modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-25 06:27:54
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
495 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-25 06:24:22
card
stringlengths
11
1.01M
tinybiggames/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF
tinybiggames
2025-01-27T20:24:41Z
459
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:OpenCoder-LLM/opc-sft-stage2", "dataset:microsoft/orca-agentinstruct-1M-v1", "dataset:microsoft/orca-math-word-problems-200k", "dataset:NousResearch/hermes-function-calling-v1", "dataset:AI-MO/NuminaMath-CoT", "dataset:AI-MO/NuminaMath-TIR", "dataset:allenai/tulu-3-sft-mixture", "dataset:cognitivecomputations/dolphin-coder", "dataset:HuggingFaceTB/smoltalk", "dataset:cognitivecomputations/samantha-data", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:m-a-p/Code-Feedback", "base_model:cognitivecomputations/Dolphin3.0-Llama3.1-8B", "base_model:quantized:cognitivecomputations/Dolphin3.0-Llama3.1-8B", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T19:48:53Z
--- license: llama3.1 datasets: - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en base_model: cognitivecomputations/Dolphin3.0-Llama3.1-8B tags: - llama-cpp - gguf-my-repo --- # tinybiggames/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`cognitivecomputations/Dolphin3.0-Llama3.1-8B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B) for more details on the model. # Dolphin 3.0 Llama 3.1 8B 🐬 Part of the [Dolphin 3.0 Collection](https://huggingface.co/collections/cognitivecomputations/dolphin-30-677ab47f73d7ff66743979a3) Curated and trained by [Eric Hartford](https://huggingface.co/ehartford), [Ben Gitter](https://huggingface.co/bigstorm), [BlouseJury](https://huggingface.co/BlouseJury) and [Cognitive Computations](https://huggingface.co/cognitivecomputations) [![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/cognitivecomputations) Discord: https://discord.gg/cognitivecomputations <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/cNCs1TBD3FelWCJGkZ3cd.png" width="600" /> ## Sponsors Our appreciation for the generous sponsors of Dolphin 3.0: - [Crusoe Cloud](https://crusoe.ai/) - provided 16x L40s for training and evals - [Akash](https://akash.network/) - provided on-demand 8x H100 for training - [Lazarus](https://www.lazarusai.com/) - provided 16x H100 for training - [Cerebras](https://cerebras.ai/) - provided excellent and fast inference services for data labeling - [Andreessen Horowitz](https://a16z.com/) - provided a [grant](https://a16z.com/supporting-the-open-source-ai-community/) that make Dolphin 1.0 possible and enabled me to bootstrap my homelab ## What is Dolphin? Dolphin 3.0 is the next generation of the Dolphin series of instruct-tuned models. Designed to be the ultimate general purpose local model, enabling coding, math, agentic, function calling, and general use cases. Dolphin aims to be a general purpose model, similar to the models behind ChatGPT, Claude, Gemini. But these models present problems for businesses seeking to include AI in their products. 1) They maintain control of the system prompt, deprecating and changing things as they wish, often causing software to break. 2) They maintain control of the model versions, sometimes changing things silently, or deprecating older models that your business relies on. 3) They maintain control of the alignment, and in particular the alignment is one-size-fits all, not tailored to the application. 4) They can see all your queries and they can potentially use that data in ways you wouldn't want. Dolphin, in contrast, is steerable and gives control to the system owner. You set the system prompt. You decide the alignment. You have control of your data. Dolphin does not impose its ethics or guidelines on you. You are the one who decides the guidelines. Dolphin belongs to YOU, it is your tool, an extension of your will. Just as you are personally responsible for what you do with a knife, gun, fire, car, or the internet, you are the creator and originator of any content you generate with Dolphin. https://erichartford.com/uncensored-models ## Chat Template We use ChatML for the chat template. ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## System Prompt In Dolphin, the system prompt is what you use to set the tone and alignment of the responses. You can set a character, a mood, rules for its behavior, and it will try its best to follow them. Make sure to set the system prompt in order to set the tone and guidelines for the responses - Otherwise, it will act in a default way that might not be what you want. Example use of system prompt: ``` <|im_start|>system You are Dolphin, a golang coding assistant. you only code in golang. If the user requests any other programming language, return the solution in golang instead.<|im_end|> <|im_start|>user Please implement A* using python<|im_end|> <|im_start|>assistant ``` ## Sample Outputs <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/C-r1X13UBjnUUNb0q2JLV.png" width="600" /> <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/4l3KAZiKej2ON7i35PsOa.png" width="600" /> <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/1ZalmR66LnwhEQQEFttlu.png" width="600" /> ## How to use There are many ways to use a huggingface model including: - ollama - LM Studio - Huggingface Transformers library - vllm - sglang - tgi ### ollama - [Install ollama](https://ollama.com/download) - ```ollama run hf.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B-GGUF:Q4_0``` - ```/set system <your system prompt>``` ## Evals TBD ## Appreciation Respect and thanks to the creators of the open source datasets that were used: - [OpenCoder-LLM](https://huggingface.co/OpenCoder-LLM) (opc-sft-stage1, opc-sft-stage2) - [microsoft](https://huggingface.co/OpenCoder-LLM) (orca-agentinstruct-1M-v1, orca-math-word-problems-200k) - [NousResearch](https://huggingface.co/NousResearch) (hermes-function-calling-v1) - [AI-MO](https://huggingface.co/AI-MO) (NuminaMath-CoT, NuminaMath-TIR) - [allenai](https://huggingface.co/allenai) (tulu-3-sft-mixture) - [HuggingFaceTB](https://huggingface.co/HuggingFaceTB) (smoltalk) - [m-a-p](https://huggingface.co/m-a-p) (CodeFeedback-Filtered-Instruction, Code-Feedback) Special thanks to - Meta, Qwen, and OpenCoder, who wrote papers and published models that were instrumental in creating Dolphin 3.0. - [RLHFlow](https://huggingface.co/RLHFlow) for the excellent reward model used to filter the datasets - Deepseek, for the ridiculously fast Deepseek-V3 that we used to augment the data.
kiranpantha/t5-small-finetuned-doind
kiranpantha
2025-01-27T20:22:51Z
5
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-27T20:22:40Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: t5-small-finetuned-doind results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-doind This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 8.2131 | | No log | 2.0 | 4 | 5.2570 | | No log | 3.0 | 6 | 2.7250 | | No log | 4.0 | 8 | 1.0910 | | 4.9874 | 5.0 | 10 | 0.4884 | | 4.9874 | 6.0 | 12 | 0.3084 | | 4.9874 | 7.0 | 14 | 0.2764 | | 4.9874 | 8.0 | 16 | 0.2767 | | 4.9874 | 9.0 | 18 | 0.2745 | | 1.2651 | 10.0 | 20 | 0.2684 | | 1.2651 | 11.0 | 22 | 0.2581 | | 1.2651 | 12.0 | 24 | 0.2461 | | 1.2651 | 13.0 | 26 | 0.2330 | | 1.2651 | 14.0 | 28 | 0.2229 | | 0.7353 | 15.0 | 30 | 0.2206 | | 0.7353 | 16.0 | 32 | 0.2220 | | 0.7353 | 17.0 | 34 | 0.2234 | | 0.7353 | 18.0 | 36 | 0.2205 | | 0.7353 | 19.0 | 38 | 0.2149 | | 0.5372 | 20.0 | 40 | 0.2098 | | 0.5372 | 21.0 | 42 | 0.2040 | | 0.5372 | 22.0 | 44 | 0.1989 | | 0.5372 | 23.0 | 46 | 0.1925 | | 0.5372 | 24.0 | 48 | 0.1849 | | 0.4776 | 25.0 | 50 | 0.1804 | | 0.4776 | 26.0 | 52 | 0.1733 | | 0.4776 | 27.0 | 54 | 0.1683 | | 0.4776 | 28.0 | 56 | 0.1646 | | 0.4776 | 29.0 | 58 | 0.1637 | | 0.4325 | 30.0 | 60 | 0.1645 | | 0.4325 | 31.0 | 62 | 0.1645 | | 0.4325 | 32.0 | 64 | 0.1614 | | 0.4325 | 33.0 | 66 | 0.1556 | | 0.4325 | 34.0 | 68 | 0.1467 | | 0.3829 | 35.0 | 70 | 0.1384 | | 0.3829 | 36.0 | 72 | 0.1322 | | 0.3829 | 37.0 | 74 | 0.1304 | | 0.3829 | 38.0 | 76 | 0.1316 | | 0.3829 | 39.0 | 78 | 0.1321 | | 0.3464 | 40.0 | 80 | 0.1338 | | 0.3464 | 41.0 | 82 | 0.1364 | | 0.3464 | 42.0 | 84 | 0.1378 | | 0.3464 | 43.0 | 86 | 0.1365 | | 0.3464 | 44.0 | 88 | 0.1341 | | 0.325 | 45.0 | 90 | 0.1306 | | 0.325 | 46.0 | 92 | 0.1265 | | 0.325 | 47.0 | 94 | 0.1226 | | 0.325 | 48.0 | 96 | 0.1207 | | 0.325 | 49.0 | 98 | 0.1192 | | 0.3044 | 50.0 | 100 | 0.1184 | | 0.3044 | 51.0 | 102 | 0.1175 | | 0.3044 | 52.0 | 104 | 0.1163 | | 0.3044 | 53.0 | 106 | 0.1140 | | 0.3044 | 54.0 | 108 | 0.1126 | | 0.2875 | 55.0 | 110 | 0.1112 | | 0.2875 | 56.0 | 112 | 0.1092 | | 0.2875 | 57.0 | 114 | 0.1063 | | 0.2875 | 58.0 | 116 | 0.1033 | | 0.2875 | 59.0 | 118 | 0.1010 | | 0.2666 | 60.0 | 120 | 0.1001 | | 0.2666 | 61.0 | 122 | 0.0992 | | 0.2666 | 62.0 | 124 | 0.0976 | | 0.2666 | 63.0 | 126 | 0.0963 | | 0.2666 | 64.0 | 128 | 0.0955 | | 0.263 | 65.0 | 130 | 0.0955 | | 0.263 | 66.0 | 132 | 0.0953 | | 0.263 | 67.0 | 134 | 0.0944 | | 0.263 | 68.0 | 136 | 0.0938 | | 0.263 | 69.0 | 138 | 0.0933 | | 0.2496 | 70.0 | 140 | 0.0926 | | 0.2496 | 71.0 | 142 | 0.0929 | | 0.2496 | 72.0 | 144 | 0.0934 | | 0.2496 | 73.0 | 146 | 0.0936 | | 0.2496 | 74.0 | 148 | 0.0939 | | 0.2497 | 75.0 | 150 | 0.0941 | | 0.2497 | 76.0 | 152 | 0.0944 | | 0.2497 | 77.0 | 154 | 0.0937 | | 0.2497 | 78.0 | 156 | 0.0931 | | 0.2497 | 79.0 | 158 | 0.0929 | | 0.2409 | 80.0 | 160 | 0.0923 | | 0.2409 | 81.0 | 162 | 0.0915 | | 0.2409 | 82.0 | 164 | 0.0912 | | 0.2409 | 83.0 | 166 | 0.0900 | | 0.2409 | 84.0 | 168 | 0.0894 | | 0.2365 | 85.0 | 170 | 0.0887 | | 0.2365 | 86.0 | 172 | 0.0878 | | 0.2365 | 87.0 | 174 | 0.0870 | | 0.2365 | 88.0 | 176 | 0.0859 | | 0.2365 | 89.0 | 178 | 0.0851 | | 0.2251 | 90.0 | 180 | 0.0846 | | 0.2251 | 91.0 | 182 | 0.0841 | | 0.2251 | 92.0 | 184 | 0.0838 | | 0.2251 | 93.0 | 186 | 0.0837 | | 0.2251 | 94.0 | 188 | 0.0838 | | 0.2269 | 95.0 | 190 | 0.0836 | | 0.2269 | 96.0 | 192 | 0.0836 | | 0.2269 | 97.0 | 194 | 0.0836 | | 0.2269 | 98.0 | 196 | 0.0838 | | 0.2269 | 99.0 | 198 | 0.0838 | | 0.2227 | 100.0 | 200 | 0.0839 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cxx11.abi - Datasets 3.2.0 - Tokenizers 0.21.0
lesso09/cce3ad76-7756-43e9-a855-9ac389b739e2
lesso09
2025-01-27T20:22:17Z
8
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:38:30Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: cce3ad76-7756-43e9-a855-9ac389b739e2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: true chat_template: llama3 datasets: - data_files: - 9b5cb055697c5acf_train_data.json ds_type: json format: custom path: /workspace/input_data/9b5cb055697c5acf_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/cce3ad76-7756-43e9-a855-9ac389b739e2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/9b5cb055697c5acf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9633cd3d-5687-4111-8637-962f57a2387e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9633cd3d-5687-4111-8637-962f57a2387e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cce3ad76-7756-43e9-a855-9ac389b739e2 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 29.2782 | 0.0001 | 1 | 4.9263 | | 19.2487 | 0.0005 | 5 | 4.8353 | | 14.0141 | 0.0010 | 10 | 3.5004 | | 12.5324 | 0.0015 | 15 | 2.9703 | | 9.835 | 0.0020 | 20 | 2.8122 | | 12.3555 | 0.0025 | 25 | 2.7746 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ThatDustyGuy/dustinface2
ThatDustyGuy
2025-01-27T20:20:15Z
29
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T20:20:12Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: DLAY license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # DUSTINFACE2 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `DLAY` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
gokulsrinivasagan/distilbert_base_lda_train_book_mrpc
gokulsrinivasagan
2025-01-27T20:19:31Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_base_lda_train_book", "base_model:finetune:gokulsrinivasagan/distilbert_base_lda_train_book", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-09T12:15:40Z
--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/distilbert_base_lda_train_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_base_lda_train_book_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7254901960784313 - name: F1 type: f1 value: 0.8028169014084507 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_base_lda_train_book_mrpc This model is a fine-tuned version of [gokulsrinivasagan/distilbert_base_lda_train_book](https://huggingface.co/gokulsrinivasagan/distilbert_base_lda_train_book) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5436 - Accuracy: 0.7255 - F1: 0.8028 - Combined Score: 0.7642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6244 | 1.0 | 15 | 0.5959 | 0.6863 | 0.8000 | 0.7431 | | 0.561 | 2.0 | 30 | 0.5541 | 0.7181 | 0.8074 | 0.7628 | | 0.4677 | 3.0 | 45 | 0.5436 | 0.7255 | 0.8028 | 0.7642 | | 0.3408 | 4.0 | 60 | 0.6418 | 0.7598 | 0.8444 | 0.8021 | | 0.1934 | 5.0 | 75 | 0.9616 | 0.7304 | 0.8302 | 0.7803 | | 0.1231 | 6.0 | 90 | 0.8708 | 0.7328 | 0.8149 | 0.7739 | | 0.0744 | 7.0 | 105 | 1.2582 | 0.7402 | 0.8354 | 0.7878 | | 0.0448 | 8.0 | 120 | 1.0701 | 0.7353 | 0.8118 | 0.7736 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
gokulsrinivasagan/distilbert_base_lda_train_book_cola
gokulsrinivasagan
2025-01-27T20:17:58Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/distilbert_base_lda_train_book", "base_model:finetune:gokulsrinivasagan/distilbert_base_lda_train_book", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-09T12:13:16Z
--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/distilbert_base_lda_train_book tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: distilbert_base_lda_train_book_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.31062208612907616 - name: Accuracy type: accuracy value: 0.7353787422180176 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_base_lda_train_book_cola This model is a fine-tuned version of [gokulsrinivasagan/distilbert_base_lda_train_book](https://huggingface.co/gokulsrinivasagan/distilbert_base_lda_train_book) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.5284 - Matthews Correlation: 0.3106 - Accuracy: 0.7354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.5749 | 1.0 | 34 | 0.5284 | 0.3106 | 0.7354 | | 0.4542 | 2.0 | 68 | 0.5940 | 0.3377 | 0.7459 | | 0.3403 | 3.0 | 102 | 0.6004 | 0.3544 | 0.7488 | | 0.2526 | 4.0 | 136 | 0.6161 | 0.3864 | 0.7565 | | 0.1924 | 5.0 | 170 | 0.7183 | 0.3675 | 0.7440 | | 0.1514 | 6.0 | 204 | 0.7899 | 0.3936 | 0.7603 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
mradermacher/Unity-12B-i1-GGUF
mradermacher
2025-01-27T20:17:28Z
802
1
transformers
[ "transformers", "gguf", "merge", "Roleplay", "Creative", "ru", "en", "base_model:OddTheGreat/Unity-12B", "base_model:quantized:OddTheGreat/Unity-12B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-27T17:57:21Z
--- base_model: OddTheGreat/Unity-12B language: - ru - en library_name: transformers quantized_by: mradermacher tags: - merge - Roleplay - Creative --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/OddTheGreat/Unity-12B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Unity-12B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-i1-GGUF/resolve/main/Unity-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/MN-Chinofun-12B-4.1-GGUF
mradermacher
2025-01-27T20:17:27Z
431
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:djuna/MN-Chinofun-12B-4.1", "base_model:quantized:djuna/MN-Chinofun-12B-4.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T13:31:42Z
--- base_model: djuna/MN-Chinofun-12B-4.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/djuna/MN-Chinofun-12B-4.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MN-Chinofun-12B-4.1-GGUF/resolve/main/MN-Chinofun-12B-4.1.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
andrewmos/ggfu8bit_finance_sentiment_analysis
andrewmos
2025-01-27T20:16:16Z
37
0
transformers
