modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-22 00:45:16
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 491
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-22 00:44:03
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.15_0.25_epoch1 | MinaMila | 2025-06-16T06:13:24Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T06:11:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Nimra-Mehra-Viral-Video123/NEW.VIDEO.Nirma.Meena.Viral.Video.Link.FULL.HD | Nimra-Mehra-Viral-Video123 | 2025-06-16T06:11:41Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T06:10:33Z | [](https://tinyurl.com/4va3nzzc) |
Mezzo-Fun-Official-Viral-Video/Full.VIDEO.Mizo.Fun.Viral.Video.Tutorial.Official | Mezzo-Fun-Official-Viral-Video | 2025-06-16T06:11:31Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T06:11:15Z | <a href="https://t.co/98E3uGhPfJ" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
enpeizhao/qwen2_5-3b-instruct-trl-sft-all-in-one-8 | enpeizhao | 2025-06-16T06:10:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-VL-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:01:33Z | ---
base_model: Qwen/Qwen2.5-VL-3B-Instruct
library_name: transformers
model_name: qwen2_5-3b-instruct-trl-sft-all-in-one-8
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen2_5-3b-instruct-trl-sft-all-in-one-8
This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="enpeizhao/qwen2_5-3b-instruct-trl-sft-all-in-one-8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/my-pred-team/enpeizhao_qwen2_5-3b-instruct-trl-sft-all-in-one-8/runs/xx787ryb)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.0.dev0
- Transformers: 4.53.0.dev0
- Pytorch: 2.4.1+cu121
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
BootesVoid/cmbyjnk1403xvrdqsg2kyovgu_cmbykq3fx03zcrdqse4makkvd | BootesVoid | 2025-06-16T06:09:54Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-16T06:09:52Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: EMILY
---
# Cmbyjnk1403Xvrdqsg2Kyovgu_Cmbykq3Fx03Zcrdqse4Makkvd
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `EMILY` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "EMILY",
"lora_weights": "https://huggingface.co/BootesVoid/cmbyjnk1403xvrdqsg2kyovgu_cmbykq3fx03zcrdqse4makkvd/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmbyjnk1403xvrdqsg2kyovgu_cmbykq3fx03zcrdqse4makkvd', weight_name='lora.safetensors')
image = pipeline('EMILY').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmbyjnk1403xvrdqsg2kyovgu_cmbykq3fx03zcrdqse4makkvd/discussions) to add images that show off what youโve made with this LoRA.
|
VIDEO-LINK-Nirma-Meena-Viral-Leaks/18.VIDEO.LINK.Nirma.Meena.Viral.Video.Leaks.Official | VIDEO-LINK-Nirma-Meena-Viral-Leaks | 2025-06-16T06:05:27Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T06:04:49Z | <animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
parveen-bilasipara-vodeo/vid.parveen.bilasipara.viral.video.link.on.social.media | parveen-bilasipara-vodeo | 2025-06-16T06:04:42Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T06:03:37Z | Parveen Bilasipara Video New collections of Parveen Bilasipara Video now being a creator on Fanfix uploading adult contents
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> |
parveen-bilasipara/parveen.bilasipara.viral.video.link.on.social.media | parveen-bilasipara | 2025-06-16T06:04:39Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T06:03:17Z | Parveen Bilasipara Video New collections of Parveen Bilasipara Video now being a creator on Fanfix uploading adult contents
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> |
MinaMila/gemma_2b_unlearned_2nd_1e-5_1.0_0.5_0.25_0.5_epoch2 | MinaMila | 2025-06-16T06:04:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T06:02:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
K10S/mistral-student-finetune_checkpoint150 | K10S | 2025-06-16T06:03:55Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.1",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1",
"region:us"
] | null | 2025-06-16T06:03:51Z | ---
base_model: mistralai/Mistral-7B-Instruct-v0.1
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
Ryanz48/RyanzRVCModels | Ryanz48 | 2025-06-16T06:03:20Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2023-06-22T12:10:32Z | ---
license: other
---
The models included in this repo are:
Blur (Italian Twitch Streamer) (RVC v2) 300 Epochs
Caparezza (2000s, Nasal Voice) (RVC v2) 300 Epochs
Jeff Buckley (RVC v1) 500 Epochs
Matt Bellamy (from Muse) (RVC v2) 300 Epochs
Serj Tankian (Post-SOAD Era) (RVC v2) 500 Epochs
Serj Tankian (Toxicity Era) (RVC v1) 1000 Epochs
Tiziano Ferro (Italian Singer) (RVC v2) 300 Epochs |
K10S/mistral-student-finetune | K10S | 2025-06-16T06:02:03Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.1",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1",
"region:us"
] | null | 2025-06-16T06:01:58Z | ---
base_model: mistralai/Mistral-7B-Instruct-v0.1
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
parveen-bilasipara-viral-video/Original.18.parveen.viral.video.on.social.media | parveen-bilasipara-viral-video | 2025-06-16T06:00:19Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:44:46Z | <a rel="nofollow" href="https://tinyurl.com/2urtu5zm">๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ L๐aแดed Video V๐ขral Video</a>
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> |
japat123/mistral_jun16_1 | japat123 | 2025-06-16T05:58:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"base_model:quantized:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-06-16T05:58:11Z | ---
base_model: unsloth/mistral-7b-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** japat123
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
WeiDai-David/GGEUR_ViT32 | WeiDai-David | 2025-06-16T05:58:44Z | 0 | 0 | open_clip | [
"open_clip",
"license:apache-2.0",
"region:us"
] | null | 2025-06-16T05:47:57Z | ---
license: apache-2.0
---
|
01PrathamS/text2sql_finetune | 01PrathamS | 2025-06-16T05:56:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:finetune:microsoft/Phi-3-mini-4k-instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:56:35Z | ---
base_model: microsoft/Phi-3-mini-4k-instruct
library_name: transformers
model_name: text2sql_finetune
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for text2sql_finetune
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="01PrathamS/text2sql_finetune", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.1
- Transformers: 4.46.2
- Pytorch: 2.6.0+cu124
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Nirma-Meena-Full-Video/Full-Viral.Nirma.Nirma.Meena.Viral.Video.lady | Nirma-Meena-Full-Video | 2025-06-16T05:55:49Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-16T05:55:04Z | ---
license: apache-2.0
---
[](https://bit.ly/4lb0YGM)
|
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.15_0.75_epoch2 | MinaMila | 2025-06-16T05:52:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:51:03Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Renugadevi82/cisco-nx-ai-4bit | Renugadevi82 | 2025-06-16T05:51:37Z | 0 | 0 | null | [
"safetensors",
"llama",
"cisco",
"networking",
"tinyllama",
"4bit",
"quantized",
"en",
"license:apache-2.0",
"region:us"
] | null | 2025-06-15T13:37:45Z | ---
tags:
- cisco
- networking
- llama
- tinyllama
- 4bit
- quantized
license: apache-2.0
language: en
---
# Cisco Network Configuration Model (4-bit Quantized)
## Usage with 4-bit Quantization
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
"Renugadevi82/cisco-nx-ai-4bit",
quantization_config=bnb_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Renugadevi82/cisco-nx-ai-4bit")
```
## Memory Requirements
- 4-bit: ~0.8GB VRAM
- 16-bit: ~2.5GB VRAM
|
j1a0m0e7s/LID_DryPond | j1a0m0e7s | 2025-06-16T05:49:15Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-08T15:19:11Z | ---
license: apache-2.0
---
|
sergioalves/26f3c459-1dc9-4d0d-b907-7258ee195a89 | sergioalves | 2025-06-16T05:48:40Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-1.7B",
"base_model:adapter:unsloth/SmolLM2-1.7B",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-06-16T05:23:29Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-1.7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 26f3c459-1dc9-4d0d-b907-7258ee195a89
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: unsloth/SmolLM2-1.7B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 374958181cb5f0a5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 0.8
group_by_length: false
hub_model_id: sergioalves/26f3c459-1dc9-4d0d-b907-7258ee195a89
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-07
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 300
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/374958181cb5f0a5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3f11e093-22a6-4174-9a7a-02e2857fdaec
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 3f11e093-22a6-4174-9a7a-02e2857fdaec
warmup_steps: 30
weight_decay: 0.05
xformers_attention: true
```
</details><br>
# 26f3c459-1dc9-4d0d-b907-7258ee195a89
This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8659
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 300
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8987 | 0.0004 | 1 | 1.8671 |
| 1.6803 | 0.0561 | 150 | 1.8663 |
| 1.6321 | 0.1123 | 300 | 1.8659 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Renugadevi82/cisco-nx-ai-lora | Renugadevi82 | 2025-06-16T05:48:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T13:36:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.15_0.75_epoch1 | MinaMila | 2025-06-16T05:46:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:44:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Triangle104/Dolphin-Mistral-24B-Venice-Edition-Q3_K_M-GGUF | Triangle104 | 2025-06-16T05:46:15Z | 0 | 0 | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition",
"base_model:quantized:cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-16T05:17:34Z | ---
license: apache-2.0
base_model: cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Dolphin-Mistral-24B-Venice-Edition-Q3_K_M-GGUF
This model was converted to GGUF format from [`cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition`](https://huggingface.co/cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition) for more details on the model.
---
Dolphin Mistral 24B Venice Edition is a collaborative project we undertook with Venice.ai with the goal of creating the most uncensored version of Mistral 24B for use within the Venice ecosystem.
