_20_max value: 23.357417389310335 - type: nauc_precision_at_20_std value: 16.6297119945886 - type: nauc_precision_at_3_diff1 value: 21.3058697791068 - type: nauc_precision_at_3_max value: 23.815582518552716 - type: nauc_precision_at_3_std value: 10.358496834243757 - type: nauc_precision_at_5_diff1 value: 18.54677328441144 - type: nauc_precision_at_5_max value: 22.987289739937104 - type: nauc_precision_at_5_std value: 12.591593599364307 - type: nauc_recall_at_1000_diff1 value: 17.03787010146031 - type: nauc_recall_at_1000_max value: 42.303069380982336 - type: nauc_recall_at_1000_std value: 54.25130768922508 - type: nauc_recall_at_100_diff1 value: 12.076659360813771 - type: nauc_recall_at_100_max value: 23.254576247061777 - type: nauc_recall_at_100_std value: 17.80398606936441 - type: nauc_recall_at_10_diff1 value: 16.05902741145243 - type: nauc_recall_at_10_max value: 24.536458909415412 - type: nauc_recall_at_10_std value: 15.281423796153174 - type: nauc_recall_at_1_diff1 value: 29.069568522388433 - type: nauc_recall_at_1_max value: 19.942608291469913 - type: nauc_recall_at_1_std value: 3.1283142332992635 - type: nauc_recall_at_20_diff1 value: 13.618514792543923 - type: nauc_recall_at_20_max value: 23.3574173893104 - type: nauc_recall_at_20_std value: 16.629711994588593 - type: nauc_recall_at_3_diff1 value: 21.305869779106818 - type: nauc_recall_at_3_max value: 23.815582518552738 - type: nauc_recall_at_3_std value: 10.358496834243747 - type: nauc_recall_at_5_diff1 value: 18.546773284411426 - type: nauc_recall_at_5_max value: 22.987289739937083 - type: nauc_recall_at_5_std value: 12.591593599364312 - type: ndcg_at_1 value: 15.479000000000001 - type: ndcg_at_10 value: 27.400000000000002 - type: ndcg_at_100 value: 33.382 - type: ndcg_at_1000 value: 36.691 - type: ndcg_at_20 value: 29.352 - type: ndcg_at_3 value: 22.759999999999998 - type: ndcg_at_5 value: 25.006 - type: precision_at_1 value: 15.479000000000001 - type: precision_at_10 value: 4.075 - type: precision_at_100 value: 0.7040000000000001 - type: precision_at_1000 value: 0.097 - type: precision_at_20 value: 2.426 - type: precision_at_3 value: 9.309000000000001 - type: precision_at_5 value: 6.683 - type: recall_at_1 value: 15.479000000000001 - type: recall_at_10 value: 40.745 - type: recall_at_100 value: 70.434 - type: recall_at_1000 value: 97.21499999999999 - type: recall_at_20 value: 48.526 - type: recall_at_3 value: 27.927999999999997 - type: recall_at_5 value: 33.415 task: type: Retrieval - dataset: config: fr name: MTEB OpusparcusPC (fr) revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a split: test type: GEM/opusparcus metrics: - type: cosine_accuracy value: 82.42506811989101 - type: cosine_accuracy_threshold value: 59.91581678390503 - type: cosine_ap value: 92.86245135331164 - type: cosine_f1 value: 88.0 - type: cosine_f1_threshold value: 59.91581678390503 - type: cosine_precision value: 82.76465441819772 - type: cosine_recall value: 93.94240317775571 - type: dot_accuracy value: 82.42506811989101 - type: dot_accuracy_threshold value: 59.91581678390503 - type: dot_ap value: 92.86245135331164 - type: dot_f1 value: 88.0 - type: dot_f1_threshold value: 59.91581678390503 - type: dot_precision value: 82.76465441819772 - type: dot_recall value: 93.94240317775571 - type: euclidean_accuracy value: 82.42506811989101 - type: euclidean_accuracy_threshold value: 89.53677415847778 - type: euclidean_ap value: 92.86245135331164 - type: euclidean_f1 value: 88.0 - type: euclidean_f1_threshold value: 89.53677415847778 - type: euclidean_precision value: 82.76465441819772 - type: euclidean_recall value: 93.94240317775571 - type: main_score value: 92.86245135331164 - type: manhattan_accuracy value: 82.28882833787466 - type: manhattan_accuracy_threshold value: 2091.843032836914 - type: manhattan_ap value: 92.84258977975239 - type: manhattan_f1 value: 87.88443616029824 - type: manhattan_f1_threshold value: 2091.843032836914 - type: manhattan_precision value: 82.79192273924495 - type: manhattan_recall value: 93.64448857994041 - type: max_ap value: 92.86245135331164 - type: max_f1 value: 88.0 - type: max_precision value: 82.79192273924495 - type: max_recall value: 93.94240317775571 - type: similarity_accuracy value: 82.42506811989101 - type: similarity_accuracy_threshold value: 59.91581678390503 - type: similarity_ap value: 92.86245135331164 - type: similarity_f1 value: 88.0 - type: similarity_f1_threshold value: 59.91581678390503 - type: similarity_precision value: 82.76465441819772 - type: similarity_recall value: 93.94240317775571 task: type: PairClassification - dataset: config: fr name: MTEB PawsXPairClassification (fr) revision: 8a04d940a42cd40658986fdd8e3da561533a3646 split: test type: google-research-datasets/paws-x metrics: - type: cosine_accuracy value: 61.050000000000004 - type: cosine_accuracy_threshold value: 98.11633825302124 - type: cosine_ap value: 60.385395031891264 - type: cosine_f1 value: 62.60428001450852 - type: cosine_f1_threshold value: 89.5184874534607 - type: cosine_precision value: 46.54800431499461 - type: cosine_recall value: 95.5703211517165 - type: dot_accuracy value: 61.050000000000004 - type: dot_accuracy_threshold value: 98.11633825302124 - type: dot_ap value: 60.37120015758097 - type: dot_f1 value: 62.60428001450852 - type: dot_f1_threshold value: 89.5184874534607 - type: dot_precision value: 46.54800431499461 - type: dot_recall value: 95.5703211517165 - type: euclidean_accuracy value: 61.050000000000004 - type: euclidean_accuracy_threshold value: 19.409586489200592 - type: euclidean_ap value: 60.385395031891264 - type: euclidean_f1 value: 62.60428001450852 - type: euclidean_f1_threshold value: 45.78540325164795 - type: euclidean_precision value: 46.54800431499461 - type: euclidean_recall value: 95.5703211517165 - type: main_score value: 60.61779879922903 - type: manhattan_accuracy value: 61.0 - type: manhattan_accuracy_threshold value: 455.7579040527344 - type: manhattan_ap value: 60.61779879922903 - type: manhattan_f1 value: 62.56448047162859 - type: manhattan_f1_threshold value: 1030.442714691162 - type: manhattan_precision value: 46.880176697956934 - type: manhattan_recall value: 94.01993355481729 - type: max_ap value: 60.61779879922903 - type: max_f1 value: 62.60428001450852 - type: max_precision value: 46.880176697956934 - type: max_recall value: 95.5703211517165 - type: similarity_accuracy value: 61.050000000000004 - type: similarity_accuracy_threshold value: 98.11633825302124 - type: similarity_ap value: 60.385395031891264 - type: similarity_f1 value: 62.60428001450852 - type: similarity_f1_threshold value: 89.5184874534607 - type: similarity_precision value: 46.54800431499461 - type: similarity_recall value: 95.5703211517165 task: type: PairClassification - dataset: config: default name: MTEB SICKFr revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a split: test type: Lajavaness/SICK-fr metrics: - type: cosine_pearson value: 81.36950266249254 - type: cosine_spearman value: 77.4306890341242 - type: euclidean_pearson value: 77.47472965962992 - type: euclidean_spearman value: 77.431649040768 - type: main_score value: 77.4306890341242 - type: manhattan_pearson value: 77.44468465408777 - type: manhattan_spearman value: 77.25503240591341 - type: pearson value: 81.36950266249254 - type: spearman value: 77.4306890341242 task: type: STS - dataset: config: fr name: MTEB STS22 (fr) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 81.48671869348665 - type: cosine_spearman value: 82.57396913836067 - type: euclidean_pearson value: 81.71206012505978 - type: euclidean_spearman value: 82.64978141643995 - type: main_score value: 82.57396913836067 - type: manhattan_pearson value: 82.22351352342636 - type: manhattan_spearman value: 83.04856400618516 - type: pearson value: 81.48671869348665 - type: spearman value: 82.57396913836067 task: type: STS - dataset: config: de-fr name: MTEB STS22 (de-fr) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 60.45418014677442 - type: cosine_spearman value: 64.66584550775643 - type: euclidean_pearson value: 60.042908719941124 - type: euclidean_spearman value: 64.66584550775643 - type: main_score value: 64.66584550775643 - type: manhattan_pearson value: 58.56106956676841 - type: manhattan_spearman value: 64.07469227945803 - type: pearson value: 60.45418014677442 - type: spearman value: 64.66584550775643 task: type: STS - dataset: config: fr-pl name: MTEB STS22 (fr-pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 83.39169883126554 - type: cosine_spearman value: 84.51542547285167 - type: euclidean_pearson value: 83.79128537281704 - type: euclidean_spearman value: 84.51542547285167 - type: main_score value: 84.51542547285167 - type: manhattan_pearson value: 82.282109060827 - type: manhattan_spearman value: 84.51542547285167 - type: pearson value: 83.39169883126554 - type: spearman value: 84.51542547285167 task: type: STS - dataset: config: fr name: MTEB STSBenchmarkMultilingualSTS (fr) revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c split: test type: mteb/stsb_multi_mt metrics: - type: cosine_pearson value: 81.23994381619546 - type: cosine_spearman value: 81.55923116292537 - type: euclidean_pearson value: 79.95507984767936 - type: euclidean_spearman value: 81.55780186152964 - type: main_score value: 81.55923116292537 - type: manhattan_pearson value: 79.85599761287939 - type: manhattan_spearman value: 81.47864706229939 - type: pearson value: 81.23994381619546 - type: spearman value: 81.55923116292537 task: type: STS - dataset: config: default name: MTEB SummEvalFr revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 split: test type: lyon-nlp/summarization-summeval-fr-p2p metrics: - type: cosine_pearson value: 32.15173983476866 - type: cosine_spearman value: 30.52126378106083 - type: dot_pearson value: 32.15174076737564 - type: dot_spearman value: 30.5195596882719 - type: main_score value: 30.52126378106083 - type: pearson value: 32.15173983476866 - type: spearman value: 30.52126378106083 task: type: Summarization - dataset: config: default name: MTEB SyntecReranking revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad split: test type: lyon-nlp/mteb-fr-reranking-syntec-s2p metrics: - type: main_score value: 87.26666666666667 - type: map value: 87.26666666666667 - type: mrr value: 87.26666666666667 - type: nAUC_map_diff1 value: 61.78899094665834 - type: nAUC_map_max value: -2.2012304949668993 - type: nAUC_map_std value: 37.30593860183502 - type: nAUC_mrr_diff1 value: 61.78899094665834 - type: nAUC_mrr_max value: -2.2012304949668993 - type: nAUC_mrr_std value: 37.30593860183502 task: type: Reranking - dataset: config: default name: MTEB SyntecRetrieval revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9 split: test type: lyon-nlp/mteb-fr-retrieval-syntec-s2p metrics: - type: main_score value: 82.43599999999999 - type: map_at_1 value: 64.0 - type: map_at_10 value: 76.996 - type: map_at_100 value: 77.013 - type: map_at_1000 value: 77.013 - type: map_at_20 value: 76.996 - type: map_at_3 value: 75.333 - type: map_at_5 value: 76.283 - type: mrr_at_1 value: 64.0 - type: mrr_at_10 value: 76.99563492063493 - type: mrr_at_100 value: 77.01349206349207 - type: mrr_at_1000 value: 77.01349206349207 - type: mrr_at_20 value: 76.99563492063493 - type: mrr_at_3 value: 75.33333333333334 - type: mrr_at_5 value: 76.28333333333335 - type: nauc_map_at_1000_diff1 value: 52.30753137123808 - type: nauc_map_at_1000_max value: 17.29347799374363 - type: nauc_map_at_1000_std value: -24.365180584916605 - type: nauc_map_at_100_diff1 value: 52.30753137123808 - type: nauc_map_at_100_max value: 17.29347799374363 - type: nauc_map_at_100_std value: -24.365180584916605 - type: nauc_map_at_10_diff1 value: 52.32585614998896 - type: nauc_map_at_10_max value: 17.261799514404697 - type: nauc_map_at_10_std value: -24.30981171513401 - type: nauc_map_at_1_diff1 value: 56.0129007536084 - type: nauc_map_at_1_max value: 18.50970749776472 - type: nauc_map_at_1_std value: -25.554029888874723 - type: nauc_map_at_20_diff1 value: 52.32585614998896 - type: nauc_map_at_20_max value: 17.261799514404697 - type: nauc_map_at_20_std value: -24.30981171513401 - type: nauc_map_at_3_diff1 value: 51.22942949153543 - type: nauc_map_at_3_max value: 15.992554731586273 - type: nauc_map_at_3_std value: -25.091588619375383 - type: nauc_map_at_5_diff1 value: 51.96750082957349 - type: nauc_map_at_5_max value: 17.158674012807587 - type: nauc_map_at_5_std value: -23.657966651531893 - type: nauc_mrr_at_1000_diff1 value: 52.30753137123808 - type: nauc_mrr_at_1000_max value: 17.29347799374363 - type: nauc_mrr_at_1000_std value: -24.365180584916605 - type: nauc_mrr_at_100_diff1 value: 52.30753137123808 - type: nauc_mrr_at_100_max value: 17.29347799374363 - type: nauc_mrr_at_100_std value: -24.365180584916605 - type: nauc_mrr_at_10_diff1 value: 52.32585614998896 - type: nauc_mrr_at_10_max value: 17.261799514404697 - type: nauc_mrr_at_10_std value: -24.30981171513401 - type: nauc_mrr_at_1_diff1 value: 56.0129007536084 - type: nauc_mrr_at_1_max value: 18.50970749776472 - type: nauc_mrr_at_1_std value: -25.554029888874723 - type: nauc_mrr_at_20_diff1 value: 52.32585614998896 - type: nauc_mrr_at_20_max value: 17.261799514404697 - type: nauc_mrr_at_20_std value: -24.30981171513401 - type: nauc_mrr_at_3_diff1 value: 51.22942949153543 - type: nauc_mrr_at_3_max value: 15.992554731586273 - type: nauc_mrr_at_3_std value: -25.091588619375383 - type: nauc_mrr_at_5_diff1 value: 51.96750082957349 - type: nauc_mrr_at_5_max value: 17.158674012807587 - type: nauc_mrr_at_5_std value: -23.657966651531893 - type: nauc_ndcg_at_1000_diff1 value: 52.25936013546259 - type: nauc_ndcg_at_1000_max value: 17.156377900614427 - type: nauc_ndcg_at_1000_std value: -23.860918956976775 - type: nauc_ndcg_at_100_diff1 value: 52.25936013546259 - type: nauc_ndcg_at_100_max value: 17.156377900614427 - type: nauc_ndcg_at_100_std value: -23.860918956976775 - type: nauc_ndcg_at_10_diff1 value: 52.48908784081352 - type: nauc_ndcg_at_10_max value: 16.761778191196626 - type: nauc_ndcg_at_10_std value: -23.1742676723163 - type: nauc_ndcg_at_1_diff1 value: 56.0129007536084 - type: nauc_ndcg_at_1_max value: 18.50970749776472 - type: nauc_ndcg_at_1_std value: -25.554029888874723 - type: nauc_ndcg_at_20_diff1 value: 52.48908784081352 - type: nauc_ndcg_at_20_max value: 16.761778191196626 - type: nauc_ndcg_at_20_std value: -23.1742676723163 - type: nauc_ndcg_at_3_diff1 value: 50.39571507644849 - type: nauc_ndcg_at_3_max value: 14.796226924105916 - type: nauc_ndcg_at_3_std value: -24.55184971150951 - type: nauc_ndcg_at_5_diff1 value: 51.764690566839796 - type: nauc_ndcg_at_5_max value: 17.064884477394884 - type: nauc_ndcg_at_5_std value: -21.11624960412319 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: .nan - type: nauc_precision_at_100_max value: .nan - type: nauc_precision_at_100_std value: .nan - type: nauc_precision_at_10_diff1 value: 72.22222222222277 - type: nauc_precision_at_10_max value: -17.133520074696808 - type: nauc_precision_at_10_std value: 35.80765639589114 - type: nauc_precision_at_1_diff1 value: 56.0129007536084 - type: nauc_precision_at_1_max value: 18.50970749776472 - type: nauc_precision_at_1_std value: -25.554029888874723 - type: nauc_precision_at_20_diff1 value: 72.22222222222277 - type: nauc_precision_at_20_max value: -17.133520074696808 - type: nauc_precision_at_20_std value: 35.80765639589114 - type: nauc_precision_at_3_diff1 value: 46.23716153127904 - type: nauc_precision_at_3_max value: 7.563025210083932 - type: nauc_precision_at_3_std value: -21.092436974790093 - type: nauc_precision_at_5_diff1 value: 51.618425147836945 - type: nauc_precision_at_5_max value: 16.923436041083008 - type: nauc_precision_at_5_std value: 5.765639589169112 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: .nan - type: nauc_recall_at_100_max value: .nan - type: nauc_recall_at_100_std value: .nan - type: nauc_recall_at_10_diff1 value: 72.22222222222202 - type: nauc_recall_at_10_max value: -17.133520074696147 - type: nauc_recall_at_10_std value: 35.80765639589109 - type: nauc_recall_at_1_diff1 value: 56.0129007536084 - type: nauc_recall_at_1_max value: 18.50970749776472 - type: nauc_recall_at_1_std value: -25.554029888874723 - type: nauc_recall_at_20_diff1 value: 72.22222222222202 - type: nauc_recall_at_20_max value: -17.133520074696147 - type: nauc_recall_at_20_std value: 35.80765639589109 - type: nauc_recall_at_3_diff1 value: 46.23716153127918 - type: nauc_recall_at_3_max value: 7.563025210084062 - type: nauc_recall_at_3_std value: -21.092436974789898 - type: nauc_recall_at_5_diff1 value: 51.618425147837044 - type: nauc_recall_at_5_max value: 16.923436041083242 - type: nauc_recall_at_5_std value: 5.765639589169263 - type: ndcg_at_1 value: 64.0 - type: ndcg_at_10 value: 82.43599999999999 - type: ndcg_at_100 value: 82.607 - type: ndcg_at_1000 value: 82.607 - type: ndcg_at_20 value: 82.43599999999999 - type: ndcg_at_3 value: 79.095 - type: ndcg_at_5 value: 80.774 - type: precision_at_1 value: 64.0 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.95 - type: precision_at_3 value: 30.0 - type: precision_at_5 value: 18.8 - type: recall_at_1 value: 64.0 - type: recall_at_10 value: 99.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 99.0 - type: recall_at_3 value: 90.0 - type: recall_at_5 value: 94.0 task: type: Retrieval - dataset: config: fra-fra name: MTEB XPQARetrieval (fr) revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f split: test type: jinaai/xpqa metrics: - type: main_score value: 62.190999999999995 - type: map_at_1 value: 35.412 - type: map_at_10 value: 55.372 - type: map_at_100 value: 56.835 - type: map_at_1000 value: 56.913000000000004 - type: map_at_20 value: 56.221 - type: map_at_3 value: 48.903 - type: map_at_5 value: 53.238 - type: mrr_at_1 value: 57.009345794392516 - type: mrr_at_10 value: 64.78569309343675 - type: mrr_at_100 value: 65.37729406210731 - type: mrr_at_1000 value: 65.40232200760255 - type: mrr_at_20 value: 65.19512187170714 - type: mrr_at_3 value: 62.305295950155745 - type: mrr_at_5 value: 63.97418780596347 - type: nauc_map_at_1000_diff1 value: 51.293436542919736 - type: nauc_map_at_1000_max value: 52.70558085897355 - type: nauc_map_at_1000_std value: 4.042307291430875 - type: nauc_map_at_100_diff1 value: 51.26892284346969 - type: nauc_map_at_100_max value: 52.68013316306771 - type: nauc_map_at_100_std value: 4.026915747351222 - type: nauc_map_at_10_diff1 value: 50.8543852249949 - type: nauc_map_at_10_max value: 52.15208348725869 - type: nauc_map_at_10_std value: 3.6915190933761437 - type: nauc_map_at_1_diff1 value: 59.961175322517725 - type: nauc_map_at_1_max value: 37.84020048887668 - type: nauc_map_at_1_std value: -1.716395538164829 - type: nauc_map_at_20_diff1 value: 51.07739560575918 - type: nauc_map_at_20_max value: 52.37861214759321 - type: nauc_map_at_20_std value: 3.6707917482294397 - type: nauc_map_at_3_diff1 value: 52.519227595940954 - type: nauc_map_at_3_max value: 48.64938894035591 - type: nauc_map_at_3_std value: 2.670992373225412 - type: nauc_map_at_5_diff1 value: 51.66705458189757 - type: nauc_map_at_5_max value: 51.74913250220439 - type: nauc_map_at_5_std value: 3.987564394588077 - type: nauc_mrr_at_1000_diff1 value: 58.90292049458316 - type: nauc_mrr_at_1000_max value: 59.02377527770008 - type: nauc_mrr_at_1000_std value: 6.15239522914937 - type: nauc_mrr_at_100_diff1 value: 58.88627703402866 - type: nauc_mrr_at_100_max value: 59.01733085707039 - type: nauc_mrr_at_100_std value: 6.149383764160973 - type: nauc_mrr_at_10_diff1 value: 58.787561655079315 - type: nauc_mrr_at_10_max value: 58.883901063919616 - type: nauc_mrr_at_10_std value: 5.955816839989 - type: nauc_mrr_at_1_diff1 value: 61.493169979051274 - type: nauc_mrr_at_1_max value: 60.26766809318437 - type: nauc_mrr_at_1_std value: 7.9345773661140555 - type: nauc_mrr_at_20_diff1 value: 58.88172676495632 - type: nauc_mrr_at_20_max value: 59.01063084619932 - type: nauc_mrr_at_20_std value: 5.999917023489485 - type: nauc_mrr_at_3_diff1 value: 59.328585273714765 - type: nauc_mrr_at_3_max value: 59.138843933099984 - type: nauc_mrr_at_3_std value: 5.867564048529799 - type: nauc_mrr_at_5_diff1 value: 59.01605585266293 - type: nauc_mrr_at_5_max value: 59.35576576264414 - type: nauc_mrr_at_5_std value: 6.4159398933971294 - type: nauc_ndcg_at_1000_diff1 value: 52.72831771372173 - type: nauc_ndcg_at_1000_max value: 55.00758519121888 - type: nauc_ndcg_at_1000_std value: 4.985669533881848 - type: nauc_ndcg_at_100_diff1 value: 52.108377732208176 - type: nauc_ndcg_at_100_max value: 54.48165097844046 - type: nauc_ndcg_at_100_std value: 4.90669931060551 - type: nauc_ndcg_at_10_diff1 value: 50.664291148529664 - type: nauc_ndcg_at_10_max value: 52.99267789451465 - type: nauc_ndcg_at_10_std value: 3.2476865951979432 - type: nauc_ndcg_at_1_diff1 value: 61.493169979051274 - type: nauc_ndcg_at_1_max value: 60.26766809318437 - type: nauc_ndcg_at_1_std value: 7.9345773661140555 - type: nauc_ndcg_at_20_diff1 value: 51.18525105808147 - type: nauc_ndcg_at_20_max value: 53.43688504608144 - type: nauc_ndcg_at_20_std value: 3.0898823820531667 - type: nauc_ndcg_at_3_diff1 value: 51.86574900383314 - type: nauc_ndcg_at_3_max value: 54.590246592806615 - type: nauc_ndcg_at_3_std value: 4.145862812422975 - type: nauc_ndcg_at_5_diff1 value: 52.02045236842261 - type: nauc_ndcg_at_5_max value: 53.32018698876075 - type: nauc_ndcg_at_5_std value: 4.253069053649545 - type: nauc_precision_at_1000_diff1 value: -15.302260566955942 - type: nauc_precision_at_1000_max value: 12.78016543871415 - type: nauc_precision_at_1000_std value: 9.650613541206308 - type: nauc_precision_at_100_diff1 value: -11.169900642295536 - type: nauc_precision_at_100_max value: 17.997775654873607 - type: nauc_precision_at_100_std value: 10.335855037587864 - type: nauc_precision_at_10_diff1 value: -0.7223213004392349 - type: nauc_precision_at_10_max value: 30.1027627113279 - type: nauc_precision_at_10_std value: 8.226673861581954 - type: nauc_precision_at_1_diff1 value: 61.493169979051274 - type: nauc_precision_at_1_max value: 60.26766809318437 - type: nauc_precision_at_1_std value: 7.9345773661140555 - type: nauc_precision_at_20_diff1 value: -4.815929448858574 - type: nauc_precision_at_20_max value: 25.356128631092655 - type: nauc_precision_at_20_std value: 7.647974758815793 - type: nauc_precision_at_3_diff1 value: 14.618447863791332 - type: nauc_precision_at_3_max value: 42.347601836456704 - type: nauc_precision_at_3_std value: 9.351508502457152 - type: nauc_precision_at_5_diff1 value: 6.989536536316584 - type: nauc_precision_at_5_max value: 37.43282182319603 - type: nauc_precision_at_5_std value: 10.294650747748632 - type: nauc_recall_at_1000_diff1 value: 66.00655448172738 - type: nauc_recall_at_1000_max value: 71.84347765996883 - type: nauc_recall_at_1000_std value: 50.90067212878784 - type: nauc_recall_at_100_diff1 value: 36.14296627142933 - type: nauc_recall_at_100_max value: 41.197429505920766 - type: nauc_recall_at_100_std value: 7.431041060310201 - type: nauc_recall_at_10_diff1 value: 37.65270595753883 - type: nauc_recall_at_10_max value: 41.691362683452276 - type: nauc_recall_at_10_std value: -2.3254949626448083 - type: nauc_recall_at_1_diff1 value: 59.961175322517725 - type: nauc_recall_at_1_max value: 37.84020048887668 - type: nauc_recall_at_1_std value: -1.716395538164829 - type: nauc_recall_at_20_diff1 value: 36.92285554147242 - type: nauc_recall_at_20_max value: 40.480804692339525 - type: nauc_recall_at_20_std value: -4.660293872779451 - type: nauc_recall_at_3_diff1 value: 47.84172346809966 - type: nauc_recall_at_3_max value: 45.05790681661395 - type: nauc_recall_at_3_std value: 0.48589911004729147 - type: nauc_recall_at_5_diff1 value: 43.57123230477339 - type: nauc_recall_at_5_max value: 45.95815692338621 - type: nauc_recall_at_5_std value: 2.026516305217224 - type: ndcg_at_1 value: 57.009 - type: ndcg_at_10 value: 62.190999999999995 - type: ndcg_at_100 value: 67.174 - type: ndcg_at_1000 value: 68.446 - type: ndcg_at_20 value: 64.348 - type: ndcg_at_3 value: 56.233999999999995 - type: ndcg_at_5 value: 58.709999999999994 - type: precision_at_1 value: 57.009 - type: precision_at_10 value: 14.673 - type: precision_at_100 value: 1.8950000000000002 - type: precision_at_1000 value: 0.20600000000000002 - type: precision_at_20 value: 8.091 - type: precision_at_3 value: 34.624 - type: precision_at_5 value: 25.394 - type: recall_at_1 value: 35.412 - type: recall_at_10 value: 72.214 - type: recall_at_100 value: 91.415 - type: recall_at_1000 value: 99.533 - type: recall_at_20 value: 79.103 - type: recall_at_3 value: 53.529 - type: recall_at_5 value: 63.62 task: type: Retrieval - dataset: config: eng-fra name: MTEB XPQARetrieval (eng-fra) revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f split: test type: jinaai/xpqa metrics: - type: main_score value: 31.380000000000003 - type: map_at_1 value: 11.257 - type: map_at_10 value: 24.596 - type: map_at_100 value: 27.267000000000003 - type: map_at_1000 value: 27.412999999999997 - type: map_at_20 value: 26.107999999999997 - type: map_at_3 value: 19.236 - type: map_at_5 value: 22.076999999999998 - type: mrr_at_1 value: 23.76502002670227 - type: mrr_at_10 value: 32.646120753597366 - type: mrr_at_100 value: 34.021717341570096 - type: mrr_at_1000 value: 34.08123584522526 - type: mrr_at_20 value: 33.488454614873945 - type: mrr_at_3 value: 29.439252336448607 - type: mrr_at_5 value: 30.97463284379172 - type: nauc_map_at_1000_diff1 value: 23.090590573188127 - type: nauc_map_at_1000_max value: 37.736493247159515 - type: nauc_map_at_1000_std value: 10.98069893040178 - type: nauc_map_at_100_diff1 value: 23.08559086307178 - type: nauc_map_at_100_max value: 37.72263314123226 - type: nauc_map_at_100_std value: 11.042922887319614 - type: nauc_map_at_10_diff1 value: 22.919253103936867 - type: nauc_map_at_10_max value: 