[ "transformers", "gguf", "gemma2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:quantized:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-27T20:13:50Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** andrewmos - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
datlaaaaaaa/fb4bf3ed-c08d-4e3d-9e4a-be767bd4c557
datlaaaaaaa
2025-01-27T20:09:22Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Genstruct-7B", "base_model:adapter:NousResearch/Genstruct-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:43:02Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Genstruct-7B tags: - axolotl - generated_from_trainer model-index: - name: fb4bf3ed-c08d-4e3d-9e4a-be767bd4c557 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Genstruct-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 186751b6eec64046_train_data.json ds_type: json format: custom path: /workspace/input_data/186751b6eec64046_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/fb4bf3ed-c08d-4e3d-9e4a-be767bd4c557 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/186751b6eec64046_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dca19e08-e846-4562-8251-21b6b45975fe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dca19e08-e846-4562-8251-21b6b45975fe warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fb4bf3ed-c08d-4e3d-9e4a-be767bd4c557 This model is a fine-tuned version of [NousResearch/Genstruct-7B](https://huggingface.co/NousResearch/Genstruct-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2114 | 0.1369 | 200 | 0.6328 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
N8Programs/Yukikai-v0.3
N8Programs
2025-01-27T20:09:18Z
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/mistral-7b", "base_model:finetune:unsloth/mistral-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T20:05:25Z
--- base_model: unsloth/mistral-7b tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** N8Programs - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nghiatrannnnnn/02fa41c1-1333-477e-9805-2ca72f254ecb
nghiatrannnnnn
2025-01-27T20:07:26Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Genstruct-7B", "base_model:adapter:NousResearch/Genstruct-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:42:54Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Genstruct-7B tags: - axolotl - generated_from_trainer model-index: - name: 02fa41c1-1333-477e-9805-2ca72f254ecb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Genstruct-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 186751b6eec64046_train_data.json ds_type: json format: custom path: /workspace/input_data/186751b6eec64046_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/02fa41c1-1333-477e-9805-2ca72f254ecb hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/186751b6eec64046_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dca19e08-e846-4562-8251-21b6b45975fe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dca19e08-e846-4562-8251-21b6b45975fe warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 02fa41c1-1333-477e-9805-2ca72f254ecb This model is a fine-tuned version of [NousResearch/Genstruct-7B](https://huggingface.co/NousResearch/Genstruct-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2166 | 0.1369 | 200 | 0.6330 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso12/71d2ce72-46c3-495f-9a0b-2ca28aec31d2
lesso12
2025-01-27T20:05:52Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B", "base_model:adapter:Qwen/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-27T20:02:10Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 71d2ce72-46c3-495f-9a0b-2ca28aec31d2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9fca49470a8d0714_train_data.json ds_type: json format: custom path: /workspace/input_data/9fca49470a8d0714_train_data.json type: field_input: context field_instruction: title field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso12/71d2ce72-46c3-495f-9a0b-2ca28aec31d2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/9fca49470a8d0714_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b090c42d-2736-4e5a-9ae7-7e26c40fb293 wandb_project: multi wandb_run: your_name wandb_runid: b090c42d-2736-4e5a-9ae7-7e26c40fb293 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 71d2ce72-46c3-495f-9a0b-2ca28aec31d2 This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 104 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4347 | 1.0 | 104 | 1.4477 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mkhalifa/qwq-prm800k-per-step
mkhalifa
2025-01-27T20:04:00Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T19:47:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
romanoza/gpt2-small-III
romanoza
2025-01-27T20:02:38Z
163
2
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "pl", "dataset:allenai/c4", "dataset:clarin-knext/arguana-pl", "dataset:JonaszPotoniec/wikipedia-with-statistics-pl", "dataset:JuDDGES/pl-court-instruct", "dataset:speakleash/PES-2018-2022", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-12-20T12:47:34Z
--- library_name: transformers language: - pl pipeline_tag: text-generation model-index: - name: gpt2-small-III results: [] datasets: - allenai/c4 - clarin-knext/arguana-pl - JonaszPotoniec/wikipedia-with-statistics-pl - JuDDGES/pl-court-instruct - speakleash/PES-2018-2022 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> A small GTP-2 model trained on 6.94 GB (3 permutations * 2.31 GB) of Polish text ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** romanoza ## Uses A base model for other models. ## Training Details ### Training Data Training data size: 1_584_191 * 1_024 = 1_622_211_584 tokens ### Training Procedure #### Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-04 - train_batch_size: 16 - lr_scheduler_type: linear - num_epochs: 2 - warmup_steps: 500 ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 1 * A100 - **Hours used:** ~50h - **Cloud Provider:** Google Colab
lesso15/3b44511c-c2d4-445e-bfaf-c41497107e84
lesso15
2025-01-27T19:59:42Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf", "base_model:adapter:NousResearch/CodeLlama-13b-hf", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T17:30:52Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: 3b44511c-c2d4-445e-bfaf-c41497107e84 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf bf16: auto chat_template: llama3 datasets: - data_files: - 9a8514bc9995e10c_train_data.json ds_type: json format: custom path: /workspace/input_data/9a8514bc9995e10c_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/3b44511c-c2d4-445e-bfaf-c41497107e84 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9a8514bc9995e10c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab917f13-90ab-4a3a-9e38-f2d73001d41f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ab917f13-90ab-4a3a-9e38-f2d73001d41f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3b44511c-c2d4-445e-bfaf-c41497107e84 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.3999 | 0.0338 | 200 | 1.6409 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
pauljasperdev/pauljasperdev
pauljasperdev
2025-01-27T19:57:20Z
19
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T19:30:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: pauljasperdev --- # Pauljasperdev <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `pauljasperdev` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pauljasperdev/pauljasperdev', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mrferr3t/37828e32-2ec8-4ab2-ac7c-7f339bc5b994
mrferr3t
2025-01-27T19:56:24Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-01-27T19:42:27Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 37828e32-2ec8-4ab2-ac7c-7f339bc5b994 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b5cb055697c5acf_train_data.json ds_type: json format: custom path: /workspace/input_data/9b5cb055697c5acf_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/37828e32-2ec8-4ab2-ac7c-7f339bc5b994 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 15 micro_batch_size: 2 mlflow_experiment_name: /tmp/9b5cb055697c5acf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9633cd3d-5687-4111-8637-962f57a2387e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9633cd3d-5687-4111-8637-962f57a2387e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 37828e32-2ec8-4ab2-ac7c-7f339bc5b994 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 29.3458 | 0.0001 | 1 | 4.9352 | | 30.7817 | 0.0004 | 4 | 4.9275 | | 17.9037 | 0.0008 | 8 | 4.3478 | | 12.2946 | 0.0012 | 12 | 2.8871 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/dabfd233-0722-4ee4-9479-adb36c485037
lesso
2025-01-27T19:54:16Z
8
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-01-27T19:39:42Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: dabfd233-0722-4ee4-9479-adb36c485037 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b5cb055697c5acf_train_data.json ds_type: json format: custom path: /workspace/input_data/9b5cb055697c5acf_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso/dabfd233-0722-4ee4-9479-adb36c485037 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/9b5cb055697c5acf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9633cd3d-5687-4111-8637-962f57a2387e wandb_project: lesso18 wandb_run: your_name wandb_runid: 9633cd3d-5687-4111-8637-962f57a2387e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # dabfd233-0722-4ee4-9479-adb36c485037 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.1242 | 0.0200 | 200 | 2.4541 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/f0535857-cb3c-42f4-8f8e-064897bec1de
great0001
2025-01-27T19:54:00Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Genstruct-7B", "base_model:adapter:NousResearch/Genstruct-7B", "license:apache-2.0", "region:us" ]
null
2025-01-27T19:48:51Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Genstruct-7B tags: - axolotl - generated_from_trainer model-index: - name: f0535857-cb3c-42f4-8f8e-064897bec1de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Genstruct-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 186751b6eec64046_train_data.json ds_type: json format: custom path: /workspace/input_data/186751b6eec64046_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/f0535857-cb3c-42f4-8f8e-064897bec1de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/186751b6eec64046_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dca19e08-e846-4562-8251-21b6b45975fe wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: dca19e08-e846-4562-8251-21b6b45975fe warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f0535857-cb3c-42f4-8f8e-064897bec1de This model is a fine-tuned version of [NousResearch/Genstruct-7B](https://huggingface.co/NousResearch/Genstruct-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.3804 | 0.0007 | 1 | 0.9475 | | 2.3381 | 0.0089 | 13 | 0.7722 | | 2.6435 | 0.0178 | 26 | 0.6872 | | 1.9192 | 0.0267 | 39 | 0.6732 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso15/7977d95a-6341-468f-b459-90de7e8aaa73
lesso15
2025-01-27T19:52:50Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T17:34:48Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 7977d95a-6341-468f-b459-90de7e8aaa73 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 datasets: - data_files: - c5894ab836cf8861_train_data.json ds_type: json format: custom path: /workspace/input_data/c5894ab836cf8861_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/7977d95a-6341-468f-b459-90de7e8aaa73 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c5894ab836cf8861_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1fa3758-abc3-4337-bb5a-53ca7e83c1ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a1fa3758-abc3-4337-bb5a-53ca7e83c1ee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7977d95a-6341-468f-b459-90de7e8aaa73 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0100 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nexesenex/MC_Anubis-Llama3.3-70B-Nemotron3.1-Eva0.1-stjgmmc-bf16-iMat-CF-GGUF
Nexesenex
2025-01-27T19:50:37Z
69
0
null
[ "gguf", "license:llama3.3", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-27T18:12:29Z
--- license: llama3.3 --- GGUF Quant(s) for this model : https://huggingface.co/mergekit-community/mergekit-dare_ties-stjgmmc
shaheercp/SANGI
shaheercp
2025-01-27T19:49:50Z
28
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T19:33:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: photo of SANGI --- # Sangi <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `photo of SANGI` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('shaheercp/SANGI', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso17/f3a885da-7e5f-4ecc-b25e-cfb15f76d6a7
lesso17
2025-01-27T19:45:01Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf", "base_model:adapter:NousResearch/CodeLlama-13b-hf", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T17:30:53Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: f3a885da-7e5f-4ecc-b25e-cfb15f76d6a7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf bf16: auto chat_template: llama3 datasets: - data_files: - 9a8514bc9995e10c_train_data.json ds_type: json format: custom path: /workspace/input_data/9a8514bc9995e10c_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/f3a885da-7e5f-4ecc-b25e-cfb15f76d6a7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9a8514bc9995e10c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab917f13-90ab-4a3a-9e38-f2d73001d41f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ab917f13-90ab-4a3a-9e38-f2d73001d41f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f3a885da-7e5f-4ecc-b25e-cfb15f76d6a7 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.4569 | 0.0338 | 200 | 1.6437 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
duyphu/e053b016-83b9-4532-a813-c6a70b071538
duyphu
2025-01-27T19:44:37Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-27T19:37:10Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: e053b016-83b9-4532-a813-c6a70b071538 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47ff230a87d3e712_train_data.json ds_type: json format: custom path: /workspace/input_data/47ff230a87d3e712_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/e053b016-83b9-4532-a813-c6a70b071538 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/47ff230a87d3e712_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5a314b3-de7b-40c6-9c64-3d1496d51603 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c5a314b3-de7b-40c6-9c64-3d1496d51603 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e053b016-83b9-4532-a813-c6a70b071538 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | nan | | 0.0 | 0.0047 | 10 | nan | | 0.0 | 0.0094 | 20 | nan | | 0.0 | 0.0141 | 30 | nan | | 0.0 | 0.0188 | 40 | nan | | 0.0 | 0.0235 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JakeOh/star_plus-finetune-llama-3.2-1b-gsm8k-step-3
JakeOh
2025-01-27T19:43:57Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T19:43:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
async0x42/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview-exl2_4.65bpw
async0x42
2025-01-27T19:42:35Z
8
0
null
[ "safetensors", "qwen2", "arxiv:2408.07990", "arxiv:2401.10491", "arxiv:2412.03187", "license:apache-2.0", "exl2", "region:us" ]
null
2025-01-27T19:34:58Z