Dolphin Mistral 24B Venice Edition is now live on https://venice.ai/ as โVenice Uncensored,โ the new default model for all Venice users.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Dolphin-Mistral-24B-Venice-Edition-Q3_K_M-GGUF --hf-file dolphin-mistral-24b-venice-edition-q3_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Dolphin-Mistral-24B-Venice-Edition-Q3_K_M-GGUF --hf-file dolphin-mistral-24b-venice-edition-q3_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Dolphin-Mistral-24B-Venice-Edition-Q3_K_M-GGUF --hf-file dolphin-mistral-24b-venice-edition-q3_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Dolphin-Mistral-24B-Venice-Edition-Q3_K_M-GGUF --hf-file dolphin-mistral-24b-venice-edition-q3_k_m.gguf -c 2048
```
|
TheDrummer/Agatha-111B-v1 | TheDrummer | 2025-06-16T05:44:30Z | 68 | 12 | null | [
"safetensors",
"cohere2",
"base_model:CohereLabs/c4ai-command-a-03-2025",
"base_model:finetune:CohereLabs/c4ai-command-a-03-2025",
"region:us"
] | null | 2025-06-12T07:38:51Z | ---
base_model:
- CohereLabs/c4ai-command-a-03-2025
---
# Join our Discord! https://discord.gg/BeaverAI
## More than 6000 members of helpful, LLM enthusiasts! A hub for players and makers alike!
### We need testers!
---
Drummer proudly presents...
# Agatha 111B v1

## Special Thanks
- Thank you Geechan for unblocking model development for Command A and taking the lead!
- Thank you to the testers at BeaverAI! You da MVP!
- Thank you to each and everyone who donated and subscribed in [Patreon](https://www.patreon.com/TheDrummer) and [Ko-Fi](https://ko-fi.com/thedrummer) to make our venture a little bit easier.
- [Subscribe to my Patreon!](https://www.patreon.com/TheDrummer)
## Usage
- Command R / Command A / Cohere Template
## Links
- Original: https://huggingface.co/TheDrummer/Agatha-111B-v1
- GGUF: https://huggingface.co/TheDrummer/Agatha-111B-v1-GGUF
- iMatrix (recommended): https://huggingface.co/bartowski/TheDrummer_Agatha-111B-v1-GGUF
`config-v1h` |
s-emanuilov/Tucan-9B-v1.0 | s-emanuilov | 2025-06-16T05:43:17Z | 57 | 1 | null | [
"safetensors",
"gemma2",
"function_calling",
"MCP",
"tool_use",
"bg",
"arxiv:2503.23278",
"arxiv:2408.00118",
"arxiv:2412.10893",
"base_model:INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0",
"base_model:finetune:INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0",
"license:gemma",
"region:us"
] | null | 2025-06-08T07:22:38Z | ---
license: gemma
language:
- bg
base_model:
- INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0
tags:
- function_calling
- MCP
- tool_use
---
# Tucan-9B-v1.0
## Bulgarian Language Models for Function Calling ๐ง๐ฌ
> ๐ **Full methodology, dataset details, and evaluation results coming in the upcoming paper**
## Overview ๐
TUCAN (Tool-Using Capable Assistant Navigator) is a series of open-source Bulgarian language models fine-tuned specifically for function calling and tool use.
These models can interact with external tools, APIs, and databases, making them appropriate for building AI agents and [Model Context Protocol (MCP)](https://arxiv.org/abs/2503.23278) applications.
Built on top of [BgGPT models](https://huggingface.co/collections/INSAIT-Institute/bggpt-gemma-2-673b972fe9902749ac90f6fe) from [INSAIT Institute](https://insait.ai/), which were themselves built on [Gemma 2](https://arxiv.org/pdf/2408.00118), Tucan models have been enhanced with function-calling capabilities.
## Motivation ๐ฏ
Although BgGPT models demonstrate [strong Bulgarian language comprehension](https://arxiv.org/pdf/2412.10893), they face challenges in maintaining the precise formatting necessary for consistent function calling. Despite implementing detailed system prompts, their performance in this specific task remains suboptimal.
This project addresses that gap by fine-tuning BgGPT, providing the Bulgarian AI community with proper tool-use capabilities in their native language.
## Models and variants ๐ฆ
Available in three sizes with full models, LoRA adapters, and quantized GGUF variants:
<div align="center">
| Model Size | Full Model | LoRA Adapter | GGUF (Quantized) |
|------------|------------|--------------|------------------|
| **2.6B** | [Tucan-2.6B-v1.0](https://huggingface.co/s-emanuilov/Tucan-2.6B-v1.0)| [LoRA](https://huggingface.co/s-emanuilov/Tucan-2.6B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan-2.6B-v1.0-GGUF) |
| **9B** | [Tucan-9B-v1.0](https://huggingface.co/s-emanuilov/Tucan-9B-v1.0) ๐| [LoRA](https://huggingface.co/s-emanuilov/Tucan-9B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan-9B-v1.0-GGUF) |
| **27B** | [Tucan-27B-v1.0](https://huggingface.co/s-emanuilov/Tucan-27B-v1.0) | [LoRA](https://huggingface.co/s-emanuilov/Tucan-27B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan-27B-v1.0-GGUF) |
*GGUF variants include: q4_k_m, q5_k_m, q6_k, q8_0, q4_0 quantizations*
๐ *Current model/repo*
</div>
Models and quantizations are also available for easy use in Ollama: https://ollama.com/s_emanuilov/tucan
## Benchmarks ๐
All evaluations were performed using the [Tucan evaluation framework](https://github.com/s-emanuilov/tucan), with results averaged across multiple runs. Tucan models demonstrate superior function-calling capabilities compared to their BgGPT counterparts, with particularly strong improvements in smaller model sizes. To ensure no catastrophic forgetting occurred, we evaluated knowledge retention using [EleutherAI's lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) on Bulgarian benchmarks, confirming that each Tucan model maintains performance on par with its BgGPT equivalent.
<div align="center">
| Model | Function Calling | HellaswagBG | WinograndeBG | ARC-Easy-BG | ARC-Challenge-BG |
|-------|-----------------|-------------|--------------|-------------|------------------|
| **Tucan-2.6B-v1.0** ๐ฅ | **0.7875** | 0.5924 | 0.6456 | 0.5657 | 0.3754 |
| **Tucan-9B-v1.0** ๐ฅ | **0.8667** | 0.7046 | 0.7151 | 0.7024 | 0.5188 |
| **Tucan-27B-v1.0** ๐ฅ | **0.875** | 0.6179 | 0.6275 | 0.6486 | 0.442 |
| BgGPT-Gemma-2-2.6B-IT-v1.0 | 0.5874 | 0.6306 | 0.5821 | 0.5657 | 0.372 |
| BgGPT-Gemma-2-9B-IT-v1.0 | 0.7833 | 0.7057 | 0.719 | 0.7231 | 0.5188 |
| BgGPT-Gemma-2-27B-IT-v1.0 | 0.8667 | 0.62 | 0.6212 | 0.6587 | 0.459 |
*Note: 27B models were evaluated in 8-bit precision for comparison purposes.*
</div>
## Usage ๐ ๏ธ
### Quick start โก
```bash
pip install -U "transformers[torch]" accelerate bitsandbytes
```
### Prompt format โ๏ธ
**Critical:** Use this format for function calling for the best results.
<details>
<summary><strong>๐ Required system prompt template</strong></summary>
```
<bos><start_of_turn>user
ะขะธ ัะธ ะฟะพะปะตะทะตะฝ AI ะฐัะธััะตะฝั, ะบะพะนัะพ ะฟัะตะดะพััะฐะฒั ะฟะพะปะตะทะฝะธ ะธ ัะพัะฝะธ ะพัะณะพะฒะพัะธ.
ะะผะฐั ะดะพัััะฟ ะธ ะผะพะถะตั ะดะฐ ะธะทะฒะธะบะฐั ะตะดะฝะฐ ะธะปะธ ะฟะพะฒะตัะต ััะฝะบัะธะธ, ะทะฐ ะดะฐ ะฟะพะผะพะณะฝะตั ั ะฟะพััะตะฑะธัะตะปัะบะพัะพ ะทะฐะฟะธัะฒะฐะฝะต. ะะทะฟะพะปะทะฒะฐะน ะณะธ, ัะฐะผะพ ะฐะบะพ ะต ะฝะตะพะฑั
ะพะดะธะผะพ ะธ ะฟะพะดั
ะพะดััะพ.
ะะพะณะฐัะพ ะธะทะฟะพะปะทะฒะฐั ััะฝะบัะธั, ัะพัะผะฐัะธัะฐะน ะธะทะฒะธะบะฒะฐะฝะตัะพ ั ะฒ ะฑะปะพะบ ```tool_call``` ะฝะฐ ะพัะดะตะปะตะฝ ัะตะด, a ัะปะตะด ัะพะฒะฐ ัะต ะฟะพะปััะธั ัะตะทัะปัะฐั ะพั ะธะทะฟัะปะฝะตะฝะธะตัะพ ะฒ ะฑะปะพะบ ```toll_response```.