37.11680228717991 - type: nauc_map_at_10_std value: 9.851990888901907 - type: nauc_map_at_1_diff1 value: 26.479314334323384 - type: nauc_map_at_1_max value: 24.606099049654016 - type: nauc_map_at_1_std value: 7.368843855661875 - type: nauc_map_at_20_diff1 value: 22.84865788594623 - type: nauc_map_at_20_max value: 37.35013174420624 - type: nauc_map_at_20_std value: 10.38206527259999 - type: nauc_map_at_3_diff1 value: 24.422040907804902 - type: nauc_map_at_3_max value: 34.1407580102983 - type: nauc_map_at_3_std value: 6.90072751192396 - type: nauc_map_at_5_diff1 value: 23.679285267333217 - type: nauc_map_at_5_max value: 36.69505551539262 - type: nauc_map_at_5_std value: 9.071400025204603 - type: nauc_mrr_at_1000_diff1 value: 23.91122464190796 - type: nauc_mrr_at_1000_max value: 38.00739859980611 - type: nauc_mrr_at_1000_std value: 12.603177305247423 - type: nauc_mrr_at_100_diff1 value: 23.926489219810712 - type: nauc_mrr_at_100_max value: 38.01653317102498 - type: nauc_mrr_at_100_std value: 12.631657383704397 - type: nauc_mrr_at_10_diff1 value: 23.793536028816924 - type: nauc_mrr_at_10_max value: 37.731699667898546 - type: nauc_mrr_at_10_std value: 12.519721615734111 - type: nauc_mrr_at_1_diff1 value: 26.560927789365497 - type: nauc_mrr_at_1_max value: 39.34339331908778 - type: nauc_mrr_at_1_std value: 11.755625469925857 - type: nauc_mrr_at_20_diff1 value: 23.785050335795756 - type: nauc_mrr_at_20_max value: 37.70507807708539 - type: nauc_mrr_at_20_std value: 12.401310290425641 - type: nauc_mrr_at_3_diff1 value: 24.760339690704274 - type: nauc_mrr_at_3_max value: 38.97081556411779 - type: nauc_mrr_at_3_std value: 12.403416856601224 - type: nauc_mrr_at_5_diff1 value: 24.16786185395756 - type: nauc_mrr_at_5_max value: 38.675901959087064 - type: nauc_mrr_at_5_std value: 12.328016386544244 - type: nauc_ndcg_at_1000_diff1 value: 22.575525759807498 - type: nauc_ndcg_at_1000_max value: 38.08756303764784 - type: nauc_ndcg_at_1000_std value: 12.993082901884351 - type: nauc_ndcg_at_100_diff1 value: 22.84247295232495 - type: nauc_ndcg_at_100_max value: 38.07376875349487 - type: nauc_ndcg_at_100_std value: 14.670272841790322 - type: nauc_ndcg_at_10_diff1 value: 21.851855665665028 - type: nauc_ndcg_at_10_max value: 36.30808033173574 - type: nauc_ndcg_at_10_std value: 10.754345146682587 - type: nauc_ndcg_at_1_diff1 value: 26.560927789365497 - type: nauc_ndcg_at_1_max value: 39.34339331908778 - type: nauc_ndcg_at_1_std value: 11.755625469925857 - type: nauc_ndcg_at_20_diff1 value: 21.85222563105362 - type: nauc_ndcg_at_20_max value: 36.49693582912162 - type: nauc_ndcg_at_20_std value: 11.462407172413222 - type: nauc_ndcg_at_3_diff1 value: 23.835148821074096 - type: nauc_ndcg_at_3_max value: 37.21286292761239 - type: nauc_ndcg_at_3_std value: 8.965675045214653 - type: nauc_ndcg_at_5_diff1 value: 22.94941035043304 - type: nauc_ndcg_at_5_max value: 37.116308712473725 - type: nauc_ndcg_at_5_std value: 9.96746473363745 - type: nauc_precision_at_1000_diff1 value: 4.391641883500156 - type: nauc_precision_at_1000_max value: 22.960724719570653 - type: nauc_precision_at_1000_std value: 9.90771833324347 - type: nauc_precision_at_100_diff1 value: 9.398103008957907 - type: nauc_precision_at_100_max value: 29.966107038070213 - type: nauc_precision_at_100_std value: 18.246515814298206 - type: nauc_precision_at_10_diff1 value: 14.642013509002073 - type: nauc_precision_at_10_max value: 39.865916483254914 - type: nauc_precision_at_10_std value: 16.389751433271922 - type: nauc_precision_at_1_diff1 value: 26.560927789365497 - type: nauc_precision_at_1_max value: 39.34339331908778 - type: nauc_precision_at_1_std value: 11.755625469925857 - type: nauc_precision_at_20_diff1 value: 12.328250607495741 - type: nauc_precision_at_20_max value: 36.609492322958076 - type: nauc_precision_at_20_std value: 16.186393097514785 - type: nauc_precision_at_3_diff1 value: 21.43869193024236 - type: nauc_precision_at_3_max value: 44.92920554318338 - type: nauc_precision_at_3_std value: 12.93524236487951 - type: nauc_precision_at_5_diff1 value: 17.980792540844075 - type: nauc_precision_at_5_max value: 44.67180132719046 - type: nauc_precision_at_5_std value: 15.44379773164089 - type: nauc_recall_at_1000_diff1 value: -18.599562189867928 - type: nauc_recall_at_1000_max value: -1.233438302856996 - type: nauc_recall_at_1000_std value: 60.504773500458754 - type: nauc_recall_at_100_diff1 value: 21.73131824226728 - type: nauc_recall_at_100_max value: 33.813071564297644 - type: nauc_recall_at_100_std value: 31.938349559054004 - type: nauc_recall_at_10_diff1 value: 17.11887766943705 - type: nauc_recall_at_10_max value: 28.89674920890047 - type: nauc_recall_at_10_std value: 7.773984628905876 - type: nauc_recall_at_1_diff1 value: 26.479314334323384 - type: nauc_recall_at_1_max value: 24.606099049654016 - type: nauc_recall_at_1_std value: 7.368843855661875 - type: nauc_recall_at_20_diff1 value: 17.295953047798886 - type: nauc_recall_at_20_max value: 28.434654095893304 - type: nauc_recall_at_20_std value: 9.427920198911856 - type: nauc_recall_at_3_diff1 value: 21.272960191663262 - type: nauc_recall_at_3_max value: 30.445386445037144 - type: nauc_recall_at_3_std value: 4.74984017701616 - type: nauc_recall_at_5_diff1 value: 19.423326866459472 - type: nauc_recall_at_5_max value: 32.51726362019113 - type: nauc_recall_at_5_std value: 7.7878756846006185 - type: ndcg_at_1 value: 23.765 - type: ndcg_at_10 value: 31.380000000000003 - type: ndcg_at_100 value: 41.426 - type: ndcg_at_1000 value: 44.168 - type: ndcg_at_20 value: 35.449000000000005 - type: ndcg_at_3 value: 24.845 - type: ndcg_at_5 value: 26.705000000000002 - type: precision_at_1 value: 23.765 - type: precision_at_10 value: 9.879999999999999 - type: precision_at_100 value: 1.865 - type: precision_at_1000 value: 0.22300000000000003 - type: precision_at_20 value: 6.449000000000001 - type: precision_at_3 value: 18.024 - type: precision_at_5 value: 14.472999999999999 - type: recall_at_1 value: 11.257 - type: recall_at_10 value: 42.345 - type: recall_at_100 value: 81.159 - type: recall_at_1000 value: 99.29 - type: recall_at_20 value: 54.989 - type: recall_at_3 value: 23.687 - type: recall_at_5 value: 30.823 task: type: Retrieval - dataset: config: fra-eng name: MTEB XPQARetrieval (fra-eng) revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f split: test type: jinaai/xpqa metrics: - type: main_score value: 56.635999999999996 - type: map_at_1 value: 31.4 - type: map_at_10 value: 50.056 - type: map_at_100 value: 51.663000000000004 - type: map_at_1000 value: 51.761 - type: map_at_20 value: 50.927 - type: map_at_3 value: 44.529999999999994 - type: map_at_5 value: 47.894 - type: mrr_at_1 value: 50.467289719626166 - type: mrr_at_10 value: 58.950823319982185 - type: mrr_at_100 value: 59.70354953666045 - type: mrr_at_1000 value: 59.734711425279755 - type: mrr_at_20 value: 59.40583228190128 - type: mrr_at_3 value: 56.875834445927886 - type: mrr_at_5 value: 58.21762349799728 - type: nauc_map_at_1000_diff1 value: 48.15648920144338 - type: nauc_map_at_1000_max value: 46.702778511311514 - type: nauc_map_at_1000_std value: -2.8986084054302346 - type: nauc_map_at_100_diff1 value: 48.07320124865117 - type: nauc_map_at_100_max value: 46.66060865870994 - type: nauc_map_at_100_std value: -2.898261800096327 - type: nauc_map_at_10_diff1 value: 48.02406723579077 - type: nauc_map_at_10_max value: 46.41839190788124 - type: nauc_map_at_10_std value: -3.2566313465012535 - type: nauc_map_at_1_diff1 value: 54.13992707642448 - type: nauc_map_at_1_max value: 34.04660478197247 - type: nauc_map_at_1_std value: -4.558752037228464 - type: nauc_map_at_20_diff1 value: 48.046199789059344 - type: nauc_map_at_20_max value: 46.720705370675915 - type: nauc_map_at_20_std value: -3.033997271677673 - type: nauc_map_at_3_diff1 value: 50.009783024030185 - type: nauc_map_at_3_max value: 42.35942421403899 - type: nauc_map_at_3_std value: -5.2762823138538515 - type: nauc_map_at_5_diff1 value: 48.8354268056224 - type: nauc_map_at_5_max value: 45.655213495860814 - type: nauc_map_at_5_std value: -3.7884263147862267 - type: nauc_mrr_at_1000_diff1 value: 53.36845252957243 - type: nauc_mrr_at_1000_max value: 51.36922708038703 - type: nauc_mrr_at_1000_std value: -1.4510764030641954 - type: nauc_mrr_at_100_diff1 value: 53.3537222476053 - type: nauc_mrr_at_100_max value: 51.38049608859829 - type: nauc_mrr_at_100_std value: -1.4191780664448506 - type: nauc_mrr_at_10_diff1 value: 53.305802521069 - type: nauc_mrr_at_10_max value: 51.21960893720018 - type: nauc_mrr_at_10_std value: -1.6724093244930498 - type: nauc_mrr_at_1_diff1 value: 55.70120557955961 - type: nauc_mrr_at_1_max value: 53.01658211876319 - type: nauc_mrr_at_1_std value: -0.6423359202704497 - type: nauc_mrr_at_20_diff1 value: 53.34768541161141 - type: nauc_mrr_at_20_max value: 51.352620113317805 - type: nauc_mrr_at_20_std value: -1.5006800933364013 - type: nauc_mrr_at_3_diff1 value: 53.39969881700113 - type: nauc_mrr_at_3_max value: 50.89022404206973 - type: nauc_mrr_at_3_std value: -3.1275962557855412 - type: nauc_mrr_at_5_diff1 value: 53.6906061507349 - type: nauc_mrr_at_5_max value: 51.45261103925232 - type: nauc_mrr_at_5_std value: -1.7795696130396883 - type: nauc_ndcg_at_1000_diff1 value: 48.95637773496826 - type: nauc_ndcg_at_1000_max value: 48.197622067566826 - type: nauc_ndcg_at_1000_std value: -1.4607313404789106 - type: nauc_ndcg_at_100_diff1 value: 47.71577524982021 - type: nauc_ndcg_at_100_max value: 47.883023532341504 - type: nauc_ndcg_at_100_std value: -0.6132109059243465 - type: nauc_ndcg_at_10_diff1 value: 47.5329600424363 - type: nauc_ndcg_at_10_max value: 47.498459285878575 - type: nauc_ndcg_at_10_std value: -2.330121342823272 - type: nauc_ndcg_at_1_diff1 value: 55.70120557955961 - type: nauc_ndcg_at_1_max value: 53.01658211876319 - type: nauc_ndcg_at_1_std value: -0.6423359202704497 - type: nauc_ndcg_at_20_diff1 value: 47.6173989193167 - type: nauc_ndcg_at_20_max value: 48.19865615901621 - type: nauc_ndcg_at_20_std value: -1.6128175051145877 - type: nauc_ndcg_at_3_diff1 value: 48.78930092666264 - type: nauc_ndcg_at_3_max value: 46.4431323615495 - type: nauc_ndcg_at_3_std value: -5.431496363976204 - type: nauc_ndcg_at_5_diff1 value: 49.11424543999915 - type: nauc_ndcg_at_5_max value: 47.05648749366126 - type: nauc_ndcg_at_5_std value: -3.330885962532834 - type: nauc_precision_at_1000_diff1 value: -10.880765837183755 - type: nauc_precision_at_1000_max value: 8.572817422349692 - type: nauc_precision_at_1000_std value: 4.766982235965037 - type: nauc_precision_at_100_diff1 value: -8.679642859295267 - type: nauc_precision_at_100_max value: 13.715180395886897 - type: nauc_precision_at_100_std value: 6.946301090207475 - type: nauc_precision_at_10_diff1 value: 4.944045819175594 - type: nauc_precision_at_10_max value: 30.760105361109925 - type: nauc_precision_at_10_std value: 3.6068920141401626 - type: nauc_precision_at_1_diff1 value: 55.70120557955961 - type: nauc_precision_at_1_max value: 53.01658211876319 - type: nauc_precision_at_1_std value: -0.6423359202704497 - type: nauc_precision_at_20_diff1 value: 0.8043591939583385 - type: nauc_precision_at_20_max value: 26.360434462685422 - type: nauc_precision_at_20_std value: 4.739891658844582 - type: nauc_precision_at_3_diff1 value: 19.013124811719553 - type: nauc_precision_at_3_max value: 38.42804762790048 - type: nauc_precision_at_3_std value: -1.4085959010900053 - type: nauc_precision_at_5_diff1 value: 12.360123599205414 - type: nauc_precision_at_5_max value: 37.08361417845578 - type: nauc_precision_at_5_std value: 1.9104788050916797 - type: nauc_recall_at_1000_diff1 value: 64.46395887603528 - type: nauc_recall_at_1000_max value: 25.40689664838346 - type: nauc_recall_at_1000_std value: 64.91673770650863 - type: nauc_recall_at_100_diff1 value: 23.04629413894431 - type: nauc_recall_at_100_max value: 37.70267898773106 - type: nauc_recall_at_100_std value: 19.483375935785805 - type: nauc_recall_at_10_diff1 value: 37.89470563650895 - type: nauc_recall_at_10_max value: 41.88446616509962 - type: nauc_recall_at_10_std value: -0.5968285599827128 - type: nauc_recall_at_1_diff1 value: 54.13992707642448 - type: nauc_recall_at_1_max value: 34.04660478197247 - type: nauc_recall_at_1_std value: -4.558752037228464 - type: nauc_recall_at_20_diff1 value: 36.41725409411871 - type: nauc_recall_at_20_max value: 43.570833102022796 - type: nauc_recall_at_20_std value: 2.4475141353956724 - type: nauc_recall_at_3_diff1 value: 44.46469511434876 - type: nauc_recall_at_3_max value: 36.60941837529587 - type: nauc_recall_at_3_std value: -8.466344004251715 - type: nauc_recall_at_5_diff1 value: 43.140961160644444 - type: nauc_recall_at_5_max value: 42.12923427424881 - type: nauc_recall_at_5_std value: -3.2514274060186428 - type: ndcg_at_1 value: 50.467 - type: ndcg_at_10 value: 56.635999999999996 - type: ndcg_at_100 value: 62.575 - type: ndcg_at_1000 value: 64.153 - type: ndcg_at_20 value: 58.909 - type: ndcg_at_3 value: 51.636 - type: ndcg_at_5 value: 53.252 - type: precision_at_1 value: 50.467 - type: precision_at_10 value: 13.458 - type: precision_at_100 value: 1.8530000000000002 - type: precision_at_1000 value: 0.20600000000000002 - type: precision_at_20 value: 7.582999999999999 - type: precision_at_3 value: 31.865 - type: precision_at_5 value: 22.884 - type: recall_at_1 value: 31.4 - type: recall_at_10 value: 66.19 - type: recall_at_100 value: 89.577 - type: recall_at_1000 value: 99.695 - type: recall_at_20 value: 73.213 - type: recall_at_3 value: 50.699000000000005 - type: recall_at_5 value: 58.158 task: type: Retrieval - dataset: config: default name: MTEB AllegroReviews revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6 split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 49.22465208747514 - type: f1 value: 35.68158330115517 - type: f1_weighted value: 44.81425765760541 - type: main_score value: 49.22465208747514 task: type: Classification - dataset: config: default name: MTEB ArguAna-PL revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 split: test type: clarin-knext/arguana-pl metrics: - type: main_score value: 49.668 - type: map_at_1 value: 24.751 - type: map_at_10 value: 40.36 - type: map_at_100 value: 41.368 - type: map_at_1000 value: 41.379 - type: map_at_20 value: 41.134 - type: map_at_3 value: 34.945 - type: map_at_5 value: 38.043 - type: mrr_at_1 value: 25.03556187766714 - type: mrr_at_10 value: 40.47856126803494 - type: mrr_at_100 value: 41.49280025917654 - type: mrr_at_1000 value: 41.50319481040459 - type: mrr_at_20 value: 41.25788030596975 - type: mrr_at_3 value: 35.0521574205784 - type: mrr_at_5 value: 38.167377904219954 - type: nauc_map_at_1000_diff1 value: 7.731653729111241 - type: nauc_map_at_1000_max value: -6.3011371446014115 - type: nauc_map_at_1000_std value: -6.06100995003556 - type: nauc_map_at_100_diff1 value: 7.740664698795466 - type: nauc_map_at_100_max value: -6.278576653918305 - type: nauc_map_at_100_std value: -6.048854855804748 - type: nauc_map_at_10_diff1 value: 7.58994360921921 - type: nauc_map_at_10_max value: -6.486918896565689 - type: nauc_map_at_10_std value: -6.590603504257126 - type: nauc_map_at_1_diff1 value: 10.018749983163797 - type: nauc_map_at_1_max value: -9.286741407015537 - type: nauc_map_at_1_std value: -6.604729499204554 - type: nauc_map_at_20_diff1 value: 7.706256252764164 - type: nauc_map_at_20_max value: -6.168914547814974 - type: nauc_map_at_20_std value: -6.083566639755691 - type: nauc_map_at_3_diff1 value: 7.033893231381659 - type: nauc_map_at_3_max value: -6.945660103296161 - type: nauc_map_at_3_std value: -6.0565345896842135 - type: nauc_map_at_5_diff1 value: 7.205099657249722 - type: nauc_map_at_5_max value: -6.776921990255051 - type: nauc_map_at_5_std value: -5.907533989245036 - type: nauc_mrr_at_1000_diff1 value: 6.668270267618491 - type: nauc_mrr_at_1000_max value: -6.803645974646868 - type: nauc_mrr_at_1000_std value: -6.110358020715999 - type: nauc_mrr_at_100_diff1 value: 6.677624675636143 - type: nauc_mrr_at_100_max value: -6.78097136036329 - type: nauc_mrr_at_100_std value: -6.098217879471153 - type: nauc_mrr_at_10_diff1 value: 6.468832159598689 - type: nauc_mrr_at_10_max value: -7.0315355572474925 - type: nauc_mrr_at_10_std value: -6.601932672455336 - type: nauc_mrr_at_1_diff1 value: 9.07223439791323 - type: nauc_mrr_at_1_max value: -9.264510377291506 - type: nauc_mrr_at_1_std value: -6.764808343700734 - type: nauc_mrr_at_20_diff1 value: 6.65302226067872 - type: nauc_mrr_at_20_max value: -6.666040499900585 - type: nauc_mrr_at_20_std value: -6.132351790646591 - type: nauc_mrr_at_3_diff1 value: 5.824560443333769 - type: nauc_mrr_at_3_max value: -7.573354775954246 - type: nauc_mrr_at_3_std value: -6.106371480222379 - type: nauc_mrr_at_5_diff1 value: 6.209821468263958 - type: nauc_mrr_at_5_max value: -7.271141379552105 - type: nauc_mrr_at_5_std value: -5.938481110932588 - type: nauc_ndcg_at_1000_diff1 value: 7.773930949495924 - type: nauc_ndcg_at_1000_max value: -5.1914799213542535 - type: nauc_ndcg_at_1000_std value: -5.443963700763181 - type: nauc_ndcg_at_100_diff1 value: 8.057028087355645 - type: nauc_ndcg_at_100_max value: -4.531668964685114 - type: nauc_ndcg_at_100_std value: -5.043531367158232 - type: nauc_ndcg_at_10_diff1 value: 7.464635855577513 - type: nauc_ndcg_at_10_max value: -4.878234464633695 - type: nauc_ndcg_at_10_std value: -7.040243622992924 - type: nauc_ndcg_at_1_diff1 value: 10.018749983163797 - type: nauc_ndcg_at_1_max value: -9.286741407015537 - type: nauc_ndcg_at_1_std value: -6.604729499204554 - type: nauc_ndcg_at_20_diff1 value: 7.927592870050634 - type: nauc_ndcg_at_20_max value: -3.5850025129078804 - type: nauc_ndcg_at_20_std value: -5.171152516248472 - type: nauc_ndcg_at_3_diff1 value: 6.2883775843899485 - type: nauc_ndcg_at_3_max value: -6.088799255371655 - type: nauc_ndcg_at_3_std value: -5.718514280311179 - type: nauc_ndcg_at_5_diff1 value: 6.560041121192067 - type: nauc_ndcg_at_5_max value: -5.667390479730649 - type: nauc_ndcg_at_5_std value: -5.345467266005971 - type: nauc_precision_at_1000_diff1 value: 3.3584681799320566 - type: nauc_precision_at_1000_max value: 27.67410378535401 - type: nauc_precision_at_1000_std value: 73.59018487762006 - type: nauc_precision_at_100_diff1 value: 31.86229567780328 - type: nauc_precision_at_100_max value: 57.759019425342615 - type: nauc_precision_at_100_std value: 45.17932914356757 - type: nauc_precision_at_10_diff1 value: 7.59135628113755 - type: nauc_precision_at_10_max value: 3.3516129835437254 - type: nauc_precision_at_10_std value: -9.981248425456624 - type: nauc_precision_at_1_diff1 value: 10.018749983163797 - type: nauc_precision_at_1_max value: -9.286741407015537 - type: nauc_precision_at_1_std value: -6.604729499204554 - type: nauc_precision_at_20_diff1 value: 12.340895595423683 - type: nauc_precision_at_20_max value: 22.834947429467178 - type: nauc_precision_at_20_std value: 5.3105422687851425 - type: nauc_precision_at_3_diff1 value: 4.279842180460012 - type: nauc_precision_at_3_max value: -3.6828818164493162 - type: nauc_precision_at_3_std value: -4.735859463411824 - type: nauc_precision_at_5_diff1 value: 4.654912773566626 - type: nauc_precision_at_5_max value: -2.0537304325752452 - type: nauc_precision_at_5_std value: -3.419667795061248 - type: nauc_recall_at_1000_diff1 value: 3.358468179927671 - type: nauc_recall_at_1000_max value: 27.674103785350603 - type: nauc_recall_at_1000_std value: 73.59018487761793 - type: nauc_recall_at_100_diff1 value: 31.862295677802706 - type: nauc_recall_at_100_max value: 57.75901942534214 - type: nauc_recall_at_100_std value: 45.17932914356684 - type: nauc_recall_at_10_diff1 value: 7.591356281137633 - type: nauc_recall_at_10_max value: 3.351612983543776 - type: nauc_recall_at_10_std value: -9.981248425456481 - type: nauc_recall_at_1_diff1 value: 10.018749983163797 - type: nauc_recall_at_1_max value: -9.286741407015537 - type: nauc_recall_at_1_std value: -6.604729499204554 - type: nauc_recall_at_20_diff1 value: 12.340895595423826 - type: nauc_recall_at_20_max value: 22.834947429467274 - type: nauc_recall_at_20_std value: 5.310542268785199 - type: nauc_recall_at_3_diff1 value: 4.279842180460059 - type: nauc_recall_at_3_max value: -3.682881816449298 - type: nauc_recall_at_3_std value: -4.735859463411806 - type: nauc_recall_at_5_diff1 value: 4.6549127735666795 - type: nauc_recall_at_5_max value: -2.0537304325752013 - type: nauc_recall_at_5_std value: -3.419667795061247 - type: ndcg_at_1 value: 24.751 - type: ndcg_at_10 value: 49.668 - type: ndcg_at_100 value: 53.867 - type: ndcg_at_1000 value: 54.102 - type: ndcg_at_20 value: 52.34799999999999 - type: ndcg_at_3 value: 38.451 - type: ndcg_at_5 value: 44.069 - type: precision_at_1 value: 24.751 - type: precision_at_10 value: 7.965999999999999 - type: precision_at_100 value: 0.9780000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.4990000000000006 - type: precision_at_3 value: 16.216 - type: precision_at_5 value: 12.475 - type: recall_at_1 value: 24.751 - type: recall_at_10 value: 79.659 - type: recall_at_100 value: 97.795 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_20 value: 89.972 - type: recall_at_3 value: 48.649 - type: recall_at_5 value: 62.376 task: type: Retrieval - dataset: config: default name: MTEB CBD revision: 36ddb419bcffe6a5374c3891957912892916f28d split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 62.85999999999999 - type: ap value: 18.744713128220596 - type: ap_weighted value: 18.744713128220596 - type: f1 value: 53.296341093646696 - type: f1_weighted value: 68.61665005768842 - type: main_score value: 62.85999999999999 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d split: test type: PL-MTEB/cdsce-pairclassification metrics: - type: cosine_accuracy value: 87.3 - type: cosine_accuracy_threshold value: 95.8031415939331 - type: cosine_ap value: 69.77225668650979 - type: cosine_f1 value: 63.04909560723513 - type: cosine_f1_threshold value: 86.9259238243103 - type: cosine_precision value: 61.92893401015228 - type: cosine_recall value: 64.21052631578948 - type: dot_accuracy value: 87.3 - type: dot_accuracy_threshold value: 95.8031415939331 - type: dot_ap value: 69.77225668650979 - type: dot_f1 value: 63.04909560723513 - type: dot_f1_threshold value: 86.9259238243103 - type: dot_precision value: 61.92893401015228 - type: dot_recall value: 64.21052631578948 - type: euclidean_accuracy value: 87.3 - type: euclidean_accuracy_threshold value: 28.971904516220093 - type: euclidean_ap value: 69.77225668650979 - type: euclidean_f1 value: 63.04909560723513 - type: euclidean_f1_threshold value: 51.135218143463135 - type: euclidean_precision value: 61.92893401015228 - type: euclidean_recall value: 64.21052631578948 - type: main_score value: 70.04616767691698 - type: manhattan_accuracy value: 87.5 - type: manhattan_accuracy_threshold value: 790.4520988464355 - type: manhattan_ap value: 70.04616767691698 - type: manhattan_f1 value: 63.54166666666667 - type: manhattan_f1_threshold value: 1195.075511932373 - type: manhattan_precision value: 62.88659793814433 - type: manhattan_recall value: 64.21052631578948 - type: max_ap value: 70.04616767691698 - type: max_f1 value: 63.54166666666667 - type: max_precision value: 62.88659793814433 - type: max_recall value: 64.21052631578948 - type: similarity_accuracy value: 87.3 - type: similarity_accuracy_threshold value: 95.8031415939331 - type: similarity_ap value: 69.77225668650979 - type: similarity_f1 value: 63.04909560723513 - type: similarity_f1_threshold value: 86.9259238243103 - type: similarity_precision value: 61.92893401015228 - type: similarity_recall value: 64.21052631578948 task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd split: test type: PL-MTEB/cdscr-sts metrics: - type: cosine_pearson value: 90.1467539156439 - type: cosine_spearman value: 90.37983178422222 - type: euclidean_pearson value: 87.54100647769168 - type: euclidean_spearman value: 90.37983178422222 - type: main_score value: 90.37983178422222 - type: manhattan_pearson value: 87.6231001602879 - type: manhattan_spearman value: 90.52798044659546 - type: pearson value: 90.1467539156439 - type: spearman value: 90.37983178422222 task: type: STS - dataset: config: default name: MTEB DBPedia-PL revision: 76afe41d9af165cc40999fcaa92312b8b012064a split: test type: clarin-knext/dbpedia-pl metrics: - type: main_score value: 24.287 - type: map_at_1 value: 5.225 - type: map_at_10 value: 10.774000000000001 - type: map_at_100 value: 14.748 - type: map_at_1000 value: 15.836 - type: map_at_20 value: 12.27 - type: map_at_3 value: 7.724 - type: map_at_5 value: 9.246 - type: mrr_at_1 value: 39.25 - type: mrr_at_10 value: 50.17480158730157 - type: mrr_at_100 value: 50.8519822068327 - type: mrr_at_1000 value: 50.879556078064134 - type: mrr_at_20 value: 50.58405713438607 - type: mrr_at_3 value: 47.250000000000014 - type: mrr_at_5 value: 49.175000000000004 - type: nauc_map_at_1000_diff1 value: 20.045024346779645 - type: nauc_map_at_1000_max value: 30.337666854953092 - type: nauc_map_at_1000_std value: 26.557075239939543 - type: nauc_map_at_100_diff1 value: 19.9252316411722 - type: nauc_map_at_100_max value: 28.226642852584742 - type: nauc_map_at_100_std value: 22.914021046648696 - type: nauc_map_at_10_diff1 value: 26.566241524936572 - type: nauc_map_at_10_max value: 21.748824204804716 - type: nauc_map_at_10_std value: 8.638991435098609 - type: nauc_map_at_1_diff1 value: 36.393726837054814 - type: nauc_map_at_1_max value: 16.477605805271057 - type: nauc_map_at_1_std value: 0.5753087963352366 - type: nauc_map_at_20_diff1 value: 23.401102079878182 - type: nauc_map_at_20_max value: 23.065898894709402 - type: nauc_map_at_20_std value: 13.423353653712915 - type: nauc_map_at_3_diff1 value: 30.91796624589218 - type: nauc_map_at_3_max value: 16.45545569680709 - type: nauc_map_at_3_std value: 0.6366650378026352 - type: nauc_map_at_5_diff1 value: 28.80351568065496 - type: nauc_map_at_5_max value: 19.084673921482615 - type: nauc_map_at_5_std value: 4.139131073579019 - type: nauc_mrr_at_1000_diff1 value: 20.16962170000775 - type: nauc_mrr_at_1000_max value: 38.15430502575843 - type: nauc_mrr_at_1000_std value: 32.440668939436264 - type: nauc_mrr_at_100_diff1 value: 20.15910246738786 - type: nauc_mrr_at_100_max value: 38.15774234365609 - type: nauc_mrr_at_100_std value: 32.44872216192449 - type: nauc_mrr_at_10_diff1 value: 20.049148781541064 - type: nauc_mrr_at_10_max value: 37.97309789914626 - type: nauc_mrr_at_10_std value: 32.418004097599166 - type: nauc_mrr_at_1_diff1 value: 23.9620307539266 - type: nauc_mrr_at_1_max value: 33.83610178961887 - type: nauc_mrr_at_1_std value: 28.58448609419965 - type: nauc_mrr_at_20_diff1 value: 20.06080688488365 - type: nauc_mrr_at_20_max value: 38.06868785040665 - type: nauc_mrr_at_20_std value: 32.22384606323392 - type: nauc_mrr_at_3_diff1 value: 20.71531876285696 - type: nauc_mrr_at_3_max value: 37.54485901132759 - type: nauc_mrr_at_3_std value: 31.77679862739285 - type: nauc_mrr_at_5_diff1 value: 20.003442037824826 - type: nauc_mrr_at_5_max value: 38.37916584335752 - type: nauc_mrr_at_5_std value: 32.091488996264154 - type: nauc_ndcg_at_1000_diff1 value: 18.932875904116358 - type: nauc_ndcg_at_1000_max value: 37.69461269411873 - type: nauc_ndcg_at_1000_std value: 40.49355007241307 - type: nauc_ndcg_at_100_diff1 value: 18.62868572859794 - type: nauc_ndcg_at_100_max value: 32.5251773358776 - type: nauc_ndcg_at_100_std value: 34.17298333080795 - type: nauc_ndcg_at_10_diff1 value: 21.33571858413017 - type: nauc_ndcg_at_10_max value: 32.95411878498034 - type: nauc_ndcg_at_10_std value: 30.26350297086653 - type: nauc_ndcg_at_1_diff1 value: 25.698485822118034 - type: nauc_ndcg_at_1_max value: 27.751178850383283 - type: nauc_ndcg_at_1_std value: 25.499914018590097 - type: nauc_ndcg_at_20_diff1 value: 20.564620650130962 - type: nauc_ndcg_at_20_max value: 29.636273615266877 - type: nauc_ndcg_at_20_std value: 29.0657094246048 - type: nauc_ndcg_at_3_diff1 value: 21.331262925027644 - type: nauc_ndcg_at_3_max value: 32.3211075722955 - type: nauc_ndcg_at_3_std value: 29.30569912466711 - type: nauc_ndcg_at_5_diff1 value: 20.906573479242933 - type: nauc_ndcg_at_5_max value: 33.817640032948255 - type: nauc_ndcg_at_5_std value: 30.210587907489593 - type: nauc_precision_at_1000_diff1 value: 7.9336700303824905 - type: nauc_precision_at_1000_max value: 25.382181071880133 - type: nauc_precision_at_1000_std value: 45.03790857159645 - type: nauc_precision_at_100_diff1 value: -2.1616719372797286 - type: nauc_precision_at_100_max value: 38.41562489705835 - type: nauc_precision_at_100_std value: 51.0132959449221 - type: nauc_precision_at_10_diff1 value: 2.3699655796458936 - type: nauc_precision_at_10_max value: 38.87889003229129 - type: nauc_precision_at_10_std value: 43.071785955076145 - type: nauc_precision_at_1_diff1 value: 23.9620307539266 - type: nauc_precision_at_1_max value: 33.83610178961887 - type: nauc_precision_at_1_std value: 28.58448609419965 - type: nauc_precision_at_20_diff1 value: -0.5466417961649375 - type: nauc_precision_at_20_max value: 36.55638995946497 - type: nauc_precision_at_20_std value: 46.90182951874849 - type: nauc_precision_at_3_diff1 value: 9.180998281598255 - type: nauc_precision_at_3_max value: 35.97368107639076 - type: nauc_precision_at_3_std value: 34.362776108183525 - type: nauc_precision_at_5_diff1 value: 6.188700805809966 - type: nauc_precision_at_5_max value: 39.69905715436714 - type: nauc_precision_at_5_std value: 37.630912034924016 - type: nauc_recall_at_1000_diff1 value: 12.957700393477442 - type: nauc_recall_at_1000_max value: 30.999439787327205 - type: nauc_recall_at_1000_std value: 39.191755156518575 - type: nauc_recall_at_100_diff1 value: 12.761105551850163 - type: nauc_recall_at_100_max value: 26.695898719215045 - type: nauc_recall_at_100_std value: 29.150806165495208 - type: nauc_recall_at_10_diff1 value: 19.097397019523825 - type: nauc_recall_at_10_max value: 18.259583702998956 - type: nauc_recall_at_10_std value: 8.897590380469557 - type: nauc_recall_at_1_diff1 value: 36.393726837054814 - type: nauc_recall_at_1_max value: 16.477605805271057 - type: nauc_recall_at_1_std value: 0.5753087963352366 - type: nauc_recall_at_20_diff1 value: 14.751462451918885 - type: nauc_recall_at_20_max value: 17.17387812389538 - type: nauc_recall_at_20_std value: 11.686450060418395 - type: nauc_recall_at_3_diff1 value: 28.2693968902148 - type: nauc_recall_at_3_max value: 15.503661857890341 - type: nauc_recall_at_3_std value: -0.6006615114775526 - type: nauc_recall_at_5_diff1 value: 21.69553199450905 - type: nauc_recall_at_5_max value: 16.68339699974409 - type: nauc_recall_at_5_std value: 4.201309425242677 - type: ndcg_at_1 value: 29.375 - type: ndcg_at_10 value: 24.287 - type: ndcg_at_100 value: 28.457 - type: ndcg_at_1000 value: 35.412 - type: ndcg_at_20 value: 24.189 - type: ndcg_at_3 value: 25.813000000000002 - type: ndcg_at_5 value: 25.374999999999996 - type: precision_at_1 value: 39.25 - type: precision_at_10 value: 19.6 - type: precision_at_100 value: 6.2700000000000005 - type: precision_at_1000 value: 1.452 - type: precision_at_20 value: 14.499999999999998 - type: precision_at_3 value: 29.083 - type: precision_at_5 value: 25.75 - type: recall_at_1 value: 5.225 - type: recall_at_10 value: 16.258 - type: recall_at_100 value: 35.569 - type: recall_at_1000 value: 57.958 - type: recall_at_20 value: 21.178 - type: recall_at_3 value: 8.866999999999999 - type: recall_at_5 value: 12.404 task: type: Retrieval - dataset: config: default name: MTEB 8TagsClustering revision: 78b962b130c6690659c65abf67bf1c2f030606b6 split: test type: PL-MTEB/8tags-clustering metrics: - type: main_score value: 37.96267113583295 - type: v_measure value: 37.96267113583295 - type: v_measure_std value: 2.6597621214046576 task: type: Clustering - dataset: config: default name: MTEB FiQA-PL revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e split: test type: clarin-knext/fiqa-pl metrics: - type: main_score value: 24.374000000000002 - type: map_at_1 value: 11.362 - type: map_at_10 value: 18.464 - type: map_at_100 value: 19.791 - type: map_at_1000 value: 19.994 - type: map_at_20 value: 19.156000000000002 - type: map_at_3 value: 15.937000000000001 - type: map_at_5 value: 17.127 - type: mrr_at_1 value: 22.376543209876544 - type: mrr_at_10 value: 30.046724965706435 - type: mrr_at_100 value: 30.99706976191228 - type: mrr_at_1000 value: 31.076490053822308 - type: mrr_at_20 value: 30.59052580100912 - type: mrr_at_3 value: 27.854938271604944 - type: mrr_at_5 value: 28.912037037037035 - type: nauc_map_at_1000_diff1 value: 34.07557471766689 - type: nauc_map_at_1000_max value: 24.91982727448087 - type: nauc_map_at_1000_std value: 12.494927606505051 - type: nauc_map_at_100_diff1 value: 34.06635556229055 - type: nauc_map_at_100_max value: 24.777935848367225 - type: nauc_map_at_100_std value: 12.362066428153456 - type: nauc_map_at_10_diff1 value: 34.3306140967635 - type: nauc_map_at_10_max value: 24.086194195608087 - type: nauc_map_at_10_std value: 11.127465863787245 - type: nauc_map_at_1_diff1 value: 38.942215866162314 - type: nauc_map_at_1_max value: 23.63998402727614 - type: nauc_map_at_1_std value: 9.728241161220097 - type: nauc_map_at_20_diff1 value: 34.04736858130041 - type: nauc_map_at_20_max value: 24.30446046409803 - type: nauc_map_at_20_std value: 11.82019676487291 - type: nauc_map_at_3_diff1 value: 34.99965810997492 - type: nauc_map_at_3_max value: 22.472906083967082 - type: nauc_map_at_3_std value: 9.698945379216992 - type: nauc_map_at_5_diff1 value: 34.42282748114895 - type: nauc_map_at_5_max value: 23.633268720383512 - type: nauc_map_at_5_std value: 10.382815603500871 - type: nauc_mrr_at_1000_diff1 value: 34.704948586037965 - type: nauc_mrr_at_1000_max value: 28.94016888494416 - type: nauc_mrr_at_1000_std value: 13.914193825823684 - type: nauc_mrr_at_100_diff1 value: 34.67910995484378 - type: nauc_mrr_at_100_max value: 28.90011297894453 - type: nauc_mrr_at_100_std value: 13.870339909485788 - type: nauc_mrr_at_10_diff1 value: 34.97862910055978 - type: nauc_mrr_at_10_max value: 28.891213481314647 - type: nauc_mrr_at_10_std value: 13.632668727631797 - type: nauc_mrr_at_1_diff1 value: 36.9016752358079 - type: nauc_mrr_at_1_max value: 30.89530420046735 - type: nauc_mrr_at_1_std value: 14.386684064942584 - type: nauc_mrr_at_20_diff1 value: 34.73839610262596 - type: nauc_mrr_at_20_max value: 28.705251186157255 - type: nauc_mrr_at_20_std value: 13.753299339901334 - type: nauc_mrr_at_3_diff1 value: 34.76877538539127 - type: nauc_mrr_at_3_max value: 28.77723698514852 - type: nauc_mrr_at_3_std value: 13.717153469537122 - type: nauc_mrr_at_5_diff1 value: 34.32426309461695 - type: nauc_mrr_at_5_max value: 28.620967773156714 - type: nauc_mrr_at_5_std value: 13.382881213134276 - type: nauc_ndcg_at_1000_diff1 value: 32.77974173034191 - type: nauc_ndcg_at_1000_max value: 28.36858648028177 - type: nauc_ndcg_at_1000_std value: 17.55654423858263 - type: nauc_ndcg_at_100_diff1 value: 32.632483073737255 - type: nauc_ndcg_at_100_max value: 26.296829067224515 - type: nauc_ndcg_at_100_std value: 15.901063315847802 - type: nauc_ndcg_at_10_diff1 value: 33.951354557048134 - type: nauc_ndcg_at_10_max value: 24.502438497165578 - type: nauc_ndcg_at_10_std value: 12.270853057785972 - type: nauc_ndcg_at_1_diff1 value: 36.9016752358079 - type: nauc_ndcg_at_1_max value: 30.89530420046735 - type: nauc_ndcg_at_1_std value: 14.386684064942584 - type: nauc_ndcg_at_20_diff1 value: 33.28593916274325 - type: nauc_ndcg_at_20_max value: 24.5380040373484 - type: nauc_ndcg_at_20_std value: 13.863409012751617 - type: nauc_ndcg_at_3_diff1 value: 34.03004915907343 - type: nauc_ndcg_at_3_max value: 25.366810943178187 - type: nauc_ndcg_at_3_std value: 11.99466470963204 - type: nauc_ndcg_at_5_diff1 value: 33.75108435164904 - type: nauc_ndcg_at_5_max value: 24.89793255411985 - type: nauc_ndcg_at_5_std value: 11.213101565189755 - type: nauc_precision_at_1000_diff1 value: 8.88694146912782 - type: nauc_precision_at_1000_max value: 28.194369745942677 - type: nauc_precision_at_1000_std value: 15.075895083755153 - type: nauc_precision_at_100_diff1 value: 17.33142606816351 - type: nauc_precision_at_100_max value: 30.560210907187134 - type: nauc_precision_at_100_std value: 20.006767151320354 - type: nauc_precision_at_10_diff1 value: 27.325474826111495 - type: nauc_precision_at_10_max value: 28.37196490647728 - type: nauc_precision_at_10_std value: 14.398272703295254 - type: nauc_precision_at_1_diff1 value: 36.9016752358079 - type: nauc_precision_at_1_max value: 30.89530420046735 - type: nauc_precision_at_1_std value: 14.386684064942584 - type: nauc_precision_at_20_diff1 value: 24.927890600833123 - type: nauc_precision_at_20_max value: 28.6077759408292 - type: nauc_precision_at_20_std value: 16.922212691823013 - type: nauc_precision_at_3_diff1 value: 30.157161086783603 - type: nauc_precision_at_3_max value: 27.80088080445145 - type: nauc_precision_at_3_std value: 13.767444960442354 - type: nauc_precision_at_5_diff1 value: 27.22177598160483 - type: nauc_precision_at_5_max value: 28.126925412497698 - type: nauc_precision_at_5_std value: 12.668302840263246 - type: nauc_recall_at_1000_diff1 value: 13.021138171238658 - type: nauc_recall_at_1000_max value: 29.086331163283578 - type: nauc_recall_at_1000_std value: 40.165920815231445 - type: nauc_recall_at_100_diff1 value: 20.32032544663283 - type: nauc_recall_at_100_max value: 19.52693905173919 - type: nauc_recall_at_100_std value: 21.472521389265815 - type: nauc_recall_at_10_diff1 value: 27.863602171901302 - type: nauc_recall_at_10_max value: 17.4718078150182 - type: nauc_recall_at_10_std value: 11.474638155937823 - type: nauc_recall_at_1_diff1 value: 38.942215866162314 - type: nauc_recall_at_1_max value: 23.63998402727614 - type: nauc_recall_at_1_std value: 9.728241161220097 - type: nauc_recall_at_20_diff1 value: 24.72857110907966 - type: nauc_recall_at_20_max value: 16.357016524448234 - type: nauc_recall_at_20_std value: 15.437317261627213 - type: nauc_recall_at_3_diff1 value: 29.883191548110638 - type: nauc_recall_at_3_max value: 16.895714663542783 - type: nauc_recall_at_3_std value: 8.976963489103756 - type: nauc_recall_at_5_diff1 value: 28.877062029269666 - type: nauc_recall_at_5_max value: 18.25013882823951 - type: nauc_recall_at_5_std value: 9.760614924170874 - type: ndcg_at_1 value: 22.377 - type: ndcg_at_10 value: 24.374000000000002 - type: ndcg_at_100 value: 30.166999999999998 - type: ndcg_at_1000 value: 34.443 - type: ndcg_at_20 value: 26.457000000000004 - type: ndcg_at_3 value: 21.248 - type: ndcg_at_5 value: 21.976000000000003 - type: precision_at_1 value: 22.377 - type: precision_at_10 value: 6.851999999999999 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.2 - type: precision_at_20 value: 4.252000000000001 - type: precision_at_3 value: 14.146 - type: precision_at_5 value: 10.432 - type: recall_at_1 value: 11.362 - type: recall_at_10 value: 30.416999999999998 - type: recall_at_100 value: 52.547 - type: recall_at_1000 value: 79.107 - type: recall_at_20 value: 36.927 - type: recall_at_3 value: 19.888 - type: recall_at_5 value: 23.294 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA-PL revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 split: test type: clarin-knext/hotpotqa-pl metrics: - type: main_score value: 60.289 - type: map_at_1 value: 35.522999999999996 - type: map_at_10 value: 51.18000000000001 - type: map_at_100 value: 52.051 - type: map_at_1000 value: 52.122 - type: map_at_20 value: 51.673 - type: map_at_3 value: 48.246 - type: map_at_5 value: 50.019999999999996 - type: mrr_at_1 value: 71.04659014179609 - type: mrr_at_10 value: 77.46602467230403 - type: mrr_at_100 value: 77.71701045856283 - type: mrr_at_1000 value: 77.73109333465572 - type: mrr_at_20 value: 77.61606030291657 - type: mrr_at_3 value: 76.2975467026782 - type: mrr_at_5 value: 77.01530497411626 - type: nauc_map_at_1000_diff1 value: 27.072398495156897 - type: nauc_map_at_1000_max value: 29.92494925850584 - type: nauc_map_at_1000_std value: 6.122920064016644 - type: nauc_map_at_100_diff1 value: 27.045953237574043 - type: nauc_map_at_100_max value: 29.91135310131925 - type: nauc_map_at_100_std value: 6.102830174452808 - type: nauc_map_at_10_diff1 value: 27.14260536879246 - type: nauc_map_at_10_max value: 29.786180574275033 - type: nauc_map_at_10_std value: 5.48071498058778 - type: nauc_map_at_1_diff1 value: 71.43831250406643 - type: nauc_map_at_1_max value: 50.69918783298206 - type: nauc_map_at_1_std value: 4.065732274269463 - type: nauc_map_at_20_diff1 value: 26.985158932169607 - type: nauc_map_at_20_max value: 29.769499559141337 - type: nauc_map_at_20_std value: 5.7846108079403225 - type: nauc_map_at_3_diff1 value: 28.726407496616453 - type: nauc_map_at_3_max value: 30.257904231332596 - type: nauc_map_at_3_std value: 4.176791477760867 - type: nauc_map_at_5_diff1 value: 27.599671019792364 - type: nauc_map_at_5_max value: 29.837459984143866 - type: nauc_map_at_5_std value: 4.724857569088119 - type: nauc_mrr_at_1000_diff1 value: 69.74462431507696 - type: nauc_mrr_at_1000_max value: 53.47426820826111 - type: nauc_mrr_at_1000_std value: 7.017278438144492 - type: nauc_mrr_at_100_diff1 value: 69.7417920598051 - type: nauc_mrr_at_100_max value: 53.48046534979321 - type: nauc_mrr_at_100_std value: 7.024164329244427 - type: nauc_mrr_at_10_diff1 value: 69.67042683609824 - type: nauc_mrr_at_10_max value: 53.481642001920314 - type: nauc_mrr_at_10_std value: 6.916088911861879 - type: nauc_mrr_at_1_diff1 value: 71.43831250406643 - type: nauc_mrr_at_1_max value: 50.69918783298206 - type: nauc_mrr_at_1_std value: 4.065732274269463 - type: nauc_mrr_at_20_diff1 value: 69.69097669322561 - type: nauc_mrr_at_20_max value: 53.48254877660139 - type: nauc_mrr_at_20_std value: 6.954450273756836 - type: nauc_mrr_at_3_diff1 value: 69.65550049564045 - type: nauc_mrr_at_3_max value: 53.423078677284806 - type: nauc_mrr_at_3_std value: 6.824360632333201 - type: nauc_mrr_at_5_diff1 value: 69.85902124700681 - type: nauc_mrr_at_5_max value: 53.71608187586825 - type: nauc_mrr_at_5_std value: 6.90332690250169 - type: nauc_ndcg_at_1000_diff1 value: 32.371178459639395 - type: nauc_ndcg_at_1000_max value: 34.193107156520355 - type: nauc_ndcg_at_1000_std value: 9.981416864706453 - type: nauc_ndcg_at_100_diff1 value: 31.65178281180327 - type: nauc_ndcg_at_100_max value: 33.88863515144708 - type: nauc_ndcg_at_100_std value: 9.675400500125894 - type: nauc_ndcg_at_10_diff1 value: 32.09701979495255 - type: nauc_ndcg_at_10_max value: 33.50276312450072 - type: nauc_ndcg_at_10_std value: 7.191084522028669 - type: nauc_ndcg_at_1_diff1 value: 71.43831250406643 - type: nauc_ndcg_at_1_max value: 50.69918783298206 - type: nauc_ndcg_at_1_std value: 4.065732274269463 - type: nauc_ndcg_at_20_diff1 value: 31.562637576493692 - type: nauc_ndcg_at_20_max value: 33.34017245498174 - type: nauc_ndcg_at_20_std value: 7.969235939844162 - type: nauc_ndcg_at_3_diff1 value: 35.18977207313904 - type: nauc_ndcg_at_3_max value: 34.673975073641905 - type: nauc_ndcg_at_3_std value: 5.325459274582688 - type: nauc_ndcg_at_5_diff1 value: 33.38000278537343 - type: nauc_ndcg_at_5_max value: 33.97918169254012 - type: nauc_ndcg_at_5_std value: 5.978030273125264 - type: nauc_precision_at_1000_diff1 value: 2.024497553431021 - type: nauc_precision_at_1000_max value: 19.574506433204107 - type: nauc_precision_at_1000_std value: 28.192550360040663 - type: nauc_precision_at_100_diff1 value: 5.188258524609947 - type: nauc_precision_at_100_max value: 21.306662841801312 - type: nauc_precision_at_100_std value: 20.7260402080751 - type: nauc_precision_at_10_diff1 value: 12.855802595061384 - type: nauc_precision_at_10_max value: 23.683240963949206 - type: nauc_precision_at_10_std value: 9.888003594834135 - type: nauc_precision_at_1_diff1 value: 71.43831250406643 - type: nauc_precision_at_1_max value: 50.69918783298206 - type: nauc_precision_at_1_std value: 4.065732274269463 - type: nauc_precision_at_20_diff1 value: 9.630280191534592 - type: nauc_precision_at_20_max value: 21.779527509411878 - type: nauc_precision_at_20_std value: 12.159865759201564 - type: nauc_precision_at_3_diff1 value: 21.486219885493664 - type: nauc_precision_at_3_max value: 28.180666352570384 - type: nauc_precision_at_3_std value: 5.975796262301398 - type: nauc_precision_at_5_diff1 value: 16.91219034941122 - type: nauc_precision_at_5_max value: 25.631420440783632 - type: nauc_precision_at_5_std value: 7.008210555798029 - type: nauc_recall_at_1000_diff1 value: 2.0244975534313734 - type: nauc_recall_at_1000_max value: 19.574506433204146 - type: nauc_recall_at_1000_std value: 28.192550360040826 - type: nauc_recall_at_100_diff1 value: 5.188258524609966 - type: nauc_recall_at_100_max value: 21.306662841801195 - type: nauc_recall_at_100_std value: 20.72604020807505 - type: nauc_recall_at_10_diff1 value: 12.85580259506137 - type: nauc_recall_at_10_max value: 23.68324096394915 - type: nauc_recall_at_10_std value: 9.888003594834109 - type: nauc_recall_at_1_diff1 value: 71.43831250406643 - type: nauc_recall_at_1_max value: 50.69918783298206 - type: nauc_recall_at_1_std value: 4.065732274269463 - type: nauc_recall_at_20_diff1 value: 9.630280191534691 - type: nauc_recall_at_20_max value: 21.779527509411942 - type: nauc_recall_at_20_std value: 12.159865759201631 - type: nauc_recall_at_3_diff1 value: 21.486219885493682 - type: nauc_recall_at_3_max value: 28.18066635257036 - type: nauc_recall_at_3_std value: 5.975796262301328 - type: nauc_recall_at_5_diff1 value: 16.912190349411212 - type: nauc_recall_at_5_max value: 25.631420440783636 - type: nauc_recall_at_5_std value: 7.00821055579809 - type: ndcg_at_1 value: 71.04700000000001 - type: ndcg_at_10 value: 60.289 - type: ndcg_at_100 value: 63.499 - type: ndcg_at_1000 value: 64.97500000000001 - type: ndcg_at_20 value: 61.550000000000004 - type: ndcg_at_3 value: 55.901999999999994 - type: ndcg_at_5 value: 58.25 - type: precision_at_1 value: 71.04700000000001 - type: precision_at_10 value: 12.44 - type: precision_at_100 value: 1.498 - type: precision_at_1000 value: 0.169 - type: precision_at_20 value: 6.626 - type: precision_at_3 value: 34.976 - type: precision_at_5 value: 22.839000000000002 - type: recall_at_1 value: 35.522999999999996 - type: recall_at_10 value: 62.20099999999999 - type: recall_at_100 value: 74.91600000000001 - type: recall_at_1000 value: 84.74000000000001 - type: recall_at_20 value: 66.259 - type: recall_at_3 value: 52.464999999999996 - type: recall_at_5 value: 57.096999999999994 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO-PL revision: 8634c07806d5cce3a6138e260e59b81760a0a640 split: test type: clarin-knext/msmarco-pl metrics: - type: main_score value: 35.347 - type: map_at_1 value: 1.469 - type: map_at_10 value: 6.271 - type: map_at_100 value: 15.82 - type: map_at_1000 value: 19.756999999999998 - type: map_at_20 value: 9.132 - type: map_at_3 value: 3.075 - type: map_at_5 value: 4.191000000000001 - type: mrr_at_1 value: 51.162790697674424 - type: mrr_at_10 value: 61.57253599114064 - type: mrr_at_100 value: 61.70237312252635 - type: mrr_at_1000 value: 61.721282111697384 - type: mrr_at_20 value: 61.57253599114064 - type: mrr_at_3 value: 58.52713178294573 - type: mrr_at_5 value: 60.62015503875969 - type: nauc_map_at_1000_diff1 value: -6.26148455784313 - type: nauc_map_at_1000_max value: 70.23579046863748 - type: nauc_map_at_1000_std value: 77.42651490963746 - type: nauc_map_at_100_diff1 value: -1.4053806773143986 - type: nauc_map_at_100_max value: 66.71686830976711 - type: nauc_map_at_100_std value: 67.38852619857126 - type: nauc_map_at_10_diff1 value: 12.864067292274589 - type: nauc_map_at_10_max value: 41.38716748783301 - type: nauc_map_at_10_std value: 32.51689180198407 - type: nauc_map_at_1_diff1 value: -1.536748365124193 - type: nauc_map_at_1_max value: -6.088587734229212 - type: nauc_map_at_1_std value: -18.068863144899694 - type: nauc_map_at_20_diff1 value: 8.54318633682049 - type: nauc_map_at_20_max value: 51.46280940802795 - type: nauc_map_at_20_std value: 43.84995568398171 - type: nauc_map_at_3_diff1 value: 15.549945155617095 - type: nauc_map_at_3_max value: 16.423852501631057 - type: nauc_map_at_3_std value: 1.6301262698881138 - type: nauc_map_at_5_diff1 value: 17.143995737313784 - type: nauc_map_at_5_max value: 25.892894000158563 - type: nauc_map_at_5_std value: 13.91119386484427 - type: nauc_mrr_at_1000_diff1 value: 20.75486837047241 - type: nauc_mrr_at_1000_max value: 48.77384161141147 - type: nauc_mrr_at_1000_std value: 39.42169406046163 - type: nauc_mrr_at_100_diff1 value: 20.75098937410054 - type: nauc_mrr_at_100_max value: 48.8055136010899 - type: nauc_mrr_at_100_std value: 39.44826676492212 - type: nauc_mrr_at_10_diff1 value: 20.55168287172998 - type: nauc_mrr_at_10_max value: 48.92605606155999 - type: nauc_mrr_at_10_std value: 39.56397190201471 - type: nauc_mrr_at_1_diff1 value: 27.952914840599213 - type: nauc_mrr_at_1_max value: 43.02872038128348 - type: nauc_mrr_at_1_std value: 30.72899446812769 - type: nauc_mrr_at_20_diff1 value: 20.55168287172998 - type: nauc_mrr_at_20_max value: 48.92605606155999 - type: nauc_mrr_at_20_std value: 39.56397190201471 - type: nauc_mrr_at_3_diff1 value: 18.318386717289272 - type: nauc_mrr_at_3_max value: 47.44180800437328 - type: nauc_mrr_at_3_std value: 38.74641539481817 - type: nauc_mrr_at_5_diff1 value: 21.683568755627515 - type: nauc_mrr_at_5_max value: 48.05001286700342 - type: nauc_mrr_at_5_std value: 38.244355740197555 - type: nauc_ndcg_at_1000_diff1 value: -2.468906090162698 - type: nauc_ndcg_at_1000_max value: 65.57871617608374 - type: nauc_ndcg_at_1000_std value: 73.3847445547649 - type: nauc_ndcg_at_100_diff1 value: -2.586690833939304 - type: nauc_ndcg_at_100_max value: 64.70786040635376 - type: nauc_ndcg_at_100_std value: 70.64166116490425 - type: nauc_ndcg_at_10_diff1 value: 8.118353402716513 - type: nauc_ndcg_at_10_max value: 49.844180236352955 - type: nauc_ndcg_at_10_std value: 50.131893853105936 - type: nauc_ndcg_at_1_diff1 value: 29.009521103694098 - type: nauc_ndcg_at_1_max value: 27.087717021875612 - type: nauc_ndcg_at_1_std value: 12.6909059627947 - type: nauc_ndcg_at_20_diff1 value: 2.598718647600475 - type: nauc_ndcg_at_20_max value: 53.91164998936515 - type: nauc_ndcg_at_20_std value: 56.516639941588664 - type: nauc_ndcg_at_3_diff1 value: 23.836185343273044 - type: nauc_ndcg_at_3_max value: 36.263454561458765 - type: nauc_ndcg_at_3_std value: 28.43323538514256 - type: nauc_ndcg_at_5_diff1 value: 16.77391181835752 - type: nauc_ndcg_at_5_max value: 43.296899586211104 - type: nauc_ndcg_at_5_std value: 39.1824699044313 - type: nauc_precision_at_1000_diff1 value: -15.186803611287433 - type: nauc_precision_at_1000_max value: 46.85780719962127 - type: nauc_precision_at_1000_std value: 70.3960638613034 - type: nauc_precision_at_100_diff1 value: -15.422155872405632 - type: nauc_precision_at_100_max value: 55.72313908696537 - type: nauc_precision_at_100_std value: 76.82533899336994 - type: nauc_precision_at_10_diff1 value: -3.067825687414238 - type: nauc_precision_at_10_max value: 56.91434531209 - type: nauc_precision_at_10_std value: 66.04691744928004 - type: nauc_precision_at_1_diff1 value: 27.952914840599213 - type: nauc_precision_at_1_max value: 43.02872038128348 - type: nauc_precision_at_1_std value: 30.72899446812769 - type: nauc_precision_at_20_diff1 value: -5.544645405468878 - type: nauc_precision_at_20_max value: 57.8695034639674 - type: nauc_precision_at_20_std value: 68.93286041931582 - type: nauc_precision_at_3_diff1 value: 20.19348967585854 - type: nauc_precision_at_3_max value: 45.597437337579386 - type: nauc_precision_at_3_std value: 42.03959265688183 - type: nauc_precision_at_5_diff1 value: 9.23998523103908 - type: nauc_precision_at_5_max value: 49.25574086871373 - type: nauc_precision_at_5_std value: 52.88526969215077 - type: nauc_recall_at_1000_diff1 value: -8.862740141707581 - type: nauc_recall_at_1000_max value: 55.712545242253256 - type: nauc_recall_at_1000_std value: 67.30648023155955 - type: nauc_recall_at_100_diff1 value: -3.1881977191212036 - type: nauc_recall_at_100_max value: 51.673275503044906 - type: nauc_recall_at_100_std value: 54.48134578839626 - type: nauc_recall_at_10_diff1 value: 13.364983119491827 - type: nauc_recall_at_10_max value: 36.25593546742792 - type: nauc_recall_at_10_std value: 27.09713611846276 - type: nauc_recall_at_1_diff1 value: -1.536748365124193 - type: nauc_recall_at_1_max value: -6.088587734229212 - type: nauc_recall_at_1_std value: -18.068863144899694 - type: nauc_recall_at_20_diff1 value: 7.510007055555984 - type: nauc_recall_at_20_max value: 38.09054135617318 - type: nauc_recall_at_20_std value: 30.40674848457391 - type: nauc_recall_at_3_diff1 value: 14.714490489795676 - type: nauc_recall_at_3_max value: 13.456002270727083 - type: nauc_recall_at_3_std value: -1.5169948432854514 - type: nauc_recall_at_5_diff1 value: 15.54314759180975 - type: nauc_recall_at_5_max value: 21.228461904073818 - type: nauc_recall_at_5_std value: 9.414065747326763 - type: ndcg_at_1 value: 40.31 - type: ndcg_at_10 value: 35.347 - type: ndcg_at_100 value: 33.467 - type: ndcg_at_1000 value: 40.681 - type: ndcg_at_20 value: 34.001 - type: ndcg_at_3 value: 37.366 - type: ndcg_at_5 value: 36.394 - type: precision_at_1 value: 51.163000000000004 - type: precision_at_10 value: 44.186 - type: precision_at_100 value: 20.837 - type: precision_at_1000 value: 4.2299999999999995 - type: precision_at_20 value: 37.442 - type: precision_at_3 value: 50.388 - type: precision_at_5 value: 48.837 - type: recall_at_1 value: 1.469 - type: recall_at_10 value: 7.9479999999999995 - type: recall_at_100 value: 28.733999999999998 - type: recall_at_1000 value: 50.297000000000004 - type: recall_at_20 value: 12.948 - type: recall_at_3 value: 3.4259999999999997 - type: recall_at_5 value: 4.9110000000000005 task: type: Retrieval - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 51.19031607262945 - type: f1 value: 46.10258936993461 - type: f1_weighted value: 50.901181253035034 - type: main_score value: 51.19031607262945 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 60.645595158036315 - type: f1 value: 59.44482127439026 - type: f1_weighted value: 60.168807528534984 - type: main_score value: 60.645595158036315 task: type: Classification - dataset: config: default name: MTEB NFCorpus-PL revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 split: test type: clarin-knext/nfcorpus-pl metrics: - type: main_score value: 25.395 - type: map_at_1 value: 4.162 - type: map_at_10 value: 8.706 - type: map_at_100 value: 10.825 - type: map_at_1000 value: 11.882 - type: map_at_20 value: 9.699 - type: map_at_3 value: 6.370000000000001 - type: map_at_5 value: 7.392 - type: mrr_at_1 value: 36.22291021671827 - type: mrr_at_10 value: 43.31662489557226 - type: mrr_at_100 value: 44.034094585948445 - type: mrr_at_1000 value: 44.08497362710692 - type: mrr_at_20 value: 43.73522641310121 - type: mrr_at_3 value: 41.17647058823529 - type: mrr_at_5 value: 42.19814241486068 - type: nauc_map_at_1000_diff1 value: 20.409989638127485 - type: nauc_map_at_1000_max value: 21.313793692439358 - type: nauc_map_at_1000_std value: 26.453432767218242 - type: nauc_map_at_100_diff1 value: 21.1324476885251 - type: nauc_map_at_100_max value: 20.162732858714488 - type: nauc_map_at_100_std value: 23.299208899543444 - type: nauc_map_at_10_diff1 value: 25.356667770298184 - type: nauc_map_at_10_max value: 14.593319794998328 - type: nauc_map_at_10_std value: 14.307985847242206 - type: nauc_map_at_1_diff1 value: 49.48663924597492 - type: nauc_map_at_1_max value: 6.253498999289057 - type: nauc_map_at_1_std value: -1.0237763936348632 - type: nauc_map_at_20_diff1 value: 23.25076257190515 - type: nauc_map_at_20_max value: 18.067585719861558 - type: nauc_map_at_20_std value: 18.661482884581616 - type: nauc_map_at_3_diff1 value: 36.09641802781903 - type: nauc_map_at_3_max value: 10.438404957893699 - type: nauc_map_at_3_std value: 6.545314741707626 - type: nauc_map_at_5_diff1 value: 31.563017185316582 - type: nauc_map_at_5_max value: 10.624857568430182 - type: nauc_map_at_5_std value: 8.071135835564556 - type: nauc_mrr_at_1000_diff1 value: 25.914988046957298 - type: nauc_mrr_at_1000_max value: 29.500178958357004 - type: nauc_mrr_at_1000_std value: 30.007836859386217 - type: nauc_mrr_at_100_diff1 value: 25.909334138328415 - type: nauc_mrr_at_100_max value: 29.52338779009421 - type: nauc_mrr_at_100_std value: 30.04513581497261 - type: nauc_mrr_at_10_diff1 value: 25.8265466125622 - type: nauc_mrr_at_10_max value: 29.190136722031696 - type: nauc_mrr_at_10_std value: 29.91591104432339 - type: nauc_mrr_at_1_diff1 value: 28.59348773396338 - type: nauc_mrr_at_1_max value: 24.8079752457763 - type: nauc_mrr_at_1_std value: 23.91126072409742 - type: nauc_mrr_at_20_diff1 value: 25.802689022704183 - type: nauc_mrr_at_20_max value: 29.530951070963336 - type: nauc_mrr_at_20_std value: 30.174133821321725 - type: nauc_mrr_at_3_diff1 value: 27.20001662389779 - type: nauc_mrr_at_3_max value: 27.937268010329507 - type: nauc_mrr_at_3_std value: 28.192212081421474 - type: nauc_mrr_at_5_diff1 value: 25.808760122402813 - type: nauc_mrr_at_5_max value: 28.320555828208317 - type: nauc_mrr_at_5_std value: 28.94783269529472 - type: nauc_ndcg_at_1000_diff1 value: 18.382064145005554 - type: nauc_ndcg_at_1000_max value: 37.682973683950046 - type: nauc_ndcg_at_1000_std value: 41.50740480181961 - type: nauc_ndcg_at_100_diff1 value: 17.064373462803946 - type: nauc_ndcg_at_100_max value: 31.68841170112502 - type: nauc_ndcg_at_100_std value: 36.129889624470515 - type: nauc_ndcg_at_10_diff1 value: 13.4115588783113 - type: nauc_ndcg_at_10_max value: 25.02525617768273 - type: nauc_ndcg_at_10_std value: 34.6721573881345 - type: nauc_ndcg_at_1_diff1 value: 29.894042590382835 - type: nauc_ndcg_at_1_max value: 20.74535829394909 - type: nauc_ndcg_at_1_std value: 22.120360699896317 - type: nauc_ndcg_at_20_diff1 value: 15.634409370114245 - type: nauc_ndcg_at_20_max value: 26.50893784943651 - type: nauc_ndcg_at_20_std value: 35.038198867324475 - type: nauc_ndcg_at_3_diff1 value: 18.96300171211221 - type: nauc_ndcg_at_3_max value: 23.33029230184083 - type: nauc_ndcg_at_3_std value: 29.920377781867707 - type: nauc_ndcg_at_5_diff1 value: 15.79868149715457 - type: nauc_ndcg_at_5_max value: 22.579264404978712 - type: nauc_ndcg_at_5_std value: 30.211799699921738 - type: nauc_precision_at_1000_diff1 value: -6.199888311259285 - type: nauc_precision_at_1000_max value: 9.309794448376303 - type: nauc_precision_at_1000_std value: 31.78959217396635 - type: nauc_precision_at_100_diff1 value: -6.136903664719646 - type: nauc_precision_at_100_max value: 22.013385001054626 - type: nauc_precision_at_100_std value: 48.14689780650813 - type: nauc_precision_at_10_diff1 value: -4.853429266457739 - type: nauc_precision_at_10_max value: 27.509406452527795 - type: nauc_precision_at_10_std value: 46.374536894242596 - type: nauc_precision_at_1_diff1 value: 28.59348773396338 - type: nauc_precision_at_1_max value: 24.8079752457763 - type: nauc_precision_at_1_std value: 23.91126072409742 - type: nauc_precision_at_20_diff1 value: -3.1905789371666917 - type: nauc_precision_at_20_max value: 27.176658491295246 - type: nauc_precision_at_20_std value: 48.18584487920634 - type: nauc_precision_at_3_diff1 value: 8.3848103781276 - type: nauc_precision_at_3_max value: 27.892039299948824 - type: nauc_precision_at_3_std value: 36.43253708925813 - type: nauc_precision_at_5_diff1 value: 2.196790718752423 - type: nauc_precision_at_5_max value: 25.498636373099792 - type: nauc_precision_at_5_std value: 37.223277286205686 - type: nauc_recall_at_1000_diff1 value: 9.6168415443447 - type: nauc_recall_at_1000_max value: 30.81068257150451 - type: nauc_recall_at_1000_std value: 31.23012946206547 - type: nauc_recall_at_100_diff1 value: 8.288803190895507 - type: nauc_recall_at_100_max value: 28.5985358200399 - type: nauc_recall_at_100_std value: 29.264243501743554 - type: nauc_recall_at_10_diff1 value: 15.538928611457752 - type: nauc_recall_at_10_max value: 16.507431812158853 - type: nauc_recall_at_10_std value: 14.357359644755332 - type: nauc_recall_at_1_diff1 value: 49.48663924597492 - type: nauc_recall_at_1_max value: 6.253498999289057 - type: nauc_recall_at_1_std value: -1.0237763936348632 - type: nauc_recall_at_20_diff1 value: 12.33220171683594 - type: nauc_recall_at_20_max value: 21.401205102336334 - type: nauc_recall_at_20_std value: 19.894796654272344 - type: nauc_recall_at_3_diff1 value: 32.92453106017296 - type: nauc_recall_at_3_max value: 12.154084693905993 - type: nauc_recall_at_3_std value: 7.874826452646235 - type: nauc_recall_at_5_diff1 value: 24.83900378186163 - type: nauc_recall_at_5_max value: 10.618063467740885 - type: nauc_recall_at_5_std value: 7.700886647757196 - type: ndcg_at_1 value: 34.83 - type: ndcg_at_10 value: 25.395 - type: ndcg_at_100 value: 23.294 - type: ndcg_at_1000 value: 31.655 - type: ndcg_at_20 value: 23.961 - type: ndcg_at_3 value: 29.720000000000002 - type: ndcg_at_5 value: 27.687 - type: precision_at_1 value: 36.223 - type: precision_at_10 value: 18.884999999999998 - type: precision_at_100 value: 5.944 - type: precision_at_1000 value: 1.757 - type: precision_at_20 value: 14.427000000000001 - type: precision_at_3 value: 27.761000000000003 - type: precision_at_5 value: 23.839 - type: recall_at_1 value: 4.162 - type: recall_at_10 value: 12.139999999999999 - type: recall_at_100 value: 24.006 - type: recall_at_1000 value: 53.617000000000004 - type: recall_at_20 value: 15.412 - type: recall_at_3 value: 7.097 - type: recall_at_5 value: 8.933 task: type: Retrieval - dataset: config: default name: MTEB NQ-PL revision: f171245712cf85dd4700b06bef18001578d0ca8d split: test type: clarin-knext/nq-pl metrics: - type: main_score value: 22.603 - type: map_at_1 value: 9.948 - type: map_at_10 value: 17.845 - type: map_at_100 value: 18.959 - type: map_at_1000 value: 19.048000000000002 - type: map_at_20 value: 18.455 - type: map_at_3 value: 15.132000000000001 - type: map_at_5 value: 16.601 - type: mrr_at_1 value: 11.674391657010428 - type: mrr_at_10 value: 19.470320862991787 - type: mrr_at_100 value: 20.446877601173824 - type: mrr_at_1000 value: 20.522814299465214 - type: mrr_at_20 value: 20.008110000836435 - type: mrr_at_3 value: 16.840478949401305 - type: mrr_at_5 value: 18.30484743144072 - type: nauc_map_at_1000_diff1 value: 18.26172777698686 - type: nauc_map_at_1000_max value: 31.552551452692246 - type: nauc_map_at_1000_std value: 22.212928434695396 - type: nauc_map_at_100_diff1 value: 18.24688938509314 - type: nauc_map_at_100_max value: 31.53817410525147 - type: nauc_map_at_100_std value: 22.17330126384622 - type: nauc_map_at_10_diff1 value: 18.447992786558256 - type: nauc_map_at_10_max value: 30.60350408504903 - type: nauc_map_at_10_std value: 20.755467147228096 - type: nauc_map_at_1_diff1 value: 22.418576585549367 - type: nauc_map_at_1_max value: 25.037598941208795 - type: nauc_map_at_1_std value: 14.90958753798771 - type: nauc_map_at_20_diff1 value: 18.340722439154305 - type: nauc_map_at_20_max value: 31.196838529305232 - type: nauc_map_at_20_std value: 21.552426519419058 - type: nauc_map_at_3_diff1 value: 17.940689608351526 - type: nauc_map_at_3_max value: 28.32670652769566 - type: nauc_map_at_3_std value: 18.933678775214837 - type: nauc_map_at_5_diff1 value: 18.391656882948464 - type: nauc_map_at_5_max value: 29.442343951102085 - type: nauc_map_at_5_std value: 19.52289104922354 - type: nauc_mrr_at_1000_diff1 value: 17.527174397586858 - type: nauc_mrr_at_1000_max value: 31.602488727319578 - type: nauc_mrr_at_1000_std value: 22.93577716482068 - type: nauc_mrr_at_100_diff1 value: 17.522315985248973 - type: nauc_mrr_at_100_max value: 31.59648863674416 - type: nauc_mrr_at_100_std value: 22.91993463994322 - type: nauc_mrr_at_10_diff1 value: 17.576986591026188 - type: nauc_mrr_at_10_max value: 31.004768241816667 - type: nauc_mrr_at_10_std value: 21.965789582568895 - type: nauc_mrr_at_1_diff1 value: 21.13678758908292 - type: nauc_mrr_at_1_max value: 26.011414032723156 - type: nauc_mrr_at_1_std value: 16.254994138259015 - type: nauc_mrr_at_20_diff1 value: 17.53035779699737 - type: nauc_mrr_at_20_max value: 31.388046420817066 - type: nauc_mrr_at_20_std value: 22.542621346666966 - type: nauc_mrr_at_3_diff1 value: 17.10815729544247 - type: nauc_mrr_at_3_max value: 29.09795467526024 - type: nauc_mrr_at_3_std value: 20.212196884709975 - type: nauc_mrr_at_5_diff1 value: 17.508485448153106 - type: nauc_mrr_at_5_max value: 30.051730901603225 - type: nauc_mrr_at_5_std value: 20.812623893192008 - type: nauc_ndcg_at_1000_diff1 value: 17.42831835054262 - type: nauc_ndcg_at_1000_max value: 36.852823471922896 - type: nauc_ndcg_at_1000_std value: 29.5092221137645 - type: nauc_ndcg_at_100_diff1 value: 17.18145786352413 - type: nauc_ndcg_at_100_max value: 36.68127658612261 - type: nauc_ndcg_at_100_std value: 29.070246776560733 - type: nauc_ndcg_at_10_diff1 value: 17.650254435216336 - type: nauc_ndcg_at_10_max value: 32.9711852272957 - type: nauc_ndcg_at_10_std value: 23.33796255600112 - type: nauc_ndcg_at_1_diff1 value: 21.13678758908292 - type: nauc_ndcg_at_1_max value: 26.011414032723156 - type: nauc_ndcg_at_1_std value: 16.254994138259015 - type: nauc_ndcg_at_20_diff1 value: 17.41646581029652 - type: nauc_ndcg_at_20_max value: 34.56260516594143 - type: nauc_ndcg_at_20_std value: 25.560816497093715 - type: nauc_ndcg_at_3_diff1 value: 16.72984648539772 - type: nauc_ndcg_at_3_max value: 29.165578029472623 - type: nauc_ndcg_at_3_std value: 20.016518044505823 - type: nauc_ndcg_at_5_diff1 value: 17.531443204854625 - type: nauc_ndcg_at_5_max value: 30.813625874766686 - type: nauc_ndcg_at_5_std value: 20.89999189522855 - type: nauc_precision_at_1000_diff1 value: 8.023671491885642 - type: nauc_precision_at_1000_max value: 38.57244285086915 - type: nauc_precision_at_1000_std value: 42.75950436813853 - type: nauc_precision_at_100_diff1 value: 10.533355130718231 - type: nauc_precision_at_100_max value: 43.7116482300273 - type: nauc_precision_at_100_std value: 44.060964750358266 - type: nauc_precision_at_10_diff1 value: 14.972903054044348 - type: nauc_precision_at_10_max value: 38.05240735938072 - type: nauc_precision_at_10_std value: 29.648310668280097 - type: nauc_precision_at_1_diff1 value: 21.13678758908292 - type: nauc_precision_at_1_max value: 26.011414032723156 - type: nauc_precision_at_1_std value: 16.254994138259015 - type: nauc_precision_at_20_diff1 value: 13.554472011508237 - type: nauc_precision_at_20_max value: 41.02208151220986 - type: nauc_precision_at_20_std value: 34.85824745823735 - type: nauc_precision_at_3_diff1 value: 14.116040804511186 - type: nauc_precision_at_3_max value: 31.682445198182435 - type: nauc_precision_at_3_std value: 23.62076223063366 - type: nauc_precision_at_5_diff1 value: 15.243710801321306 - type: nauc_precision_at_5_max value: 34.19548751195127 - type: nauc_precision_at_5_std value: 24.721994359051823 - type: nauc_recall_at_1000_diff1 value: 16.364726224776085 - type: nauc_recall_at_1000_max value: 61.50384743818951 - type: nauc_recall_at_1000_std value: 64.05244001475157 - type: nauc_recall_at_100_diff1 value: 14.842800608772844 - type: nauc_recall_at_100_max value: 51.09642253042941 - type: nauc_recall_at_100_std value: 48.974514602283755 - type: nauc_recall_at_10_diff1 value: 16.295810264449052 - type: nauc_recall_at_10_max value: 36.62230075893423 - type: nauc_recall_at_10_std value: 27.091531221220855 - type: nauc_recall_at_1_diff1 value: 22.418576585549367 - type: nauc_recall_at_1_max value: 25.037598941208795 - type: nauc_recall_at_1_std value: 14.90958753798771 - type: nauc_recall_at_20_diff1 value: 15.663708298579454 - type: nauc_recall_at_20_max value: 40.669425710354055 - type: nauc_recall_at_20_std value: 32.92105064475319 - type: nauc_recall_at_3_diff1 value: 14.248164870616547 - type: nauc_recall_at_3_max value: 29.788818279139523 - type: nauc_recall_at_3_std value: 20.94235306703937 - type: nauc_recall_at_5_diff1 value: 16.12430269320114 - type: nauc_recall_at_5_max value: 32.56849460357168 - type: nauc_recall_at_5_std value: 22.28933193164056 - type: ndcg_at_1 value: 11.674 - type: ndcg_at_10 value: 22.603 - type: ndcg_at_100 value: 28.094 - type: ndcg_at_1000 value: 30.489 - type: ndcg_at_20 value: 24.697 - type: ndcg_at_3 value: 17.104 - type: ndcg_at_5 value: 19.708000000000002 - type: precision_at_1 value: 11.674 - type: precision_at_10 value: 4.287 - type: precision_at_100 value: 0.743 - type: precision_at_1000 value: 0.097 - type: precision_at_20 value: 2.64 - type: precision_at_3 value: 8.324 - type: precision_at_5 value: 6.483 - type: recall_at_1 value: 9.948 - type: recall_at_10 value: 35.772 - type: recall_at_100 value: 60.989000000000004 - type: recall_at_1000 value: 79.321 - type: recall_at_20 value: 43.608000000000004 - type: recall_at_3 value: 21.125 - type: recall_at_5 value: 27.211000000000002 task: type: Retrieval - dataset: config: default name: MTEB PAC revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543 split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.58934260063714 - type: ap value: 74.96037603906956 - type: ap_weighted value: 74.96037603906956 - type: f1 value: 62.46883531701779 - type: f1_weighted value: 65.87422072252049 - type: main_score value: 65.58934260063714 task: type: Classification - dataset: config: default name: MTEB PSC revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669 split: test type: PL-MTEB/psc-pairclassification metrics: - type: cosine_accuracy value: 97.49536178107606 - type: cosine_accuracy_threshold value: 64.87605571746826 - type: cosine_ap value: 99.41573082613479 - type: cosine_f1 value: 95.98811292719166 - type: cosine_f1_threshold value: 62.816452980041504 - type: cosine_precision value: 93.6231884057971 - type: cosine_recall value: 98.47560975609755 - type: dot_accuracy value: 97.49536178107606 - type: dot_accuracy_threshold value: 64.87605571746826 - type: dot_ap value: 99.41573082613479 - type: dot_f1 value: 95.98811292719166 - type: dot_f1_threshold value: 62.81645894050598 - type: dot_precision value: 93.6231884057971 - type: dot_recall value: 98.47560975609755 - type: euclidean_accuracy value: 97.49536178107606 - type: euclidean_accuracy_threshold value: 83.81399512290955 - type: euclidean_ap value: 99.41573082613479 - type: euclidean_f1 value: 95.98811292719166 - type: euclidean_f1_threshold value: 86.23623847961426 - type: euclidean_precision value: 93.6231884057971 - type: euclidean_recall value: 98.47560975609755 - type: main_score value: 99.4366325576277 - type: manhattan_accuracy value: 97.49536178107606 - type: manhattan_accuracy_threshold value: 1991.1922454833984 - type: manhattan_ap value: 99.4366325576277 - type: manhattan_f1 value: 95.95202398800599 - type: manhattan_f1_threshold value: 2005.5305480957031 - type: manhattan_precision value: 94.3952802359882 - type: manhattan_recall value: 97.5609756097561 - type: max_ap value: 99.4366325576277 - type: max_f1 value: 95.98811292719166 - type: max_precision value: 94.3952802359882 - type: max_recall value: 98.47560975609755 - type: similarity_accuracy value: 97.49536178107606 - type: similarity_accuracy_threshold value: 64.87605571746826 - type: similarity_ap value: 99.41573082613479 - type: similarity_f1 value: 95.98811292719166 - type: similarity_f1_threshold value: 62.816452980041504 - type: similarity_precision value: 93.6231884057971 - type: similarity_recall value: 98.47560975609755 task: type: PairClassification - dataset: config: default name: MTEB PolEmo2.0-IN revision: d90724373c70959f17d2331ad51fb60c71176b03 split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 73.49030470914128 - type: f1 value: 64.44026912860524 - type: f1_weighted value: 70.76142496919624 - type: main_score value: 73.49030470914128 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4 split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 56.1336032388664 - type: f1 value: 40.10783686862694 - type: f1_weighted value: 52.57241968032103 - type: main_score value: 56.1336032388664 task: type: Classification - dataset: config: default name: MTEB PPC revision: 2c7d2df57801a591f6b1e3aaf042e7a04ec7d9f2 split: test type: PL-MTEB/ppc-pairclassification metrics: - type: cosine_accuracy value: 75.7 - type: cosine_accuracy_threshold value: 82.45353102684021 - type: cosine_ap value: 87.18435695095992 - type: cosine_f1 value: 80.79877112135176 - type: cosine_f1_threshold value: 80.05339503288269 - type: cosine_precision value: 75.35816618911176 - type: cosine_recall value: 87.08609271523179 - type: dot_accuracy value: 75.7 - type: dot_accuracy_threshold value: 82.45352506637573 - type: dot_ap value: 87.18435695095992 - type: dot_f1 value: 80.79877112135176 - type: dot_f1_threshold value: 80.05340099334717 - type: dot_precision value: 75.35816618911176 - type: dot_recall value: 87.08609271523179 - type: euclidean_accuracy value: 75.7 - type: euclidean_accuracy_threshold value: 59.23929214477539 - type: euclidean_ap value: 87.18435695095992 - type: euclidean_f1 value: 80.79877112135176 - type: euclidean_f1_threshold value: 63.16102743148804 - type: euclidean_precision value: 75.35816618911176 - type: euclidean_recall value: 87.08609271523179 - type: main_score value: 87.18435695095992 - type: manhattan_accuracy value: 75.2 - type: manhattan_accuracy_threshold value: 1350.9596824645996 - type: manhattan_ap value: 86.98837530998256 - type: manhattan_f1 value: 80.67226890756302 - type: manhattan_f1_threshold value: 1481.105613708496 - type: manhattan_precision value: 74.8936170212766 - type: manhattan_recall value: 87.41721854304636 - type: max_ap value: 87.18435695095992 - type: max_f1 value: 80.79877112135176 - type: max_precision value: 75.35816618911176 - type: max_recall value: 87.41721854304636 - type: similarity_accuracy value: 75.7 - type: similarity_accuracy_threshold value: 82.45353102684021 - type: similarity_ap value: 87.18435695095992 - type: similarity_f1 value: 80.79877112135176 - type: similarity_f1_threshold value: 80.05339503288269 - type: similarity_precision value: 75.35816618911176 - type: similarity_recall value: 87.08609271523179 task: type: PairClassification - dataset: config: default name: MTEB Quora-PL revision: 0be27e93455051e531182b85e85e425aba12e9d4 split: test type: clarin-knext/quora-pl metrics: - type: main_score value: 76.998 - type: map_at_1 value: 59.391000000000005 - type: map_at_10 value: 72.16900000000001 - type: map_at_100 value: 73.032 - type: map_at_1000 value: 73.06899999999999 - type: map_at_20 value: 72.714 - type: map_at_3 value: 69.15299999999999 - type: map_at_5 value: 70.987 - type: mrr_at_1 value: 68.42 - type: mrr_at_10 value: 76.16671428571387 - type: mrr_at_100 value: 76.47829123882859 - type: mrr_at_1000 value: 76.48677359771172 - type: mrr_at_20 value: 76.37813270222156 - type: mrr_at_3 value: 74.58166666666627 - type: mrr_at_5 value: 75.55716666666603 - type: nauc_map_at_1000_diff1 value: 69.61188513700026 - type: nauc_map_at_1000_max value: 35.048941479907754 - type: nauc_map_at_1000_std value: -20.0870344911168 - type: nauc_map_at_100_diff1 value: 69.61947691592164 - type: nauc_map_at_100_max value: 35.033733604763725 - type: nauc_map_at_100_std value: -20.139480957962718 - type: nauc_map_at_10_diff1 value: 69.66441777665835 - type: nauc_map_at_10_max value: 34.37685681869468 - type: nauc_map_at_10_std value: -21.444655375177106 - type: nauc_map_at_1_diff1 value: 73.03533775469124 - type: nauc_map_at_1_max value: 28.361321068177816 - type: nauc_map_at_1_std value: -23.44707326868221 - type: nauc_map_at_20_diff1 value: 69.62828183867681 - type: nauc_map_at_20_max value: 34.81438496306748 - type: nauc_map_at_20_std value: -20.70392332573099 - type: nauc_map_at_3_diff1 value: 69.68889489109979 - type: nauc_map_at_3_max value: 32.46102571539603 - type: nauc_map_at_3_std value: -23.38999293723788 - type: nauc_map_at_5_diff1 value: 69.78892096736786 - type: nauc_map_at_5_max value: 33.538196855782914 - type: nauc_map_at_5_std value: -22.484473756616644 - type: nauc_mrr_at_1000_diff1 value: 70.86605266935713 - type: nauc_mrr_at_1000_max value: 39.23012904807791 - type: nauc_mrr_at_1000_std value: -15.7945348852456 - type: nauc_mrr_at_100_diff1 value: 70.86280901414926 - type: nauc_mrr_at_100_max value: 39.23362334217244 - type: nauc_mrr_at_100_std value: -15.782514659328978 - type: nauc_mrr_at_10_diff1 value: 70.75755399509156 - type: nauc_mrr_at_10_max value: 39.272495418437686 - type: nauc_mrr_at_10_std value: -15.781106645439996 - type: nauc_mrr_at_1_diff1 value: 72.85504028372341 - type: nauc_mrr_at_1_max value: 37.99685495245659 - type: nauc_mrr_at_1_std value: -17.459649186396685 - type: nauc_mrr_at_20_diff1 value: 70.82261857160199 - type: nauc_mrr_at_20_max value: 39.25660219447417 - type: nauc_mrr_at_20_std value: -15.807365557200281 - type: nauc_mrr_at_3_diff1 value: 70.79376444174159 - type: nauc_mrr_at_3_max value: 38.97623690163996 - type: nauc_mrr_at_3_std value: -16.393842407269872 - type: nauc_mrr_at_5_diff1 value: 70.77811077343011 - type: nauc_mrr_at_5_max value: 39.066661862996334 - type: nauc_mrr_at_5_std value: -16.06138623512058 - type: nauc_ndcg_at_1000_diff1 value: 69.38432460176631 - type: nauc_ndcg_at_1000_max value: 37.41326409294141 - type: nauc_ndcg_at_1000_std value: -16.567106335363547 - type: nauc_ndcg_at_100_diff1 value: 69.33661321994221 - type: nauc_ndcg_at_100_max value: 37.40443590169158 - type: nauc_ndcg_at_100_std value: -16.35403457343329 - type: nauc_ndcg_at_10_diff1 value: 68.94489912960861 - type: nauc_ndcg_at_10_max value: 36.2506071214321 - type: nauc_ndcg_at_10_std value: -18.82069883161433 - type: nauc_ndcg_at_1_diff1 value: 72.72133417454367 - type: nauc_ndcg_at_1_max value: 38.331224491505104 - type: nauc_ndcg_at_1_std value: -17.16079633961818 - type: nauc_ndcg_at_20_diff1 value: 69.15086421535133 - type: nauc_ndcg_at_20_max value: 36.89767798755098 - type: nauc_ndcg_at_20_std value: -17.86958697698032 - type: nauc_ndcg_at_3_diff1 value: 68.70396833880102 - type: nauc_ndcg_at_3_max value: 35.03484635918643 - type: nauc_ndcg_at_3_std value: -20.273396524173844 - type: nauc_ndcg_at_5_diff1 value: 68.93056915501342 - type: nauc_ndcg_at_5_max value: 35.38497733312458 - type: nauc_ndcg_at_5_std value: -19.840947709262004 - type: nauc_precision_at_1000_diff1 value: -34.14718697098016 - type: nauc_precision_at_1000_max value: 3.6293313781394763 - type: nauc_precision_at_1000_std value: 35.18150366797986 - type: nauc_precision_at_100_diff1 value: -30.4027079095321 - type: nauc_precision_at_100_max value: 6.809907739167871 - type: nauc_precision_at_100_std value: 34.540918468349126 - type: nauc_precision_at_10_diff1 value: -13.640657282621275 - type: nauc_precision_at_10_max value: 15.027602319886368 - type: nauc_precision_at_10_std value: 19.99864404314453 - type: nauc_precision_at_1_diff1 value: 72.72133417454367 - type: nauc_precision_at_1_max value: 38.331224491505104 - type: nauc_precision_at_1_std value: -17.16079633961818 - type: nauc_precision_at_20_diff1 value: -22.04518115519088 - type: nauc_precision_at_20_max value: 11.694911426947577 - type: nauc_precision_at_20_std value: 27.0383781477066 - type: nauc_precision_at_3_diff1 value: 13.551932989888382 - type: nauc_precision_at_3_max value: 23.434121945030604 - type: nauc_precision_at_3_std value: 2.691762192244095 - type: nauc_precision_at_5_diff1 value: -0.530904057361583 - type: nauc_precision_at_5_max value: 19.274513974074186 - type: nauc_precision_at_5_std value: 11.166696219691481 - type: nauc_recall_at_1000_diff1 value: 57.69646260925434 - type: nauc_recall_at_1000_max value: 45.515450558710825 - type: nauc_recall_at_1000_std value: 33.3128999778333 - type: nauc_recall_at_100_diff1 value: 59.44993252237884 - type: nauc_recall_at_100_max value: 41.168864107589144 - type: nauc_recall_at_100_std value: 13.174320315241195 - type: nauc_recall_at_10_diff1 value: 61.74029254342778 - type: nauc_recall_at_10_max value: 33.83885249812004 - type: nauc_recall_at_10_std value: -17.974403452647497 - type: nauc_recall_at_1_diff1 value: 73.03533775469124 - type: nauc_recall_at_1_max value: 28.361321068177816 - type: nauc_recall_at_1_std value: -23.44707326868221 - type: nauc_recall_at_20_diff1 value: 60.43007696085838 - type: nauc_recall_at_20_max value: 35.90250935704539 - type: nauc_recall_at_20_std value: -12.539813163606686 - type: nauc_recall_at_3_diff1 value: 64.87577464206726 - type: nauc_recall_at_3_max value: 30.325674554926348 - type: nauc_recall_at_3_std value: -24.050361392480443 - type: nauc_recall_at_5_diff1 value: 63.71726415589154 - type: nauc_recall_at_5_max value: 31.365393247615298 - type: nauc_recall_at_5_std value: -22.097544116643387 - type: ndcg_at_1 value: 68.47999999999999 - type: ndcg_at_10 value: 76.998 - type: ndcg_at_100 value: 79.45400000000001 - type: ndcg_at_1000 value: 79.935 - type: ndcg_at_20 value: 78.22 - type: ndcg_at_3 value: 73.127 - type: ndcg_at_5 value: 75.13499999999999 - type: precision_at_1 value: 68.47999999999999 - type: precision_at_10 value: 11.821 - type: precision_at_100 value: 1.438 - type: precision_at_1000 value: 0.154 - type: precision_at_20 value: 6.4350000000000005 - type: precision_at_3 value: 31.96 - type: precision_at_5 value: 21.279999999999998 - type: recall_at_1 value: 59.391000000000005 - type: recall_at_10 value: 86.722 - type: recall_at_100 value: 96.143 - type: recall_at_1000 value: 99.092 - type: recall_at_20 value: 90.88300000000001 - type: recall_at_3 value: 75.81400000000001 - type: recall_at_5 value: 81.19800000000001 task: type: Retrieval - dataset: config: default name: MTEB SCIDOCS-PL revision: 45452b03f05560207ef19149545f168e596c9337 split: test type: clarin-knext/scidocs-pl metrics: - type: main_score value: 13.038 - type: map_at_1 value: 2.785 - type: map_at_10 value: 7.24 - type: map_at_100 value: 8.751000000000001 - type: map_at_1000 value: 9.001000000000001 - type: map_at_20 value: 7.997999999999999 - type: map_at_3 value: 5.139 - type: map_at_5 value: 6.142 - type: mrr_at_1 value: 13.700000000000001 - type: mrr_at_10 value: 22.60158730158729 - type: mrr_at_100 value: 23.72791508184251 - type: mrr_at_1000 value: 23.810527360772817 - type: mrr_at_20 value: 23.241815149075197 - type: mrr_at_3 value: 19.60000000000002 - type: mrr_at_5 value: 21.224999999999998 - type: nauc_map_at_1000_diff1 value: 14.792227224924506 - type: nauc_map_at_1000_max value: 32.301641383960124 - type: nauc_map_at_1000_std value: 23.083104358905977 - type: nauc_map_at_100_diff1 value: 14.803863271383166 - type: nauc_map_at_100_max value: 32.24680252823908 - type: nauc_map_at_100_std value: 22.748086109451773 - type: nauc_map_at_10_diff1 value: 15.795155883364743 - type: nauc_map_at_10_max value: 30.944058206585463 - type: nauc_map_at_10_std value: 18.708078547726842 - type: nauc_map_at_1_diff1 value: 21.132398215573865 - type: nauc_map_at_1_max value: 29.19592327750959 - type: nauc_map_at_1_std value: 13.996493176089015 - type: nauc_map_at_20_diff1 value: 15.077937784358452 - type: nauc_map_at_20_max value: 31.657769880494403 - type: nauc_map_at_20_std value: 20.60155411885354 - type: nauc_map_at_3_diff1 value: 18.674857148125 - type: nauc_map_at_3_max value: 30.693417190589383 - type: nauc_map_at_3_std value: 16.47059364780481 - type: nauc_map_at_5_diff1 value: 16.575681500234854 - type: nauc_map_at_5_max value: 30.082817752366125 - type: nauc_map_at_5_std value: 16.662663606573776 - type: nauc_mrr_at_1000_diff1 value: 16.522679131105793 - type: nauc_mrr_at_1000_max value: 27.23085993594398 - type: nauc_mrr_at_1000_std value: 17.51392936535595 - type: nauc_mrr_at_100_diff1 value: 16.530117282112702 - type: nauc_mrr_at_100_max value: 27.21672480216746 - type: nauc_mrr_at_100_std value: 17.537026259653445 - type: nauc_mrr_at_10_diff1 value: 16.487235038131733 - type: nauc_mrr_at_10_max value: 27.225450717843323 - type: nauc_mrr_at_10_std value: 17.148693690389308 - type: nauc_mrr_at_1_diff1 value: 21.500757577390356 - type: nauc_mrr_at_1_max value: 29.155414361425848 - type: nauc_mrr_at_1_std value: 14.066153856101241 - type: nauc_mrr_at_20_diff1 value: 16.35982399761223 - type: nauc_mrr_at_20_max value: 27.222179685954384 - type: nauc_mrr_at_20_std value: 17.446818156563065 - type: nauc_mrr_at_3_diff1 value: 17.458713266374655 - type: nauc_mrr_at_3_max value: 26.24442929157636 - type: nauc_mrr_at_3_std value: 15.474103091301044 - type: nauc_mrr_at_5_diff1 value: 16.5126045582872 - type: nauc_mrr_at_5_max value: 26.997210926210446 - type: nauc_mrr_at_5_std value: 16.704873410048148 - type: nauc_ndcg_at_1000_diff1 value: 12.907773784346746 - type: nauc_ndcg_at_1000_max value: 33.34766220820817 - type: nauc_ndcg_at_1000_std value: 30.482401904164757 - type: nauc_ndcg_at_100_diff1 value: 13.232279099200772 - type: nauc_ndcg_at_100_max value: 32.36971943877284 - type: nauc_ndcg_at_100_std value: 28.885308987810603 - type: nauc_ndcg_at_10_diff1 value: 14.263079852214009 - type: nauc_ndcg_at_10_max value: 29.756761364913597 - type: nauc_ndcg_at_10_std value: 20.083627271228888 - type: nauc_ndcg_at_1_diff1 value: 21.500757577390356 - type: nauc_ndcg_at_1_max value: 29.155414361425848 - type: nauc_ndcg_at_1_std value: 14.066153856101241 - type: nauc_ndcg_at_20_diff1 value: 12.922160932922422 - type: nauc_ndcg_at_20_max value: 30.932912450602785 - type: nauc_ndcg_at_20_std value: 23.182250500209516 - type: nauc_ndcg_at_3_diff1 value: 17.21918294663663 - type: nauc_ndcg_at_3_max value: 28.662429889428637 - type: nauc_ndcg_at_3_std value: 16.8401928942087 - type: nauc_ndcg_at_5_diff1 value: 15.024056520905358 - type: nauc_ndcg_at_5_max value: 28.783882370742838 - type: nauc_ndcg_at_5_std value: 17.956997691110093 - type: nauc_precision_at_1000_diff1 value: 4.853325331972668 - type: nauc_precision_at_1000_max value: 30.15694152384708 - type: nauc_precision_at_1000_std value: 38.55692767533825 - type: nauc_precision_at_100_diff1 value: 8.113117956423707 - type: nauc_precision_at_100_max value: 30.579313799148494 - type: nauc_precision_at_100_std value: 37.078327072376624 - type: nauc_precision_at_10_diff1 value: 10.323074186311555 - type: nauc_precision_at_10_max value: 29.267955393045213 - type: nauc_precision_at_10_std value: 22.493435993948 - type: nauc_precision_at_1_diff1 value: 21.500757577390356 - type: nauc_precision_at_1_max value: 29.155414361425848 - type: nauc_precision_at_1_std value: 14.066153856101241 - type: nauc_precision_at_20_diff1 value: 7.296113998064506 - type: nauc_precision_at_20_max value: 29.990871534639396 - type: nauc_precision_at_20_std value: 27.109509055275005 - type: nauc_precision_at_3_diff1 value: 15.390787042974221 - type: nauc_precision_at_3_max value: 28.84488812625923 - type: nauc_precision_at_3_std value: 18.32236552735027 - type: nauc_precision_at_5_diff1 value: 11.503698423183337 - type: nauc_precision_at_5_max value: 28.057493966763282 - type: nauc_precision_at_5_std value: 19.611698266221076 - type: nauc_recall_at_1000_diff1 value: 5.664077565322699 - type: nauc_recall_at_1000_max value: 30.448757418101447 - type: nauc_recall_at_1000_std value: 39.27731310660493 - type: nauc_recall_at_100_diff1 value: 8.425909931770086 - type: nauc_recall_at_100_max value: 30.68171063121248 - type: nauc_recall_at_100_std value: 37.184544204955074 - type: nauc_recall_at_10_diff1 value: 10.47166367371188 - type: nauc_recall_at_10_max value: 29.14586678828798 - type: nauc_recall_at_10_std value: 22.111878920453464 - type: nauc_recall_at_1_diff1 value: 21.132398215573865 - type: nauc_recall_at_1_max value: 29.19592327750959 - type: nauc_recall_at_1_std value: 13.996493176089015 - type: nauc_recall_at_20_diff1 value: 7.4486268209490465 - type: nauc_recall_at_20_max value: 29.759399489054555 - type: nauc_recall_at_20_std value: 26.731517559908852 - type: nauc_recall_at_3_diff1 value: 15.400192355820627 - type: nauc_recall_at_3_max value: 28.572542534889312 - type: nauc_recall_at_3_std value: 17.816298041992443 - type: nauc_recall_at_5_diff1 value: 11.600069164989952 - type: nauc_recall_at_5_max value: 27.974947140469958 - type: nauc_recall_at_5_std value: 19.139625890938866 - type: ndcg_at_1 value: 13.700000000000001 - type: ndcg_at_10 value: 13.038 - type: ndcg_at_100 value: 19.628 - type: ndcg_at_1000 value: 24.892 - type: ndcg_at_20 value: 15.296999999999999 - type: ndcg_at_3 value: 11.828 - type: ndcg_at_5 value: 10.532 - type: precision_at_1 value: 13.700000000000001 - type: precision_at_10 value: 6.99 - type: precision_at_100 value: 1.659 - type: precision_at_1000 value: 0.294 - type: precision_at_20 value: 4.8 - type: precision_at_3 value: 11.233 - type: precision_at_5 value: 9.44 - type: recall_at_1 value: 2.785 - type: recall_at_10 value: 14.198 - type: recall_at_100 value: 33.768 - type: recall_at_1000 value: 59.821999999999996 - type: recall_at_20 value: 19.497999999999998 - type: recall_at_3 value: 6.877999999999999 - type: recall_at_5 value: 9.613 task: type: Retrieval - dataset: config: default name: MTEB SICK-E-PL revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9 split: test type: PL-MTEB/sicke-pl-pairclassification metrics: - type: cosine_accuracy value: 77.45617611088463 - type: cosine_accuracy_threshold value: 88.67492079734802 - type: cosine_ap value: 62.798198995025665 - type: cosine_f1 value: 60.74950690335306 - type: cosine_f1_threshold value: 80.56387305259705 - type: cosine_precision value: 50.256410256410255 - type: cosine_recall value: 76.78062678062678 - type: dot_accuracy value: 77.45617611088463 - type: dot_accuracy_threshold value: 88.6749267578125 - type: dot_ap value: 62.798159152951385 - type: dot_f1 value: 60.74950690335306 - type: dot_f1_threshold value: 80.56387305259705 - type: dot_precision value: 50.256410256410255 - type: dot_recall value: 76.78062678062678 - type: euclidean_accuracy value: 77.45617611088463 - type: euclidean_accuracy_threshold value: 47.592175006866455 - type: euclidean_ap value: 62.79814750094985 - type: euclidean_f1 value: 60.74950690335306 - type: euclidean_f1_threshold value: 62.347614765167236 - type: euclidean_precision value: 50.256410256410255 - type: euclidean_recall value: 76.78062678062678 - type: main_score value: 62.798198995025665 - type: manhattan_accuracy value: 77.27272727272727 - type: manhattan_accuracy_threshold value: 975.9557723999023 - type: manhattan_ap value: 62.33701490592974 - type: manhattan_f1 value: 60.3921568627451 - type: manhattan_f1_threshold value: 1475.3839492797852 - type: manhattan_precision value: 49.769159741458914 - type: manhattan_recall value: 76.78062678062678 - type: max_ap value: 62.798198995025665 - type: max_f1 value: 60.74950690335306 - type: max_precision value: 50.256410256410255 - type: max_recall value: 76.78062678062678 - type: similarity_accuracy value: 77.45617611088463 - type: similarity_accuracy_threshold value: 88.67492079734802 - type: similarity_ap value: 62.798198995025665 - type: similarity_f1 value: 60.74950690335306 - type: similarity_f1_threshold value: 80.56387305259705 - type: similarity_precision value: 50.256410256410255 - type: similarity_recall value: 76.78062678062678 task: type: PairClassification - dataset: config: default name: MTEB SICK-R-PL revision: fd5c2441b7eeff8676768036142af4cfa42c1339 split: test type: PL-MTEB/sickr-pl-sts metrics: - type: cosine_pearson value: 72.36287255590445 - type: cosine_spearman value: 66.30825825122318 - type: euclidean_pearson value: 68.92313932419128 - type: euclidean_spearman value: 66.30826006369618 - type: main_score value: 66.30825825122318 - type: manhattan_pearson value: 68.66991543703946 - type: manhattan_spearman value: 66.0242047018923 - type: pearson value: 72.36287255590445 - type: spearman value: 66.30825825122318 task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 41.56662243222903 - type: cosine_spearman value: 44.94984671604992 - type: euclidean_pearson value: 27.88886658631932 - type: euclidean_spearman value: 44.94984671604992 - type: main_score value: 44.94984671604992 - type: manhattan_pearson value: 27.467462847157798 - type: manhattan_spearman value: 44.990280944902125 - type: pearson value: 41.56662243222903 - type: spearman value: 44.94984671604992 task: type: STS - dataset: config: pl-en name: MTEB STS22 (pl-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 78.67129157333113 - type: cosine_spearman value: 77.17497249706467 - type: euclidean_pearson value: 78.93527680834069 - type: euclidean_spearman value: 77.17497249706467 - type: main_score value: 77.17497249706467 - type: manhattan_pearson value: 79.17117078125075 - type: manhattan_spearman value: 77.98920639910075 - type: pearson value: 78.67129157333113 - type: spearman value: 77.17497249706467 task: type: STS - dataset: config: de-pl name: MTEB STS22 (de-pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 38.70216637556677 - type: cosine_spearman value: 55.768121437825556 - type: euclidean_pearson value: 41.389482428930485 - type: euclidean_spearman value: 55.768121437825556 - type: main_score value: 55.768121437825556 - type: manhattan_pearson value: 42.7616496232802 - type: manhattan_spearman value: 54.44397498734157 - type: pearson value: 38.70216637556677 - type: spearman value: 55.768121437825556 task: type: STS - dataset: config: fr-pl name: MTEB STS22 (fr-pl) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 83.39168516605531 - type: cosine_spearman value: 84.51542547285167 - type: euclidean_pearson value: 83.7912731376875 - type: euclidean_spearman value: 84.51542547285167 - type: main_score value: 84.51542547285167 - type: manhattan_pearson value: 82.28209868239296 - type: manhattan_spearman value: 84.51542547285167 - type: pearson value: 83.39168516605531 - type: spearman value: 84.51542547285167 task: type: STS - dataset: config: default name: MTEB SciFact-PL revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e split: test type: clarin-knext/scifact-pl metrics: - type: main_score value: 57.827 - type: map_at_1 value: 45.083 - type: map_at_10 value: 53.83 - type: map_at_100 value: 54.577 - type: map_at_1000 value: 54.623 - type: map_at_20 value: 54.211 - type: map_at_3 value: 51.304 - type: map_at_5 value: 52.851000000000006 - type: mrr_at_1 value: 47.333333333333336 - type: mrr_at_10 value: 55.07949735449736 - type: mrr_at_100 value: 55.710506477168956 - type: mrr_at_1000 value: 55.748401782889445 - type: mrr_at_20 value: 55.409548920578345 - type: mrr_at_3 value: 53.055555555555564 - type: mrr_at_5 value: 54.422222222222224 - type: nauc_map_at_1000_diff1 value: 56.75114793396484 - type: nauc_map_at_1000_max value: 45.557101118136366 - type: nauc_map_at_1000_std value: 21.122840914857495 - type: nauc_map_at_100_diff1 value: 56.738747688350024 - type: nauc_map_at_100_max value: 45.55491958094813 - type: nauc_map_at_100_std value: 21.12266632389643 - type: nauc_map_at_10_diff1 value: 56.926041668030855 - type: nauc_map_at_10_max value: 45.2382783831653 - type: nauc_map_at_10_std value: 20.922255034211766 - type: nauc_map_at_1_diff1 value: 60.98838903764472 - type: nauc_map_at_1_max value: 43.22668392792625 - type: nauc_map_at_1_std value: 17.29004046426385 - type: nauc_map_at_20_diff1 value: 56.848541422173795 - type: nauc_map_at_20_max value: 45.59725008207042 - type: nauc_map_at_20_std value: 21.177613569735655 - type: nauc_map_at_3_diff1 value: 58.23995403356206 - type: nauc_map_at_3_max value: 44.76675994666382 - type: nauc_map_at_3_std value: 18.839553176727783 - type: nauc_map_at_5_diff1 value: 56.99049510687553 - type: nauc_map_at_5_max value: 44.71681163401595 - type: nauc_map_at_5_std value: 19.453824672770455 - type: nauc_mrr_at_1000_diff1 value: 57.4953870158563 - type: nauc_mrr_at_1000_max value: 46.79551970939633 - type: nauc_mrr_at_1000_std value: 23.71693511404122 - type: nauc_mrr_at_100_diff1 value: 57.482272276265235 - type: nauc_mrr_at_100_max value: 46.79105970491737 - type: nauc_mrr_at_100_std value: 23.705546007429124 - type: nauc_mrr_at_10_diff1 value: 57.630280158288926 - type: nauc_mrr_at_10_max value: 46.646619843739465 - type: nauc_mrr_at_10_std value: 23.642389853421577 - type: nauc_mrr_at_1_diff1 value: 61.903420841877356 - type: nauc_mrr_at_1_max value: 46.95318894276891 - type: nauc_mrr_at_1_std value: 23.19343113872584 - type: nauc_mrr_at_20_diff1 value: 57.574039026825815 - type: nauc_mrr_at_20_max value: 46.825490821786545 - type: nauc_mrr_at_20_std value: 23.747309823079746 - type: nauc_mrr_at_3_diff1 value: 58.634726160884576 - type: nauc_mrr_at_3_max value: 46.68634348254961 - type: nauc_mrr_at_3_std value: 22.9939558189414 - type: nauc_mrr_at_5_diff1 value: 57.43527378441584 - type: nauc_mrr_at_5_max value: 46.82233838319152 - type: nauc_mrr_at_5_std value: 23.407766325712398 - type: nauc_ndcg_at_1000_diff1 value: 55.303289773692676 - type: nauc_ndcg_at_1000_max value: 46.703610191621145 - type: nauc_ndcg_at_1000_std value: 23.57730795756405 - type: nauc_ndcg_at_100_diff1 value: 54.38572710219233 - type: nauc_ndcg_at_100_max value: 46.37493158024567 - type: nauc_ndcg_at_100_std value: 23.314588126884324 - type: nauc_ndcg_at_10_diff1 value: 55.21850729666301 - type: nauc_ndcg_at_10_max value: 45.58511788479343 - type: nauc_ndcg_at_10_std value: 22.8531636189787 - type: nauc_ndcg_at_1_diff1 value: 61.903420841877356 - type: nauc_ndcg_at_1_max value: 46.95318894276891 - type: nauc_ndcg_at_1_std value: 23.19343113872584 - type: nauc_ndcg_at_20_diff1 value: 54.96359325487391 - type: nauc_ndcg_at_20_max value: 46.525071413272975 - type: nauc_ndcg_at_20_std value: 23.416022310286206 - type: nauc_ndcg_at_3_diff1 value: 57.33303538179732 - type: nauc_ndcg_at_3_max value: 45.60081314229553 - type: nauc_ndcg_at_3_std value: 20.311802683707644 - type: nauc_ndcg_at_5_diff1 value: 55.09370926297347 - type: nauc_ndcg_at_5_max value: 45.11375173156922 - type: nauc_ndcg_at_5_std value: 20.676971796560167 - type: nauc_precision_at_1000_diff1 value: -8.792997673585157 - type: nauc_precision_at_1000_max value: 26.985804617599456 - type: nauc_precision_at_1000_std value: 38.32145829157333 - type: nauc_precision_at_100_diff1 value: 3.448830291824138 - type: nauc_precision_at_100_max value: 33.3751058104728 - type: nauc_precision_at_100_std value: 36.07155861781976 - type: nauc_precision_at_10_diff1 value: 27.905538531066256 - type: nauc_precision_at_10_max value: 41.57287780821485 - type: nauc_precision_at_10_std value: 36.11165069712307 - type: nauc_precision_at_1_diff1 value: 61.903420841877356 - type: nauc_precision_at_1_max value: 46.95318894276891 - type: nauc_precision_at_1_std value: 23.19343113872584 - type: nauc_precision_at_20_diff1 value: 21.945937631553438 - type: nauc_precision_at_20_max value: 42.8503772546226 - type: nauc_precision_at_20_std value: 37.54978789546971 - type: nauc_precision_at_3_diff1 value: 44.695453949094684 - type: nauc_precision_at_3_max value: 46.25836394647075 - type: nauc_precision_at_3_std value: 25.448947126738393 - type: nauc_precision_at_5_diff1 value: 34.21739846774853 - type: nauc_precision_at_5_max value: 43.36271521542134 - type: nauc_precision_at_5_std value: 28.863168300518954 - type: nauc_recall_at_1000_diff1 value: 50.866272434900374 - type: nauc_recall_at_1000_max value: 77.90745928000882 - type: nauc_recall_at_1000_std value: 82.21288515406151 - type: nauc_recall_at_100_diff1 value: 35.307317119527056 - type: nauc_recall_at_100_max value: 46.922433638935956 - type: nauc_recall_at_100_std value: 31.814942138236262 - type: nauc_recall_at_10_diff1 value: 47.8121533413515 - type: nauc_recall_at_10_max value: 43.310991487523246 - type: nauc_recall_at_10_std value: 25.903501909176917 - type: nauc_recall_at_1_diff1 value: 60.98838903764472 - type: nauc_recall_at_1_max value: 43.22668392792625 - type: nauc_recall_at_1_std value: 17.29004046426385 - type: nauc_recall_at_20_diff1 value: 45.83142943406739 - type: nauc_recall_at_20_max value: 46.73030342771932 - type: nauc_recall_at_20_std value: 28.07957120284036 - type: nauc_recall_at_3_diff1 value: 54.187633219194495 - type: nauc_recall_at_3_max value: 43.672283626861066 - type: nauc_recall_at_3_std value: 18.136469354114993 - type: nauc_recall_at_5_diff1 value: 47.4292849527445 - type: nauc_recall_at_5_max value: 42.22276792180875 - type: nauc_recall_at_5_std value: 19.22371392434811 - type: ndcg_at_1 value: 47.333 - type: ndcg_at_10 value: 57.827 - type: ndcg_at_100 value: 61.551 - type: ndcg_at_1000 value: 62.865 - type: ndcg_at_20 value: 59.03699999999999 - type: ndcg_at_3 value: 53.554 - type: ndcg_at_5 value: 55.949000000000005 - type: precision_at_1 value: 47.333 - type: precision_at_10 value: 7.767 - type: precision_at_100 value: 0.987 - type: precision_at_1000 value: 0.11 - type: precision_at_20 value: 4.167 - type: precision_at_3 value: 21.111 - type: precision_at_5 value: 14.133000000000001 - type: recall_at_1 value: 45.083 - type: recall_at_10 value: 68.667 - type: recall_at_100 value: 86.433 - type: recall_at_1000 value: 97.0 - type: recall_at_20 value: 73.078 - type: recall_at_3 value: 57.477999999999994 - type: recall_at_5 value: 63.322 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID-PL revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd split: test type: clarin-knext/trec-covid-pl metrics: - type: main_score value: 56.919 - type: map_at_1 value: 0.17600000000000002 - type: map_at_10 value: 1.352 - type: map_at_100 value: 7.253 - type: map_at_1000 value: 18.698 - type: map_at_20 value: 2.313 - type: map_at_3 value: 0.496 - type: map_at_5 value: 0.775 - type: mrr_at_1 value: 68.0 - type: mrr_at_10 value: 80.26904761904761 - type: mrr_at_100 value: 80.26904761904761 - type: mrr_at_1000 value: 80.26904761904761 - type: mrr_at_20 value: 80.26904761904761 - type: mrr_at_3 value: 78.33333333333333 - type: mrr_at_5 value: 79.73333333333332 - type: nauc_map_at_1000_diff1 value: 6.574463369141221 - type: nauc_map_at_1000_max value: 53.38255229751684 - type: nauc_map_at_1000_std value: 80.05902957099651 - type: nauc_map_at_100_diff1 value: 11.446821053406707 - type: nauc_map_at_100_max value: 44.68607496071329 - type: nauc_map_at_100_std value: 72.78356846807002 - type: nauc_map_at_10_diff1 value: 19.670014556837902 - type: nauc_map_at_10_max value: 34.81097303843686 - type: nauc_map_at_10_std value: 33.674183618423335 - type: nauc_map_at_1_diff1 value: 21.506439684761883 - type: nauc_map_at_1_max value: 28.484715735575577 - type: nauc_map_at_1_std value: 9.63153171871658 - type: nauc_map_at_20_diff1 value: 21.0792619485704 - type: nauc_map_at_20_max value: 42.16963284469341 - type: nauc_map_at_20_std value: 40.700515917035524 - type: nauc_map_at_3_diff1 value: 26.981672835550295 - type: nauc_map_at_3_max value: 32.974693063997506 - type: nauc_map_at_3_std value: 16.6022898528941 - type: nauc_map_at_5_diff1 value: 27.87549872058613 - type: nauc_map_at_5_max value: 33.80977925406638 - type: nauc_map_at_5_std value: 19.902109058910966 - type: nauc_mrr_at_1000_diff1 value: 12.46327367923585 - type: nauc_mrr_at_1000_max value: 36.671369778214725 - type: nauc_mrr_at_1000_std value: 29.65039484236962 - type: nauc_mrr_at_100_diff1 value: 12.46327367923585 - type: nauc_mrr_at_100_max value: 36.671369778214725 - type: nauc_mrr_at_100_std value: 29.65039484236962 - type: nauc_mrr_at_10_diff1 value: 12.46327367923585 - type: nauc_mrr_at_10_max value: 36.671369778214725 - type: nauc_mrr_at_10_std value: 29.65039484236962 - type: nauc_mrr_at_1_diff1 value: 6.319535622970017 - type: nauc_mrr_at_1_max value: 33.71225209038767 - type: nauc_mrr_at_1_std value: 25.834427475640904 - type: nauc_mrr_at_20_diff1 value: 