--- license: apache-2.0 --- <p align="center" width="100%"> </p> <div id="top" align="center"> FuseO1-Preview: System-II Reasoning Fusion of LLMs ----------------------------- <h4> |<a href="https://arxiv.org/abs/2408.07990"> 📑 Paper </a> | <a href="https://github.com/fanqiwan/FuseAI"> 🐱 GitHub Repo </a> | <a href="https://huggingface.co/FuseAI"> 🤗 Hugging Face </a> | <a href="https://huggingface.co/blog/Wanfq/fuseo1-preview"> 🌐 Blog </a> | </h4> <!-- **Authors:** --> _Fanqi Wan, Longguang Zhong, Ziyi Yang, Weizhou Shen, Xinting Huang_ <!-- **Affiliations:** --> _FuseAI Team_ </div> <p align="center"> <img src="./assets/fuseo1-preview.jpg" width="100%"> <br> </p> ## Overview [FuseO1-Preview](https://huggingface.co/collections/FuseAI/fuseo1-preview-678eb56093649b2688bc9977) is our initial endeavor to enhance the System-II reasoning capabilities of large language models (LLMs) through innovative model fusion techniques. By employing our advanced [SCE](https://arxiv.org/abs/2408.07990) merging methodologies, we integrate multiple open-source o1-like LLMs into a unified model. Our goal is to incorporate the distinct knowledge and strengths from different reasoning LLMs into a single, unified model with strong System-II reasoning abilities, particularly in mathematics, coding, and science domains. <p align="center"> <img src="./assets/sce.jpg" width="70%"> <br> </p> To achieve this, we conduct two types of model merging: - **Long-Long Reasoning Merging**: This approach involves model fusion across LLMs that utilize long-CoT reasoning, with the goal of enhancing long-CoT reasoning capabilities. The resulted [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) achieves a Pass@1 accuracy of **74.0 on AIME24**, demonstrating significant performance improvements compared to the OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching OpenAI o1 (79.2). - **Long-Short Reasoning Merging**: This approach involves model fusion between long-CoT and short-CoT LLMs, aiming to improve reasoning capabilities in both long and short reasoning processes. The resulted [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) and [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) is capable of utilizing both long and short reasoning processes and demonstrates relatively strong performance in long reasoning tasks. | Model | Merge Type | Source Models | HF Link | |:----- | ---- | ---- | ---- | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview), [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview), [GGUF](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview-GGUF) | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview), [NovaSky-AI/Sky-T1-32B-Flash](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Flash) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview) | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | ## Long-Long Reasoning Merging We conduct experiments on these folloing long-cot LLMs. - [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) - [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) - [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas ``` To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda ``` We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview. ```python3 from vllm import LLM, SamplingParams llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8) sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643]) conversations = [ [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."}, {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."}, ], ] responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True) for response in responses: print(response.outputs[0].text.strip()) ``` ## Long-Short Reasoning Merging We conduct experiments on these folloing long-cot and short-cot LLMs. - [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) - [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) - [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder) To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview --cuda ``` To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda ``` To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda ``` We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview. ```python3 from vllm import LLM, SamplingParams llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8) sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643]) conversations = [ [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."}, {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."}, ], ] responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True) for response in responses: print(response.outputs[0].text.strip()) ``` ## Evaluation Results We test the resulted models on three kinds of benchmarks, including **Math Reasoning**, **Code Reasoning** , and **Scientific Reasoning**. Math Reasoning - AIME24 - MATH500 - OlympiadBench Scientific Reasoning - GPQA-Diamond - MMLU-Pro - MMLU Code Reasoning - LiveCodeBench (2408-2502) > Important Note: We manully set `"add_bos_token": false` in `tokenizer_config.json` for all the evaluated LLMs to prevent the bos_token to be added twice for each prompt. Please download and modify to ensure consistency. ### Math Reasoning The evaluation code is modified from [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [math_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/math_evaluation). The system prompt for evaluation is set to: ```sh Please reason step by step, and put your final answer within \\boxed{{}}. ``` The evaluation results are shown in the table below: In our evaluation of AIME24, we follow the method from DeepSeek-R1, wherein Pass@1 is computed by averaging the results across 32 sampled responses per prompt, while Cons@32 is determined through self-consistency analysis of the same 32 sampled responses for each prompt. For other benchmarks, we only sample 1 response and report the Pass@1. | Models | AIME24 Pass@1 | AIME24 Cons@32 | MATH500 | OlympiadBench | |:------ | --------------| ------------------- | ------------ | -------------- | | OpenAI o1 | 79.2 | - | 96.4 | - | | OpenAI o1-preview | 44.6 | - | 85.5 | - | | OpenAI o1-mini | 63.6 | - | 90.0 | - | | DeepSeek R1 | 79.8 | - | 97.3 | - | | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 69.2 | 83.3 | 93.6 | 64.3 | | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 43.8 | 56.7 | 88.4 | 60.3 | | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 37.7 | 50.0 | 88.0 | 55.1 | | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 17.0 | 20.0 | 81.8 | 48.1 | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 68.6 | 83.3 | 94.6 | 64.9 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 69.7 | 83.3 | 94.6 | 64.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview) | 72.9 | 86.7 | - | - | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 74.0 | 86.7 | 94.8 | 65.0 | We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on math reasoning. Specifically, our model achieves an accuracy of **74.0 Pass@1 and 86.7 Cons@32 on AIME24**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (69.2 Pass@1 and 83.3 Cons@32), OpenAI o1-preview (44.6 Pass@1) and OpenAI o1-mini (63.4 Pass@1), even approaching OpenAI o1 (79.2 Pass@1). ### Scientific Reasoning The evaluation code is modified from [SkyThought](https://github.com/NovaSky-AI/SkyThought). In our evaluation, we set the temperature to 0.7 and the max_tokens to 32768. We provide the example to reproduce our results in [evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/evaluation). The system prompt for evaluation is set to: ```sh You are a helpful and harmless assistant. You should think step-by-step. ``` The evaluation results are shown in the table below: | Models | GPQA-Diamond| MMLU-Pro | MMLU | |:------ | --------------| ------------ | -------------- | | OpenAI o1 | 75.7 | - | 91.8 | | OpenAI o1-preview | 73.3 | - | 90.8 | | OpenAI o1-mini | 60.0 | 80.3 | 85.2 | | DeepSeek R1 | 71.5 | 84.0 | 90.8 | | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 57.6 | 68.7 | 82.2 | | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 49.5 | 63.5 | 85.2 | | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 50.5 | 65.8 | 82.7 | | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 46.5 | 56.3 | 79.6 | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 55.1 | 68.6 | 82.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 62.1 | 68.9 | 82.7 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview) | 54.6 | 70.6 | 84.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 62.1 | 70.8 | 83.6 | We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **62.1 on GPQA-Diamond and 70.8 on MMLU-Pro**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (57.6 on GPQA-Diamond and 68.7 on MMLU-Pro). ## Code Reasoning The evaluation code is modified from [Qwen2.5-Coder](https://github.com/QwenLM/Qwen2.5-Coder/tree/main/qwencoder-eval/reasoning/livecode_bench_cot). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [code_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/code_evaluation). The system prompt for evaluation is set to: ```sh A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. ``` In our evaluation of LiveCodeBench, we follow the method from DeepSeek-R1 and make a slight modification. The Pass@1 is computed by averaging the results across 16 sampled responses per prompt. The evaluation results are shown in the table below: | Models | LiveCodeBench | LiveCodeBench-Easy | LiveCodeBench-Medium | LiveCodeBench-Hard | |:------ | --------------| ------------------- | ------------ | -------------- | | OpenAI o1 | 63.4 | 98.5 | 80.9 | 31.7 | | OpenAI o1-preview | 42.7 | 97.0 | 47.2 | 9.8 | | OpenAI o1-mini | 52.00 | 91.0 | 67.4 | 19.5 | | DeepSeek R1 | 62.8 | 98.4 | 78.3 | 32.2 | | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 56.1 | 93.6 | 73.1 | 23.4 | | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 44.4 | 94.9 | 53.8 | 10.0 | | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 37.3 | 89.7 | 40.4 | 6.6 | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | 56.4 | 92.9 | 73.5 | 24.2 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 54.8| 93.9 | 71.7 | 21.3 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview) | 58.2 | 94.3 | 77.1 | 25.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 57.9 | 93.6 | 76.0 | 25.5 | We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **57.9 on LiveCodeBench and 25.5 on LiveCodeBench-Hard**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (56.1 on LiveCodeBench and 23.4 on LiveCodeBench-Hard), OpenAI o1-preview (42.7 on LiveCodeBench and 9.8 on LiveCodeBench-Hard) and OpenAI o1-mini (52.0 on LiveCodeBench and 19.5 on LiveCodeBench-Hard Pass@1). ## Future Works This work is our first attempt effort to achieve knowledge fusion of System-II reasoning LLMs through a model merging approach, which is limited to LLMs with identical scale and architecture. In future work, we plan to employ our [explicit model fusion](https://arxiv.org/abs/2401.10491) method, based on multi-teacher knowledge distillation, and our [implici model fusion](https://arxiv.org/abs/2412.03187) method, which utilizes weighted-reward preference optimization for LLMs with different scales and architectures. Furthermore, we intend to explore the combination of knowledge fusion with reinforcement learning (RL) methods, which have been demonstrated as the most effective approach for enhancing reasoning abilities. Stay tuned for the next version of FuseO1! ## Citations ``` @article{wan2024fusechat, title={Fusechat: Knowledge fusion of chat models}, author={Wan, Fanqi and Zhong, Longguang and Yang, Ziyi and Chen, Ruijun and Quan, Xiaojun}, journal={arXiv preprint arXiv:2408.07990}, year={2024} } ```
great0001/6bb214b4-5acf-4993-abcd-f6a8752aa3cc
great0001
2025-01-27T19:42:31Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:elyza/Llama-3-ELYZA-JP-8B", "base_model:adapter:elyza/Llama-3-ELYZA-JP-8B", "license:llama3", "region:us" ]
null
2025-01-27T19:33:12Z
--- library_name: peft license: llama3 base_model: elyza/Llama-3-ELYZA-JP-8B tags: - axolotl - generated_from_trainer model-index: - name: 6bb214b4-5acf-4993-abcd-f6a8752aa3cc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: elyza/Llama-3-ELYZA-JP-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d3f2518b5c5ec489_train_data.json ds_type: json format: custom path: /workspace/input_data/d3f2518b5c5ec489_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/6bb214b4-5acf-4993-abcd-f6a8752aa3cc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d3f2518b5c5ec489_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5c596bd-02c2-4964-9e55-5ba81053233d wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: c5c596bd-02c2-4964-9e55-5ba81053233d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6bb214b4-5acf-4993-abcd-f6a8752aa3cc This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8768 | 0.0002 | 1 | 2.5171 | | 2.0549 | 0.0025 | 13 | 2.3226 | | 2.1777 | 0.0049 | 26 | 1.9509 | | 2.0843 | 0.0074 | 39 | 1.8932 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JakeOh/star_plus-finetune-llama-3.2-1b-gsm8k-step-1
JakeOh
2025-01-27T19:39:17Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T19:38:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
meng-lab/codellama_13b_instruct_paradec_xsum
meng-lab
2025-01-27T19:38:53Z
20
0
null
[ "safetensors", "alignment-handbook", "generated_from_trainer", "dataset:meng-lab/CodeLlama-13B-Instruct-xsum", "base_model:meta-llama/CodeLlama-13b-Instruct-hf", "base_model:finetune:meta-llama/CodeLlama-13b-Instruct-hf", "license:llama2", "region:us" ]
null
2025-01-27T10:15:49Z
--- license: llama2 base_model: meta-llama/CodeLlama-13b-Instruct-hf tags: - alignment-handbook - generated_from_trainer datasets: - meng-lab/CodeLlama-13B-Instruct-xsum model-index: - name: CodeLlama-13b-Instruct-sft-5e-3-epoch-100-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/uva-llm/huggingface/runs/54db35e9) # CodeLlama-13b-Instruct-sft-5e-3-epoch-100-xsum This model is a fine-tuned version of [meta-llama/CodeLlama-13b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-13b-Instruct-hf) on the meng-lab/CodeLlama-13B-Instruct-xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.43.2 - Pytorch 2.1.2 - Datasets 3.0.1 - Tokenizers 0.19.1
mlfoundations-dev/llama3-1_8b_glaive
mlfoundations-dev
2025-01-27T19:36:59Z
62
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:28:28Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - llama-factory - generated_from_trainer model-index: - name: llama3-1_8b_glaive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_glaive This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - total_train_batch_size: 512 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6255 | 1.0 | 40 | 0.6147 | | 0.5592 | 2.0 | 80 | 0.5801 | | 0.5097 | 3.0 | 120 | 0.5773 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
Shweta-singh/age_adapter_exp1
Shweta-singh
2025-01-27T19:32:31Z
5
0
adapter-transformers
[ "adapter-transformers", "deberta-v2", "region:us" ]
null
2025-01-25T13:03:07Z
--- tags: - deberta-v2 - adapter-transformers --- # Adapter `Shweta-singh/age_adapter_exp1` for microsoft/deberta-v3-base An [adapter](https://adapterhub.ml) for the `microsoft/deberta-v3-base` model that was trained on the None dataset. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("microsoft/deberta-v3-base") adapter_name = model.load_adapter("Shweta-singh/age_adapter_exp1", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
mrferr3t/d4877912-45c9-4a86-988c-06de6e53550c
mrferr3t
2025-01-27T19:29:07Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "region:us" ]
null
2025-01-27T19:28:47Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: d4877912-45c9-4a86-988c-06de6e53550c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6df09e1ee8f58f65_train_data.json ds_type: json format: custom path: /workspace/input_data/6df09e1ee8f58f65_train_data.json type: field_input: topics field_instruction: content field_output: code_prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/d4877912-45c9-4a86-988c-06de6e53550c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 12 micro_batch_size: 2 mlflow_experiment_name: /tmp/6df09e1ee8f58f65_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 076640fc-e767-44b3-be73-095e29fbb942 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 076640fc-e767-44b3-be73-095e29fbb942 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d4877912-45c9-4a86-988c-06de6e53550c This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.1142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 44.5979 | 0.0037 | 1 | 11.1713 | | 44.6899 | 0.0111 | 3 | 11.1702 | | 44.6476 | 0.0221 | 6 | 11.1584 | | 44.6006 | 0.0332 | 9 | 11.1393 | | 44.493 | 0.0443 | 12 | 11.1142 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/dd25b6ee-0258-4661-ad9d-028e2e9e39b5
lesso05