## ะจะฐะฑะปะพะฝ ะทะฐ ะธะทะฒะธะบะฒะฐะฝะต:
```tool_call
{"name": <function-name>, "arguments": <args-json-object>}```
## ะะฐะปะธัะฝะธ ััะฝะบัะธะธ:
[your function definitions here]
## ะะพััะตะฑะธัะตะปัะบะฐ ะทะฐัะฒะบะฐ:
[your query in Bulgarian]<end_of_turn>
<start_of_turn>model
```
</details>
### Note ๐
**The model only generates the `tool_call` blocks with function names and parameters - it doesn't actually execute the functions.** Your client application must parse these generated calls, execute the actual functions (API calls, database queries, etc.), and provide the results back to the model in `tool_response` blocks for the conversation to continue the interperation of the results. A full demo is comming soon.
### Python example ๐
<details>
<summary><strong>๐ป Complete Working Example</strong></summary>
```python
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
# Load model
model_name = "s-emanuilov/Tucan-2.6B-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager" # Required for Gemma models
)
# Create prompt with system template
def create_prompt(functions, user_query):
system_prompt = """ะขะธ ัะธ ะฟะพะปะตะทะตะฝ AI ะฐัะธััะตะฝั, ะบะพะนัะพ ะฟัะตะดะพััะฐะฒั ะฟะพะปะตะทะฝะธ ะธ ัะพัะฝะธ ะพัะณะพะฒะพัะธ.
ะะผะฐั ะดะพัััะฟ ะธ ะผะพะถะตั ะดะฐ ะธะทะฒะธะบะฐั ะตะดะฝะฐ ะธะปะธ ะฟะพะฒะตัะต ััะฝะบัะธะธ, ะทะฐ ะดะฐ ะฟะพะผะพะณะฝะตั ั ะฟะพััะตะฑะธัะตะปัะบะพัะพ ะทะฐะฟะธัะฒะฐะฝะต. ะะทะฟะพะปะทะฒะฐะน ะณะธ, ัะฐะผะพ ะฐะบะพ ะต ะฝะตะพะฑั
ะพะดะธะผะพ ะธ ะฟะพะดั
ะพะดััะพ.
ะะพะณะฐัะพ ะธะทะฟะพะปะทะฒะฐั ััะฝะบัะธั, ัะพัะผะฐัะธัะฐะน ะธะทะฒะธะบะฒะฐะฝะตัะพ ั ะฒ ะฑะปะพะบ ```tool_call``` ะฝะฐ ะพัะดะตะปะตะฝ ัะตะด, a ัะปะตะด ัะพะฒะฐ ัะต ะฟะพะปััะธั ัะตะทัะปัะฐั ะพั ะธะทะฟัะปะฝะตะฝะธะตัะพ ะฒ ะฑะปะพะบ ```toll_response```.
## ะจะฐะฑะปะพะฝ ะทะฐ ะธะทะฒะธะบะฒะฐะฝะต:
```tool_call
{{"name": <function-name>, "arguments": <args-json-object>}}```
"""
functions_text = json.dumps(functions, ensure_ascii=False, indent=2)
full_prompt = f"{system_prompt}\n## ะะฐะปะธัะฝะธ ััะฝะบัะธะธ:\n{functions_text}\n\n## ะะพััะตะฑะธัะตะปัะบะฐ ะทะฐัะฒะบะฐ:\n{user_query}"
chat = [{"role": "user", "content": full_prompt}]
return tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# Example usage
functions = [{
"name": "create_calendar_event",
"description": "Creates a new event in Google Calendar.",
"parameters": {
"type": "object",
"properties": {
"title": {"type": "string"},
"date": {"type": "string"},
"start_time": {"type": "string"},
"end_time": {"type": "string"}
},
"required": ["title", "date", "start_time", "end_time"]
}
}]
query = "ะกัะทะดะฐะน ััะฑะธัะธะต 'ะะพะดะธัะตะฝ ะฟัะตะณะปะตะด' ะทะฐ 8-ะผะธ ัะฝะธ 2025 ะพั 14:00 ะดะพ 14:30."
# Generate response
prompt = create_prompt(functions, query)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=2048,
temperature=0.1,
top_k=25,
top_p=1.0,
repetition_penalty=1.1,
do_sample=True,
eos_token_id=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<end_of_turn>")],
pad_token_id=tokenizer.eos_token_id
)
result = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(result)
```
</details>
## Performance & Dataset ๐
> ๐ **Full methodology, dataset details, and comprehensive evaluation results coming in the upcoming paper**
**Dataset:** 10,000+ bilingual (Bulgarian/English) function-calling examples across 1,000+ topics, including tool calls with single/multiple arguments, optional parameters, follow-up queries, multi-tool selection, ambiguous queries requiring clarification, and conversational interactions without tool use. Data sourced from manual curation and synthetic generation (Gemini Pro 2.5/GPT-4.1/Sonnet 4).
**Results:** Significant improvements in tool-use capabilities over base BgGPT models: 34.1% for 2.6B, 10.6% for 9B, and 1.0% for 27B models in [internal benchmarks](https://github.com/s-emanuilov/tucan). Beyond raw function-calling scores, all Tucan models demonstrate more natural conversational flow while maintaining tool-use capabilities, retaining their base knowledge.
## Acknowledgments ๐
Built on top of [BgGPT series](https://huggingface.co/collections/INSAIT-Institute/bggpt-gemma-2-673b972fe9902749ac90f6fe).
## Questions & Contact ๐ฌ
For questions, collaboration, or feedback: **[Connect on LinkedIn](https://www.linkedin.com/in/simeon-emanuilov/)** |
enoubi/XLM-RoBERTa-Twitter-Indonesian-Sarcastic-Few-Shot | enoubi | 2025-06-16T05:43:16Z | 250 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-11T04:37:59Z | ---
library_name: transformers
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: XLM-RoBERTa-Twitter-Indonesian-Sarcastic-Few-Shot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLM-RoBERTa-Twitter-Indonesian-Sarcastic-Few-Shot
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3513
- Accuracy: 0.8717
- F1: 0.7677
- Precision: 0.6994
- Recall: 0.8507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5833 | 1.0 | 31 | 0.5356 | 0.75 | 0.0 | 0.0 | 0.0 |
| 0.526 | 2.0 | 62 | 0.4851 | 0.75 | 0.0 | 0.0 | 0.0 |
| 0.4795 | 3.0 | 93 | 0.4745 | 0.7724 | 0.1644 | 1.0 | 0.0896 |
| 0.3989 | 4.0 | 124 | 0.3300 | 0.8657 | 0.6667 | 0.8780 | 0.5373 |
| 0.2827 | 5.0 | 155 | 0.3112 | 0.8657 | 0.7391 | 0.7183 | 0.7612 |
| 0.2006 | 6.0 | 186 | 0.2641 | 0.8955 | 0.7705 | 0.8545 | 0.7015 |
| 0.1357 | 7.0 | 217 | 0.3315 | 0.8881 | 0.7917 | 0.7403 | 0.8507 |
| 0.1251 | 8.0 | 248 | 0.4118 | 0.8433 | 0.7308 | 0.6404 | 0.8507 |
| 0.0643 | 9.0 | 279 | 0.4539 | 0.8918 | 0.7642 | 0.8393 | 0.7015 |
| 0.046 | 10.0 | 310 | 0.5066 | 0.8694 | 0.7518 | 0.7162 | 0.7910 |
### Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
|
Sah-Sapna-Kumari-Viral-Video/NEW.VIDEO.Sah.Sapna.Kumari.Viral.Video.Link.Download | Sah-Sapna-Kumari-Viral-Video | 2025-06-16T05:42:00Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:41:41Z | [](https://tinyurl.com/updateon365) |
alibabasglab/a_tflocoformer | alibabasglab | 2025-06-16T05:41:54Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-16T05:29:11Z | ---
license: apache-2.0
---
|
Nirma-Meena-Full-Video/TRENDING_Top.Nirma.Meena.Official.Viral.Video | Nirma-Meena-Full-Video | 2025-06-16T05:41:53Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:41:38Z | [](https://bit.ly/4lb0YGM)
|
New-parveen-virals/Video.parveen.viral.video.bilasipara.new.video.parbin.bilasipara.viral.video.link | New-parveen-virals | 2025-06-16T05:41:02Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:36:26Z | <a rel="nofollow" href="https://tinyurl.com/2urtu5zm">๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ L๐aแดed Video V๐ขral Video</a>
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> |
MinaMila/gemma_2b_unlearned_2nd_1e-5_1.0_0.5_0.25_0.75_epoch1 | MinaMila | 2025-06-16T05:40:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:38:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kleverer/natix-009 | kleverer | 2025-06-16T05:38:30Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-16T05:38:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
IoanaLiviaPopescu/real-data-synth-data-1200-1-Emil-Neural-whisper-small | IoanaLiviaPopescu | 2025-06-16T05:38:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ro",
"dataset:IoanaLivia/RealVoiceSynthVoice-1200-1-Emil-Neural",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-06-16T04:31:44Z | ---
library_name: transformers
language:
- ro
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- IoanaLivia/RealVoiceSynthVoice-1200-1-Emil-Neural
metrics:
- wer
model-index:
- name: IoanaLiviaPopescu/ IoanaLiviaPopescu/real-data-synth-data-1200-1-Emil-Neural-whisper-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IoanaLivia/RealVoiceSynthVoice-1200-1-Emil-Neural
type: IoanaLivia/RealVoiceSynthVoice-1200-1-Emil-Neural
config: default
split: test
args: 'split: validation'
metrics:
- name: Wer
type: wer
value: 16.43002028397566
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IoanaLiviaPopescu/ IoanaLiviaPopescu/real-data-synth-data-1200-1-Emil-Neural-whisper-small
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLivia/RealVoiceSynthVoice-1200-1-Emil-Neural dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3690
- Wer: 16.4300
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 0 | 0 | 0.6024 | 27.8812 |
| 0.2883 | 1.0 | 51 | 0.4003 | 17.5733 |
| 0.1092 | 2.0 | 102 | 0.3651 | 17.0570 |
| 0.0568 | 3.0 | 153 | 0.3690 | 16.4300 |
| 0.0331 | 4.0 | 204 | 0.3852 | 16.6513 |
| 0.0233 | 5.0 | 255 | 0.3967 | 17.0754 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Nirma-Meena-Full-Video/Nirma.Meena.Official.Viral.Video | Nirma-Meena-Full-Video | 2025-06-16T05:38:13Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:37:47Z | [](https://bit.ly/4lb0YGM)
|
yashkalu/deep_learning | yashkalu | 2025-06-16T05:37:47Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-16T05:37:47Z | ---
license: apache-2.0
---
|
kleverer/natix-008 | kleverer | 2025-06-16T05:36:48Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-16T05:36:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
s-emanuilov/Tucan-2.6B-v1.0 | s-emanuilov | 2025-06-16T05:35:49Z | 187 | 1 | null | [
"safetensors",
"gemma2",
"function_calling",
"MCP",
"tool_use",
"bg",
"arxiv:2503.23278",
"arxiv:2408.00118",
"arxiv:2412.10893",
"base_model:INSAIT-Institute/BgGPT-Gemma-2-2.6B-IT-v1.0",
"base_model:finetune:INSAIT-Institute/BgGPT-Gemma-2-2.6B-IT-v1.0",
"license:gemma",
"region:us"
] | null | 2025-06-07T21:26:39Z | ---
license: gemma
language:
- bg
base_model:
- INSAIT-Institute/BgGPT-Gemma-2-2.6B-IT-v1.0
tags:
- function_calling
- MCP
- tool_use
---
# Tucan-2.6B-v1.0
## Bulgarian Language Models for Function Calling ๐ง๐ฌ
> ๐ **Full methodology, dataset details, and evaluation results coming in the upcoming paper**
## Overview ๐
TUCAN (Tool-Using Capable Assistant Navigator) is a series of open-source Bulgarian language models fine-tuned specifically for function calling and tool use.