12.46327367923585 - type: nauc_mrr_at_20_max value: 36.671369778214725 - type: nauc_mrr_at_20_std value: 29.65039484236962 - type: nauc_mrr_at_3_diff1 value: 14.027551353113887 - type: nauc_mrr_at_3_max value: 38.329801108575204 - type: nauc_mrr_at_3_std value: 29.922562764916822 - type: nauc_mrr_at_5_diff1 value: 14.272859057946812 - type: nauc_mrr_at_5_max value: 36.26521327614547 - type: nauc_mrr_at_5_std value: 30.35143151694706 - type: nauc_ndcg_at_1000_diff1 value: 11.430252629811264 - type: nauc_ndcg_at_1000_max value: 54.72660044236807 - type: nauc_ndcg_at_1000_std value: 78.30081415388416 - type: nauc_ndcg_at_100_diff1 value: 0.3033147120555255 - type: nauc_ndcg_at_100_max value: 44.79981966050289 - type: nauc_ndcg_at_100_std value: 70.8722962407257 - type: nauc_ndcg_at_10_diff1 value: 13.708493191967316 - type: nauc_ndcg_at_10_max value: 45.58714259949 - type: nauc_ndcg_at_10_std value: 54.25312608750681 - type: nauc_ndcg_at_1_diff1 value: 14.13764957725658 - type: nauc_ndcg_at_1_max value: 35.89238137772783 - type: nauc_ndcg_at_1_std value: 26.159271864845252 - type: nauc_ndcg_at_20_diff1 value: 10.821994469339833 - type: nauc_ndcg_at_20_max value: 49.655194522856874 - type: nauc_ndcg_at_20_std value: 59.38126671218269 - type: nauc_ndcg_at_3_diff1 value: 21.715565312196077 - type: nauc_ndcg_at_3_max value: 43.75654188258407 - type: nauc_ndcg_at_3_std value: 43.06565426451109 - type: nauc_ndcg_at_5_diff1 value: 23.655719788636784 - type: nauc_ndcg_at_5_max value: 43.918620576813254 - type: nauc_ndcg_at_5_std value: 43.25044045865146 - type: nauc_precision_at_1000_diff1 value: -7.801822177721561 - type: nauc_precision_at_1000_max value: 39.258818089435316 - type: nauc_precision_at_1000_std value: 51.66205821260089 - type: nauc_precision_at_100_diff1 value: -4.119704756180739 - type: nauc_precision_at_100_max value: 39.712338903322255 - type: nauc_precision_at_100_std value: 72.21641244608408 - type: nauc_precision_at_10_diff1 value: 8.444233068337487 - type: nauc_precision_at_10_max value: 42.4676899985165 - type: nauc_precision_at_10_std value: 56.826333196617604 - type: nauc_precision_at_1_diff1 value: 6.319535622970017 - type: nauc_precision_at_1_max value: 33.71225209038767 - type: nauc_precision_at_1_std value: 25.834427475640904 - type: nauc_precision_at_20_diff1 value: 5.9351451055270665 - type: nauc_precision_at_20_max value: 48.44119310018816 - type: nauc_precision_at_20_std value: 59.5595391474413 - type: nauc_precision_at_3_diff1 value: 20.49183589553138 - type: nauc_precision_at_3_max value: 43.97209215954164 - type: nauc_precision_at_3_std value: 43.38846811953682 - type: nauc_precision_at_5_diff1 value: 23.91193541491969 - type: nauc_precision_at_5_max value: 42.89037965109586 - type: nauc_precision_at_5_std value: 43.85307223071737 - type: nauc_recall_at_1000_diff1 value: 14.852243091307962 - type: nauc_recall_at_1000_max value: 52.716143146467246 - type: nauc_recall_at_1000_std value: 75.96395414412834 - type: nauc_recall_at_100_diff1 value: 15.714854209882853 - type: nauc_recall_at_100_max value: 36.02809107498271 - type: nauc_recall_at_100_std value: 69.13542905710189 - type: nauc_recall_at_10_diff1 value: 21.595214483052263 - type: nauc_recall_at_10_max value: 30.858824962274056 - type: nauc_recall_at_10_std value: 32.41949976903557 - type: nauc_recall_at_1_diff1 value: 21.506439684761883 - type: nauc_recall_at_1_max value: 28.484715735575577 - type: nauc_recall_at_1_std value: 9.63153171871658 - type: nauc_recall_at_20_diff1 value: 26.088109678326145 - type: nauc_recall_at_20_max value: 39.30741232084537 - type: nauc_recall_at_20_std value: 35.63530214277264 - type: nauc_recall_at_3_diff1 value: 30.069120349407143 - type: nauc_recall_at_3_max value: 30.61753190304264 - type: nauc_recall_at_3_std value: 18.336355866759682 - type: nauc_recall_at_5_diff1 value: 31.512613211529615 - type: nauc_recall_at_5_max value: 30.43538310477602 - type: nauc_recall_at_5_std value: 19.67467281491149 - type: ndcg_at_1 value: 61.0 - type: ndcg_at_10 value: 56.919 - type: ndcg_at_100 value: 44.4 - type: ndcg_at_1000 value: 42.588 - type: ndcg_at_20 value: 54.266999999999996 - type: ndcg_at_3 value: 58.765 - type: ndcg_at_5 value: 58.553 - type: precision_at_1 value: 68.0 - type: precision_at_10 value: 62.0 - type: precision_at_100 value: 45.839999999999996 - type: precision_at_1000 value: 19.31 - type: precision_at_20 value: 58.199999999999996 - type: precision_at_3 value: 66.667 - type: precision_at_5 value: 64.8 - type: recall_at_1 value: 0.17600000000000002 - type: recall_at_10 value: 1.637 - type: recall_at_100 value: 10.764999999999999 - type: recall_at_1000 value: 40.766999999999996 - type: recall_at_20 value: 2.983 - type: recall_at_3 value: 0.5519999999999999 - type: recall_at_5 value: 0.8829999999999999 task: type: Retrieval - dataset: config: default name: MTEB CEDRClassification revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4 split: test type: ai-forever/cedr-classification metrics: - type: accuracy value: 42.15727948990436 - type: f1 value: 39.09194730362947 - type: lrap value: 71.07199787460253 - type: main_score value: 42.15727948990436 task: type: MultilabelClassification - dataset: config: default name: MTEB GeoreviewClassification revision: 3765c0d1de6b7d264bc459433c45e5a75513839c split: test type: ai-forever/georeview-classification metrics: - type: accuracy value: 47.685546875 - type: f1 value: 42.201867616479085 - type: f1_weighted value: 42.20127250813618 - type: main_score value: 47.685546875 task: type: Classification - dataset: config: default name: MTEB GeoreviewClusteringP2P revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec split: test type: ai-forever/georeview-clustering-p2p metrics: - type: main_score value: 63.39849666467603 - type: v_measure value: 63.39849666467603 - type: v_measure_std value: 0.4433669974776044 task: type: Clustering - dataset: config: default name: MTEB HeadlineClassification revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb split: test type: ai-forever/headline-classification metrics: - type: accuracy value: 83.45703125 - type: f1 value: 83.44147121320216 - type: f1_weighted value: 83.43953816781061 - type: main_score value: 83.45703125 task: type: Classification - dataset: config: default name: MTEB InappropriatenessClassification revision: 601651fdc45ef243751676e62dd7a19f491c0285 split: test type: ai-forever/inappropriateness-classification metrics: - type: accuracy value: 61.318359375 - type: ap value: 57.103049962056815 - type: ap_weighted value: 57.103049962056815 - type: f1 value: 60.69364450664112 - type: f1_weighted value: 60.69364450664112 - type: main_score value: 61.318359375 task: type: Classification - dataset: config: default name: MTEB KinopoiskClassification revision: 5911f26666ac11af46cb9c6849d0dc80a378af24 split: test type: ai-forever/kinopoisk-sentiment-classification metrics: - type: accuracy value: 59.040000000000006 - type: f1 value: 55.63433742720159 - type: f1_weighted value: 55.63433742720159 - type: main_score value: 59.040000000000006 task: type: Classification - dataset: config: ru name: MTEB MIRACLReranking (ru) revision: 6d1962c527217f8927fca80f890f14f36b2802af split: dev type: miracl/mmteb-miracl-reranking metrics: - type: MAP@1(MIRACL) value: 29.729 - type: MAP@10(MIRACL) value: 48.713 - type: MAP@100(MIRACL) value: 50.792 - type: MAP@1000(MIRACL) value: 50.792 - type: MAP@20(MIRACL) value: 50.197 - type: MAP@3(MIRACL) value: 41.8 - type: MAP@5(MIRACL) value: 45.706 - type: NDCG@1(MIRACL) value: 49.158 - type: NDCG@10(MIRACL) value: 56.550999999999995 - type: NDCG@100(MIRACL) value: 60.829 - type: NDCG@1000(MIRACL) value: 60.829 - type: NDCG@20(MIRACL) value: 59.229 - type: NDCG@3(MIRACL) value: 50.397000000000006 - type: NDCG@5(MIRACL) value: 53.105000000000004 - type: P@1(MIRACL) value: 49.158 - type: P@10(MIRACL) value: 14.908 - type: P@100(MIRACL) value: 1.9529999999999998 - type: P@1000(MIRACL) value: 0.19499999999999998 - type: P@20(MIRACL) value: 8.753 - type: P@3(MIRACL) value: 31.061 - type: P@5(MIRACL) value: 23.785 - type: Recall@1(MIRACL) value: 29.729 - type: Recall@10(MIRACL) value: 67.223 - type: Recall@100(MIRACL) value: 79.952 - type: Recall@1000(MIRACL) value: 79.952 - type: Recall@20(MIRACL) value: 74.417 - type: Recall@3(MIRACL) value: 49.073 - type: Recall@5(MIRACL) value: 58.094 - type: main_score value: 56.550999999999995 - type: nAUC_MAP@1000_diff1(MIRACL) value: 19.222716664871324 - type: nAUC_MAP@1000_max(MIRACL) value: 28.91315309273525 - type: nAUC_MAP@1000_std(MIRACL) value: 15.773770301363973 - type: nAUC_MAP@100_diff1(MIRACL) value: 19.222716664871324 - type: nAUC_MAP@100_max(MIRACL) value: 28.91315309273525 - type: nAUC_MAP@100_std(MIRACL) value: 15.773770301363973 - type: nAUC_MAP@10_diff1(MIRACL) value: 21.16716217839532 - type: nAUC_MAP@10_max(MIRACL) value: 26.58073750952478 - type: nAUC_MAP@10_std(MIRACL) value: 14.98546699381452 - type: nAUC_MAP@1_diff1(MIRACL) value: 37.50928508734578 - type: nAUC_MAP@1_max(MIRACL) value: 13.158704351998995 - type: nAUC_MAP@1_std(MIRACL) value: 4.422878276220556 - type: nAUC_MAP@20_diff1(MIRACL) value: 19.951045759045467 - type: nAUC_MAP@20_max(MIRACL) value: 28.25165991244302 - type: nAUC_MAP@20_std(MIRACL) value: 15.850363419877105 - type: nAUC_MAP@3_diff1(MIRACL) value: 27.774164479669988 - type: nAUC_MAP@3_max(MIRACL) value: 20.738889611307496 - type: nAUC_MAP@3_std(MIRACL) value: 9.22491952318088 - type: nAUC_MAP@5_diff1(MIRACL) value: 23.86089217267443 - type: nAUC_MAP@5_max(MIRACL) value: 23.19878810494586 - type: nAUC_MAP@5_std(MIRACL) value: 11.851875808858123 - type: nAUC_NDCG@1000_diff1(MIRACL) value: 9.459016218726891 - type: nAUC_NDCG@1000_max(MIRACL) value: 38.018030050210896 - type: nAUC_NDCG@1000_std(MIRACL) value: 20.555997574199246 - type: nAUC_NDCG@100_diff1(MIRACL) value: 9.459016218726891 - type: nAUC_NDCG@100_max(MIRACL) value: 38.018030050210896 - type: nAUC_NDCG@100_std(MIRACL) value: 20.555997574199246 - type: nAUC_NDCG@10_diff1(MIRACL) value: 14.2494195957649 - type: nAUC_NDCG@10_max(MIRACL) value: 32.87676976986289 - type: nAUC_NDCG@10_std(MIRACL) value: 19.469852065776976 - type: nAUC_NDCG@1_diff1(MIRACL) value: 23.312659021070818 - type: nAUC_NDCG@1_max(MIRACL) value: 31.554119919664593 - type: nAUC_NDCG@1_std(MIRACL) value: 17.533789813864466 - type: nAUC_NDCG@20_diff1(MIRACL) value: 11.694064829915717 - type: nAUC_NDCG@20_max(MIRACL) value: 36.12122229242797 - type: nAUC_NDCG@20_std(MIRACL) value: 20.886325245384313 - type: nAUC_NDCG@3_diff1(MIRACL) value: 19.70964037059834 - type: nAUC_NDCG@3_max(MIRACL) value: 28.271224651385758 - type: nAUC_NDCG@3_std(MIRACL) value: 14.182889320426757 - type: nAUC_NDCG@5_diff1(MIRACL) value: 17.143482434537635 - type: nAUC_NDCG@5_max(MIRACL) value: 28.911278684121744 - type: nAUC_NDCG@5_std(MIRACL) value: 15.83019582479379 - type: nAUC_P@1000_diff1(MIRACL) value: -28.806220159210838 - type: nAUC_P@1000_max(MIRACL) value: 30.19137414854295 - type: nAUC_P@1000_std(MIRACL) value: 15.577217138606922 - type: nAUC_P@100_diff1(MIRACL) value: -28.8062201592108 - type: nAUC_P@100_max(MIRACL) value: 30.191374148543016 - type: nAUC_P@100_std(MIRACL) value: 15.577217138606963 - type: nAUC_P@10_diff1(MIRACL) value: -23.950963396253567 - type: nAUC_P@10_max(MIRACL) value: 32.31620562041691 - type: nAUC_P@10_std(MIRACL) value: 22.76652888514141 - type: nAUC_P@1_diff1(MIRACL) value: 23.312659021070818 - type: nAUC_P@1_max(MIRACL) value: 31.554119919664593 - type: nAUC_P@1_std(MIRACL) value: 17.533789813864466 - type: nAUC_P@20_diff1(MIRACL) value: -26.522109242426172 - type: nAUC_P@20_max(MIRACL) value: 31.490097667881027 - type: nAUC_P@20_std(MIRACL) value: 20.51757471839622 - type: nAUC_P@3_diff1(MIRACL) value: -8.494670555442749 - type: nAUC_P@3_max(MIRACL) value: 33.197306356212295 - type: nAUC_P@3_std(MIRACL) value: 18.96447162170764 - type: nAUC_P@5_diff1(MIRACL) value: -19.15325386641154 - type: nAUC_P@5_max(MIRACL) value: 31.846463690427683 - type: nAUC_P@5_std(MIRACL) value: 20.914296846825028 - type: nAUC_Recall@1000_diff1(MIRACL) value: -22.62644777038629 - type: nAUC_Recall@1000_max(MIRACL) value: 63.09417027858301 - type: nAUC_Recall@1000_std(MIRACL) value: 31.96936126619333 - type: nAUC_Recall@100_diff1(MIRACL) value: -22.62644777038629 - type: nAUC_Recall@100_max(MIRACL) value: 63.09417027858301 - type: nAUC_Recall@100_std(MIRACL) value: 31.96936126619333 - type: nAUC_Recall@10_diff1(MIRACL) value: 1.389536667314163 - type: nAUC_Recall@10_max(MIRACL) value: 36.80168430587649 - type: nAUC_Recall@10_std(MIRACL) value: 24.6096121100626 - type: nAUC_Recall@1_diff1(MIRACL) value: 37.50928508734578 - type: nAUC_Recall@1_max(MIRACL) value: 13.158704351998995 - type: nAUC_Recall@1_std(MIRACL) value: 4.422878276220556 - type: nAUC_Recall@20_diff1(MIRACL) value: -8.586661617880036 - type: nAUC_Recall@20_max(MIRACL) value: 48.977640900606715 - type: nAUC_Recall@20_std(MIRACL) value: 30.787733282193763 - type: nAUC_Recall@3_diff1(MIRACL) value: 20.85452801657472 - type: nAUC_Recall@3_max(MIRACL) value: 20.457796008702196 - type: nAUC_Recall@3_std(MIRACL) value: 10.422494162066547 - type: nAUC_Recall@5_diff1(MIRACL) value: 11.294860119295114 - type: nAUC_Recall@5_max(MIRACL) value: 24.55554040640634 - type: nAUC_Recall@5_std(MIRACL) value: 15.07523755007524 task: type: Reranking - dataset: config: ru name: MTEB MIRACLRetrieval (ru) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: main_score value: 53.33 - type: map_at_1 value: 23.51 - type: map_at_10 value: 42.506 - type: map_at_100 value: 45.727000000000004 - type: map_at_1000 value: 45.824 - type: map_at_20 value: 44.482 - type: map_at_3 value: 34.903 - type: map_at_5 value: 38.924 - type: mrr_at_1 value: 47.52396166134185 - type: mrr_at_10 value: 60.53929585678796 - type: mrr_at_100 value: 61.08405013111772 - type: mrr_at_1000 value: 61.090960329457786 - type: mrr_at_20 value: 60.942355859942886 - type: mrr_at_3 value: 57.21512247071355 - type: mrr_at_5 value: 59.423588924387715 - type: nauc_map_at_1000_diff1 value: 27.9258851452338 - type: nauc_map_at_1000_max value: 23.91526202439492 - type: nauc_map_at_1000_std value: 1.9886186316328294 - type: nauc_map_at_100_diff1 value: 27.950443502043935 - type: nauc_map_at_100_max value: 23.91952747895155 - type: nauc_map_at_100_std value: 1.9828664117240875 - type: nauc_map_at_10_diff1 value: 28.591900542084257 - type: nauc_map_at_10_max value: 22.26715273276218 - type: nauc_map_at_10_std value: -0.2905582006620209 - type: nauc_map_at_1_diff1 value: 36.29159533442582 - type: nauc_map_at_1_max value: 14.017798723971604 - type: nauc_map_at_1_std value: -4.135744714942541 - type: nauc_map_at_20_diff1 value: 28.227642002703888 - type: nauc_map_at_20_max value: 23.31288716904143 - type: nauc_map_at_20_std value: 0.8608305708684871 - type: nauc_map_at_3_diff1 value: 31.25854158298961 - type: nauc_map_at_3_max value: 19.94828898205679 - type: nauc_map_at_3_std value: -3.055128116323982 - type: nauc_map_at_5_diff1 value: 29.569541485869138 - type: nauc_map_at_5_max value: 20.295566102579233 - type: nauc_map_at_5_std value: -2.0623859574064496 - type: nauc_mrr_at_1000_diff1 value: 27.361661005387717 - type: nauc_mrr_at_1000_max value: 29.835566057491185 - type: nauc_mrr_at_1000_std value: 9.18992468804867 - type: nauc_mrr_at_100_diff1 value: 27.364549933483367 - type: nauc_mrr_at_100_max value: 29.841000191685662 - type: nauc_mrr_at_100_std value: 9.201936238611633 - type: nauc_mrr_at_10_diff1 value: 27.091315668645876 - type: nauc_mrr_at_10_max value: 30.083804137944814 - type: nauc_mrr_at_10_std value: 9.295940302357145 - type: nauc_mrr_at_1_diff1 value: 30.096520602983773 - type: nauc_mrr_at_1_max value: 25.92117667316542 - type: nauc_mrr_at_1_std value: 6.628159094331555 - type: nauc_mrr_at_20_diff1 value: 27.26907735403706 - type: nauc_mrr_at_20_max value: 29.91703823542895 - type: nauc_mrr_at_20_std value: 9.220168448561815 - type: nauc_mrr_at_3_diff1 value: 27.132416524688672 - type: nauc_mrr_at_3_max value: 29.879006809416147 - type: nauc_mrr_at_3_std value: 8.495778638777473 - type: nauc_mrr_at_5_diff1 value: 27.164544736044938 - type: nauc_mrr_at_5_max value: 29.756896839148844 - type: nauc_mrr_at_5_std value: 8.697141135185072 - type: nauc_ndcg_at_1000_diff1 value: 25.711789502779325 - type: nauc_ndcg_at_1000_max value: 28.742258668080943 - type: nauc_ndcg_at_1000_std value: 8.197781962071534 - type: nauc_ndcg_at_100_diff1 value: 25.844850932804846 - type: nauc_ndcg_at_100_max value: 29.043525248699453 - type: nauc_ndcg_at_100_std value: 8.810501750069859 - type: nauc_ndcg_at_10_diff1 value: 26.47161747010468 - type: nauc_ndcg_at_10_max value: 25.36709975989015 - type: nauc_ndcg_at_10_std value: 3.070985924814878 - type: nauc_ndcg_at_1_diff1 value: 30.096520602983773 - type: nauc_ndcg_at_1_max value: 25.92117667316542 - type: nauc_ndcg_at_1_std value: 6.628159094331555 - type: nauc_ndcg_at_20_diff1 value: 26.329559310197325 - type: nauc_ndcg_at_20_max value: 27.252374736353723 - type: nauc_ndcg_at_20_std value: 5.279499913033636 - type: nauc_ndcg_at_3_diff1 value: 26.382469083855774 - type: nauc_ndcg_at_3_max value: 25.667817557434446 - type: nauc_ndcg_at_3_std value: 2.722781380568278 - type: nauc_ndcg_at_5_diff1 value: 26.63587958392066 - type: nauc_ndcg_at_5_max value: 24.012746599673562 - type: nauc_ndcg_at_5_std value: 1.875533584617588 - type: nauc_precision_at_1000_diff1 value: -16.886796017740146 - type: nauc_precision_at_1000_max value: 13.452350695770388 - type: nauc_precision_at_1000_std value: 20.253057030417295 - type: nauc_precision_at_100_diff1 value: -15.676681024836736 - type: nauc_precision_at_100_max value: 17.21039273342314 - type: nauc_precision_at_100_std value: 23.503219057796482 - type: nauc_precision_at_10_diff1 value: -7.353821346474632 - type: nauc_precision_at_10_max value: 22.963099870525657 - type: nauc_precision_at_10_std value: 16.75138999512155 - type: nauc_precision_at_1_diff1 value: 30.096520602983773 - type: nauc_precision_at_1_max value: 25.92117667316542 - type: nauc_precision_at_1_std value: 6.628159094331555 - type: nauc_precision_at_20_diff1 value: -11.020811644697545 - type: nauc_precision_at_20_max value: 21.625978665259115 - type: nauc_precision_at_20_std value: 20.005095685790348 - type: nauc_precision_at_3_diff1 value: 7.003507657338856 - type: nauc_precision_at_3_max value: 27.73371213700131 - type: nauc_precision_at_3_std value: 9.668915001732463 - type: nauc_precision_at_5_diff1 value: -1.715206180870653 - type: nauc_precision_at_5_max value: 24.29609734679536 - type: nauc_precision_at_5_std value: 13.402584423111977 - type: nauc_recall_at_1000_diff1 value: 17.28590002253731 - type: nauc_recall_at_1000_max value: 68.10425916894825 - type: nauc_recall_at_1000_std value: 73.8411367347451 - type: nauc_recall_at_100_diff1 value: 18.442237799863165 - type: nauc_recall_at_100_max value: 39.59374558744695 - type: nauc_recall_at_100_std value: 38.54186929047189 - type: nauc_recall_at_10_diff1 value: 19.243325372129107 - type: nauc_recall_at_10_max value: 19.111906153501202 - type: nauc_recall_at_10_std value: 0.8737992988209908 - type: nauc_recall_at_1_diff1 value: 36.29159533442582 - type: nauc_recall_at_1_max value: 14.017798723971604 - type: nauc_recall_at_1_std value: -4.135744714942541 - type: nauc_recall_at_20_diff1 value: 19.01527783708535 - type: nauc_recall_at_20_max value: 22.731910630901435 - type: nauc_recall_at_20_std value: 5.981218642323668 - type: nauc_recall_at_3_diff1 value: 25.892436310762985 - type: nauc_recall_at_3_max value: 18.9097432217694 - type: nauc_recall_at_3_std value: -3.8494373478485033 - type: nauc_recall_at_5_diff1 value: 22.032856212342626 - type: nauc_recall_at_5_max value: 16.22066351445006 - type: nauc_recall_at_5_std value: -3.416429358868604 - type: ndcg_at_1 value: 47.524 - type: ndcg_at_10 value: 53.33 - type: ndcg_at_100 value: 61.746 - type: ndcg_at_1000 value: 62.803 - type: ndcg_at_20 value: 57.498000000000005 - type: ndcg_at_3 value: 46.204 - type: ndcg_at_5 value: 48.824 - type: precision_at_1 value: 47.524 - type: precision_at_10 value: 16.478 - type: precision_at_100 value: 2.5860000000000003 - type: precision_at_1000 value: 0.27799999999999997 - type: precision_at_20 value: 10.12 - type: precision_at_3 value: 31.735999999999997 - type: precision_at_5 value: 24.951999999999998 - type: recall_at_1 value: 23.51 - type: recall_at_10 value: 64.98899999999999 - type: recall_at_100 value: 92.241 - type: recall_at_1000 value: 97.929 - type: recall_at_20 value: 76.822 - type: recall_at_3 value: 42.126000000000005 - type: recall_at_5 value: 52.449 task: type: Retrieval - dataset: config: ru name: MTEB MassiveIntentClassification (ru) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 60.08069939475453 - type: f1 value: 56.18556634916303 - type: f1_weighted value: 58.60322135027107 - type: main_score value: 60.08069939475453 task: type: Classification - dataset: config: ru name: MTEB MassiveScenarioClassification (ru) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.43913920645595 - type: f1 value: 66.11191203959372 - type: f1_weighted value: 65.72977001101279 - type: main_score value: 66.43913920645595 task: type: Classification - dataset: config: default name: MTEB RUParaPhraserSTS revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4 split: test type: merionum/ru_paraphraser metrics: - type: cosine_pearson value: 61.89012659088028 - type: cosine_spearman value: 68.53279563915628 - type: euclidean_pearson value: 65.64255392938036 - type: euclidean_spearman value: 68.53279561028907 - type: main_score value: 68.53279563915628 - type: manhattan_pearson value: 65.52758148688461 - type: manhattan_spearman value: 68.32426605891132 - type: pearson value: 61.89012659088028 - type: spearman value: 68.53279563915628 task: type: STS - dataset: config: default name: MTEB RiaNewsRetrieval revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7 split: test type: ai-forever/ria-news-retrieval metrics: - type: main_score value: 77.425 - type: map_at_1 value: 64.92 - type: map_at_10 value: 73.646 - type: map_at_100 value: 73.978 - type: map_at_1000 value: 73.988 - type: map_at_20 value: 73.872 - type: map_at_3 value: 72.128 - type: map_at_5 value: 73.083 - type: mrr_at_1 value: 64.92 - type: mrr_at_10 value: 73.64593650793611 - type: mrr_at_100 value: 73.97838585882688 - type: mrr_at_1000 value: 73.98842757843987 - type: mrr_at_20 value: 73.87221333104404 - type: mrr_at_3 value: 72.12833333333288 - type: mrr_at_5 value: 73.08333333333267 - type: nauc_map_at_1000_diff1 value: 70.38564962754138 - type: nauc_map_at_1000_max value: 30.718444075784006 - type: nauc_map_at_1000_std value: -10.69552302626205 - type: nauc_map_at_100_diff1 value: 70.37997156234715 - type: nauc_map_at_100_max value: 30.725651745932925 - type: nauc_map_at_100_std value: -10.685708218531655 - type: nauc_map_at_10_diff1 value: 70.3374861437528 - type: nauc_map_at_10_max value: 30.749168340301246 - type: nauc_map_at_10_std value: -10.799483498655107 - type: nauc_map_at_1_diff1 value: 73.9192388165348 - type: nauc_map_at_1_max value: 28.442543674061532 - type: nauc_map_at_1_std value: -11.831889393493318 - type: nauc_map_at_20_diff1 value: 70.34741729027523 - type: nauc_map_at_20_max value: 30.734754088899564 - type: nauc_map_at_20_std value: -10.686749277585324 - type: nauc_map_at_3_diff1 value: 70.21568887706891 - type: nauc_map_at_3_max value: 30.467074420623437 - type: nauc_map_at_3_std value: -11.472218305675923 - type: nauc_map_at_5_diff1 value: 70.34594531547204 - type: nauc_map_at_5_max value: 30.754996331475464 - type: nauc_map_at_5_std value: -11.084635295739732 - type: nauc_mrr_at_1000_diff1 value: 70.38565025595047 - type: nauc_mrr_at_1000_max value: 30.718444183775805 - type: nauc_mrr_at_1000_std value: -10.695523162874768 - type: nauc_mrr_at_100_diff1 value: 70.37997156234715 - type: nauc_mrr_at_100_max value: 30.725651745932925 - type: nauc_mrr_at_100_std value: -10.685708218531655 - type: nauc_mrr_at_10_diff1 value: 70.3374861437528 - type: nauc_mrr_at_10_max value: 30.749168340301246 - type: nauc_mrr_at_10_std value: -10.799483498655107 - type: nauc_mrr_at_1_diff1 value: 73.9192388165348 - type: nauc_mrr_at_1_max value: 28.442543674061532 - type: nauc_mrr_at_1_std value: -11.831889393493318 - type: nauc_mrr_at_20_diff1 value: 70.34741729027523 - type: nauc_mrr_at_20_max value: 30.734754088899564 - type: nauc_mrr_at_20_std value: -10.686749277585324 - type: nauc_mrr_at_3_diff1 value: 70.21568887706891 - type: nauc_mrr_at_3_max value: 30.467074420623437 - type: nauc_mrr_at_3_std value: -11.472218305675923 - type: nauc_mrr_at_5_diff1 value: 70.34594531547204 - type: nauc_mrr_at_5_max value: 30.754996331475464 - type: nauc_mrr_at_5_std value: -11.084635295739732 - type: nauc_ndcg_at_1000_diff1 value: 69.33016198036992 - type: nauc_ndcg_at_1000_max value: 31.609803090952298 - type: nauc_ndcg_at_1000_std value: -9.411221613110152 - type: nauc_ndcg_at_100_diff1 value: 69.13191582084188 - type: nauc_ndcg_at_100_max value: 31.83693487089778 - type: nauc_ndcg_at_100_std value: -9.0400895558464 - type: nauc_ndcg_at_10_diff1 value: 68.89462773551026 - type: nauc_ndcg_at_10_max value: 31.87478936924236 - type: nauc_ndcg_at_10_std value: -9.671029388622948 - type: nauc_ndcg_at_1_diff1 value: 73.9192388165348 - type: nauc_ndcg_at_1_max value: 28.442543674061532 - type: nauc_ndcg_at_1_std value: -11.831889393493318 - type: nauc_ndcg_at_20_diff1 value: 68.90205731804 - type: nauc_ndcg_at_20_max value: 31.912656813093044 - type: nauc_ndcg_at_20_std value: -9.090090804963808 - type: nauc_ndcg_at_3_diff1 value: 68.80670610482917 - type: nauc_ndcg_at_3_max value: 31.18044464719784 - type: nauc_ndcg_at_3_std value: -11.278491578164681 - type: nauc_ndcg_at_5_diff1 value: 68.97187216493903 - type: nauc_ndcg_at_5_max value: 31.793607228058047 - type: nauc_ndcg_at_5_std value: -10.481133374672472 - type: nauc_precision_at_1000_diff1 value: 43.78852990471418 - type: nauc_precision_at_1000_max value: 56.047346474821055 - type: nauc_precision_at_1000_std value: 35.73168397793686 - type: nauc_precision_at_100_diff1 value: 51.06009588636826 - type: nauc_precision_at_100_max value: 50.40359839963674 - type: nauc_precision_at_100_std value: 24.17139567398634 - type: nauc_precision_at_10_diff1 value: 60.308720843343444 - type: nauc_precision_at_10_max value: 38.88883129762611 - type: nauc_precision_at_10_std value: -1.9703986668774758 - type: nauc_precision_at_1_diff1 value: 73.9192388165348 - type: nauc_precision_at_1_max value: 28.442543674061532 - type: nauc_precision_at_1_std value: -11.831889393493318 - type: nauc_precision_at_20_diff1 value: 57.12901999287673 - type: nauc_precision_at_20_max value: 42.275260619711744 - type: nauc_precision_at_20_std value: 6.8998045953777165 - type: nauc_precision_at_3_diff1 value: 63.444192537561285 - type: nauc_precision_at_3_max value: 33.87173673943739 - type: nauc_precision_at_3_std value: -10.51740059765903 - type: nauc_precision_at_5_diff1 value: 62.70100972326122 - type: nauc_precision_at_5_max value: 36.67473042882081 - type: nauc_precision_at_5_std value: -7.4730688523228785 - type: nauc_recall_at_1000_diff1 value: 43.788529904715695 - type: nauc_recall_at_1000_max value: 56.04734647482148 - type: nauc_recall_at_1000_std value: 35.731683977938125 - type: nauc_recall_at_100_diff1 value: 51.06009588636825 - type: nauc_recall_at_100_max value: 50.40359839963603 - type: nauc_recall_at_100_std value: 24.171395673986428 - type: nauc_recall_at_10_diff1 value: 60.30872084334343 - type: nauc_recall_at_10_max value: 38.88883129762609 - type: nauc_recall_at_10_std value: -1.9703986668774112 - type: nauc_recall_at_1_diff1 value: 73.9192388165348 - type: nauc_recall_at_1_max value: 28.442543674061532 - type: nauc_recall_at_1_std value: -11.831889393493318 - type: nauc_recall_at_20_diff1 value: 57.12901999287683 - type: nauc_recall_at_20_max value: 42.27526061971189 - type: nauc_recall_at_20_std value: 6.899804595377761 - type: nauc_recall_at_3_diff1 value: 63.444192537561136 - type: nauc_recall_at_3_max value: 33.87173673943714 - type: nauc_recall_at_3_std value: -10.517400597659156 - type: nauc_recall_at_5_diff1 value: 62.70100972326114 - type: nauc_recall_at_5_max value: 36.6747304288208 - type: nauc_recall_at_5_std value: -7.473068852322717 - type: ndcg_at_1 value: 64.92 - type: ndcg_at_10 value: 77.425 - type: ndcg_at_100 value: 78.97 - type: ndcg_at_1000 value: 79.252 - type: ndcg_at_20 value: 78.23400000000001 - type: ndcg_at_3 value: 74.36399999999999 - type: ndcg_at_5 value: 76.081 - type: precision_at_1 value: 64.92 - type: precision_at_10 value: 8.907 - type: precision_at_100 value: 0.9610000000000001 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.612 - type: precision_at_3 value: 26.933 - type: precision_at_5 value: 16.991999999999997 - type: recall_at_1 value: 64.92 - type: recall_at_10 value: 89.07000000000001 - type: recall_at_100 value: 96.14 - type: recall_at_1000 value: 98.39 - type: recall_at_20 value: 92.24 - type: recall_at_3 value: 80.80000000000001 - type: recall_at_5 value: 84.96000000000001 task: type: Retrieval - dataset: config: default name: MTEB RuBQReranking revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2 split: test type: ai-forever/rubq-reranking metrics: - type: main_score value: 69.76660332457352 - type: map value: 69.76660332457352 - type: mrr value: 74.91840901415368 - type: nAUC_map_diff1 value: 40.77717577386574 - type: nAUC_map_max value: 16.449821304849507 - type: nAUC_map_std value: 5.464849678667512 - type: nAUC_mrr_diff1 value: 44.622323940651256 - type: nAUC_mrr_max value: 20.915686008960645 - type: nAUC_mrr_std value: 7.742740250688379 task: type: Reranking - dataset: config: default name: MTEB RuBQRetrieval revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b split: test type: ai-forever/rubq-retrieval metrics: - type: main_score value: 67.753 - type: map_at_1 value: 38.111 - type: map_at_10 value: 59.25 - type: map_at_100 value: 60.291 - type: map_at_1000 value: 60.31999999999999 - type: map_at_20 value: 60.007 - type: map_at_3 value: 53.39699999999999 - type: map_at_5 value: 57.021 - type: mrr_at_1 value: 54.60992907801418 - type: mrr_at_10 value: 67.53055930804169 - type: mrr_at_100 value: 67.88621490413858 - type: mrr_at_1000 value: 67.89435419716948 - type: mrr_at_20 value: 67.80457820326059 - type: mrr_at_3 value: 64.98226950354619 - type: mrr_at_5 value: 66.6991725768323 - type: nauc_map_at_1000_diff1 value: 38.61460560253499 - type: nauc_map_at_1000_max value: 24.238741006152296 - type: nauc_map_at_1000_std value: -12.553887111841771 - type: nauc_map_at_100_diff1 value: 38.604995328219836 - type: nauc_map_at_100_max value: 24.25372744693149 - type: nauc_map_at_100_std value: -12.525907529455832 - type: nauc_map_at_10_diff1 value: 38.2802363146203 - type: nauc_map_at_10_max value: 24.148397487087742 - type: nauc_map_at_10_std value: -13.02462313254209 - type: nauc_map_at_1_diff1 value: 42.20333973944006 - type: nauc_map_at_1_max value: 16.04455015933995 - type: nauc_map_at_1_std value: -11.426950122484298 - type: nauc_map_at_20_diff1 value: 38.49874303734095 - type: nauc_map_at_20_max value: 24.27079948779279 - type: nauc_map_at_20_std value: -12.643735833974782 - type: nauc_map_at_3_diff1 value: 38.393442128336126 - type: nauc_map_at_3_max value: 21.120395203124264 - type: nauc_map_at_3_std value: -14.57118408415527 - type: nauc_map_at_5_diff1 value: 37.98874776320297 - type: nauc_map_at_5_max value: 22.75390581241078 - type: nauc_map_at_5_std value: -13.871096120655116 - type: nauc_mrr_at_1000_diff1 value: 45.08121396075722 - type: nauc_mrr_at_1000_max value: 27.331313499687486 - type: nauc_mrr_at_1000_std value: -13.114787616167014 - type: nauc_mrr_at_100_diff1 value: 45.082808269851654 - type: nauc_mrr_at_100_max value: 27.343021375586257 - type: nauc_mrr_at_100_std value: -13.104901642101272 - type: nauc_mrr_at_10_diff1 value: 44.89445664817906 - type: nauc_mrr_at_10_max value: 27.483504407572795 - type: nauc_mrr_at_10_std value: -13.116664114214782 - type: nauc_mrr_at_1_diff1 value: 47.43773937564259 - type: nauc_mrr_at_1_max value: 24.3996512246477 - type: nauc_mrr_at_1_std value: -13.283010969155859 - type: nauc_mrr_at_20_diff1 value: 45.08382953390109 - type: nauc_mrr_at_20_max value: 27.418666231602508 - type: nauc_mrr_at_20_std value: -13.101239027782416 - type: nauc_mrr_at_3_diff1 value: 44.695558812456625 - type: nauc_mrr_at_3_max value: 26.75153207261083 - type: nauc_mrr_at_3_std value: -14.019251949468694 - type: nauc_mrr_at_5_diff1 value: 44.84929587390349 - type: nauc_mrr_at_5_max value: 27.508337265101257 - type: nauc_mrr_at_5_std value: -13.748841022127815 - type: nauc_ndcg_at_1000_diff1 value: 39.706451835474724 - type: nauc_ndcg_at_1000_max value: 26.633343785995507 - type: nauc_ndcg_at_1000_std value: -11.207900377782707 - type: nauc_ndcg_at_100_diff1 value: 39.49574863029789 - type: nauc_ndcg_at_100_max value: 27.03615356082193 - type: nauc_ndcg_at_100_std value: -10.456416625790485 - type: nauc_ndcg_at_10_diff1 value: 38.36118560524438 - type: nauc_ndcg_at_10_max value: 27.29115954765498 - type: nauc_ndcg_at_10_std value: -12.026533782516182 - type: nauc_ndcg_at_1_diff1 value: 47.43773937564259 - type: nauc_ndcg_at_1_max value: 24.3996512246477 - type: nauc_ndcg_at_1_std value: -13.283010969155859 - type: nauc_ndcg_at_20_diff1 value: 39.11328986667616 - type: nauc_ndcg_at_20_max value: 27.48803343585931 - type: nauc_ndcg_at_20_std value: -11.061481936299867 - type: nauc_ndcg_at_3_diff1 value: 38.09080511583124 - type: nauc_ndcg_at_3_max value: 22.960624575385577 - type: nauc_ndcg_at_3_std value: -15.162532187246452 - type: nauc_ndcg_at_5_diff1 value: 37.84051905054443 - type: nauc_ndcg_at_5_max value: 24.859831442018766 - type: nauc_ndcg_at_5_std value: -14.208813731290032 - type: nauc_precision_at_1000_diff1 value: -8.235293550747457 - type: nauc_precision_at_1000_max value: 7.564714965839937 - type: nauc_precision_at_1000_std value: 5.160867910754626 - type: nauc_precision_at_100_diff1 value: -6.654255562369982 - type: nauc_precision_at_100_max value: 10.671679751630798 - type: nauc_precision_at_100_std value: 7.057997024307852 - type: nauc_precision_at_10_diff1 value: 0.4759476932076396 - type: nauc_precision_at_10_max value: 18.705407595194696 - type: nauc_precision_at_10_std value: 1.1284269201001864 - type: nauc_precision_at_1_diff1 value: 47.43773937564259 - type: nauc_precision_at_1_max value: 24.3996512246477 - type: nauc_precision_at_1_std value: -13.283010969155859 - type: nauc_precision_at_20_diff1 value: -3.1830019504133027 - type: nauc_precision_at_20_max value: 15.311012950383418 - type: nauc_precision_at_20_std value: 4.411311445012971 - type: nauc_precision_at_3_diff1 value: 14.900799832530298 - type: nauc_precision_at_3_max value: 21.59448854239842 - type: nauc_precision_at_3_std value: -10.383301518031464 - type: nauc_precision_at_5_diff1 value: 6.129583634729085 - type: nauc_precision_at_5_max value: 19.764705099171525 - type: nauc_precision_at_5_std value: -4.931119926816597 - type: nauc_recall_at_1000_diff1 value: 7.393009712112532 - type: nauc_recall_at_1000_max value: 49.79443106358621 - type: nauc_recall_at_1000_std value: 74.80255240755591 - type: nauc_recall_at_100_diff1 value: 19.35257139711146 - type: nauc_recall_at_100_max value: 42.80851742013903 - type: nauc_recall_at_100_std value: 37.546560048377444 - type: nauc_recall_at_10_diff1 value: 24.621169385136398 - type: nauc_recall_at_10_max value: 33.22268204638332 - type: nauc_recall_at_10_std value: -4.7401788730268235 - type: nauc_recall_at_1_diff1 value: 42.20333973944006 - type: nauc_recall_at_1_max value: 16.04455015933995 - type: nauc_recall_at_1_std value: -11.426950122484298 - type: nauc_recall_at_20_diff1 value: 24.927652532242657 - type: nauc_recall_at_20_max value: 38.260344944664766 - type: nauc_recall_at_20_std value: 5.423281114042867 - type: nauc_recall_at_3_diff1 value: 30.44227595912427 - type: nauc_recall_at_3_max value: 19.94976153694003 - type: nauc_recall_at_3_std value: -15.928733556196534 - type: nauc_recall_at_5_diff1 value: 27.044814357935724 - type: nauc_recall_at_5_max value: 23.824668491154366 - type: nauc_recall_at_5_std value: -13.992845356113314 - type: ndcg_at_1 value: 54.61 - type: ndcg_at_10 value: 67.753 - type: ndcg_at_100 value: 70.926 - type: ndcg_at_1000 value: 71.41 - type: ndcg_at_20 value: 69.61500000000001 - type: ndcg_at_3 value: 59.678 - type: ndcg_at_5 value: 64.012 - type: precision_at_1 value: 54.61 - type: precision_at_10 value: 13.747000000000002 - type: precision_at_100 value: 1.601 - type: precision_at_1000 value: 0.166 - type: precision_at_20 value: 7.446999999999999 - type: precision_at_3 value: 33.255 - type: precision_at_5 value: 23.747 - type: recall_at_1 value: 38.111 - type: recall_at_10 value: 83.878 - type: recall_at_100 value: 95.84899999999999 - type: recall_at_1000 value: 99.05199999999999 - type: recall_at_20 value: 90.048 - type: recall_at_3 value: 64.126 - type: recall_at_5 value: 74.295 task: type: Retrieval - dataset: config: default name: MTEB RuReviewsClassification revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a split: test type: ai-forever/ru-reviews-classification metrics: - type: accuracy value: 66.0888671875 - type: f1 value: 63.79342584872498 - type: f1_weighted value: 63.79112620928187 - type: main_score value: 66.0888671875 task: type: Classification - dataset: config: default name: MTEB RuSTSBenchmarkSTS revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018 split: test type: ai-forever/ru-stsbenchmark-sts metrics: - type: cosine_pearson value: 78.40381860532754 - type: cosine_spearman value: 78.44128247246344 - type: euclidean_pearson value: 77.03436669125563 - type: euclidean_spearman value: 78.44009017152538 - type: main_score value: 78.44128247246344 - type: manhattan_pearson value: 77.084766201637 - type: manhattan_spearman value: 78.46899044600028 - type: pearson value: 78.40381860532754 - type: spearman value: 78.44128247246344 task: type: STS - dataset: config: default name: MTEB RuSciBenchGRNTIClassification revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 split: test type: ai-forever/ru-scibench-grnti-classification metrics: - type: accuracy value: 61.4111328125 - type: f1 value: 59.604229603854044 - type: f1_weighted value: 59.61906710038802 - type: main_score value: 61.4111328125 task: type: Classification - dataset: config: default name: MTEB RuSciBenchGRNTIClusteringP2P revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 split: test type: ai-forever/ru-scibench-grnti-classification metrics: - type: main_score value: 55.660781672610625 - type: v_measure value: 55.660781672610625 - type: v_measure_std value: 1.0880487214373578 task: type: Clustering - dataset: config: default name: MTEB RuSciBenchOECDClassification revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 split: test type: ai-forever/ru-scibench-oecd-classification metrics: - type: accuracy value: 48.6669921875 - type: f1 value: 46.24529719568694 - type: f1_weighted value: 46.24736172369365 - type: main_score value: 48.6669921875 task: type: Classification - dataset: config: default name: MTEB RuSciBenchOECDClusteringP2P revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 split: test type: ai-forever/ru-scibench-oecd-classification metrics: - type: main_score value: 47.95513383500326 - type: v_measure value: 47.95513383500326 - type: v_measure_std value: 0.9391146092620886 task: type: Clustering - dataset: config: ru name: MTEB STS22 (ru) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 65.27471390704719 - type: cosine_spearman value: 68.12010913287949 - type: euclidean_pearson value: 65.60124415285192 - type: euclidean_spearman value: 68.12010913287949 - type: main_score value: 68.12010913287949 - type: manhattan_pearson value: 65.21850751060232 - type: manhattan_spearman value: 67.85162022914248 - type: pearson value: 65.27471390704719 - type: spearman value: 68.12010913287949 task: type: STS - dataset: config: default name: MTEB SensitiveTopicsClassification revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2 split: test type: ai-forever/sensitive-topics-classification metrics: - type: accuracy value: 30.0537109375 - type: f1 value: 35.12028781898003 - type: lrap value: 45.91071234808953 - type: main_score value: 30.0537109375 task: type: MultilabelClassification - dataset: config: default name: MTEB TERRa revision: 7b58f24536063837d644aab9a023c62199b2a612 split: dev type: ai-forever/terra-pairclassification metrics: - type: cosine_accuracy value: 60.91205211726385 - type: cosine_accuracy_threshold value: 68.15387606620789 - type: cosine_ap value: 57.705995373862805 - type: cosine_f1 value: 67.57990867579909 - type: cosine_f1_threshold value: 54.87680435180664 - type: cosine_precision value: 51.92982456140351 - type: cosine_recall value: 96.73202614379085 - type: dot_accuracy value: 60.91205211726385 - type: dot_accuracy_threshold value: 68.15387010574341 - type: dot_ap value: 57.705995373862805 - type: dot_f1 value: 67.57990867579909 - type: dot_f1_threshold value: 54.87680435180664 - type: dot_precision value: 51.92982456140351 - type: dot_recall value: 96.73202614379085 - type: euclidean_accuracy value: 60.91205211726385 - type: euclidean_accuracy_threshold value: 79.80742454528809 - type: euclidean_ap value: 57.705995373862805 - type: euclidean_f1 value: 67.57990867579909 - type: euclidean_f1_threshold value: 94.99809741973877 - type: euclidean_precision value: 51.92982456140351 - type: euclidean_recall value: 96.73202614379085 - type: main_score value: 57.705995373862805 - type: manhattan_accuracy value: 60.586319218241044 - type: manhattan_accuracy_threshold value: 1858.333969116211 - type: manhattan_ap value: 57.53277048517774 - type: manhattan_f1 value: 67.59259259259261 - type: manhattan_f1_threshold value: 2154.4769287109375 - type: manhattan_precision value: 52.32974910394266 - type: manhattan_recall value: 95.42483660130719 - type: max_ap value: 57.705995373862805 - type: max_f1 value: 67.59259259259261 - type: max_precision value: 52.32974910394266 - type: max_recall value: 96.73202614379085 - type: similarity_accuracy value: 60.91205211726385 - type: similarity_accuracy_threshold value: 68.15387606620789 - type: similarity_ap value: 57.705995373862805 - type: similarity_f1 value: 67.57990867579909 - type: similarity_f1_threshold value: 54.87680435180664 - type: similarity_precision value: 51.92982456140351 - type: similarity_recall value: 96.73202614379085 task: type: PairClassification pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb --- - <h1 align="center">KaLM-Embedding</h1> **KaLM-Embedding** is a series of embedding models adapted from auto-regressive LLMs with superior training data. KaLM-embedding-multilingual-mini is trained from [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) with massive weakly-supervised pre-training and supervised fine-tuning data. ## 📑 Open-source Plan - [x] Model Checkpoint - [x] [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1) - [x] [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1) - [x] [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5) - [ ] KaLM-embedding-multilingual-max-v1 - [x] Training and Evaluation Code: [HITsz-TMG/KaLM-Embedding](https://github.com/HITsz-TMG/KaLM-Embedding) - [x] Technical Report: [KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model](https://arxiv.org/abs/2501.01028) - [ ] Training Data ## Evaluation | Model Name | Model Size | C-MTEB(35) | MTEB(56) | avg |:----:|:---:|:---:|:---:|:---:| | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 560M | 58.81 | 61.5 | 60.16 | [bge-m3 (dense)](https://huggingface.co/BAAI/bge-m3) | 560M | 60.80 | 59.84 | 60.32 | [gte-multilingual-base (dense)](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | **305M** | 62.72 | 61.40 | 62.06 | [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1) | 494M | 62.31 | 61.87 | 62.09 | [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1) | 494M | 63.57 | 64.74 | 64.16 | [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5) | 494M | **64.13** | **64.94** | **64.53** ## Requirements Since we have used the Qwen2 model, we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME_OR_PATH}') # Do NOT set trust_remote_code model.max_seq_length = 512 embeddings = model.encode( sentences, normalize_embeddings=True, batch_size=256, show_progress_bar=True ) print(embeddings) ``` <!-- We add instruction for asymmetric tasks: retrieval, reranking, classification and clustering. --> We add instruction for classification and clustering. If you want to add instruction to the query (no instruction for the corpus), you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME_OR_PATH}') # Do NOT set trust_remote_code model.max_seq_length = 512 prompt = "Instruct: Classifying the category of french news. \n Query: " embeddings = model.encode( sentences, prompt=prompt, normalize_embeddings=True, batch_size=256, show_progress_bar=True ) print(embeddings) ``` ## Contact If you encounter any issue, feel free to contact us via the email: [email protected]
KoichiYasuoka/bert-base-vietnamese-upos
KoichiYasuoka
2025-01-03T07:18:17Z
125
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "vietnamese", "pos", "dependency-parsing", "vi", "dataset:universal_dependencies", "base_model:FPTAI/vibert-base-cased", "base_model:finetune:FPTAI/vibert-base-cased", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-06T08:47:03Z
--- language: - "vi" tags: - "vietnamese" - "token-classification" - "pos" - "dependency-parsing" base_model: FPTAI/vibert-base-cased datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Hai cái đầu thì tốt hơn một." --- # bert-base-vietnamese-upos ## Model Description This is a BERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing, derived from [vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("Hai cái đầu thì tốt hơn một.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-vietnamese-upos") print(nlp("Hai cái đầu thì tốt hơn một.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF
mradermacher
2025-01-03T07:12:10Z
102
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:zelk12/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B", "base_model:quantized:zelk12/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T06:46:26Z
--- base_model: zelk12/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/zelk12/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B-GGUF/resolve/main/MT-Max-Merge_02012025163610-MUGBI-gemma-2-9B.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
QuantFactory/HuatuoGPT-o1-7B-GGUF
QuantFactory
2025-01-03T07:08:44Z
656
4
null
[ "gguf", "medical", "text-generation", "en", "zh", "dataset:FreedomIntelligence/medical-o1-reasoning-SFT", "dataset:FreedomIntelligence/medical-o1-verifiable-problem", "arxiv:2412.18925", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-03T06:29:50Z
--- license: apache-2.0 datasets: - FreedomIntelligence/medical-o1-reasoning-SFT - FreedomIntelligence/medical-o1-verifiable-problem language: - en - zh base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: text-generation tags: - medical --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/HuatuoGPT-o1-7B-GGUF This is quantized version of [FreedomIntelligence/HuatuoGPT-o1-7B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) created using llama.cpp # Original Model Card <div align="center"> <h1> HuatuoGPT-o1-7B </h1> </div> <div align="center"> <a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a> </div> # <span>Introduction</span> **HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. For more information, visit our GitHub repository: [https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1). # <span>Model Info</span> | | Backbone | Supported Languages | Link | | -------------------- | ------------ | ----- | --------------------------------------------------------------------- | | **HuatuoGPT-o1-8B** | LLaMA-3.1-8B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) | | **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) | | **HuatuoGPT-o1-7B** | Qwen2.5-7B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) | | **HuatuoGPT-o1-72B** | Qwen2.5-72B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) | # <span>Usage</span> You can use HuatuoGPT-o1-7B in the same way as `Qwen2.5-7B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B",torch_dtype="auto",device_map="auto") tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B") input_text = "How to stop a cough?" messages = [{"role": "user", "content": input_text}] inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True ), return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=2048) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as: ``` ## Thinking [Reasoning process] ## Final Response [Output] ``` # <span>📖 Citation</span> ``` @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang}, year={2024}, eprint={2412.18925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.18925}, } ```
Jopqior/ilql-model
Jopqior
2025-01-03T07:08:42Z
148
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T07:08:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KoichiYasuoka/roberta-classical-chinese-base-upos
KoichiYasuoka
2025-01-03T07:07:47Z
111
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "classical chinese", "literary chinese", "ancient chinese", "pos", "dependency-parsing", "lzh", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-classical-chinese-base-char", "base_model:finetune:KoichiYasuoka/roberta-classical-chinese-base-char", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-classical-chinese-base-char datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎" --- # roberta-classical-chinese-base-upos ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-base-upos") ``` ## Reference Koichi Yasuoka: [Universal Dependencies Treebank of the Four Books in Classical Chinese](http://hdl.handle.net/2433/245217), DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
dgambettavuw/M_gen0_run2_llama2-7b_xlsum_doc1000_real64_synt64_vuw
dgambettavuw
2025-01-03T06:48:35Z
168
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-03T06:45:44Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aztro/mabamasdxl
aztro
2025-01-03T06:42:20Z
5
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:John6666/epicrealism-xl-v8kiss-sdxl", "base_model:adapter:John6666/epicrealism-xl-v8kiss-sdxl", "license:mit", "region:us" ]
text-to-image
2025-01-03T06:39:52Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- photo of mabama, from back, from back, sleek long black hair, small waist, thick thighs, wearing a light blue stretch denim mini cargo skirt and a top tank, unique skin patterns, natural imperfections, dramatic lighting, soft shadows, cinematic atmosphere, hyper-detailed, high-quality photography, immersive and artistic composition, blurred background, low key (dark and moody) visual style parameters: negative_prompt: >- (hands, blurry, low quality, bad anatomy, text, watermark, poorly rendered details) output: url: images/Captura de pantalla 2024-12-19 005310.png base_model: - John6666/epicrealism-xl-v8kiss-sdxl instance_prompt: mabama license: mit pipeline_tag: text-to-image --- # mabamasdxl <Gallery /> ## Model description mabam ![Captura de pantalla 2025-01-01 215458.png](https:&#x2F;&#x2F;cdn-uploads.huggingface.co&#x2F;production&#x2F;uploads&#x2F;661b6e89c42687695e5a152c&#x2F;5JKzau2TKLiek06RyP4Qr.png) ## Trigger words You should use `mabama` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/aztro/mabamasdxl/tree/main) them in the Files & versions tab.