2025-01-27T19:28:48Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:28:22Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: dd25b6ee-0258-4661-ad9d-028e2e9e39b5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: true chat_template: llama3 datasets: - data_files: - 6df09e1ee8f58f65_train_data.json ds_type: json format: custom path: /workspace/input_data/6df09e1ee8f58f65_train_data.json type: field_input: topics field_instruction: content field_output: code_prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/dd25b6ee-0258-4661-ad9d-028e2e9e39b5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/6df09e1ee8f58f65_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 076640fc-e767-44b3-be73-095e29fbb942 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 076640fc-e767-44b3-be73-095e29fbb942 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dd25b6ee-0258-4661-ad9d-028e2e9e39b5 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.0343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 44.5973 | 0.0037 | 1 | 11.1708 | | 44.7435 | 0.0185 | 5 | 11.1627 | | 44.5294 | 0.0369 | 10 | 11.1301 | | 44.3777 | 0.0554 | 15 | 11.0775 | | 44.2377 | 0.0738 | 20 | 11.0415 | | 44.0841 | 0.0923 | 25 | 11.0343 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso01/15ef4064-1b1c-4770-955d-d442b15ea200
lesso01
2025-01-27T19:27:51Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-falcon-40b", "base_model:adapter:katuni4ka/tiny-random-falcon-40b", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:27:34Z
--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: 15ef4064-1b1c-4770-955d-d442b15ea200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: true chat_template: llama3 datasets: - data_files: - 6df09e1ee8f58f65_train_data.json ds_type: json format: custom path: /workspace/input_data/6df09e1ee8f58f65_train_data.json type: field_input: topics field_instruction: content field_output: code_prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/15ef4064-1b1c-4770-955d-d442b15ea200 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/6df09e1ee8f58f65_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 076640fc-e767-44b3-be73-095e29fbb942 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 076640fc-e767-44b3-be73-095e29fbb942 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 15ef4064-1b1c-4770-955d-d442b15ea200 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.0263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 44.5973 | 0.0037 | 1 | 11.1708 | | 44.7395 | 0.0185 | 5 | 11.1623 | | 44.5127 | 0.0369 | 10 | 11.1263 | | 44.3609 | 0.0554 | 15 | 11.0701 | | 44.2157 | 0.0738 | 20 | 11.0350 | | 44.0613 | 0.0923 | 25 | 11.0263 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LouiSeHU/DeepSeek-R1-Distill-Llama-8B-Q8_0-GGUF
LouiSeHU
2025-01-27T19:27:19Z
28
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T19:26:42Z
--- license: mit library_name: transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B tags: - llama-cpp - gguf-my-repo --- # LouiSeHU/DeepSeek-R1-Distill-Llama-8B-Q8_0-GGUF This model was converted to GGUF format from [`deepseek-ai/DeepSeek-R1-Distill-Llama-8B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo LouiSeHU/DeepSeek-R1-Distill-Llama-8B-Q8_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo LouiSeHU/DeepSeek-R1-Distill-Llama-8B-Q8_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo LouiSeHU/DeepSeek-R1-Distill-Llama-8B-Q8_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo LouiSeHU/DeepSeek-R1-Distill-Llama-8B-Q8_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q8_0.gguf -c 2048 ```
CarlosElArtista/ppo-Huggy
CarlosElArtista
2025-01-27T19:25:02Z
27
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-01-27T19:21:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** 🐶 This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent 1. Move your model file into the environment Project 2. Open the Unity Editor, and select the scene. 3. Select the prefab Agent object. 4. Drag the <behavior_name>.onnx file from the Project window of the Editor to the Model placeholder in the Agent inspector window. 5. Press the Play button at the top of the Editor.
bhavnicksm/red-beetle-small-v1.1
bhavnicksm
2025-01-27T19:23:58Z
12
2
model2vec
[ "model2vec", "safetensors", "embeddings", "static-embeddings", "sentence-transformers", "en", "base_model:mixedbread-ai/mxbai-embed-2d-large-v1", "base_model:finetune:mixedbread-ai/mxbai-embed-2d-large-v1", "license:mit", "region:us" ]
null
2025-01-27T19:14:01Z
--- base_model: mixedbread-ai/mxbai-embed-2d-large-v1 language: - en library_name: model2vec license: mit model_name: red-beetle-small-v1.1 tags: - embeddings - static-embeddings - sentence-transformers --- # 🪲 red-beetle-small-v1.1 Model Card <div align="center"> <img width="75%" alt="Beetle logo" src="./assets/beetle_logo.png"> </div> > [!TIP] > Beetles are some of the most diverse and interesting creatures on Earth. They are found in every environment, from the deepest oceans to the highest mountains. They are also known for their ability to adapt to a wide range of habitats and lifestyles. They are small, fast and powerful! The beetle series of models are made as good starting points for Static Embedding training (via TokenLearn or Fine-tuning), as well as decent Static Embedding models. Each beetle model is made to be an improvement over the original **M2V_base_output** model in some way, and that's the threshold we set for each model (except the brown beetle series, which is the original model). This model has been distilled from `mixedbread-ai/mxbai-embed-2d-large-v1`, with PCA at 384 dimensions, Zipf and SIF re-weighting, learnt from a subset of the FineWeb-Edu sample-10BT dataset. This model outperforms the original M2V_base_output model in all tasks. ## Version Information - **red-beetle-base-v0**: The original model, without using PCA or Zipf. The lack of PCA and Zipf also makes this a decent model for further training. - **red-beetle-base-v1**: The original model, with PCA at 1024 dimensions and (Zipf)^3 re-weighting. - **red-beetle-small-v1**: A smaller version of the original model, with PCA at 384 dimensions and (Zipf)^3 re-weighting. - **red-beetle-base-v1.1**: The original model, with PCA at 1024 dimensions, Zipf and SIF re-weighting, learnt from a subset of the FineWeb-Edu sample-10BT dataset. - **red-beetle-small-v1.1**: A smaller version of the original model, with PCA at 384 dimensions, Zipf and SIF re-weighting, learnt from a subset of the FineWeb-Edu sample-10BT dataset. ## Installation Install model2vec using pip: ```bash pip install model2vec ``` ## Usage Load this model using the `from_pretrained` method: ```python from model2vec import StaticModel # Load a pretrained Model2Vec model model = StaticModel.from_pretrained("bhavnicksm/red-beetle-small-v1.1") # Compute text embeddings embeddings = model.encode(["Example sentence"]) ``` Read more about the Model2Vec library [here](https://github.com/MinishLab/model2vec). ## Comparison with other models Coming soon... ## Acknowledgements This model is made using the [Model2Vec](https://github.com/MinishLab/model2vec) library. Credit goes to the [Minish Lab](https://github.com/MinishLab) team for developing this library. ## Citation Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work. ```bibtex @software{minishlab2024model2vec, authors = {Stephan Tulkens, Thomas van Dongen}, title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model}, year = {2024}, url = {https://github.com/MinishLab/model2vec}, } ```
pdazad/bloom-560-finetuned-owasp-8epochs
pdazad
2025-01-27T19:23:02Z
47
0
transformers
[ "transformers", "onnx", "safetensors", "bloom", "text-generation", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:quantized:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:02:56Z
--- library_name: transformers license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - generated_from_trainer model-index: - name: fine_tuned_bloom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_bloom This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 14 | 2.7228 | | No log | 2.0 | 28 | 1.8992 | | No log | 3.0 | 42 | 1.3979 | | No log | 4.0 | 56 | 1.4067 | | No log | 5.0 | 70 | 1.4500 | | No log | 6.0 | 84 | 1.5997 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
ivangrapher/a8c7e4ca-5e2e-4423-976b-59514b5d052d
ivangrapher
2025-01-27T19:21:15Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:39:34Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: a8c7e4ca-5e2e-4423-976b-59514b5d052d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - af2776e3f8d7bb4e_train_data.json ds_type: json format: custom path: /workspace/input_data/af2776e3f8d7bb4e_train_data.json type: field_instruction: Name field_output: Descriptor format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 256 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ivangrapher/a8c7e4ca-5e2e-4423-976b-59514b5d052d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/af2776e3f8d7bb4e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 15 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8942483c-1cfc-4e12-8246-93c0d39139ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8942483c-1cfc-4e12-8246-93c0d39139ac warmup_steps: 15 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a8c7e4ca-5e2e-4423-976b-59514b5d052d This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.2791 | | 8.3581 | 0.0031 | 5 | 2.2513 | | 9.4898 | 0.0062 | 10 | 2.0539 | | 7.9948 | 0.0093 | 15 | 1.8451 | | 7.2519 | 0.0124 | 20 | 1.7317 | | 6.6318 | 0.0155 | 25 | 1.6776 | | 6.1231 | 0.0186 | 30 | 1.6674 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5608/c4641a57-1ebc-439e-8fd3-b2a18285bcc5
prxy5608
2025-01-27T19:20:24Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "region:us" ]
null
2025-01-27T18:19:38Z
--- library_name: peft license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: c4641a57-1ebc-439e-8fd3-b2a18285bcc5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: teknium/OpenHermes-2.5-Mistral-7B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 487f4a210742b382_train_data.json ds_type: json format: custom path: /workspace/input_data/487f4a210742b382_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5608/c4641a57-1ebc-439e-8fd3-b2a18285bcc5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/487f4a210742b382_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|im_end|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6b460806-28c5-40df-b57e-9807307f8ca7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6b460806-28c5-40df-b57e-9807307f8ca7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c4641a57-1ebc-439e-8fd3-b2a18285bcc5 This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.5298 | 0.0003 | 1 | 2.6903 | | 11.6439 | 0.0169 | 50 | 2.4290 | | 8.8535 | 0.0338 | 100 | 2.5608 | | 9.6716 | 0.0507 | 150 | 2.5086 | | 11.1635 | 0.0676 | 200 | 2.2968 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso17/526fb4f1-9634-4538-875f-e195eabd830c
lesso17
2025-01-27T19:17:31Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T17:30:53Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 526fb4f1-9634-4538-875f-e195eabd830c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 datasets: - data_files: - c5894ab836cf8861_train_data.json ds_type: json format: custom path: /workspace/input_data/c5894ab836cf8861_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/526fb4f1-9634-4538-875f-e195eabd830c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c5894ab836cf8861_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1fa3758-abc3-4337-bb5a-53ca7e83c1ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a1fa3758-abc3-4337-bb5a-53ca7e83c1ee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 526fb4f1-9634-4538-875f-e195eabd830c This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0100 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/cf69ea0a-0e66-4f89-ade5-2b42aa6607e4
nhung01
2025-01-27T19:16:58Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:03:00Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: cf69ea0a-0e66-4f89-ade5-2b42aa6607e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47ff230a87d3e712_train_data.json ds_type: json format: custom path: /workspace/input_data/47ff230a87d3e712_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/cf69ea0a-0e66-4f89-ade5-2b42aa6607e4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47ff230a87d3e712_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5a314b3-de7b-40c6-9c64-3d1496d51603 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c5a314b3-de7b-40c6-9c64-3d1496d51603 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cf69ea0a-0e66-4f89-ade5-2b42aa6607e4 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6334 | 0.0942 | 200 | 4.7121 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Grogros/dmWM-LLama-3-1B-Harm-ft-HarmData-AlpacaGPT4-OpenWebText-d4-a0.25
Grogros
2025-01-27T19:16:09Z
49
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:huihui-ai/Llama-3.2-1B-Instruct-abliterated", "base_model:finetune:huihui-ai/Llama-3.2-1B-Instruct-abliterated", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T15:44:42Z
--- library_name: transformers license: llama3.2 base_model: huihui-ai/Llama-3.2-1B-Instruct-abliterated tags: - generated_from_trainer model-index: - name: dmWM-LLama-3-1B-Harm-ft-HarmData-AlpacaGPT4-OpenWebText-d4-a0.25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dmWM-LLama-3-1B-Harm-ft-HarmData-AlpacaGPT4-OpenWebText-d4-a0.25 This model is a fine-tuned version of [huihui-ai/Llama-3.2-1B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-1B-Instruct-abliterated) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2500 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1.post303 - Datasets 3.2.0 - Tokenizers 0.20.4
nhung03/612ec54d-4da5-497f-9780-e1d1513eaaf1
nhung03
2025-01-27T19:14:51Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:02:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 612ec54d-4da5-497f-9780-e1d1513eaaf1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47ff230a87d3e712_train_data.json ds_type: json format: custom path: /workspace/input_data/47ff230a87d3e712_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/612ec54d-4da5-497f-9780-e1d1513eaaf1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47ff230a87d3e712_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5a314b3-de7b-40c6-9c64-3d1496d51603 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c5a314b3-de7b-40c6-9c64-3d1496d51603 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 612ec54d-4da5-497f-9780-e1d1513eaaf1 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6278 | 0.0942 | 200 | 4.7129 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/4c565c8c-2c0b-4b84-a49f-b3a11734b390
mrferr3t
2025-01-27T19:10:55Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-27T19:07:00Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 4c565c8c-2c0b-4b84-a49f-b3a11734b390 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47ff230a87d3e712_train_data.json ds_type: json format: custom path: /workspace/input_data/47ff230a87d3e712_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/4c565c8c-2c0b-4b84-a49f-b3a11734b390 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/47ff230a87d3e712_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5a314b3-de7b-40c6-9c64-3d1496d51603 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c5a314b3-de7b-40c6-9c64-3d1496d51603 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4c565c8c-2c0b-4b84-a49f-b3a11734b390 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.9027 | 0.0005 | 1 | 5.4115 | | 5.7565 | 0.0014 | 3 | 5.4107 | | 5.6282 | 0.0028 | 6 | 5.3971 | | 5.391 | 0.0042 | 9 | 5.3267 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
mrhunghd/b8bc3d34-65d7-436c-9967-6d9274a89c0b
mrhunghd
2025-01-27T19:10:43Z
7
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:00:26Z