These models can interact with external tools, APIs, and databases, making them appropriate for building AI agents and [Model Context Protocol (MCP)](https://arxiv.org/abs/2503.23278) applications.
Built on top of [BgGPT models](https://huggingface.co/collections/INSAIT-Institute/bggpt-gemma-2-673b972fe9902749ac90f6fe) from [INSAIT Institute](https://insait.ai/), which were themselves built on [Gemma 2](https://arxiv.org/pdf/2408.00118), Tucan models have been enhanced with function-calling capabilities.
## Motivation ๐ฏ
Although BgGPT models demonstrate [strong Bulgarian language comprehension](https://arxiv.org/pdf/2412.10893), they face challenges in maintaining the precise formatting necessary for consistent function calling. Despite implementing detailed system prompts, their performance in this specific task remains suboptimal.
This project addresses that gap by fine-tuning BgGPT, providing the Bulgarian AI community with proper tool-use capabilities in their native language.
## Models and variants ๐ฆ
Available in three sizes with full models, LoRA adapters, and quantized GGUF variants:
<div align="center">
| Model Size | Full Model | LoRA Adapter | GGUF (Quantized) |
|------------|------------|--------------|------------------|
| **2.6B** | [Tucan-2.6B-v1.0](https://huggingface.co/s-emanuilov/Tucan-2.6B-v1.0) ๐| [LoRA](https://huggingface.co/s-emanuilov/Tucan-2.6B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan-2.6B-v1.0-GGUF) |
| **9B** | [Tucan-9B-v1.0](https://huggingface.co/s-emanuilov/Tucan-9B-v1.0) | [LoRA](https://huggingface.co/s-emanuilov/Tucan-9B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan-9B-v1.0-GGUF) |
| **27B** | [Tucan-27B-v1.0](https://huggingface.co/s-emanuilov/Tucan-27B-v1.0) | [LoRA](https://huggingface.co/s-emanuilov/Tucan-27B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan-27B-v1.0-GGUF) |
*GGUF variants include: q4_k_m, q5_k_m, q6_k, q8_0, q4_0 quantizations*
๐ *Current model/repo*
</div>
Models and quantizations are also available for easy use in Ollama: https://ollama.com/s_emanuilov/tucan
## Benchmarks ๐
All evaluations were performed using the [Tucan evaluation framework](https://github.com/s-emanuilov/tucan), with results averaged across multiple runs. Tucan models demonstrate superior function-calling capabilities compared to their BgGPT counterparts, with particularly strong improvements in smaller model sizes. To ensure no catastrophic forgetting occurred, we evaluated knowledge retention using [EleutherAI's lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) on Bulgarian benchmarks, confirming that each Tucan model maintains performance on par with its BgGPT equivalent.
<div align="center">
| Model | Function Calling | HellaswagBG | WinograndeBG | ARC-Easy-BG | ARC-Challenge-BG |
|-------|-----------------|-------------|--------------|-------------|------------------|
| **Tucan-2.6B-v1.0** ๐ฅ | **0.7875** | 0.5924 | 0.6456 | 0.5657 | 0.3754 |
| **Tucan-9B-v1.0** ๐ฅ | **0.8667** | 0.7046 | 0.7151 | 0.7024 | 0.5188 |
| **Tucan-27B-v1.0** ๐ฅ | **0.875** | 0.6179 | 0.6275 | 0.6486 | 0.442 |
| BgGPT-Gemma-2-2.6B-IT-v1.0 | 0.5874 | 0.6306 | 0.5821 | 0.5657 | 0.372 |
| BgGPT-Gemma-2-9B-IT-v1.0 | 0.7833 | 0.7057 | 0.719 | 0.7231 | 0.5188 |
| BgGPT-Gemma-2-27B-IT-v1.0 | 0.8667 | 0.62 | 0.6212 | 0.6587 | 0.459 |
*Note: 27B models were evaluated in 8-bit precision for comparison purposes.*
</div>
## Usage ๐ ๏ธ
### Quick start โก
```bash
pip install -U "transformers[torch]" accelerate bitsandbytes
```
### Prompt format โ๏ธ
**Critical:** Use this format for function calling for the best results.
<details>
<summary><strong>๐ Required system prompt template</strong></summary>
```
<bos><start_of_turn>user
ะขะธ ัะธ ะฟะพะปะตะทะตะฝ AI ะฐัะธััะตะฝั, ะบะพะนัะพ ะฟัะตะดะพััะฐะฒั ะฟะพะปะตะทะฝะธ ะธ ัะพัะฝะธ ะพัะณะพะฒะพัะธ.
ะะผะฐั ะดะพัััะฟ ะธ ะผะพะถะตั ะดะฐ ะธะทะฒะธะบะฐั ะตะดะฝะฐ ะธะปะธ ะฟะพะฒะตัะต ััะฝะบัะธะธ, ะทะฐ ะดะฐ ะฟะพะผะพะณะฝะตั ั ะฟะพััะตะฑะธัะตะปัะบะพัะพ ะทะฐะฟะธัะฒะฐะฝะต. ะะทะฟะพะปะทะฒะฐะน ะณะธ, ัะฐะผะพ ะฐะบะพ ะต ะฝะตะพะฑั
ะพะดะธะผะพ ะธ ะฟะพะดั
ะพะดััะพ.
ะะพะณะฐัะพ ะธะทะฟะพะปะทะฒะฐั ััะฝะบัะธั, ัะพัะผะฐัะธัะฐะน ะธะทะฒะธะบะฒะฐะฝะตัะพ ั ะฒ ะฑะปะพะบ ```tool_call``` ะฝะฐ ะพัะดะตะปะตะฝ ัะตะด, a ัะปะตะด ัะพะฒะฐ ัะต ะฟะพะปััะธั ัะตะทัะปัะฐั ะพั ะธะทะฟัะปะฝะตะฝะธะตัะพ ะฒ ะฑะปะพะบ ```toll_response```.
## ะจะฐะฑะปะพะฝ ะทะฐ ะธะทะฒะธะบะฒะฐะฝะต:
```tool_call
{"name": <function-name>, "arguments": <args-json-object>}```
## ะะฐะปะธัะฝะธ ััะฝะบัะธะธ:
[your function definitions here]
## ะะพััะตะฑะธัะตะปัะบะฐ ะทะฐัะฒะบะฐ:
[your query in Bulgarian]<end_of_turn>
<start_of_turn>model
```
</details>
### Note ๐
**The model only generates the `tool_call` blocks with function names and parameters - it doesn't actually execute the functions.** Your client application must parse these generated calls, execute the actual functions (API calls, database queries, etc.), and provide the results back to the model in `tool_response` blocks for the conversation to continue the interperation of the results. A full demo is comming soon.