dimasik1987/453d5dde-5b2e-41b2-8719-b229c561d9de
dimasik1987
2025-01-03T06:38:51Z
8
0
peft
[ "peft", "safetensors", "mixtral", "axolotl", "generated_from_trainer", "base_model:Eurdem/Defne_llama3_2x8B", "base_model:adapter:Eurdem/Defne_llama3_2x8B", "license:llama3", "region:us" ]
null
2025-01-03T04:31:37Z
--- library_name: peft license: llama3 base_model: Eurdem/Defne_llama3_2x8B tags: - axolotl - generated_from_trainer model-index: - name: 453d5dde-5b2e-41b2-8719-b229c561d9de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Eurdem/Defne_llama3_2x8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e76edf5b89c88ac9_train_data.json ds_type: json format: custom path: /workspace/input_data/e76edf5b89c88ac9_train_data.json type: field_input: system_prompt field_instruction: question field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik1987/453d5dde-5b2e-41b2-8719-b229c561d9de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/e76edf5b89c88ac9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 453d5dde-5b2e-41b2-8719-b229c561d9de wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 453d5dde-5b2e-41b2-8719-b229c561d9de warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 453d5dde-5b2e-41b2-8719-b229c561d9de This model is a fine-tuned version of [Eurdem/Defne_llama3_2x8B](https://huggingface.co/Eurdem/Defne_llama3_2x8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0004 | 8 | nan | | 0.0 | 0.0007 | 16 | nan | | 0.0 | 0.0011 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Immy_v3-i1-GGUF
mradermacher
2025-01-03T06:34:57Z
28
0
transformers
[ "transformers", "gguf", "text-generation", "instruction-following", "unsloth", "llama", "trl", "en", "base_model:critical-hf/Immy_v3", "base_model:quantized:critical-hf/Immy_v3", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-01-03T02:56:20Z
--- base_model: critical-hf/Immy_v3 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation - instruction-following - transformers - unsloth - llama - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/critical-hf/Immy_v3 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Immy_v3-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ1_M.gguf) | i1-IQ1_M | 0.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ2_S.gguf) | i1-IQ2_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ2_M.gguf) | i1-IQ2_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q2_K.gguf) | i1-Q2_K | 0.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ3_S.gguf) | i1-IQ3_S | 0.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ3_M.gguf) | i1-IQ3_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q4_0.gguf) | i1-Q4_0 | 1.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.1 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q4_1.gguf) | i1-Q4_1 | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Immy_v3-i1-GGUF/resolve/main/Immy_v3.i1-Q6_K.gguf) | i1-Q6_K | 1.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
PassbyGrocer/hreb-msra
PassbyGrocer
2025-01-03T06:34:18Z
105
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:hfl/chinese-roberta-wwm-ext-large", "base_model:finetune:hfl/chinese-roberta-wwm-ext-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-01-02T06:03:44Z
--- library_name: transformers license: apache-2.0 base_model: hfl/chinese-roberta-wwm-ext-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: robert_bilstm_mega_res-ner-msra-ner-ner-msra-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robert_bilstm_mega_res-ner-msra-ner-ner-msra-ner This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0621 - Precision: 0.9538 - Recall: 0.9573 - F1: 0.9555 - Accuracy: 0.9940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0239 | 1.0 | 725 | 0.0232 | 0.9242 | 0.9344 | 0.9293 | 0.9931 | | 0.0139 | 2.0 | 1450 | 0.0254 | 0.9373 | 0.9459 | 0.9416 | 0.9925 | | 0.006 | 3.0 | 2175 | 0.0294 | 0.9415 | 0.9480 | 0.9448 | 0.9930 | | 0.0052 | 4.0 | 2900 | 0.0303 | 0.9389 | 0.9486 | 0.9437 | 0.9937 | | 0.0049 | 5.0 | 3625 | 0.0303 | 0.9422 | 0.9498 | 0.9459 | 0.9933 | | 0.0034 | 6.0 | 4350 | 0.0353 | 0.9411 | 0.9594 | 0.9502 | 0.9934 | | 0.0015 | 7.0 | 5075 | 0.0372 | 0.9404 | 0.9498 | 0.9450 | 0.9927 | | 0.0013 | 8.0 | 5800 | 0.0379 | 0.9477 | 0.9492 | 0.9485 | 0.9938 | | 0.0006 | 9.0 | 6525 | 0.0405 | 0.9516 | 0.9502 | 0.9509 | 0.9937 | | 0.0039 | 10.0 | 7250 | 0.0442 | 0.9420 | 0.9536 | 0.9478 | 0.9931 | | 0.0013 | 11.0 | 7975 | 0.0393 | 0.9479 | 0.9528 | 0.9504 | 0.9936 | | 0.001 | 12.0 | 8700 | 0.0431 | 0.9455 | 0.9513 | 0.9484 | 0.9933 | | 0.0011 | 13.0 | 9425 | 0.0431 | 0.9487 | 0.9425 | 0.9455 | 0.9936 | | 0.0003 | 14.0 | 10150 | 0.0425 | 0.9392 | 0.9450 | 0.9421 | 0.9933 | | 0.0001 | 15.0 | 10875 | 0.0456 | 0.9475 | 0.9515 | 0.9495 | 0.9937 | | 0.0011 | 16.0 | 11600 | 0.0446 | 0.9467 | 0.9471 | 0.9469 | 0.9928 | | 0.0002 | 17.0 | 12325 | 0.0500 | 0.9532 | 0.9457 | 0.9495 | 0.9933 | | 0.0001 | 18.0 | 13050 | 0.0504 | 0.9479 | 0.9490 | 0.9485 | 0.9929 | | 0.0002 | 19.0 | 13775 | 0.0455 | 0.9463 | 0.9527 | 0.9495 | 0.9933 | | 0.0013 | 20.0 | 14500 | 0.0471 | 0.9487 | 0.9544 | 0.9515 | 0.9933 | | 0.0005 | 21.0 | 15225 | 0.0425 | 0.9491 | 0.9584 | 0.9537 | 0.9936 | | 0.0009 | 22.0 | 15950 | 0.0503 | 0.9455 | 0.9555 | 0.9505 | 0.9931 | | 0.0003 | 23.0 | 16675 | 0.0474 | 0.9530 | 0.9555 | 0.9543 | 0.9938 | | 0.0006 | 24.0 | 17400 | 0.0481 | 0.9531 | 0.9538 | 0.9534 | 0.9937 | | 0.0013 | 25.0 | 18125 | 0.0502 | 0.9467 | 0.9534 | 0.9500 | 0.9934 | | 0.0001 | 26.0 | 18850 | 0.0517 | 0.9461 | 0.9492 | 0.9476 | 0.9933 | | 0.0001 | 27.0 | 19575 | 0.0410 | 0.9536 | 0.9530 | 0.9533 | 0.9937 | | 0.0011 | 28.0 | 20300 | 0.0453 | 0.9520 | 0.9498 | 0.9509 | 0.9937 | | 0.0007 | 29.0 | 21025 | 0.0444 | 0.9479 | 0.9480 | 0.9479 | 0.9935 | | 0.0 | 30.0 | 21750 | 0.0498 | 0.9529 | 0.9498 | 0.9513 | 0.9937 | | 0.0001 | 31.0 | 22475 | 0.0490 | 0.9514 | 0.9496 | 0.9505 | 0.9935 | | 0.001 | 32.0 | 23200 | 0.0499 | 0.9495 | 0.9486 | 0.9491 | 0.9934 | | 0.0001 | 33.0 | 23925 | 0.0451 | 0.9499 | 0.9557 | 0.9528 | 0.9939 | | 0.0002 | 34.0 | 24650 | 0.0469 | 0.9486 | 0.9563 | 0.9525 | 0.9937 | | 0.0001 | 35.0 | 25375 | 0.0505 | 0.9568 | 0.9496 | 0.9532 | 0.9938 | | 0.0003 | 36.0 | 26100 | 0.0491 | 0.9593 | 0.9525 | 0.9559 | 0.9942 | | 0.0005 | 37.0 | 26825 | 0.0432 | 0.9551 | 0.9532 | 0.9542 | 0.9939 | | 0.0003 | 38.0 | 27550 | 0.0465 | 0.9536 | 0.9486 | 0.9511 | 0.9937 | | 0.0019 | 39.0 | 28275 | 0.0491 | 0.9574 | 0.9469 | 0.9521 | 0.9937 | | 0.0 | 40.0 | 29000 | 0.0470 | 0.9582 | 0.9534 | 0.9558 | 0.9940 | | 0.0008 | 41.0 | 29725 | 0.0477 | 0.9505 | 0.9538 | 0.9522 | 0.9937 | | 0.0 | 42.0 | 30450 | 0.0544 | 0.9500 | 0.9542 | 0.9521 | 0.9937 | | 0.0002 | 43.0 | 31175 | 0.0527 | 0.9571 | 0.9492 | 0.9531 | 0.9938 | | 0.0005 | 44.0 | 31900 | 0.0510 | 0.9574 | 0.9513 | 0.9543 | 0.9939 | | 0.0006 | 45.0 | 32625 | 0.0478 | 0.9527 | 0.9536 | 0.9532 | 0.9938 | | 0.0001 | 46.0 | 33350 | 0.0464 | 0.9559 | 0.9517 | 0.9538 | 0.9937 | | 0.0001 | 47.0 | 34075 | 0.0478 | 0.9578 | 0.9530 | 0.9554 | 0.9939 | | 0.0 | 48.0 | 34800 | 0.0507 | 0.9574 | 0.9515 | 0.9544 | 0.9940 | | 0.0 | 49.0 | 35525 | 0.0534 | 0.9531 | 0.9534 | 0.9532 | 0.9939 | | 0.0004 | 50.0 | 36250 | 0.0512 | 0.9541 | 0.9530 | 0.9536 | 0.9941 | | 0.0001 | 51.0 | 36975 | 0.0478 | 0.9549 | 0.9532 | 0.9541 | 0.9940 | | 0.0001 | 52.0 | 37700 | 0.0446 | 0.9541 | 0.9555 | 0.9548 | 0.9942 | | 0.0 | 53.0 | 38425 | 0.0522 | 0.9529 | 0.9509 | 0.9519 | 0.9935 | | 0.0001 | 54.0 | 39150 | 0.0507 | 0.9552 | 0.9525 | 0.9538 | 0.9937 | | 0.0003 | 55.0 | 39875 | 0.0493 | 0.9466 | 0.9484 | 0.9475 | 0.9930 | | 0.0 | 56.0 | 40600 | 0.0496 | 0.9507 | 0.9496 | 0.9501 | 0.9934 | | 0.0 | 57.0 | 41325 | 0.0502 | 0.9512 | 0.9559 | 0.9535 | 0.9940 | | 0.0 | 58.0 | 42050 | 0.0528 | 0.9465 | 0.9525 | 0.9494 | 0.9932 | | 0.0 | 59.0 | 42775 | 0.0578 | 0.9480 | 0.9503 | 0.9492 | 0.9931 | | 0.0 | 60.0 | 43500 | 0.0557 | 0.9506 | 0.9486 | 0.9496 | 0.9935 | | 0.0 | 61.0 | 44225 | 0.0487 | 0.9539 | 0.9521 | 0.9530 | 0.9936 | | 0.0 | 62.0 | 44950 | 0.0519 | 0.9534 | 0.9536 | 0.9535 | 0.9938 | | 0.0 | 63.0 | 45675 | 0.0532 | 0.9531 | 0.9554 | 0.9542 | 0.9939 | | 0.0 | 64.0 | 46400 | 0.0572 | 0.9534 | 0.9527 | 0.9530 | 0.9938 | | 0.0001 | 65.0 | 47125 | 0.0563 | 0.9550 | 0.9527 | 0.9538 | 0.9940 | | 0.0 | 66.0 | 47850 | 0.0550 | 0.9568 | 0.9507 | 0.9538 | 0.9940 | | 0.0 | 67.0 | 48575 | 0.0585 | 0.9480 | 0.9542 | 0.9511 | 0.9935 | | 0.0003 | 68.0 | 49300 | 0.0607 | 0.9501 | 0.9496 | 0.9499 | 0.9936 | | 0.0 | 69.0 | 50025 | 0.0577 | 0.9529 | 0.9548 | 0.9539 | 0.9939 | | 0.0 | 70.0 | 50750 | 0.0583 | 0.9541 | 0.9569 | 0.9555 | 0.9941 | | 0.0001 | 71.0 | 51475 | 0.0549 | 0.9530 | 0.9486 | 0.9508 | 0.9938 | | 0.0 | 72.0 | 52200 | 0.0592 | 0.9546 | 0.9509 | 0.9528 | 0.9937 | | 0.0 | 73.0 | 52925 | 0.0598 | 0.9524 | 0.9502 | 0.9513 | 0.9936 | | 0.0 | 74.0 | 53650 | 0.0583 | 0.9530 | 0.9517 | 0.9523 | 0.9937 | | 0.0 | 75.0 | 54375 | 0.0602 | 0.9513 | 0.9513 | 0.9513 | 0.9936 | | 0.0 | 76.0 | 55100 | 0.0624 | 0.9510 | 0.9527 | 0.9518 | 0.9934 | | 0.0 | 77.0 | 55825 | 0.0622 | 0.9523 | 0.9527 | 0.9525 | 0.9935 | | 0.0 | 78.0 | 56550 | 0.0599 | 0.9509 | 0.9536 | 0.9522 | 0.9938 | | 0.0 | 79.0 | 57275 | 0.0599 | 0.9509 | 0.9550 | 0.9529 | 0.9937 | | 0.0 | 80.0 | 58000 | 0.0588 | 0.9551 | 0.9536 | 0.9544 | 0.9939 | | 0.0 | 81.0 | 58725 | 0.0581 | 0.9547 | 0.9561 | 0.9554 | 0.9941 | | 0.0 | 82.0 | 59450 | 0.0587 | 0.9574 | 0.9567 | 0.9571 | 0.9940 | | 0.0 | 83.0 | 60175 | 0.0592 | 0.9533 | 0.9582 | 0.9558 | 0.9940 | | 0.0 | 84.0 | 60900 | 0.0602 | 0.9534 | 0.9569 | 0.9551 | 0.9939 | | 0.0 | 85.0 | 61625 | 0.0601 | 0.9530 | 0.9554 | 0.9542 | 0.9938 | | 0.0 | 86.0 | 62350 | 0.0608 | 0.9528 | 0.9561 | 0.9545 | 0.9939 | | 0.0 | 87.0 | 63075 | 0.0606 | 0.9560 | 0.9538 | 0.9549 | 0.9939 | | 0.0 | 88.0 | 63800 | 0.0590 | 0.9514 | 0.9575 | 0.9544 | 0.9940 | | 0.0 | 89.0 | 64525 | 0.0611 | 0.9542 | 0.9577 | 0.9559 | 0.9940 | | 0.0002 | 90.0 | 65250 | 0.0617 | 0.9563 | 0.9567 | 0.9565 | 0.9940 | | 0.0 | 91.0 | 65975 | 0.0611 | 0.9578 | 0.9555 | 0.9566 | 0.9940 | | 0.0004 | 92.0 | 66700 | 0.0628 | 0.9510 | 0.9567 | 0.9539 | 0.9939 | | 0.0 | 93.0 | 67425 | 0.0634 | 0.9523 | 0.9561 | 0.9542 | 0.9939 | | 0.0 | 94.0 | 68150 | 0.0629 | 0.9534 | 0.9571 | 0.9552 | 0.9940 | | 0.0 | 95.0 | 68875 | 0.0627 | 0.9523 | 0.9565 | 0.9544 | 0.9940 | | 0.0 | 96.0 | 69600 | 0.0627 | 0.9528 | 0.9565 | 0.9547 | 0.9940 | | 0.0 | 97.0 | 70325 | 0.0625 | 0.9536 | 0.9565 | 0.9550 | 0.9940 | | 0.0 | 98.0 | 71050 | 0.0620 | 0.9558 | 0.9561 | 0.9559 | 0.9941 | | 0.0 | 99.0 | 71775 | 0.0620 | 0.9543 | 0.9573 | 0.9558 | 0.9940 | | 0.0 | 100.0 | 72500 | 0.0621 | 0.9538 | 0.9573 | 0.9555 | 0.9940 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.3.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0
Onkarn/POC_MultiLng-V1
Onkarn
2025-01-03T06:33:51Z
146
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T06:32:12Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Charan-2714M/llama3-8b-instruct-ipc-sections
Charan-2714M
2025-01-03T06:28:19Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-02T15:45:32Z
--- library_name: transformers tags: [text-generation] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Harikrishnan46624/finetuned_llama2-1.1b-chat
Harikrishnan46624
2025-01-03T06:25:51Z
47
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "AI", "NLP", "LLM", "ML", "Generative AI", "text2text-generation", "en", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-22T05:30:22Z
--- library_name: transformers tags: - AI - NLP - LLM - ML - Generative AI language: - en metrics: - accuracy - bleu base_model: - TinyLlama/TinyLlama-1.1B-Chat-v1.0 pipeline_tag: text2text-generation --- # Model Card for TinyLlama-1.1B Fine-tuned on NLP, ML, Generative AI, and Computer Vision Q&A This model is fine-tuned from the **TinyLlama-1.1B** base model to provide answers to domain-specific questions in **Natural Language Processing (NLP)**, **Machine Learning (ML)**, **Deep Learning (DL)**, **Generative AI**, and **Computer Vision (CV)**. It generates accurate and context-aware responses, making it suitable for educational, research, and professional applications. --- ## Model Details ### Model Description This model excels in providing concise, domain-specific answers to questions in AI-related fields. Leveraging the powerful TinyLlama architecture and fine-tuning on a curated dataset of Q&A pairs, it ensures relevance and coherence in responses. - **Developed by:** Harikrishnan46624 - **Funded by:** Self-funded - **Shared by:** Harikrishnan46624 - **Model Type:** Text-to-Text Generation - **Language(s):** English - **License:** Apache 2.0 - **Fine-tuned from:** TinyLlama-1.1B --- ### Model Sources - **Repository:** [Fine-Tuning Notebook on GitHub](https://github.com/Harikrishnan46624/EduBotIQ/blob/main/Fine_tune/TinyLlama_fine_tuning.ipynb) - **Demo:** [Demo Link to be Added] --- ## Use Cases ### Direct Use - Answering technical questions in **AI**, **ML**, **DL**, **LLMs**, **Generative AI**, and **Computer Vision**. - Supporting educational content creation, research discussions, and technical documentation. ### Downstream Use - Fine-tuning for industry-specific applications like healthcare, finance, or legal tech. - Integrating into specialized chatbots, virtual assistants, or automated knowledge bases. ### Out-of-Scope Use - Generating non-English responses (English-only capability). - Handling non-technical, unrelated queries outside the AI domain. --- ## Bias, Risks, and Limitations - **Bias:** Trained on domain-specific datasets, the model may exhibit biases toward AI-related terminologies or fail to generalize well in other domains. - **Risks:** May generate incorrect or misleading information if the query is ambiguous or goes beyond the model’s scope. - **Limitations:** May struggle with highly complex or nuanced queries not covered in its fine-tuning data. --- ### Recommendations - For critical or high-stakes applications, it’s recommended to use the model with human oversight. - Regularly update the fine-tuning datasets to ensure alignment with the latest research and advancements in AI. --- ## How to Get Started To use the model, install the `transformers` library and use the following code snippet: ```python from transformers import pipeline # Load the model model = pipeline("text2text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0") # Generate a response output = model("What is the difference between supervised and unsupervised learning?") print(output)
taareshg/Llama-3.2-3B-Instruct-En-Hi-merge-50k-new
taareshg
2025-01-03T06:21:24Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T06:16:34Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** taareshg - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yahyaabd/allstats-semantic-search-model-v1
yahyaabd
2025-01-03T06:15:40Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:212917", "loss:CosineSimilarityLoss", "dataset:yahyaabd/allstats-semantic-search-synthetic-dataset-v1", "arxiv:1908.10084", "base_model:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-03T06:13:59Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:212917 - loss:CosineSimilarityLoss base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 widget: - source_sentence: statistik neraca arus dana indonesia sentences: - Statistik Kelapa Sawit Indonesia 2012 - Distribusi Perdagangan Komoditas Kedelai Indonesia 2023 - Data Runtun Statistik Konstruksi 1990-2010 - source_sentence: Seberapa besar kenaikan produksi IBS pada Triwulan IV Tahun 2013 dibandingkan Triwulan IV Tahun Sebelumnya? sentences: - Pertumbuhan PDB 2013 Mencapai 5,78 Persen - Statistik Komuter Gerbangkertosusila Hasil Survei Komuter Gerbangkertosusila 2017 - Statistik Penduduk Lanjut Usia Provinsi Jawa Timur 2010-Hasil Sensus Penduduk 2010 - source_sentence: 'Penduduk Papua: migrasi 2015' sentences: - Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan jenis pekerjaan utama, 2019 - Statistik Pemotongan Ternak 2010 dan 2011 - Statistik Harga Produsen Pertanian Sub Sektor Tanaman Pangan, Hortikultura dan Perkebunan Rakyat 2010 - source_sentence: statistik konstruksi 2022 sentences: - Studi Modal Sosial 2006 - BRS upah buruh agustus 2018 - Statistik Perdagangan Luar Negeri Indonesia Ekspor 2006 vol 1 - source_sentence: Statistik ekspor Indonesia Maret 2202 sentences: - Produk Domestik Bruto Indonesia Triwulanan 2006-2010 - Indeks Perilaku Anti Korupsi (IPAK) Indonesia 2023 sebesar 3,92, menurun dibandingkan IPAK 2022 - Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Januari 2023 datasets: - yahyaabd/allstats-semantic-search-synthetic-dataset-v1 pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: allstats semantic search v1 dev type: allstats-semantic-search-v1-dev metrics: - type: pearson_cosine value: 0.9894566758405579 name: Pearson Cosine - type: spearman_cosine value: 0.9072484378842124 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: allstat semantic search v1 test type: allstat-semantic-search-v1-test metrics: - type: pearson_cosine value: 0.9895284407960067 name: Pearson Cosine - type: spearman_cosine value: 0.9074137706349162 name: Spearman Cosine --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1") # Run inference sentences = [ 'Statistik ekspor Indonesia Maret 2202', 'Produk Domestik Bruto Indonesia Triwulanan 2006-2010', 'Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Januari 2023', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `allstats-semantic-search-v1-dev` and `allstat-semantic-search-v1-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | allstats-semantic-search-v1-dev | allstat-semantic-search-v1-test | |:--------------------|:--------------------------------|:--------------------------------| | pearson_cosine | 0.9895 | 0.9895 | | **spearman_cosine** | **0.9072** | **0.9074** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### allstats-semantic-search-synthetic-dataset-v1 * Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [06f849a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/06f849af5602fea6ce00e5ecdd9a99cd0cafc2de) * Size: 212,917 training samples * Columns: <code>query</code>, <code>doc</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | query | doc | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 11.48 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.89 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> | * Samples: | query | doc | label | |:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:------------------| | <code>ringkasan aktivitas badan pusat statistik tahun 2018</code> | <code>Statistik Harga Produsen sektor pertanian di indonesia 2008</code> | <code>0.1</code> | | <code>indikator kesejahteraan petani rejang lebong 2015</code> | <code>Diagram Timbang Nilai Tukar Petani Kabupaten Rejang Lebong 2015</code> | <code>0.82</code> | | <code>Berapa persen kenaikan kunjungan wisatawan mancanegara pada April 2024?</code> | <code>Indeks Perilaku Anti Korupsi (IPAK) Indonesia 2023 sebesar 3,92, menurun dibandingkan IPAK 2022</code> | <code>0.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### allstats-semantic-search-synthetic-dataset-v1 * Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [06f849a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/06f849af5602fea6ce00e5ecdd9a99cd0cafc2de) * Size: 26,614 evaluation samples * Columns: <code>query</code>, <code>doc</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | query | doc | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 11.21 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.41 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | * Samples: | query | doc | label | |:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:------------------| | <code>Laporan bulanan ekonomi Indonesia bulan November 201</code> | <code>Laporan Bulanan Data Sosial Ekonomi November 2021</code> | <code>0.92</code> | | <code>pekerjaan layak di indonesia tahun 2022: data dan analisis</code> | <code>Statistik Penduduk Lanjut Usia Provinsi Papua Barat 2010-Hasil Sensus Penduduk 2010</code> | <code>0.09</code> | | <code>Tabel pendapatan rata-rata pekerja lepas berdasarkan provinsi dan pendidikan tahun 2021</code> | <code>Nilai Impor Kendaraan Bermotor Menurut Negara Asal Utama (Nilai CIF:juta US$), 2018-2023</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-dev_spearman_cosine | allstat-semantic-search-v1-test_spearman_cosine | |:------:|:-----:|:-------------:|:---------------:|:-----------------------------------------------:|:-----------------------------------------------:| | 0.0376 | 250 | 0.0683 | 0.0432 | 0.6955 | - | | 0.0751 | 500 | 0.0393 | 0.0322 | 0.7230 | - | | 0.1127 | 750 | 0.0321 | 0.0270 | 0.7476 | - | | 0.1503 | 1000 | 0.0255 | 0.0226 | 0.7789 | - | | 0.1879 | 1250 | 0.024 | 0.0213 | 0.7683 | - | | 0.2254 | 1500 | 0.022 | 0.0199 | 0.7727 | - | | 0.2630 | 1750 | 0.0219 | 0.0195 | 0.7853 | - | | 0.3006 | 2000 | 0.0202 | 0.0188 | 0.7795 | - | | 0.3381 | 2250 | 0.0191 | 0.0187 | 0.7943 | - | | 0.3757 | 2500 | 0.0198 | 0.0178 | 0.7842 | - | | 0.4133 | 2750 | 0.0179 | 0.0184 | 0.7974 | - | | 0.4509 | 3000 | 0.0179 | 0.0194 | 0.7810 | - | | 0.4884 | 3250 | 0.0182 | 0.0168 | 0.8080 | - | | 0.5260 | 3500 | 0.0174 | 0.0164 | 0.8131 | - | | 0.5636 | 3750 | 0.0174 | 0.0154 | 0.8113 | - | | 0.6011 | 4000 | 0.0169 | 0.0157 | 0.7981 | - | | 0.6387 | 4250 | 0.0152 | 0.0146 | 0.8099 | - | | 0.6763 | 4500 | 0.0148 | 0.0147 | 0.8091 | - | | 0.7139 | 4750 | 0.0145 | 0.0145 | 0.8178 | - | | 0.7514 | 5000 | 0.014 | 0.0139 | 0.8184 | - | | 0.7890 | 5250 | 0.0145 | 0.0130 | 0.8166 | - | | 0.8266 | 5500 | 0.0134 | 0.0129 | 0.8306 | - | | 0.8641 | 5750 | 0.013 | 0.0122 | 0.8251 | - | | 0.9017 | 6000 | 0.0136 | 0.0130 | 0.8265 | - | | 0.9393 | 6250 | 0.0123 | 0.0126 | 0.8224 | - | | 0.9769 | 6500 | 0.0113 | 0.0120 | 0.8305 | - | | 1.0144 | 6750 | 0.0129 | 0.0117 | 0.8204 | - | | 1.0520 | 7000 | 0.0106 | 0.0116 | 0.8284 | - | | 1.0896 | 7250 | 0.01 | 0.0116 | 0.8303 | - | | 1.1271 | 7500 | 0.0096 | 0.0110 | 0.8303 | - | | 1.1647 | 7750 | 0.01 | 0.0113 | 0.8305 | - | | 1.2023 | 8000 | 0.0116 | 0.0108 | 0.8300 | - | | 1.2399 | 8250 | 0.0095 | 0.0104 | 0.8432 | - | | 1.2774 | 8500 | 0.009 | 0.0104 | 0.8370 | - | | 1.3150 | 8750 | 0.0101 | 0.0102 | 0.8434 | - | | 1.3526 | 9000 | 0.01 | 0.0097 | 0.8450 | - | | 1.3901 | 9250 | 0.0097 | 0.0103 | 0.8286 | - | | 1.4277 | 9500 | 0.0092 | 0.0096 | 0.8393 | - | | 1.4653 | 9750 | 0.0093 | 0.0089 | 0.8480 | - | | 1.5029 | 10000 | 0.0088 | 0.0090 | 0.8439 | - | | 1.5404 | 10250 | 0.0087 | 0.0089 | 0.8569 | - | | 1.5780 | 10500 | 0.0082 | 0.0088 | 0.8488 | - | | 1.6156 | 10750 | 0.009 | 0.0089 | 0.8493 | - | | 1.6531 | 11000 | 0.0086 | 0.0086 | 0.8499 | - | | 1.6907 | 11250 | 0.0076 | 0.0083 | 0.8600 | - | | 1.7283 | 11500 | 0.0076 | 0.0081 | 0.8621 | - | | 1.7659 | 11750 | 0.0079 | 0.0081 | 0.8611 | - | | 1.8034 | 12000 | 0.0082 | 0.0085 | 0.8540 | - | | 1.8410 | 12250 | 0.0074 | 0.0081 | 0.8620 | - | | 1.8786 | 12500 | 0.007 | 0.0080 | 0.8639 | - | | 1.9161 | 12750 | 0.0071 | 0.0083 | 0.8450 | - | | 1.9537 | 13000 | 0.007 | 0.0076 | 0.8585 | - | | 1.9913 | 13250 | 0.0072 | 0.0074 | 0.8640 | - | | 2.0289 | 13500 | 0.0055 | 0.0069 | 0.8699 | - | | 2.0664 | 13750 | 0.0056 | 0.0068 | 0.8673 | - | | 2.1040 | 14000 | 0.0052 | 0.0066 | 0.8723 | - | | 2.1416 | 14250 | 0.0059 | 0.0069 | 0.8644 | - | | 2.1791 | 14500 | 0.0055 | 0.0068 | 0.8670 | - | | 2.2167 | 14750 | 0.005 | 0.0065 | 0.8723 | - | | 2.2543 | 15000 | 0.0053 | 0.0066 | 0.8766 | - | | 2.2919 | 15250 | 0.0057 | 0.0065 | 0.8782 | - | | 2.3294 | 15500 | 0.0053 | 0.0064 | 0.8749 | - | | 2.3670 | 15750 | 0.0056 | 0.0070 | 0.8708 | - | | 2.4046 | 16000 | 0.0058 | 0.0065 | 0.8731 | - | | 2.4421 | 16250 | 0.0047 | 0.0064 | 0.8793 | - | | 2.4797 | 16500 | 0.0049 | 0.0063 | 0.8801 | - | | 2.5173 | 16750 | 0.0051 | 0.0063 | 0.8782 | - | | 2.5549 | 17000 | 0.0053 | 0.0060 | 0.8799 | - | | 2.5924 | 17250 | 0.0051 | 0.0059 | 0.8825 | - | | 2.6300 | 17500 | 0.0048 | 0.0060 | 0.8761 | - | | 2.6676 | 17750 | 0.0055 | 0.0055 | 0.8773 | - | | 2.7051 | 18000 | 0.0045 | 0.0053 | 0.8833 | - | | 2.7427 | 18250 | 0.0041 | 0.0053 | 0.8868 | - | | 2.7803 | 18500 | 0.0051 | 0.0054 | 0.8811 | - | | 2.8179 | 18750 | 0.004 | 0.0052 | 0.8881 | - | | 2.8554 | 19000 | 0.0043 | 0.0053 | 0.8764 | - | | 2.8930 | 19250 | 0.0047 | 0.0051 | 0.8874 | - | | 2.9306 | 19500 | 0.0038 | 0.0051 | 0.8922 | - | | 2.9681 | 19750 | 0.0047 | 0.0050 | 0.8821 | - | | 3.0057 | 20000 | 0.0037 | 0.0048 | 0.8911 | - | | 3.0433 | 20250 | 0.0031 | 0.0048 | 0.8911 | - | | 3.0809 | 20500 | 0.0032 | 0.0046 | 0.8934 | - | | 3.1184 | 20750 | 0.0034 | 0.0046 | 0.8942 | - | | 3.1560 | 21000 | 0.0028 | 0.0045 | 0.8976 | - | | 3.1936 | 21250 | 0.0034 | 0.0045 | 0.8932 | - | | 3.2311 | 21500 | 0.003 | 0.0044 | 0.8959 | - | | 3.2687 | 21750 | 0.0033 | 0.0044 | 0.8961 | - | | 3.3063 | 22000 | 0.0029 | 0.0043 | 0.8995 | - | | 3.3439 | 22250 | 0.0029 | 0.0044 | 0.8978 | - | | 3.3814 | 22500 | 0.0027 | 0.0043 | 0.8998 | - | | 3.4190 | 22750 | 0.003 | 0.0043 | 0.9019 | - | | 3.4566 | 23000 | 0.0027 | 0.0042 | 0.8982 | - | | 3.4941 | 23250 | 0.0027 | 0.0042 | 0.9014 | - | | 3.5317 | 23500 | 0.0034 | 0.0042 | 0.9025 | - | | 3.5693 | 23750 | 0.003 | 0.0041 | 0.9027 | - | | 3.6069 | 24000 | 0.0029 | 0.0041 | 0.9003 | - | | 3.6444 | 24250 | 0.0027 | 0.0040 | 0.9023 | - | | 3.6820 | 24500 | 0.0027 | 0.0040 | 0.9035 | - | | 3.7196 | 24750 | 0.0033 | 0.0040 | 0.9042 | - | | 3.7571 | 25000 | 0.0028 | 0.0039 | 0.9053 | - | | 3.7947 | 25250 | 0.0027 | 0.0039 | 0.9049 | - | | 3.8323 | 25500 | 0.0033 | 0.0039 | 0.9057 | - | | 3.8699 | 25750 | 0.0025 | 0.0039 | 0.9075 | - | | 3.9074 | 26000 | 0.003 | 0.0039 | 0.9068 | - | | 3.9450 | 26250 | 0.0026 | 0.0039 | 0.9073 | - | | 3.9826 | 26500 | 0.0023 | 0.0038 | 0.9072 | - | | 4.0 | 26616 | - | - | - | 0.9074 | </details> ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.2.2+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Jopqior/sft-model-tmp
Jopqior
2025-01-03T06:10:06Z
148
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-03T06:09:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shutto/RagChatbotAssistantForQA
Shutto
2025-01-03T06:08:30Z
90
1
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-12-10T01:34:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Shelton Simbi] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shaheercp/Dulquersalman
shaheercp
2025-01-03T06:05:40Z
13
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-03T05:19:18Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: DULQUERSALMAN --- # Dulquersalman <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `DULQUERSALMAN` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('shaheercp/Dulquersalman', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/Qwen2.5-14B-Kebab-v0-GGUF
mradermacher
2025-01-03T05:59:20Z
179
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Hasnonname/Qwen2.5-14B-Kebab-v0", "base_model:quantized:Hasnonname/Qwen2.5-14B-Kebab-v0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T04:24:11Z
--- base_model: Hasnonname/Qwen2.5-14B-Kebab-v0 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Hasnonname/Qwen2.5-14B-Kebab-v0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Kebab-v0-GGUF/resolve/main/Qwen2.5-14B-Kebab-v0.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
John6666/coco-illustrious-noobai-style-v50-sdxl
John6666
2025-01-03T05:58:25Z
2,637
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "character", "high quality without LoRA", "girls", "cute", "posing", "background", "illustrious", "en", "base_model:Laxhar/noobai-XL-Vpred-0.65s", "base_model:finetune:Laxhar/noobai-XL-Vpred-0.65s", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-01-03T05:52:40Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - character - high quality without LoRA - girls - cute - posing - background - illustrious base_model: Laxhar/noobai-XL-Vpred-0.65s --- Original model is [here](https://civitai.com/models/955253/coco-illustrious-noobai-xl-style?modelVersionId=1233363). This model created by [COCO_OIOI01](https://civitai.com/user/COCO_OIOI01).
mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF
mradermacher
2025-01-03T05:51:26Z
297
0
transformers
[ "transformers", "gguf", "en", "dataset:netcat420/MFANN", "base_model:netcat420/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN", "base_model:quantized:netcat420/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T04:44:18Z
--- base_model: netcat420/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN datasets: - netcat420/MFANN language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/netcat420/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN-GGUF/resolve/main/Qwen2.5-7B-nerd-uncensored-v0.9-MFANN.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
wisenut-nlp-team/Wisedom-8B-EmbeddingReordering
wisenut-nlp-team
2025-01-03T05:37:06Z
1,906
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-27T00:54:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> 3.1 base ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wisenut-nlp-team/Wisedom-8B-VocabExpansion
wisenut-nlp-team
2025-01-03T05:36:40Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-27T02:32:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> 3.0 base ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
daweezy/turbov2
daweezy
2025-01-03T05:17:03Z
127
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-03T04:31:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: turbo --- # Turbov2 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `turbo` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('daweezy/turbov2', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF
mradermacher
2025-01-03T05:15:25Z
29
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "mergekit", "merge", "en", "base_model:pipihand01/QwQ-32B-Preview-abliterated-linear50", "base_model:quantized:pipihand01/QwQ-32B-Preview-abliterated-linear50", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-03T03:27:29Z
--- base_model: pipihand01/QwQ-32B-Preview-abliterated-linear50 language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/pipihand01/QwQ-32B-Preview-abliterated-linear50/blob/main/LICENSE quantized_by: mradermacher tags: - chat - abliterated - uncensored - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/pipihand01/QwQ-32B-Preview-abliterated-linear50 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/QwQ-32B-Preview-abliterated-linear50-GGUF/resolve/main/QwQ-32B-Preview-abliterated-linear50.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
snowian/ImageNet_32_btViT_256_4_99
snowian
2025-01-03T05:05:26Z
5
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-01-03T05:05:21Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
VitoCorleone72/Franny
VitoCorleone72
2025-01-03T05:05:07Z
99
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-03T05:04:58Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Francesca , wearing white knitted sweatshirt, smiling, ginger hair output: url: images/135634213.png - text: Francesca, buisness attire, buinsess room output: url: images/3516371131.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Francesca --- # Franny <Gallery /> ## Model description Franny ## Trigger words You should use `Francesca` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/VitoCorleone72/Franny/tree/main) them in the Files & versions tab.
tonileonar/leonartoni
tonileonar
2025-01-03T05:03:33Z
10
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-03T03:07:51Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: l3on@r license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # leonartoni A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `l3on@r` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
tuanna08go/01f4268a-9c46-4354-87d8-b3828851bd8b
tuanna08go
2025-01-03T04:49:28Z
23
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-160m", "base_model:adapter:JackFram/llama-160m", "license:apache-2.0", "region:us" ]
null
2025-01-03T04:40:34Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-160m tags: - axolotl - generated_from_trainer model-index: - name: 01f4268a-9c46-4354-87d8-b3828851bd8b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e9a5de46d030ae07_train_data.json ds_type: json format: custom path: /workspace/input_data/e9a5de46d030ae07_train_data.json type: field_input: user_prompt field_instruction: system_prompt field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/01f4268a-9c46-4354-87d8-b3828851bd8b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/e9a5de46d030ae07_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 01f4268a-9c46-4354-87d8-b3828851bd8b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 01f4268a-9c46-4354-87d8-b3828851bd8b warmup_steps: 2 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 01f4268a-9c46-4354-87d8-b3828851bd8b This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 3.1399 | | 2.8562 | 0.0076 | 10 | 3.0681 | | 2.7322 | 0.0152 | 20 | 2.9421 | | 2.6651 | 0.0228 | 30 | 2.8514 | | 2.5504 | 0.0304 | 40 | 2.8079 | | 2.5387 | 0.0380 | 50 | 2.8006 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
snowian/ImageNet_32_btViT_256_4_97
snowian
2025-01-03T04:49:23Z
5
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-01-03T04:49:17Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]