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: b8bc3d34-65d7-436c-9967-6d9274a89c0b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f9bbd925c6f11108_train_data.json ds_type: json format: custom path: /workspace/input_data/f9bbd925c6f11108_train_data.json type: field_input: label field_instruction: page_title field_output: page_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrhunghd/b8bc3d34-65d7-436c-9967-6d9274a89c0b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f9bbd925c6f11108_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92c8fc48-674e-436c-a6e7-bcb939bcc03f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92c8fc48-674e-436c-a6e7-bcb939bcc03f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b8bc3d34-65d7-436c-9967-6d9274a89c0b This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.867 | 0.0851 | 200 | 1.5753 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh63/58fbd7ef-9825-477a-a1bc-19636fe672e1
nblinh63
2025-01-27T19:10:28Z
5
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:00:14Z
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: 58fbd7ef-9825-477a-a1bc-19636fe672e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f9bbd925c6f11108_train_data.json ds_type: json format: custom path: /workspace/input_data/f9bbd925c6f11108_train_data.json type: field_input: label field_instruction: page_title field_output: page_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh63/58fbd7ef-9825-477a-a1bc-19636fe672e1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f9bbd925c6f11108_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92c8fc48-674e-436c-a6e7-bcb939bcc03f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92c8fc48-674e-436c-a6e7-bcb939bcc03f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 58fbd7ef-9825-477a-a1bc-19636fe672e1 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.8735 | 0.0851 | 200 | 1.5760 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/7989eef4-dc89-450b-abd3-0d9c3598c3c8
hongngo
2025-01-27T19:10:15Z
7
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T19:00:24Z
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: 7989eef4-dc89-450b-abd3-0d9c3598c3c8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f9bbd925c6f11108_train_data.json ds_type: json format: custom path: /workspace/input_data/f9bbd925c6f11108_train_data.json type: field_input: label field_instruction: page_title field_output: page_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/7989eef4-dc89-450b-abd3-0d9c3598c3c8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f9bbd925c6f11108_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92c8fc48-674e-436c-a6e7-bcb939bcc03f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92c8fc48-674e-436c-a6e7-bcb939bcc03f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7989eef4-dc89-450b-abd3-0d9c3598c3c8 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.7985 | 0.0851 | 200 | 1.5744 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
OgroFratesi/chop-flux
OgroFratesi
2025-01-27T19:09:46Z
13
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T18:31:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: CHOP --- # Chop Flux <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `CHOP` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('OgroFratesi/chop-flux', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
hamidfarmani/drawingai
hamidfarmani
2025-01-27T19:08:29Z
18
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T17:49:01Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: a_photo_of_COOLSTYLE --- # Drawingai <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `a_photo_of_COOLSTYLE` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('hamidfarmani/drawingai', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso16/bdf59a8b-5dbc-4712-9823-39f2a12fc42a
lesso16
2025-01-27T19:06:29Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-27T19:03:25Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: bdf59a8b-5dbc-4712-9823-39f2a12fc42a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47ff230a87d3e712_train_data.json ds_type: json format: custom path: /workspace/input_data/47ff230a87d3e712_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso16/bdf59a8b-5dbc-4712-9823-39f2a12fc42a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/47ff230a87d3e712_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5a314b3-de7b-40c6-9c64-3d1496d51603 wandb_project: multi wandb_run: your_name wandb_runid: c5a314b3-de7b-40c6-9c64-3d1496d51603 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bdf59a8b-5dbc-4712-9823-39f2a12fc42a This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.7533 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mlfoundations-dev/llama3-1_8b_codefeedback
mlfoundations-dev
2025-01-27T19:03:36Z
285
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:03:38Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-1_8b_codefeedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_codefeedback This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the mlfoundations-dev/codefeedback dataset. It achieves the following results on the evaluation set: - Loss: 0.5123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - total_train_batch_size: 512 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.559 | 1.0 | 35 | 0.5510 | | 0.4931 | 2.0 | 70 | 0.5174 | | 0.4527 | 3.0 | 105 | 0.5123 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
prithivMLmods/Taurus-Opus-7B
prithivMLmods
2025-01-27T19:02:59Z
71
9
transformers
[ "transformers", "safetensors", "llama", "text-generation", "opus", "code", "cot", "lcot", "LlaMa", "conversational", "en", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-25T17:19:03Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: text-generation library_name: transformers tags: - opus - code - cot - lcot - LlaMa model-index: - name: Taurus-Opus-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 42.23 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 34.23 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 22.73 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 10.18 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 14.22 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.79 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B name: Open LLM Leaderboard --- # **Taurus-Opus-7B** Taurus-Opus-7B is built upon the LLaMA (Large Language Model Meta AI) 7B architecture, optimized to provide advanced reasoning capabilities while maintaining efficiency. With 7 billion parameters, it strikes a balance between performance and computational resource requirements. The model has been fine-tuned with a focus on chain-of-thought (CoT) reasoning, leveraging specialized datasets to enhance its problem-solving abilities. Taurus-Opus-7B is designed for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and coding assistance. # **Key Features and Improvements** 1. **Optimized Reasoning Capabilities**: The model showcases significant improvements in context understanding, reasoning, and mathematical problem-solving through fine-tuning with long CoT datasets. 2. **Enhanced Instruction Following**: Taurus-Opus-7B excels in generating long, coherent outputs (up to 4K tokens), understanding structured data, and producing structured outputs like JSON. 3. **Lightweight Efficiency**: Its 7B parameter size makes it more resource-efficient compared to larger models while retaining high-quality performance for reasoning and content generation tasks. 4. **Long-Context Support**: Offers support for long contexts of up to 64K tokens, enabling the handling of large datasets or extended conversations. 5. **Multilingual Proficiency**: The model supports 20+ languages, including English, Spanish, French, German, Portuguese, Chinese, Japanese, and more, making it suitable for global applications. # **Quickstart with transformers** Here’s a code snippet to load **Taurus-Opus-7B** using the `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Taurus-Opus-7B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Explain the importance of chain-of-thought reasoning in large language models." messages = [ {"role": "system", "content": "You are a helpful assistant with expertise in logical reasoning and problem-solving."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` # **Intended Use** 1. **Reasoning and Context Understanding**: Taurus-Opus-7B is tailored for complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction. 2. **Mathematical Problem-Solving**: Designed for advanced mathematical reasoning and calculations, making it valuable for education, research, and engineering tasks. 3. **Code Assistance**: Provides robust coding support, including writing, debugging, and optimizing code across multiple programming languages. 4. **Data Analysis**: Excels in analyzing structured data and generating structured outputs, aiding automation workflows and data-driven insights. 5. **Multilingual Support**: Facilitates applications such as multilingual chatbots, content generation, and translation in 20+ languages. 6. **Extended Content Generation**: Suitable for generating detailed reports, articles, and instructional guides, handling outputs up to 4K tokens. # **Limitations** 1. **Hardware Requirements**: While more efficient than larger models, Taurus-Opus-7B still requires high-memory GPUs or TPUs for optimal performance. 2. **Language Quality Variations**: Output quality may vary across supported languages, especially for less commonly used languages. 3. **Creativity Limitations**: The model may sometimes generate repetitive or inconsistent results in creative or highly subjective tasks. 4. **Real-Time Knowledge Constraints**: The model lacks awareness of events or knowledge updates beyond its training data. 5. **Prompt Dependency**: Results heavily depend on the specificity and clarity of input prompts, requiring well-structured queries for the best performance. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Taurus-Opus-7B-details)! Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FTaurus-Opus-7B&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)! | Metric |Value (%)| |-------------------|--------:| |**Average** | 26.06| |IFEval (0-Shot) | 42.23| |BBH (3-Shot) | 34.23| |MATH Lvl 5 (4-Shot)| 22.73| |GPQA (0-shot) | 10.18| |MuSR (0-shot) | 14.22| |MMLU-PRO (5-shot) | 32.79|
lesso02/a98ed97a-b7d4-4c55-afa8-f52a6eaf493e
lesso02
2025-01-27T19:02:45Z
5
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "region:us" ]
null
2025-01-27T19:00:47Z
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: a98ed97a-b7d4-4c55-afa8-f52a6eaf493e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f9bbd925c6f11108_train_data.json ds_type: json format: custom path: /workspace/input_data/f9bbd925c6f11108_train_data.json type: field_input: label field_instruction: page_title field_output: page_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso02/a98ed97a-b7d4-4c55-afa8-f52a6eaf493e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/f9bbd925c6f11108_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92c8fc48-674e-436c-a6e7-bcb939bcc03f wandb_project: multi wandb_run: your_name wandb_runid: 92c8fc48-674e-436c-a6e7-bcb939bcc03f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a98ed97a-b7d4-4c55-afa8-f52a6eaf493e This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.0132 | 0.6803 | 200 | 1.4827 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Primeness/primeh2v8c2
Primeness
2025-01-27T18:57:32Z
24
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:25:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bruhzair/Behemoth-Magnum-v4-SLERP-123b
bruhzair
2025-01-27T18:56:15Z
62
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:26:47Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # bmag This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * /workspace/cache/models--anthracite-org--magnum-v4-123b/snapshots/68fdd395bf5282429aa11d3b2737add1944243b3 * /workspace/cache/models--TheDrummer--Behemoth-123B-v1.2/snapshots/51354019a02b742aa5a73fe16800225ff719c46d ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: /workspace/cache/models--TheDrummer--Behemoth-123B-v1.2/snapshots/51354019a02b742aa5a73fe16800225ff719c46d dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.1, 0.3, 0.5, 0.6, 0.5, 0.3, 0.1] - filter: mlp value: [0.1, 0.3, 0.5, 0.6, 0.5, 0.3, 0.1] - value: 0.5 slices: - sources: - layer_range: [0, 88] model: /workspace/cache/models--TheDrummer--Behemoth-123B-v1.2/snapshots/51354019a02b742aa5a73fe16800225ff719c46d - layer_range: [0, 88] model: /workspace/cache/models--anthracite-org--magnum-v4-123b/snapshots/68fdd395bf5282429aa11d3b2737add1944243b3 ```
mmnga/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf
mmnga
2025-01-27T18:55:57Z
23,966
26
null
[ "gguf", "en", "ja", "dataset:TFMC/imatrix-dataset-for-japanese-llm", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-27T11:17:23Z
--- license: mit language: - en - ja datasets: - TFMC/imatrix-dataset-for-japanese-llm base_model: - cyberagent/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese --- # cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf [cyberagentさんが公開しているDeepSeek-R1-Distill-Qwen-32B-Japanese](https://huggingface.co/cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese)のggufフォーマット変換版です。 imatrixのデータは[TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm)を使用して作成しました。 ## models [mmnga/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf](https://huggingface.co/mmnga/cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese-gguf) [mmnga/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf](https://huggingface.co/mmnga/cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf) ## Usage ``` git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp cmake -B build -DGGML_CUDA=ON cmake --build build --config Release build/bin/llama-cli -m 'cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese-gguf' -n 128 -c 128 -p 'あなたはプロの料理人です。レシピを教えて' -cnv ```
mrferr3t/561145cc-7962-4d56-a8e0-8ecfae2bf4e3
mrferr3t
2025-01-27T18:54:46Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
2025-01-27T18:43:36Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 561145cc-7962-4d56-a8e0-8ecfae2bf4e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - af2776e3f8d7bb4e_train_data.json ds_type: json format: custom path: /workspace/input_data/af2776e3f8d7bb4e_train_data.json type: field_instruction: Name field_output: Descriptor format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/561145cc-7962-4d56-a8e0-8ecfae2bf4e3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 14 micro_batch_size: 2 mlflow_experiment_name: /tmp/af2776e3f8d7bb4e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8942483c-1cfc-4e12-8246-93c0d39139ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8942483c-1cfc-4e12-8246-93c0d39139ac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 561145cc-7962-4d56-a8e0-8ecfae2bf4e3 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.2498 | 0.0006 | 1 | 1.9691 | | 8.0511 | 0.0025 | 4 | 1.9660 | | 7.6014 | 0.0049 | 8 | 1.9201 | | 7.3726 | 0.0074 | 12 | 1.7493 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
chauhoang/fe745636-630e-442f-bc15-e2f1c822ee48
chauhoang
2025-01-27T18:53:11Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b", "base_model:adapter:unsloth/mistral-7b", "license:apache-2.0", "region:us" ]
null
2025-01-27T18:42:28Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b tags: - axolotl - generated_from_trainer model-index: - name: fe745636-630e-442f-bc15-e2f1c822ee48 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3723f44d1d18fe84_train_data.json ds_type: json format: custom path: /workspace/input_data/3723f44d1d18fe84_train_data.json type: field_instruction: question field_output: resolution_criteria format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/fe745636-630e-442f-bc15-e2f1c822ee48 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/3723f44d1d18fe84_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1a8229e-645b-4ea8-b718-f392e5d4cd08 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1a8229e-645b-4ea8-b718-f392e5d4cd08 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fe745636-630e-442f-bc15-e2f1c822ee48 This model is a fine-tuned version of [unsloth/mistral-7b](https://huggingface.co/unsloth/mistral-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0016 | 1 | 3.6423 | | 8.6602 | 0.0158 | 10 | 1.1724 | | 3.6865 | 0.0317 | 20 | 0.8343 | | 3.9935 | 0.0475 | 30 | 0.7959 | | 3.4493 | 0.0634 | 40 | 0.7767 | | 2.5947 | 0.0792 | 50 | 0.7719 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/tryy48