### Python example ๐
<details>
<summary><strong>๐ป Complete Working Example</strong></summary>
```python
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
# Load model
model_name = "s-emanuilov/Tucan-2.6B-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager" # Required for Gemma models
)
# Create prompt with system template
def create_prompt(functions, user_query):
system_prompt = """ะขะธ ัะธ ะฟะพะปะตะทะตะฝ AI ะฐัะธััะตะฝั, ะบะพะนัะพ ะฟัะตะดะพััะฐะฒั ะฟะพะปะตะทะฝะธ ะธ ัะพัะฝะธ ะพัะณะพะฒะพัะธ.
ะะผะฐั ะดะพัััะฟ ะธ ะผะพะถะตั ะดะฐ ะธะทะฒะธะบะฐั ะตะดะฝะฐ ะธะปะธ ะฟะพะฒะตัะต ััะฝะบัะธะธ, ะทะฐ ะดะฐ ะฟะพะผะพะณะฝะตั ั ะฟะพััะตะฑะธัะตะปัะบะพัะพ ะทะฐะฟะธัะฒะฐะฝะต. ะะทะฟะพะปะทะฒะฐะน ะณะธ, ัะฐะผะพ ะฐะบะพ ะต ะฝะตะพะฑั
ะพะดะธะผะพ ะธ ะฟะพะดั
ะพะดััะพ.
ะะพะณะฐัะพ ะธะทะฟะพะปะทะฒะฐั ััะฝะบัะธั, ัะพัะผะฐัะธัะฐะน ะธะทะฒะธะบะฒะฐะฝะตัะพ ั ะฒ ะฑะปะพะบ ```tool_call``` ะฝะฐ ะพัะดะตะปะตะฝ ัะตะด, a ัะปะตะด ัะพะฒะฐ ัะต ะฟะพะปััะธั ัะตะทัะปัะฐั ะพั ะธะทะฟัะปะฝะตะฝะธะตัะพ ะฒ ะฑะปะพะบ ```toll_response```.
## ะจะฐะฑะปะพะฝ ะทะฐ ะธะทะฒะธะบะฒะฐะฝะต:
```tool_call
{{"name": <function-name>, "arguments": <args-json-object>}}```
"""
functions_text = json.dumps(functions, ensure_ascii=False, indent=2)
full_prompt = f"{system_prompt}\n## ะะฐะปะธัะฝะธ ััะฝะบัะธะธ:\n{functions_text}\n\n## ะะพััะตะฑะธัะตะปัะบะฐ ะทะฐัะฒะบะฐ:\n{user_query}"
chat = [{"role": "user", "content": full_prompt}]
return tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# Example usage
functions = [{
"name": "create_calendar_event",
"description": "Creates a new event in Google Calendar.",
"parameters": {
"type": "object",
"properties": {
"title": {"type": "string"},
"date": {"type": "string"},
"start_time": {"type": "string"},
"end_time": {"type": "string"}
},
"required": ["title", "date", "start_time", "end_time"]
}
}]
query = "ะกัะทะดะฐะน ััะฑะธัะธะต 'ะะพะดะธัะตะฝ ะฟัะตะณะปะตะด' ะทะฐ 8-ะผะธ ัะฝะธ 2025 ะพั 14:00 ะดะพ 14:30."
# Generate response
prompt = create_prompt(functions, query)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=2048,
temperature=0.1,
top_k=25,
top_p=1.0,
repetition_penalty=1.1,
do_sample=True,
eos_token_id=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<end_of_turn>")],
pad_token_id=tokenizer.eos_token_id
)
result = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(result)
```
</details>
## Performance & Dataset ๐
> ๐ **Full methodology, dataset details, and comprehensive evaluation results coming in the upcoming paper**
**Dataset:** 10,000+ bilingual (Bulgarian/English) function-calling examples across 1,000+ topics, including tool calls with single/multiple arguments, optional parameters, follow-up queries, multi-tool selection, ambiguous queries requiring clarification, and conversational interactions without tool use. Data sourced from manual curation and synthetic generation (Gemini Pro 2.5/GPT-4.1/Sonnet 4).
**Results:** Significant improvements in tool-use capabilities over base BgGPT models: 34.1% for 2.6B, 10.6% for 9B, and 1.0% for 27B models in [internal benchmarks](https://github.com/s-emanuilov/tucan). Beyond raw function-calling scores, all Tucan models demonstrate more natural conversational flow while maintaining tool-use capabilities, retaining their base knowledge.
## Acknowledgments ๐
Built on top of [BgGPT series](https://huggingface.co/collections/INSAIT-Institute/bggpt-gemma-2-673b972fe9902749ac90f6fe).
## Questions & Contact ๐ฌ
For questions, collaboration, or feedback: **[Connect on LinkedIn](https://www.linkedin.com/in/simeon-emanuilov/)**
|
viral-othoi-113-video-link/TRENDING.Top.Othoi.Official.Viral.Video | viral-othoi-113-video-link | 2025-06-16T05:35:32Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:35:22Z | 01 seconds ago
[๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ](https://sahabagi-mgi.blogspot.com/p/heres-now.html)
[๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ FREE](https://sahabagi-mgi.blogspot.com/p/heres-now.html)
<a href="https://sahabagi-mgi.blogspot.com/p/heres-now.html" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
willeybro/roadwork | willeybro | 2025-06-16T05:34:49Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-16T05:11:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Nirmit1/lora_bart_base_model | Nirmit1 | 2025-06-16T05:34:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:16:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
kleverer/natix-007 | kleverer | 2025-06-16T05:33:54Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-16T05:33:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mlx-community/llm-jp-3.1-13b-instruct4-8bit | mlx-community | 2025-06-16T05:32:21Z | 0 | 0 | mlx | [
"mlx",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"ja",
"base_model:llm-jp/llm-jp-3.1-13b-instruct4",
"base_model:quantized:llm-jp/llm-jp-3.1-13b-instruct4",
"license:apache-2.0",
"8-bit",
"region:us"
] | text-generation | 2025-06-16T05:10:04Z | ---
license: apache-2.0
language:
- en
- ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
library_name: mlx
inference: false
base_model: llm-jp/llm-jp-3.1-13b-instruct4
tags:
- mlx
---
# mlx-community/llm-jp-3.1-13b-instruct4-8bit
This model [mlx-community/llm-jp-3.1-13b-instruct4-8bit](https://huggingface.co/mlx-community/llm-jp-3.1-13b-instruct4-8bit) was
converted to MLX format from [llm-jp/llm-jp-3.1-13b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-13b-instruct4)
using mlx-lm version **0.24.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/llm-jp-3.1-13b-instruct4-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
Clip-Parveen-Viral-Video/Full.VIDEO.Parveen.Viral.Video.Tutorial.Official | Clip-Parveen-Viral-Video | 2025-06-16T05:29:15Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:28:54Z | Parveen Viral video took the internet viewers on various Leaked social media platforms. Parveen Video, a young and talented digital creator, recently became famous thanks to this interesting video.
<a href="https://t.co/98E3uGhPfJ" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-loss | EleutherAI | 2025-06-16T05:28:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:28:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
KaiChen1998/RACRO-7B-CRO | KaiChen1998 | 2025-06-16T05:28:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2_5_vl",
"image-text-to-text",
"multi-modal-reasoning",
"conversational",
"dataset:TIGER-Lab/ViRL39K",
"arxiv:2506.04559",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-15T13:22:47Z | ---
library_name: transformers
tags:
- multi-modal-reasoning
license: apache-2.0
datasets:
- TIGER-Lab/ViRL39K
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
new_version: KaiChen1998/RACRO-7B-CRO-GRPO
---
# RACRO-7B-CRO
<div align="center">
๐ [Paper](https://arxiv.org/abs/2506.04559) | ๐ป [Github](https://github.com/gyhdog99/RACRO2/) | ๐ค [RACRO-Models](https://huggingface.co/collections/KaiChen1998/racro-6848ec8c65b3a0bf33d0fbdb) | ๐ค [RACRO-Demo](https://huggingface.co/spaces/Emova-ollm/RACRO-demo)
</div>
## Model Summary
**RACRO** (Reasoning-Aligned Perceptual Decoupling via Caption Reward Optimization) is a novel framework that enables scalable and modular multimodal reasoning by aligning visual perception with a powerful text-only reasoner. RACRO addresses the key challenge of generating image captions that are both faithful and sufficiently informative for downstream reasoning. It leverages a reasoning-guided reinforcement learning strategy to train the visual extractor, using reward signals derived from the performance of a fixed, high-capacity text-only LLM. This decoupled design avoids costly retraining of vision-language alignments and allows seamless plug-and-play upgrades to more advanced reasoners. Experiments on multimodal math and science benchmarks show that RACRO achieves **state-of-the-art** performance among open models.
<div align="center">
<img src="https://github.com/gyhdog99/RACRO2/blob/main/assets/images/intro.png?raw=true" width=100%></img>
</div>
## Results
<div align="center">
<img src="https://github.com/gyhdog99/RACRO2/blob/main/assets/images/results.png?raw=true" width=100%></img>
</div>
## Usage
```python
from transformers import AutoProcessor, AutoTokenizer
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
########################
# === Configuration ===
########################
IMAGE_PATH = "./assets/images/demo_example.jpg"
QUESTION = "When the canister is momentarily stopped by the spring, by what distance $d$ is the spring compressed?"
MLLM_MODEL_PATH = "KaiChen1998/RACRO-7B-CRO"
LLM_MODEL_PATH = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" # feel free to use more advanced reasoners!