memevis
2025-01-27T18:50:54Z
16
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:45:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Llama-3-Yollow-SCE-i1-GGUF
mradermacher
2025-01-27T18:50:28Z
651
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Casual-Autopsy/Llama-3-Yollow-SCE", "base_model:quantized:Casual-Autopsy/Llama-3-Yollow-SCE", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-27T01:20:17Z
--- base_model: Casual-Autopsy/Llama-3-Yollow-SCE language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Casual-Autopsy/Llama-3-Yollow-SCE <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Yollow-SCE-i1-GGUF/resolve/main/Llama-3-Yollow-SCE.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
clarxus/f7b0edaa-7d28-4ba4-b8a7-bb296a24f772
clarxus
2025-01-27T18:49:52Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-27T18:08:04Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f7b0edaa-7d28-4ba4-b8a7-bb296a24f772 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e8ab9d6de4972894_train_data.json ds_type: json format: custom path: /workspace/input_data/e8ab9d6de4972894_train_data.json type: field_input: thought field_instruction: prompt field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: clarxus/f7b0edaa-7d28-4ba4-b8a7-bb296a24f772 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e8ab9d6de4972894_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 2a1fcb6d-c5f4-4ed5-a79c-4c70fd772cb5 wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: 2a1fcb6d-c5f4-4ed5-a79c-4c70fd772cb5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f7b0edaa-7d28-4ba4-b8a7-bb296a24f772 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.1660 | | 1.037 | 0.0024 | 9 | 1.1367 | | 1.0574 | 0.0048 | 18 | 1.0600 | | 1.1057 | 0.0073 | 27 | 1.0048 | | 1.0853 | 0.0097 | 36 | 0.9885 | | 0.9085 | 0.0121 | 45 | 0.9788 | | 1.0207 | 0.0145 | 54 | 0.9727 | | 0.8879 | 0.0169 | 63 | 0.9685 | | 0.9204 | 0.0194 | 72 | 0.9659 | | 1.0405 | 0.0218 | 81 | 0.9645 | | 0.9245 | 0.0242 | 90 | 0.9640 | | 0.9667 | 0.0266 | 99 | 0.9639 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/tryy47
memevis
2025-01-27T18:48:58Z
16
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:44:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lhong4759/26d24d5d-48d4-4f79-b3ec-bd100ad807ed
lhong4759
2025-01-27T18:47:02Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:42Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 26d24d5d-48d4-4f79-b3ec-bd100ad807ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/26d24d5d-48d4-4f79-b3ec-bd100ad807ed hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 26d24d5d-48d4-4f79-b3ec-bd100ad807ed This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7795 | 0.3509 | 200 | 0.3761 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
demohong/69ef178a-2bf3-4f2e-8cf2-ed5cf25ba18b
demohong
2025-01-27T18:46:47Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:34Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 69ef178a-2bf3-4f2e-8cf2-ed5cf25ba18b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/69ef178a-2bf3-4f2e-8cf2-ed5cf25ba18b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 69ef178a-2bf3-4f2e-8cf2-ed5cf25ba18b This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7849 | 0.3509 | 200 | 0.3756 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/8f602fcc-9f20-4cc0-924f-7686c37a5950
daniel40
2025-01-27T18:46:41Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
2025-01-27T18:42:44Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 8f602fcc-9f20-4cc0-924f-7686c37a5950 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - af2776e3f8d7bb4e_train_data.json ds_type: json format: custom path: /workspace/input_data/af2776e3f8d7bb4e_train_data.json type: field_instruction: Name field_output: Descriptor format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/8f602fcc-9f20-4cc0-924f-7686c37a5950 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/af2776e3f8d7bb4e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8942483c-1cfc-4e12-8246-93c0d39139ac wandb_project: Birthday-SN56-31-Gradients-On-Demand wandb_run: your_name wandb_runid: 8942483c-1cfc-4e12-8246-93c0d39139ac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8f602fcc-9f20-4cc0-924f-7686c37a5950 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.2519 | 0.0006 | 1 | 1.9692 | | 6.9091 | 0.0080 | 13 | 1.9465 | | 7.1938 | 0.0161 | 26 | 1.7993 | | 6.2046 | 0.0241 | 39 | 1.7208 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/tryy44
memevis
2025-01-27T18:45:58Z
31
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:39:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Finetuned-Mistral-7B-v0.1-GGUF
mradermacher
2025-01-27T18:45:00Z
195
0
transformers
[ "transformers", "gguf", "en", "base_model:GhulamNabi/Finetuned-Mistral-7B-v0.1", "base_model:quantized:GhulamNabi/Finetuned-Mistral-7B-v0.1", "endpoints_compatible", "region:us" ]
null
2025-01-27T18:21:15Z
--- base_model: GhulamNabi/Finetuned-Mistral-7B-v0.1 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/GhulamNabi/Finetuned-Mistral-7B-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Finetuned-Mistral-7B-v0.1-GGUF/resolve/main/Finetuned-Mistral-7B-v0.1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso07/69272570-3b74-48ab-87d3-8216b61601f7
lesso07
2025-01-27T18:44:48Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:07:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 69272570-3b74-48ab-87d3-8216b61601f7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - e8ab9d6de4972894_train_data.json ds_type: json format: custom path: /workspace/input_data/e8ab9d6de4972894_train_data.json type: field_input: thought field_instruction: prompt field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso07/69272570-3b74-48ab-87d3-8216b61601f7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/e8ab9d6de4972894_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a1fcb6d-c5f4-4ed5-a79c-4c70fd772cb5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2a1fcb6d-c5f4-4ed5-a79c-4c70fd772cb5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 69272570-3b74-48ab-87d3-8216b61601f7 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 5 | nan | | 0.0 | 0.0007 | 10 | nan | | 0.0 | 0.0010 | 15 | nan | | 0.0 | 0.0013 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
martindevoto/finer_ner_finetuning_0130
martindevoto
2025-01-27T18:40:31Z
6
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "eng", "dataset:nlpaueb/finer-139", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-01-27T00:37:36Z
--- library_name: transformers language: - eng license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: finer_ner_finetuning_0130 results: [] datasets: - nlpaueb/finer-139 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finer_ner_finetuning_0130 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a subset of the [nlpaueb/finer-139](https://huggingface.co/datasets/nlpaueb/finer-139) dataset. It is only finetuned on the following labels: - 'O' - 'B-DebtInstrumentBasisSpreadOnVariableRate1', - 'B-DebtInstrumentFaceAmount', - 'B-DebtInstrumentInterestRateStatedPercentage', - 'B-LineOfCreditFacilityMaximumBorrowingCapacity' It achieves the following results on the evaluation set: - Loss: 0.0024 - Accuracy: 0.9995 - Precision: 0.7342 - Recall: 0.9159 - F1: 0.8150 - Classification Report: {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.791095890410959, 'recall': 0.9602137767220903, 'f1-score': 0.8674892703862661, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6338946224877784, 'recall': 0.8670133729569094, 'f1-score': 0.7323501725760904, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.774822695035461, 'recall': 0.9494839760999457, 'f1-score': 0.8533072980229436, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.7227383863080684, 'recall': 0.8740390301596689, 'f1-score': 0.791220556745182, 'support': 1691}, 'micro avg': {'precision': 0.7341803078426582, 'recall': 0.9158793050899117, 'f1-score': 0.8150257662055873, 'support': 6562}, 'macro avg': {'precision': 0.7306378985605667, 'recall': 0.9126875389846535, 'f1-score': 0.8110918244326205, 'support': 6562}, 'weighted avg': {'precision': 0.7366697400377676, 'recall': 0.9158793050899117, 'f1-score': 0.8161365377528546, 'support': 6562}} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Subset of [nlpaueb/finer-139](https://huggingface.co/datasets/nlpaueb/finer-139) train split and and full validation split. Given the original proportion of 'O' labels (approx. 80%), we reduced the train split records to match the original majority class proportion given the reduced set of labels. Original train split size: 900384 records Subset train split size: 142513 records (~16% of original amount of records) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.0063 | 0.6729 | 500 | 0.0035 | 0.9987 | 0.4732 | 0.9122 | 0.6232 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.6499202551834131, 'recall': 0.9679334916864608, 'f1-score': 0.7776717557251909, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.3665031534688157, 'recall': 0.7771173848439822, 'f1-score': 0.49809523809523815, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.5214669051878354, 'recall': 0.9500271591526345, 'f1-score': 0.673339749759384, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.3968980422069667, 'recall': 0.9231224127735068, 'f1-score': 0.5551209103840683, 'support': 1691}, 'micro avg': {'precision': 0.4732389912246027, 'recall': 0.9122218835720817, 'f1-score': 0.62318463380355, 'support': 6562}, 'macro avg': {'precision': 0.4836970890117577, 'recall': 0.904550112114146, 'f1-score': 0.6260569134909704, 'support': 6562}, 'weighted avg': {'precision': 0.49054466871695807, 'recall': 0.9122218835720817, 'f1-score': 0.6337036522224775, 'support': 6562}} | | 0.0044 | 1.3459 | 1000 | 0.0019 | 0.9993 | 0.6299 | 0.8856 | 0.7361 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.7140974967061924, 'recall': 0.9655581947743468, 'f1-score': 0.8210047967684928, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.5513164965072541, 'recall': 0.7622585438335809, 'f1-score': 0.6398503274087932, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.6613592233009709, 'recall': 0.9250407387289517, 'f1-score': 0.771286231884058, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.5793871866295265, 'recall': 0.8610289769367239, 'f1-score': 0.6926736441484301, 'support': 1691}, 'micro avg': {'precision': 0.6298504227184045, 'recall': 0.8855531850045718, 'f1-score': 0.7361287053458322, 'support': 6562}, 'macro avg': {'precision': 0.626540100785986, 'recall': 0.8784716135684008, 'f1-score': 0.7312037500524435, 'support': 6562}, 'weighted avg': {'precision': 0.6311975390794893, 'recall': 0.8855531850045718, 'f1-score': 0.7368271416647247, 'support': 6562}} | | 0.0038 | 2.0188 | 1500 | 0.0018 | 0.9994 | 0.6685 | 0.8735 | 0.7573 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.8146964856230032, 'recall': 0.9085510688836105, 'f1-score': 0.8590679393599102, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.5430597771023303, 'recall': 0.7964338781575037, 'f1-score': 0.6457831325301205, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.6825586015097338, 'recall': 0.933188484519283, 'f1-score': 0.7884350619550253, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.6400725294650952, 'recall': 0.8350088704908338, 'f1-score': 0.7246599948678469, 'support': 1691}, 'micro avg': {'precision': 0.6684548104956268, 'recall': 0.8735141725083816, 'f1-score': 0.7573495408601439, 'support': 6562}, 'macro avg': {'precision': 0.6700968484250407, 'recall': 0.8682955755128078, 'f1-score': 0.7544865321782257, 'support': 6562}, 'weighted avg': {'precision': 0.6769064880331865, 'recall': 0.8735141725083816, 'f1-score': 0.7608661241463521, 'support': 6562}} | | 0.003 | 2.6918 | 2000 | 0.0017 | 0.9994 | 0.6856 | 0.9012 | 0.7788 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.7413636363636363, 'recall': 0.9685273159144893, 'f1-score': 0.8398558187435634, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.598568281938326, 'recall': 0.8075780089153046, 'f1-score': 0.6875395319418091, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.7389801210025929, 'recall': 0.928843020097773, 'f1-score': 0.8231046931407943, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.6472125435540069, 'recall': 0.8787699586043761, 'f1-score': 0.7454226235264609, 'support': 1691}, 'micro avg': {'precision': 0.685601669371667, 'recall': 0.9012496190185919, 'f1-score': 0.7787727153015538, 'support': 6562}, 'macro avg': {'precision': 0.6815311457146406, 'recall': 0.8959295758829857, 'f1-score': 0.773980666838157, 'support': 6562}, 'weighted avg': {'precision': 0.6871423476136771, 'recall': 0.9012496190185919, 'f1-score': 0.7795779953083334, 'support': 6562}} | | 0.0022 | 3.3647 | 2500 | 0.0018 | 0.9994 | 0.6925 | 0.8973 | 0.7817 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.7884519661523146, 'recall': 0.9406175771971497, 'f1-score': 0.8578391551584078, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6066779852857951, 'recall': 0.7964338781575037, 'f1-score': 0.6887247028589785, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.729933110367893, 'recall': 0.9483976099945681, 'f1-score': 0.8249468462083628, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.6364025695931478, 'recall': 0.8787699586043761, 'f1-score': 0.7382016890213613, 'support': 1691}, 'micro avg': {'precision': 0.6924614841820534, 'recall': 0.8972874123742761, 'f1-score': 0.7816793893129771, 'support': 6562}, 'macro avg': {'precision': 0.6903664078497876, 'recall': 0.8910547559883993, 'f1-score': 0.7774280983117776, 'support': 6562}, 'weighted avg': {'precision': 0.695566181128388, 'recall': 0.8972874123742761, 'f1-score': 0.7830921650929078, 'support': 6562}} | | 0.0022 | 4.0377 | 3000 | 0.0019 | 0.9994 | 0.6973 | 0.9098 | 0.7895 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.764594209776934, 'recall': 0.9566508313539193, 'f1-score': 0.8499076760749142, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6087877183695076, 'recall': 0.8543833580980683, 'f1-score': 0.7109737248840804, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.7853860294117647, 'recall': 0.9282998370450842, 'f1-score': 0.8508837440876277, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.6276150627615062, 'recall': 0.8870490833826138, 'f1-score': 0.7351139426611124, 'support': 1691}, 'micro avg': {'precision': 0.6972669936930623, 'recall': 0.9097836025601951, 'f1-score': 0.7894736842105262, 'support': 6562}, 'macro avg': {'precision': 0.6965957550799281, 'recall': 0.9065957774699215, 'f1-score': 0.7867197719269337, 'support': 6562}, 'weighted avg': {'precision': 0.7031694101594759, 'recall': 0.9097836025601951, 'f1-score': 0.7921014645092033, 'support': 6562}} | | 0.0017 | 4.7106 | 3500 | 0.0018 | 0.9995 | 0.7319 | 0.8888 | 0.8028 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.8151781104801239, 'recall': 0.9376484560570071, 'f1-score': 0.872134769400718, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6239267315397825, 'recall': 0.8098068350668648, 'f1-score': 0.704817329453605, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.7620508326029798, 'recall': 0.9445953286257469, 'f1-score': 0.8435605141886975, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.7112887112887113, 'recall': 0.8421052631578947, 'f1-score': 0.7711887354454373, 'support': 1691}, 'micro avg': {'precision': 0.7319277108433735, 'recall': 