########################
# === Prompts ===
########################
SYSTEM_PROMPT_CAP = "You are given an image and a relevant question. Based on the query, please describe the image in details. Do not try to answer the question."
SYSTEM_PROMPT_LLM = "You are a helpful assistant."
CAPTION_PROMPT = "Question: {}\nPlease describe the image. DO NOT try to answer the question!"
LLM_PROMPT = """In the following text, you will receive a detailed caption of an image and a relevant question. In addition, you will be provided with a tentative model response. You goal is to answer the question using these information.
### The detailed caption of the provided image: {}
### Note that the caption might contain incorrect solutions, do not be misguided by them.
### A problem to be solved: {}
### A tentative model response: {}
### Note that the above tentative response might be inaccurate (due to calculation errors, incorrect logic/reasoning and so on), under such a case, please ignore it and give your own solutions. However, if you do not have enough evidence to show it is wrong, please output the tentative response."""
########################
# === Initialize Models ===
########################
processor = AutoProcessor.from_pretrained(MLLM_MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_PATH)
mllm = LLM(model=MLLM_MODEL_PATH, tensor_parallel_size=1, gpu_memory_utilization=0.8,
device='cuda:0', dtype="bfloat16", limit_mm_per_prompt={"image": 1})
llm = LLM(model=LLM_MODEL_PATH, tensor_parallel_size=1, gpu_memory_utilization=0.8,
device='cuda:1', dtype="bfloat16")
mllm_sampling = SamplingParams(temperature=0, max_tokens=8192)
llm_sampling = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192)
########################
# === Build Prompts ===
########################
def build_messages(image_path, question):
cap_msgs = [
{"role": "system", "content": SYSTEM_PROMPT_CAP},
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": CAPTION_PROMPT.format(question)}]}
]
qa_msgs = [
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": question + " Please think step by step. The final answer MUST BE put in \\boxed{}."}]}
]
return cap_msgs, qa_msgs
# === Run Captioning and QA ===
def run_mllm(image_tensor, cap_prompt, qa_prompt):
cap_output = mllm.generate([{"multi_modal_data": {"image": image_tensor}, "prompt": cap_prompt[0]}], sampling_params=mllm_sampling)
qa_output = mllm.generate([{"multi_modal_data": {"image": image_tensor}, "prompt": qa_prompt[0]}], sampling_params=mllm_sampling)
return cap_output[0].outputs[0].text, qa_output[0].outputs[0].text
# === Final Reasoning Step ===
def run_llm_reasoning(caption, question, answer):
messages = [
{"role": "system", "content": SYSTEM_PROMPT_LLM},
{"role": "user", "content": LLM_PROMPT.format(caption, question, answer)}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
output = llm.generate([{"prompt": prompt}], sampling_params=llm_sampling)
return output[0].outputs[0].text
########################
# === Pipeline ===
########################
cap_msgs, qa_msgs = build_messages(IMAGE_PATH, QUESTION)
cap_prompt = processor.apply_chat_template([cap_msgs], tokenize=False, add_generation_prompt=True)
qa_prompt = processor.apply_chat_template([qa_msgs], tokenize=False, add_generation_prompt=True)
image_tensor, _ = process_vision_info(cap_msgs)
caption_text, tentative_answer = run_mllm(image_tensor, cap_prompt, qa_prompt)
final_answer = run_llm_reasoning(caption_text, QUESTION, tentative_answer)
print("Final Answer:\n", final_answer)
```
## Citation
```bibtex
@article{gou2025perceptual,
author = {Gou, Yunhao and Chen, Kai and Liu, Zhili and Hong, Lanqing and Jin, Xin and Li, Zhenguo and Kwok, James T. and Zhang, Yu},
title = {Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning},
journal = {arXiv preprint arXiv:2506.04559},
year = {2025},
}
``` |
KaiChen1998/RACRO-7B-CRO-GRPO | KaiChen1998 | 2025-06-16T05:28:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2_5_vl",
"image-text-to-text",
"multi-modal-reasoning",
"conversational",
"dataset:TIGER-Lab/ViRL39K",
"arxiv:2506.04559",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-15T14:12:53Z | ---
library_name: transformers
tags:
- multi-modal-reasoning
license: apache-2.0
datasets:
- TIGER-Lab/ViRL39K
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
---
# RACRO-7B-CRO-GRPO
<div align="center">
๐ [Paper](https://arxiv.org/abs/2506.04559) | ๐ป [Github](https://github.com/gyhdog99/RACRO2/) | ๐ค [RACRO-Models](https://huggingface.co/collections/KaiChen1998/racro-6848ec8c65b3a0bf33d0fbdb) | ๐ค [RACRO-Demo](https://huggingface.co/spaces/Emova-ollm/RACRO-demo)
</div>
## Model Summary
**RACRO** (Reasoning-Aligned Perceptual Decoupling via Caption Reward Optimization) is a novel framework that enables scalable and modular multimodal reasoning by aligning visual perception with a powerful text-only reasoner. RACRO addresses the key challenge of generating image captions that are both faithful and sufficiently informative for downstream reasoning. It leverages a reasoning-guided reinforcement learning strategy to train the visual extractor, using reward signals derived from the performance of a fixed, high-capacity text-only LLM. This decoupled design avoids costly retraining of vision-language alignments and allows seamless plug-and-play upgrades to more advanced reasoners. Experiments on multimodal math and science benchmarks show that RACRO achieves **state-of-the-art** performance among open models.
<div align="center">
<img src="https://github.com/gyhdog99/RACRO2/blob/main/assets/images/intro.png?raw=true" width=100%></img>
</div>
## Results
<div align="center">
<img src="https://github.com/gyhdog99/RACRO2/blob/main/assets/images/results.png?raw=true" width=100%></img>
</div>
## Usage
```python
from transformers import AutoProcessor, AutoTokenizer
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
########################
# === Configuration ===
########################
IMAGE_PATH = "./assets/images/demo_example.jpg"
QUESTION = "When the canister is momentarily stopped by the spring, by what distance $d$ is the spring compressed?"
MLLM_MODEL_PATH = "KaiChen1998/RACRO-7B-CRO-GRPO"
LLM_MODEL_PATH = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" # feel free to use more advanced reasoners!
########################
# === Prompts ===
########################
SYSTEM_PROMPT_CAP = "You are given an image and a relevant question. Based on the query, please describe the image in details. Do not try to answer the question."
SYSTEM_PROMPT_LLM = "You are a helpful assistant."
CAPTION_PROMPT = "Question: {}\nPlease describe the image. DO NOT try to answer the question!"
LLM_PROMPT = """In the following text, you will receive a detailed caption of an image and a relevant question. In addition, you will be provided with a tentative model response. You goal is to answer the question using these information.
### The detailed caption of the provided image: {}
### Note that the caption might contain incorrect solutions, do not be misguided by them.
### A problem to be solved: {}
### A tentative model response: {}
### Note that the above tentative response might be inaccurate (due to calculation errors, incorrect logic/reasoning and so on), under such a case, please ignore it and give your own solutions. However, if you do not have enough evidence to show it is wrong, please output the tentative response."""
########################
# === Initialize Models ===
########################
processor = AutoProcessor.from_pretrained(MLLM_MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_PATH)
mllm = LLM(model=MLLM_MODEL_PATH, tensor_parallel_size=1, gpu_memory_utilization=0.8,
device='cuda:0', dtype="bfloat16", limit_mm_per_prompt={"image": 1})
llm = LLM(model=LLM_MODEL_PATH, tensor_parallel_size=1, gpu_memory_utilization=0.8,
device='cuda:1', dtype="bfloat16")
mllm_sampling = SamplingParams(temperature=0, max_tokens=8192)
llm_sampling = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192)
########################
# === Build Prompts ===
########################
def build_messages(image_path, question):
cap_msgs = [
{"role": "system", "content": SYSTEM_PROMPT_CAP},
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": CAPTION_PROMPT.format(question)}]}
]
qa_msgs = [
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": question + " Please think step by step. The final answer MUST BE put in \\boxed{}."}]}
]
return cap_msgs, qa_msgs
# === Run Captioning and QA ===
def run_mllm(image_tensor, cap_prompt, qa_prompt):
cap_output = mllm.generate([{"multi_modal_data": {"image": image_tensor}, "prompt": cap_prompt[0]}], sampling_params=mllm_sampling)
qa_output = mllm.generate([{"multi_modal_data": {"image": image_tensor}, "prompt": qa_prompt[0]}], sampling_params=mllm_sampling)
return cap_output[0].outputs[0].text, qa_output[0].outputs[0].text
# === Final Reasoning Step ===
def run_llm_reasoning(caption, question, answer):
messages = [
{"role": "system", "content": SYSTEM_PROMPT_LLM},
{"role": "user", "content": LLM_PROMPT.format(caption, question, answer)}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
output = llm.generate([{"prompt": prompt}], sampling_params=llm_sampling)
return output[0].outputs[0].text
########################
# === Pipeline ===
########################
cap_msgs, qa_msgs = build_messages(IMAGE_PATH, QUESTION)
cap_prompt = processor.apply_chat_template([cap_msgs], tokenize=False, add_generation_prompt=True)
qa_prompt = processor.apply_chat_template([qa_msgs], tokenize=False, add_generation_prompt=True)
image_tensor, _ = process_vision_info(cap_msgs)
caption_text, tentative_answer = run_mllm(image_tensor, cap_prompt, qa_prompt)
final_answer = run_llm_reasoning(caption_text, QUESTION, tentative_answer)
print("Final Answer:\n", final_answer)
```
## Citation
```bibtex
@article{gou2025perceptual,
author = {Gou, Yunhao and Chen, Kai and Liu, Zhili and Hong, Lanqing and Jin, Xin and Li, Zhenguo and Kwok, James T. and Zhang, Yu},
title = {Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning},
journal = {arXiv preprint arXiv:2506.04559},
year = {2025},
}
``` |
Cem13/lora_model1_48_Ard | Cem13 | 2025-06-16T05:28:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:27:35Z | ---
base_model: unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Cem13
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
DhanasriArul/Model2vec | DhanasriArul | 2025-06-16T05:26:31Z | 0 | 0 | model2vec | [
"model2vec",
"safetensors",
"embeddings",
"static-embeddings",
"sentence-transformers",
"license:mit",
"region:us"
] | null | 2025-06-16T05:15:41Z | ---
base_model: unknown
library_name: model2vec
license: mit
model_name: my_classifier_pipeline
tags:
- embeddings
- static-embeddings
- sentence-transformers
---
# my_classifier_pipeline Model Card
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top.
## Installation
Install model2vec using pip:
```
pip install model2vec[inference]
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec.inference import StaticModelPipeline
# Load a pretrained Model2Vec model
model = StaticModelPipeline.from_pretrained("my_classifier_pipeline")
# Predict labels
predicted = model.predict(["Example sentence"])
```
## Additional Resources
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
- [Website](https://minishlab.github.io/)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@article{minishlab2024model2vec,
author = {Tulkens, Stephan and {van Dongen}, Thomas},
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
year = {2024},
url = {https://github.com/MinishLab/model2vec}
}
``` |
tv-nulook-india-18k/Original.Full.Clip.nulook.india.Viral.Videos.Leaks.Official | tv-nulook-india-18k | 2025-06-16T05:25:09Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:24:03Z | Nulookindia Video New collections of Nulookindia Video now being a creator on Fanfix uploading adult contents
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
|
MinaMila/gemma_2b_unlearned_2nd_1e-5_1.0_0.5_0.5_0.05_epoch1 | MinaMila | 2025-06-16T05:24:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:22:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Ij4r/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sedate_shrewd_cobra | Ij4r | 2025-06-16T05:23:18Z | 19 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am sedate shrewd cobra",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-03T00:45:16Z | ---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sedate_shrewd_cobra
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am sedate shrewd cobra
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sedate_shrewd_cobra
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Ij4r/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sedate_shrewd_cobra", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
peammy/bert-base-uncased-issues-128 | peammy | 2025-06-16T05:22:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"fill-mask",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-06-16T05:05:25Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-issues-128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-issues-128
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1014 | 1.0 | 291 | 1.7049 |
| 1.6352 | 2.0 | 582 | 1.5080 |
| 1.4965 | 3.0 | 873 | 1.3509 |
| 1.3996 | 4.0 | 1164 | 1.3444 |
| 1.333 | 5.0 | 1455 | 1.2414 |
| 1.2871 | 6.0 | 1746 | 1.3665 |
| 1.2358 | 7.0 | 2037 | 1.2885 |
| 1.2016 | 8.0 | 2328 | 1.3422 |
| 1.1692 | 9.0 | 2619 | 1.2215 |
| 1.145 | 10.0 | 2910 | 1.1708 |
| 1.1269 | 11.0 | 3201 | 1.1325 |
| 1.1127 | 12.0 | 3492 | 1.1719 |
| 1.0898 | 13.0 | 3783 | 1.2175 |
| 1.0759 | 14.0 | 4074 | 1.2070 |
| 1.0764 | 15.0 | 4365 | 1.2166 |
| 1.0608 | 16.0 | 4656 | 1.2341 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|
yinita/cpdc-qwen3-14b-maintask2-v0614-v6-lora-cp-sync-by-lian-1epoch | yinita | 2025-06-16T05:21:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:18:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
FULL-VIDEO-Nirma-Meena-Viral-Video/FULL.VIDEO.LINK.Nirma.Meena.Viral.Video.Leaks.Official | FULL-VIDEO-Nirma-Meena-Viral-Video | 2025-06-16T05:18:50Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:18:11Z | <animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
nulook-india-viral-video/nulook.india.viral.video.original.nulook.india.nulookindia.video.mms | nulook-india-viral-video | 2025-06-16T05:18:01Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:16:56Z | "03 Second โ Nulookindia Video New collections of Nulookindia Video now being a creator on Fanfix uploading adult contents
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
|
Ashwani-0101/Yolo11L-construction | Ashwani-0101 | 2025-06-16T05:16:51Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T03:32:53Z | # YOLO 11L - Confusion Matrix and Other Result
Normalized Confusion Matrix (Closer to 1, better the performance for the specific class it has):

Other Results Compiled:

|
rafamartins/rafa.martins.e.cadeirante.twitter.rafa.martins.e.cadeirante.twitter | rafamartins | 2025-06-16T05:16:37Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:15:29Z | Watch ๐ข โค โค โค <a href="https://viraltrendzzz.com/scsscsc"> ๐ Click Here To link (Watch-Video-18rafa.martins.e.cadeirante.twitter)
๐ด โคโบDOWNLOAD๐๐๐ข โคWatch ๐ข โค โค โค <a href="https://viraltrendzzz.com/scsscsc"> ๐ Watch-Video-18rafa.martins.e.cadeirante.twitter |
MinaMila/gemma_2b_unlearned_2nd_1e-5_1.0_0.5_0.5_0.15_epoch2 | MinaMila | 2025-06-16T05:16:17Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:14:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
JayHyeon/Qwen_1.5B-math-VIPO_5e-7_3.0vpo_constant-5ep | JayHyeon | 2025-06-16T05:15:55Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:argilla/distilabel-math-preference-dpo",
"arxiv:2305.18290",
"base_model:Qwen/Qwen2.5-Math-1.5B",
"base_model:finetune:Qwen/Qwen2.5-Math-1.5B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:51:26Z | ---
base_model: Qwen/Qwen2.5-Math-1.5B
datasets: argilla/distilabel-math-preference-dpo
library_name: transformers
model_name: Qwen_1.5B-math-VIPO_5e-7_3.0vpo_constant-5ep
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for Qwen_1.5B-math-VIPO_5e-7_3.0vpo_constant-5ep
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) on the [argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="JayHyeon/Qwen_1.5B-math-VIPO_5e-7_3.0vpo_constant-5ep", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/3v3b3vb1)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.50.0
- Pytorch: 2.6.0
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
dgambettaphd/M_llm2_run2_gen9_WXS_doc1000_synt64_lr1e-04_acm_FRESH | dgambettaphd | 2025-06-16T05:14:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:13:55Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.25_0.25_epoch2 | MinaMila | 2025-06-16T05:12:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T05:10:38Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ramzanniaz331/lora_model_llama_3_2_3b_instruction_finetuning | ramzanniaz331 | 2025-06-16T05:11:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:11:01Z | ---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ramzanniaz331
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
King-Cane/Plesio-32B-Q4_K_S-GGUF | King-Cane | 2025-06-16T05:10:03Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"rolelplay",
"creative_writing",
"llama-cpp",
"gguf-my-repo",
"base_model:Delta-Vector/Plesio-32B",
"base_model:quantized:Delta-Vector/Plesio-32B",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T05:08:36Z | ---
base_model: Delta-Vector/Plesio-32B
library_name: transformers
tags:
- mergekit
- merge
- rolelplay
- creative_writing
- llama-cpp
- gguf-my-repo
---
# King-Cane/Plesio-32B-Q4_K_S-GGUF
This model was converted to GGUF format from [`Delta-Vector/Plesio-32B`](https://huggingface.co/Delta-Vector/Plesio-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Delta-Vector/Plesio-32B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo King-Cane/Plesio-32B-Q4_K_S-GGUF --hf-file plesio-32b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo King-Cane/Plesio-32B-Q4_K_S-GGUF --hf-file plesio-32b-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo King-Cane/Plesio-32B-Q4_K_S-GGUF --hf-file plesio-32b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo King-Cane/Plesio-32B-Q4_K_S-GGUF --hf-file plesio-32b-q4_k_s.gguf -c 2048
```
|
AhmadAli223/llama3.2_Final_FYP | AhmadAli223 | 2025-06-16T05:09:39Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-16T05:09:39Z | ---
license: apache-2.0
---
|
Bu-Guru-Salsa-viral-18k/Bu.Guru.Salsa.Jember.Video.Viral | Bu-Guru-Salsa-viral-18k | 2025-06-16T05:07:34Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-15T11:11:45Z | "03 Second โ Bu Guru Salsa Jember Video New collections of Bu Guru Salsa Jember Video now being a creator on Fanfix uploading adult contents.