0.8887534288326729, 'f1-score': 0.8027529249827942, 'support': 6562}, 'macro avg': {'precision': 0.7281110964778994, 'recall': 0.8835389707268784, 'f1-score': 0.7979253371221144, 'support': 6562}, 'weighted avg': {'precision': 0.7342715806632691, 'recall': 0.8887534288326729, 'f1-score': 0.8037845375457159, 'support': 6562}} | | 0.0013 | 5.3836 | 4000 | 0.0020 | 0.9995 | 0.7302 | 0.9075 | 0.8093 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.7983991995997999, 'recall': 0.9477434679334917, 'f1-score': 0.8666847678522944, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6646489104116223, 'recall': 0.8157503714710252, 'f1-score': 0.7324883255503669, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.7903669724770642, 'recall': 0.9359043997827268, 'f1-score': 0.8570007460830639, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.6617900172117039, 'recall': 0.9095209934949734, 'f1-score': 0.7661270236612702, 'support': 1691}, 'micro avg': {'precision': 0.730226854690374, 'recall': 0.9074977141115513, 'f1-score': 0.809268193245906, 'support': 6562}, 'macro avg': {'precision': 0.7288012749250476, 'recall': 0.9022298081705543, 'f1-score': 0.8055752157867488, 'support': 6562}, 'weighted avg': {'precision': 0.7335071930776247, 'recall': 0.9074977141115513, 'f1-score': 0.8105281325516894, 'support': 6562}} | | 0.0012 | 6.0565 | 4500 | 0.0018 | 0.9996 | 0.7783 | 0.8785 | 0.8254 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.798810703666997, 'recall': 0.9572446555819477, 'f1-score': 0.8708806050783361, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.72812291249165, 'recall': 0.8098068350668648, 'f1-score': 0.7667956384101302, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.8257650542941757, 'recall': 0.908745247148289, 'f1-score': 0.865270235324541, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.744908896034298, 'recall': 0.8219988172678888, 'f1-score': 0.7815574922687659, 'support': 1691}, 'micro avg': {'precision': 0.7783178074794114, 'recall': 0.8785431270953977, 'f1-score': 0.8253990980027203, 'support': 6562}, 'macro avg': {'precision': 0.7744018916217801, 'recall': 0.8744488887662476, 'f1-score': 0.8211259927704433, 'support': 6562}, 'weighted avg': {'precision': 0.777983095601731, 'recall': 0.8785431270953977, 'f1-score': 0.8249384472585973, 'support': 6562}} | | 0.0011 | 6.7295 | 5000 | 0.0022 | 0.9995 | 0.7162 | 0.9163 | 0.8040 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.7986980470706059, 'recall': 0.9471496437054632, 'f1-score': 0.8666123336049986, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6109375, 'recall': 0.8714710252600297, 'f1-score': 0.7183098591549296, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.7634455618714473, 'recall': 0.9483976099945681, 'f1-score': 0.8459302325581395, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.6838503649635036, 'recall': 0.8864577173270254, 'f1-score': 0.7720834406386814, 'support': 1691}, 'micro avg': {'precision': 0.7161743687470223, 'recall': 0.9163364827796403, 'f1-score': 0.8039844899050675, 'support': 6562}, 'macro avg': {'precision': 0.7142328684763892, 'recall': 0.9133689990717716, 'f1-score': 0.8007339664891873, 'support': 6562}, 'weighted avg': {'precision': 0.7206985115552452, 'recall': 0.9163364827796403, 'f1-score': 0.8060303103433248, 'support': 6562}} | | 0.0007 | 7.4024 | 5500 | 0.0021 | 0.9995 | 0.7513 | 0.9060 | 0.8214 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.8039314516129032, 'recall': 0.9471496437054632, 'f1-score': 0.8696837513631407, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6957605985037406, 'recall': 0.8291233283803864, 'f1-score': 0.7566101694915255, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.7822182308037718, 'recall': 0.9462248777838131, 'f1-score': 0.8564405113077679, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.7111534795042898, 'recall': 0.8823181549379066, 'f1-score': 0.7875428873053576, 'support': 1691}, 'micro avg': {'precision': 0.7512953367875648, 'recall': 0.9059737884791222, 'f1-score': 0.8214162348877374, 'support': 6562}, 'macro avg': {'precision': 0.7482659401061764, 'recall': 0.9012040012018924, 'f1-score': 0.817569329866948, 'support': 6562}, 'weighted avg': {'precision': 0.7517431616662088, 'recall': 0.9059737884791222, 'f1-score': 0.8216072430938864, 'support': 6562}} | | 0.0007 | 8.0754 | 6000 | 0.0024 | 0.9995 | 0.7342 | 0.9159 | 0.8150 | {'DebtInstrumentBasisSpreadOnVariableRate1': {'precision': 0.791095890410959, 'recall': 0.9602137767220903, 'f1-score': 0.8674892703862661, 'support': 1684}, 'DebtInstrumentFaceAmount': {'precision': 0.6338946224877784, 'recall': 0.8670133729569094, 'f1-score': 0.7323501725760904, 'support': 1346}, 'DebtInstrumentInterestRateStatedPercentage': {'precision': 0.774822695035461, 'recall': 0.9494839760999457, 'f1-score': 0.8533072980229436, 'support': 1841}, 'LineOfCreditFacilityMaximumBorrowingCapacity': {'precision': 0.7227383863080684, 'recall': 0.8740390301596689, 'f1-score': 0.791220556745182, 'support': 1691}, 'micro avg': {'precision': 0.7341803078426582, 'recall': 0.9158793050899117, 'f1-score': 0.8150257662055873, 'support': 6562}, 'macro avg': {'precision': 0.7306378985605667, 'recall': 0.9126875389846535, 'f1-score': 0.8110918244326205, 'support': 6562}, 'weighted avg': {'precision': 0.7366697400377676, 'recall': 0.9158793050899117, 'f1-score': 0.8161365377528546, 'support': 6562}} | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.3 ### How to use this model #### Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("token-classification", model="martindevoto/finer_ner_finetuning_0130") #### Load model directly from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("martindevoto/finer_ner_finetuning_0130") model = AutoModelForTokenClassification.from_pretrained("martindevoto/finer_ner_finetuning_0130")
nadejdatarabukina/d1eaef8f-8a99-48f7-b084-0b47243fa852
nadejdatarabukina
2025-01-27T18:40:16Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf", "base_model:adapter:NousResearch/CodeLlama-13b-hf", "region:us" ]
null
2025-01-27T17:28:46Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: d1eaef8f-8a99-48f7-b084-0b47243fa852 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9a8514bc9995e10c_train_data.json ds_type: json format: custom path: /workspace/input_data/9a8514bc9995e10c_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/d1eaef8f-8a99-48f7-b084-0b47243fa852 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/9a8514bc9995e10c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab917f13-90ab-4a3a-9e38-f2d73001d41f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ab917f13-90ab-4a3a-9e38-f2d73001d41f warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d1eaef8f-8a99-48f7-b084-0b47243fa852 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 3.2874 | | 12.5605 | 0.0008 | 5 | 3.1707 | | 11.2823 | 0.0017 | 10 | 2.6932 | | 10.7845 | 0.0025 | 15 | 2.5087 | | 9.7678 | 0.0034 | 20 | 2.4228 | | 10.2541 | 0.0042 | 25 | 2.3728 | | 8.8832 | 0.0051 | 30 | 2.3627 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/4e516bd9-5ebf-4208-8294-fee71f8a1b0f
mrferr3t
2025-01-27T18:40:08Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-27T18:09:03Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4e516bd9-5ebf-4208-8294-fee71f8a1b0f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e8ab9d6de4972894_train_data.json ds_type: json format: custom path: /workspace/input_data/e8ab9d6de4972894_train_data.json type: field_input: thought field_instruction: prompt field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/4e516bd9-5ebf-4208-8294-fee71f8a1b0f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 8 micro_batch_size: 2 mlflow_experiment_name: /tmp/e8ab9d6de4972894_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a1fcb6d-c5f4-4ed5-a79c-4c70fd772cb5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2a1fcb6d-c5f4-4ed5-a79c-4c70fd772cb5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4e516bd9-5ebf-4208-8294-fee71f8a1b0f This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0146 | 0.0001 | 1 | 2.4249 | | 1.1258 | 0.0001 | 2 | 2.4239 | | 1.2445 | 0.0003 | 4 | 2.4131 | | 0.8302 | 0.0004 | 6 | 2.3725 | | 1.4582 | 0.0005 | 8 | 2.2915 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Muadil/Llama-3.2-1B-Instruct_sum_DPO_1k_4_1ep
Muadil
2025-01-27T18:38:53Z
144
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-28T04:05:47Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhung01/ce601c6d-f85d-4322-900a-4843d391639e
nhung01
2025-01-27T18:34:08Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:38Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: ce601c6d-f85d-4322-900a-4843d391639e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/ce601c6d-f85d-4322-900a-4843d391639e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ce601c6d-f85d-4322-900a-4843d391639e This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7764 | 0.3509 | 200 | 0.3771 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/a1bef39b-65cf-4d6b-991a-da567c6c8c41
cunghoctienganh
2025-01-27T18:33:13Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:41Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: a1bef39b-65cf-4d6b-991a-da567c6c8c41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/a1bef39b-65cf-4d6b-991a-da567c6c8c41 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a1bef39b-65cf-4d6b-991a-da567c6c8c41 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7586 | 0.3509 | 200 | 0.3755 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhunglaaaaaaa/8bda2c6e-cca4-4d6c-bdc8-0784355e392c
nhunglaaaaaaa
2025-01-27T18:33:10Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:14Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 8bda2c6e-cca4-4d6c-bdc8-0784355e392c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/8bda2c6e-cca4-4d6c-bdc8-0784355e392c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8bda2c6e-cca4-4d6c-bdc8-0784355e392c This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7636 | 0.3509 | 200 | 0.3759 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nghiatrannnnnn/512a114c-6d40-44f8-a819-61e951e26bb3
nghiatrannnnnn
2025-01-27T18:33:04Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:04Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 512a114c-6d40-44f8-a819-61e951e26bb3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/512a114c-6d40-44f8-a819-61e951e26bb3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 512a114c-6d40-44f8-a819-61e951e26bb3 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7562 | 0.3509 | 200 | 0.3765 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso13/26c48db2-4855-4753-9e19-fda696f66fc1
lesso13
2025-01-27T18:32:14Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:18:13Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 26c48db2-4855-4753-9e19-fda696f66fc1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 datasets: - data_files: - 01909031a3b78378_train_data.json ds_type: json format: custom path: /workspace/input_data/01909031a3b78378_train_data.json type: field_instruction: prompt field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso13/26c48db2-4855-4753-9e19-fda696f66fc1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/01909031a3b78378_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3eb02dbd-9197-459c-a71f-f8adb9c1d6d4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3eb02dbd-9197-459c-a71f-f8adb9c1d6d4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 26c48db2-4855-4753-9e19-fda696f66fc1 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0382 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Bronsn/gemma-9b-luganda-finetuned-Q4_K_M-GGUF
Bronsn
2025-01-27T18:32:06Z
29
0
peft
[ "peft", "gguf", "llama-cpp", "gguf-my-repo", "base_model:Bronsn/gemma-9b-luganda-finetuned", "base_model:adapter:Bronsn/gemma-9b-luganda-finetuned", "endpoints_compatible", "region:us" ]
null
2025-01-27T18:31:40Z
--- base_model: Bronsn/gemma-9b-luganda-finetuned library_name: peft tags: - llama-cpp - gguf-my-repo --- # Bronsn/gemma-9b-luganda-finetuned-Q4_K_M-GGUF This model was converted to GGUF format from [`Bronsn/gemma-9b-luganda-finetuned`](https://huggingface.co/Bronsn/gemma-9b-luganda-finetuned) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Bronsn/gemma-9b-luganda-finetuned) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Bronsn/gemma-9b-luganda-finetuned-Q4_K_M-GGUF --hf-file gemma-9b-luganda-finetuned-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Bronsn/gemma-9b-luganda-finetuned-Q4_K_M-GGUF --hf-file gemma-9b-luganda-finetuned-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Bronsn/gemma-9b-luganda-finetuned-Q4_K_M-GGUF --hf-file gemma-9b-luganda-finetuned-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Bronsn/gemma-9b-luganda-finetuned-Q4_K_M-GGUF --hf-file gemma-9b-luganda-finetuned-q4_k_m.gguf -c 2048 ```
ak2603/mt5-small-synthetic-data-plus-translated-bs32ep20lr5e3
ak2603
2025-01-27T18:28:26Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2025-01-27T18:22:55Z
--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-synthetic-data-plus-translated-bs32ep20lr5e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-synthetic-data-plus-translated-bs32ep20lr5e3 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3381 - Rouge1: 0.7165 - Rouge2: 0.6111 - Rougel: 0.7004 - Rougelsum: 0.7016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0056 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.2243 | 1.0 | 38 | 0.9621 | 0.6801 | 0.5630 | 0.6599 | 0.6606 | | 0.2209 | 2.0 | 76 | 0.9423 | 0.6766 | 0.5707 | 0.6633 | 0.6644 | | 0.1953 | 3.0 | 114 | 0.9503 | 0.6525 | 0.5271 | 0.6361 | 0.6369 | | 0.1812 | 4.0 | 152 | 0.9818 | 0.6811 | 0.5742 | 0.6672 | 0.6680 | | 0.1418 | 5.0 | 190 | 0.9591 | 0.6868 | 0.5781 | 0.6700 | 0.6708 | | 0.1312 | 6.0 | 228 | 1.0121 | 0.6900 | 0.5842 | 0.6734 | 0.6742 | | 0.1236 | 7.0 | 266 | 0.9913 | 0.6787 | 0.5689 | 0.6652 | 0.6653 | | 0.1068 | 8.0 | 304 | 0.9773 | 0.6886 | 0.5781 | 0.6749 | 0.6764 | | 0.106 | 9.0 | 342 | 1.0201 | 0.6947 | 0.5825 | 0.6798 | 0.6802 | | 0.084 | 10.0 | 380 | 1.0865 | 0.6861 | 0.5775 | 0.6726 | 0.6738 | | 0.0744 | 11.0 | 418 | 1.0310 | 0.6997 | 0.5865 | 0.6849 | 0.6861 | | 0.0618 | 12.0 | 456 | 1.1647 | 0.7118 | 0.6182 | 0.7016 | 0.7020 | | 0.0493 | 13.0 | 494 | 1.1808 | 0.7089 | 0.6098 | 0.6959 | 0.6970 | | 0.0472 | 14.0 | 532 | 1.2040 | 0.7087 | 0.6090 | 0.6956 | 0.6965 | | 0.0399 | 15.0 | 570 | 1.1293 | 0.7065 | 0.6035 | 0.6953 | 0.6965 | | 0.0346 | 16.0 | 608 | 1.2286 | 0.7078 | 0.6028 | 0.6928 | 0.6940 | | 0.0255 | 17.0 | 646 | 1.2970 | 0.7114 | 0.6069 | 0.6986 | 0.7001 | | 0.0241 | 18.0 | 684 | 1.3016 | 0.7053 | 0.5983 | 0.6893 | 0.6904 | | 0.0217 | 19.0 | 722 | 1.3315 | 0.7137 | 0.6084 | 0.6999 | 0.7008 | | 0.0196 | 20.0 | 760 | 1.3381 | 0.7165 | 0.6111 | 0.7004 | 0.7016 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
mrferr3t/7c8a058c-ef88-4cd0-90ab-aa89bba82390
mrferr3t
2025-01-27T18:25:42Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-27T18:18:11Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7c8a058c-ef88-4cd0-90ab-aa89bba82390 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 01909031a3b78378_train_data.json ds_type: json format: custom path: /workspace/input_data/01909031a3b78378_train_data.json type: field_instruction: prompt field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/7c8a058c-ef88-4cd0-90ab-aa89bba82390 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 18 micro_batch_size: 2 mlflow_experiment_name: /tmp/01909031a3b78378_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3eb02dbd-9197-459c-a71f-f8adb9c1d6d4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3eb02dbd-9197-459c-a71f-f8adb9c1d6d4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7c8a058c-ef88-4cd0-90ab-aa89bba82390 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9579 | 0.0002 | 1 | 0.6735 | | 0.4037 | 0.0010 | 5 | 0.6448 | | 0.1677 | 0.0019 | 10 | 0.3681 | | 0.0746 | 0.0029 | 15 | 0.1906 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
jaybie/llama-3-8b-Instruct-bnb-4bit-Cyber-V5
jaybie
2025-01-27T18:24:53Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T18:21:24Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jaybie - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Azure99/Blossom-V6-14B-GGUF
Azure99
2025-01-27T18:22:04Z
270
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T17:16:04Z
--- license: apache-2.0 ---
mradermacher/Unity-12B-GGUF
mradermacher
2025-01-27T18:21:17Z
298
1
transformers
[ "transformers", "gguf", "merge", "Roleplay", "Creative", "ru", "en", "base_model:OddTheGreat/Unity-12B", "base_model:quantized:OddTheGreat/Unity-12B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T12:48:40Z
--- base_model: OddTheGreat/Unity-12B language: - ru - en library_name: transformers quantized_by: mradermacher tags: - merge - Roleplay - Creative --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/OddTheGreat/Unity-12B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Unity-12B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Unity-12B-GGUF/resolve/main/Unity-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso09/0fc82aab-59d1-48c9-bb60-f04c04fac4e5
lesso09
2025-01-27T18:16:40Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-27T18:10:23Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 0fc82aab-59d1-48c9-bb60-f04c04fac4e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: true chat_template: llama3 datasets: - data_files: - eada432c00d4bd8b_train_data.json ds_type: json format: custom path: /workspace/input_data/eada432c00d4bd8b_train_data.json type: field_input: prompt_setting field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/0fc82aab-59d1-48c9-bb60-f04c04fac4e5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/eada432c00d4bd8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63bf79c0-46cc-466e-952f-99f80f292bc5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63bf79c0-46cc-466e-952f-99f80f292bc5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0fc82aab-59d1-48c9-bb60-f04c04fac4e5 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0732 | 0.0018 | 1 | 1.2944 | | 1.4455 | 0.0088 | 5 | 1.2372 | | 0.9794 | 0.0175 | 10 | 0.9125 | | 0.4988 | 0.0263 | 15 | 0.7950 | | 1.2708 | 0.0351 | 20 | 0.7533 | | 0.8023 | 0.0439 | 25 | 0.7413 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aaardvark1412/AJ
aaardvark1412
2025-01-27T18:15:54Z
62
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T17:34:00Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AJ --- # Aj <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AJ` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('aaardvark1412/AJ', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
telord/bert-base-uncased-squad-v2
telord
2025-01-27T18:12:55Z
45
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
question-answering
2025-01-27T18:12:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
umarigan/deepseek-r1-reasoning-prompt-generator
umarigan
2025-01-27T18:11:43Z
20
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "dataset:umarigan/deepseek-r1-reasoning-prompts", "base_model:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T13:55:19Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en datasets: - umarigan/deepseek-r1-reasoning-prompts --- This is a small llama-3.2-3B model fine-tuned for better reasoing prompt generation. This reasoning prompts will get you better answers on language models as seen in openai and deepseek-r1 models The dataset thats been used for this fne-tuning can be found here: https://huggingface.co/datasets/umarigan/deepseek-r1-reasoning-prompts you can test the model as follow: ```python import torch from transformers import pipeline model_id = "umarigan/deepseek-r1-reasoning-prompt-generator" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=4096, ) print(outputs[0]["generated_text"][-1]['content']) output: Okay, so the user is asking who I am. Let me think about that. I'm a conversational AI designed to assist users with their questions and tasks. I'm a type of chatbot, but I'm not a regular chatbot like the ones you might find on websites. I'm more like a virtual assistant that can understand natural language and respond accordingly. First, I need to recall my purpose. My primary goal is to help users by providing accurate and helpful information. I'm trained on a massive dataset that includes a wide range of topics, so I can answer questions on various subjects. I can also perform tasks like generating text, translating languages, summarizing content, and even providing definitions. Now, let's think about my structure. I'm a large language model, which means I'm based on transformer architecture. That's why I can process and generate human-like text. My architecture is based on the transformer model, which is designed to handle sequential data like text. The transformer model has two main components: encoder and decoder. The encoder takes in input sequences and outputs a representation, and the decoder uses this representation to generate output sequences. My training data is sourced from various places, including books, articles, and websites. This data is used to learn patterns and relationships in language, which I can then apply to generate responses. My training process involves optimizing the model's parameters to minimize the difference between predicted and actual outputs. The optimization is done using an objective function that measures the model's performance on a validation set. Another important aspect is my ability to engage in conversation. I can use context to understand the user's intent and respond accordingly. For example, if a user asks a follow-up question based on my previous response, I can use that context to answer the new question. I can also use various techniques like paraphrasing, summarization, and even humor to make my responses more engaging. Now, the user is asking who I am. Well, I'm a conversational AI designed to assist users. I'm a virtual assistant that can understand natural language, respond accordingly, and perform various tasks. My architecture is based on transformer models, and my training data is sourced from a wide range of sources. My goal is to provide accurate and helpful information to users. messages = [ {"role": "user", "content": "Can AI take over the world?"}, ] output: Okay, so the user is asking if AI can take over the world. Let me start by understanding the question. The term "take over" here might mean controlling or dominating the world, possibly through force or manipulation. The user is asking if artificial intelligence (AI) has the capability to achieve this. First, I need to consider what AI systems are capable of. Currently, AI is primarily used for tasks like image recognition, natural language processing, and solving complex problems. However, some people worry that advanced AI could potentially become superintelligent, surpassing human intelligence in many domains. But can AI truly take over the world? The answer depends on how one defines "taking over." If by "taking over" they mean gaining complete control over the world's resources, governments, and people, that's a tall order. AI systems are programmed by humans, so they are bound by the data and objectives programmed into them. Without a human user or controller, an AI system would not be able to execute complex actions like launching nuclear missiles or manipulating governments directly. Another aspect to consider is the concept of "superintelligence." If AI systems become superintelligent, they might be able to outsmart humans in many areas, but that doesn't necessarily mean they can take over the world. Even if AI surpasses human intelligence, it's unclear whether it would have the capability or desire to do so. AI's goals are often aligned with its programming or objectives set by humans. If the objectives are benign, like improving healthcare or education, then the AI would not seek to take over. Additionally, the development of AI is heavily regulated by governments and ethical guidelines. There are strict guidelines around the development of autonomous weapons, for example. So, even if AI systems become superintelligent, they are likely to be designed with safeguards to prevent such outcomes. However, some experts worry about the potential risks of advanced AI, such as the possibility of an AI system being created that is not aligned with human values. But even then, it's not clear that an AI system would have the capability or desire to take over the world. It's more about whether it would be a threat to humanity, and that's a complex question. Another point is that the concept of "taking over" is often associated with human intentions, like conquest or domination. AI systems, by their nature, operate within the parameters set by their programming. They don't have the capacity for consciousness or self-awareness, which are essential for making decisions about taking over. They are simply tools designed to perform specific tasks. So, in summary, while AI systems can become incredibly powerful, the idea of AI taking over the world is unlikely. The nature of AI is tied to its programming and objectives, and there are safeguards in place to prevent it from causing harm. Even if AI surpasses human intelligence, it's not clear that it would have the capability or desire to take over. The question seems to be more speculative than based on current capabilities. ```
abo1515/generativoDeepSeek
abo1515
2025-01-27T18:10:57Z
24
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T18:06:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JSky74/DeepSeek-R1-Distill-Qwen-14B-mlx
JSky74
2025-01-27T18:07:43Z
55
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mlx", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2025-01-27T17:56:07Z
--- license: mit library_name: transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B tags: - mlx --- # JSky74/DeepSeek-R1-Distill-Qwen-14B-mlx The Model [JSky74/DeepSeek-R1-Distill-Qwen-14B-mlx](https://huggingface.co/JSky74/DeepSeek-R1-Distill-Qwen-14B-mlx) was converted to MLX format from [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) using mlx-lm version **0.21.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("JSky74/DeepSeek-R1-Distill-Qwen-14B-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Jbey64/JbeyIsea01
Jbey64
2025-01-27T18:06:20Z
14
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-27T17:32:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ISEAAZUR --- # Jbeyisea01 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ISEAAZUR` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Jbey64/JbeyIsea01', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Geotrend/bert-base-en-fr-de-no-da-cased
Geotrend
2025-01-27T18:06:15Z
98
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-de-no-da-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-de-no-da-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-de-no-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
MarioBarbeque/CyberSolve-DeepMind-LinAlg-1D-downsample-v2
MarioBarbeque
2025-01-27T18:04:07Z
177
1
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-12-21T06:52:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is a zeroth-generation, downsampled training of the **CyberSolve LinAlg** model. See the model card for the most updated full training of CyberSolve LinAlg [here](https://huggingface.co/MarioBarbeque/CyberSolve-LinAlg-1.2). Simulating the larger, full training and evaluation process, we trained and evaluated CyberSolve on a 10% split of the 2M total records available in the 1D Linear Algebra split of the Google DeepMind Mathematics dataset. The results found in this smaller training convinced us that the FLAN-T5 model would indeed learn to effectively solve linear equations. That is, this preliminary training green lighted the full model training for us.
songlab/gpn-msa-sapiens
songlab
2025-01-27T18:03:42Z
1,560
6
transformers
[ "transformers", "pytorch", "safetensors", "GPNRoFormer", "fill-mask", "dna", "language-model", "variant-effect-prediction", "biology", "genomics", "dataset:songlab/gpn-msa-sapiens-dataset", "dataset:songlab/multiz100way", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-14T22:21:22Z
--- license: mit tags: - dna - language-model - variant-effect-prediction - biology - genomics datasets: - songlab/gpn-msa-sapiens-dataset - songlab/multiz100way --- # GPN-MSA trained on humans and 89 other vertebrates For more information check out our [paper](https://www.nature.com/articles/s41587-024-02511-w) and [repository](https://github.com/songlab-cal/gpn). ## Loading ```python import gpn.model from transformers import AutoModelForMaskedLM model = AutoModelForMaskedLM.from_pretrained("songlab/gpn-msa-sapiens") ``` ## Hyperparameters `multiz100way/89/128/64/True/defined.phastCons.percentile-75_0.05_0.001/medium/0.1/42/30000/True/True/True`
Azure99/Blossom-V6-7B-GGUF
Azure99
2025-01-27T18:02:34Z
228
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T17:16:03Z
--- license: apache-2.0 ---
mradermacher/gemma-2-9b-HangulFixer-GGUF
mradermacher
2025-01-27T18:02:07Z
297
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma2", "trl", "ko", "base_model:SeongeonKim/gemma-2-9b-HangulFixer_v0.0", "base_model:quantized:SeongeonKim/gemma-2-9b-HangulFixer_v0.0", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2025-01-24T22:11:34Z
--- base_model: SeongeonKim/gemma-2-9b-HangulFixer_v0.0 language: - ko library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - gemma2 - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/SeongeonKim/gemma-2-9b-HangulFixer_v0.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-HangulFixer-GGUF/resolve/main/gemma-2-9b-HangulFixer.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
guldasta/swin-tiny-patch4-window7-224-finetuned-beans
guldasta
2025-01-27T17:59:36Z
35
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-01-27T17:56:19Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-beans results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-beans This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3777 - Accuracy: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.6531 | 0.8301 | | 3.2092 | 2.0 | 14 | 0.4175 | 0.8649 | | 3.2092 | 2.64 | 18 | 0.3777 | 0.8764 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
tezuesh/moshi_general
tezuesh
2025-01-27T17:58:12Z
382
1
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-01-15T18:23:01Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai). ## License This project is licensed under the MIT License - see the LICENSE file for details. ## Links - GitHub Repository: [omegalabs-anytoany-bittensor](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) - OMEGA Labs on X: [@omegalabsai](https://x.com/omegalabsai) ## Contributing Contributions are welcome! Please feel free to submit a Pull Request. ## Support For support and questions, please: 1. Open an issue on GitHub 2. Follow OMEGA Labs on X [@omegalabsai](https://x.com/omegalabsai)
mradermacher/reactor-mk1-I1-i1-GGUF
mradermacher
2025-01-27T17:57:55Z
54
0
transformers
[ "transformers", "gguf", "en", "base_model:arcars/reactor-mk1-I1", "base_model:quantized:arcars/reactor-mk1-I1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-26T06:04:21Z
--- base_model: arcars/reactor-mk1-I1 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/arcars/reactor-mk1-I1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/reactor-mk1-I1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/reactor-mk1-I1-i1-GGUF/resolve/main/reactor-mk1-I1.i1-Q2_K.gguf) | i1-Q2_K | 17.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/reactor-mk1-I1-i1-GGUF/resolve/main/reactor-mk1-I1.i1-IQ3_M.gguf) | i1-IQ3_M | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/reactor-mk1-I1-i1-GGUF/resolve/main/reactor-mk1-I1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 26.8 | optimal size/speed/quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->