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
|
Videos-Hawk-Tuah-Girl-Original-Video/Original.Full.Clip.Hawk.Tuah.Viral.Video.Leaks.Official | Videos-Hawk-Tuah-Girl-Original-Video | 2025-06-16T05:07:23Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:07:03Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
mezzo-fun-viral-video-Original/mezzo.fun.Viral.Video.Original.Clip | mezzo-fun-viral-video-Original | 2025-06-16T05:06:55Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T05:03:30Z | <a href="https://t.co/dTvnXACQMR" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
japat123/gemma_jun16_2 | japat123 | 2025-06-16T05:03:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/gemma-7b-bnb-4bit",
"base_model:quantized:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-06-16T05:02:22Z | ---
base_model: unsloth/gemma-7b-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** japat123
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
2-Wolf-1-Girl-viral-video-original-Link/FULL.VIDEO.two.wolf.one.girl.Viral.Video.Tutorial.Official | 2-Wolf-1-Girl-viral-video-original-Link | 2025-06-16T05:01:28Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:58:48Z | <animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
rmdhirr/suja-lorab-ep5-suja-6000 | rmdhirr | 2025-06-16T05:00:43Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:rmdhirr/merged-suja-latest",
"base_model:adapter:rmdhirr/merged-suja-latest",
"region:us"
] | null | 2025-06-16T04:59:37Z | ---
base_model: rmdhirr/merged-suja-latest
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
Khushi-Rao-Official-Viral-Video/Full.VIDEO.khushi.rao.Viral.Video.Tutorial.Official | Khushi-Rao-Official-Viral-Video | 2025-06-16T04:58:39Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:58:22Z | Khushi Rao Viral video took the internet viewers on various Leaked social media platforms. Khushi Rao Video, a young and talented digital creator, recently became famous thanks to this interesting video.
<a href="https://t.co/98E3uGhPfJ" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
Montecarlo2024/Qwen3-4B-Python-Combined-v2_GGUF | Montecarlo2024 | 2025-06-16T04:56:40Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"qwen3",
"text-generation-inference",
"unsloth",
"en",
"dataset:Montecarlo2024/Python-Combined-v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T22:29:09Z | ---
base_model: unsloth/qwen3-4b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- gguf
license: apache-2.0
language:
- en
datasets:
- Montecarlo2024/Python-Combined-v2
---
# Uploaded model
- **Developed by:** Montecarlo2024
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-4b-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
-
-
-
-
System Prompt: You should include the following in your system prompt for this model
-
-
SYSTEM """You are a helpful assistant. Respond directly to user questions without repeating the question or generating additional user prompts."""
_
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
New-tutorial-hawk-tuah-viral-video/FULL.VIDEO.hawk.tuah.Viral.Video.Tutorial.Official | New-tutorial-hawk-tuah-viral-video | 2025-06-16T04:52:21Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:52:03Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
MinaMila/gemma_2b_unlearned_2nd_1e-5_1.0_0.5_0.5_0.25_epoch1 | MinaMila | 2025-06-16T04:52:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:50:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Khadija-Video/VIDEO.Khadija.Viral.Video.Tutorial.Official | Khadija-Video | 2025-06-16T04:51:49Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:45:44Z | <a href="https://t.co/98E3uGhPfJ" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.25_0.5_epoch1 | MinaMila | 2025-06-16T04:51:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:49:51Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nieo23/emotion-analysis-with-distilbert | nieo23 | 2025-06-16T04:50:40Z | 3 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-06-13T09:01:07Z | ---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: nieo23/emotion-analysis-with-distilbert
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nieo23/emotion-analysis-with-distilbert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1386
- Validation Loss: 0.1496
- Train Accuracy: 0.9275
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(5e-05), 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.3844 | 0.1858 | 0.9235 | 0 |
| 0.1386 | 0.1496 | 0.9275 | 1 |
### Framework versions
- Transformers 4.52.4
- TensorFlow 2.18.0
- Datasets 3.6.0
- Tokenizers 0.21.1
|
HajimeOgawa/gemma3-4b-mbti-chat-tactics | HajimeOgawa | 2025-06-16T04:50:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-16T04:47:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
akunskripsiapillv1/finetuned-chartinstruct-llama2-statista-v2 | akunskripsiapillv1 | 2025-06-16T04:44:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-13T16:14:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tabitha-malisawa-video/FULL.VIDEO.Tabitha.Malisawa.Viral.Video.Tutorial.Official | tabitha-malisawa-video | 2025-06-16T04:44:19Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:44:09Z | <a href="https://tinyurl.com/Sapna-News?fkisreal" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
fanaf91318/whisper-large-ckp-4 | fanaf91318 | 2025-06-16T04:43:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-06-16T04:41:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.25_0.75_epoch1 | MinaMila | 2025-06-16T04:38:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:36:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Lytchbaball/Llama-3.1-8B-Instruct-Mental-Health-Classification | Lytchbaball | 2025-06-16T04:37:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mental_health",
"Meta-Llama-3.1-8B-Instruct",
"conversational",
"en",
"dataset:suchintikasarkar/sentiment-analysis-for-mental-health",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:27:32Z | ---
datasets:
- suchintikasarkar/sentiment-analysis-for-mental-health
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
- f1
pipeline_tag: text-generation
tags:
- mental_health
- Meta-Llama-3.1-8B-Instruct
---
## Llama-3.1-8B-Instruct-Mental-Health-Classification
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an [suchintikasarkar/sentiment-analysis-for-mental-health](https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health) dataset.
## Tutorial
Get started with the new Llama models and customize Llama-3.1-8B-It to predict various mental health disorders from the text by following the [Fine-Tuning Llama 3.1 for Text Classification](https://www.datacamp.com/tutorial/fine-tuning-llama-3-1) tutorial.
## Use with Transformers
```python
from transformers import AutoTokenizer,AutoModelForCausalLM,pipeline
import torch
model_id = "kingabzpro/Llama-3.1-8B-Instruct-Mental-Health-Classification"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
return_dict=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text = "I'm trapped in a storm of emotions that I can't control, and it feels like no one understands the chaos inside me"
prompt = f"""Classify the text into Normal, Depression, Anxiety, Bipolar, and return the answer as the corresponding mental health disorder label.
text: {text}
label: """.strip()
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipe(prompt, max_new_tokens=2, do_sample=True, temperature=0.1)
print(outputs[0]["generated_text"].split("label: ")[-1].strip())
# Depression
```
## Results
```bash
100%|โโโโโโโโโโ| 300/300 [03:24<00:00, 1.47it/s]
Accuracy: 0.913
Accuracy for label Normal: 0.972
Accuracy for label Depression: 0.913
Accuracy for label Anxiety: 0.667
Accuracy for label Bipolar: 0.800
```
**Classification Report:**
```bash
precision recall f1-score support
Normal 0.92 0.97 0.95 143
Depression 0.93 0.91 0.92 115
Anxiety 0.75 0.67 0.71 27
Bipolar 1.00 0.80 0.89 15
accuracy 0.91 300
macro avg 0.90 0.84 0.87 300
weighted avg 0.91 0.91 0.91 300
```
**Confusion Matrix:**
```bash
[[139 3 1 0]
[ 5 105 5 0]
[ 6 3 18 0]
[ 1 2 0 12]]
``` |
FormlessAI/db2f65e3-3813-44fb-8af6-258eb0046876 | FormlessAI | 2025-06-16T04:33:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"arxiv:2402.03300",
"base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"base_model:finetune:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"endpoints_compatible",
"region:us"
] | null | 2025-06-15T21:42:54Z | ---
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
library_name: transformers
model_name: db2f65e3-3813-44fb-8af6-258eb0046876
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for db2f65e3-3813-44fb-8af6-258eb0046876
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="FormlessAI/db2f65e3-3813-44fb-8af6-258eb0046876", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/nibb0cx5)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Henil1/vit-axavision-2-ChestX-BioGPT-v8 | Henil1 | 2025-06-16T04:31:02Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T04:31:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
KevinCha/webssl-dinov2-1b-psz14-img224-large-corpus | KevinCha | 2025-06-16T04:29:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T04:20:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
louzongzhi/CosmoGPT | louzongzhi | 2025-06-16T04:28:36Z | 0 | 0 | null | [
"license:cc-by-nc-nd-4.0",
"region:us"
] | null | 2025-06-16T04:28:36Z | ---
license: cc-by-nc-nd-4.0
---
|
enamul16012001/distilbert-base-uncased-finetuned-imdb | enamul16012001 | 2025-06-16T04:28:29Z | 8 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-05-11T18:32:18Z | ---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4418
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
mezzo-fun-18-video/FULL.VIDEOs.Mezzo.Fun.Viral.Video.Tutorial.Official | mezzo-fun-18-video | 2025-06-16T04:26:05Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:25:45Z | <a href="https://tinyurl.com/Sapna-News?fkisreal" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
ABP-Anchor-Chitra-Tripathi-tv/wATCH.ABP.Anchor.Chitra.Tripathi.viral.video.original | ABP-Anchor-Chitra-Tripathi-tv | 2025-06-16T04:25:37Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:25:23Z | 01 seconds ago
[๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ](https://infobal.com.ar/watch-full-video/?Bados.all)
[๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ FREE](https://infobal.com.ar/watch-full-video/?Bados.all)
<a href="https://infobal.com.ar/watch-full-video/?Bados.all" rel="nofollow" data-target="animated-image.originalLink"><img src="https://media.post.rvohealth.io/wp-content/uploads/2024/02/video-overlay-bed-sex-couple-original.jpg" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Henil1/vit-axavision-2-ChestX-v2 | Henil1 | 2025-06-16T04:24:48Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T04:24:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.5_0.05_epoch1 | MinaMila | 2025-06-16T04:24:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:22:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VIDEOS-two-wolf-one-girl-Viral-Video/CLIP.VIDEO.two.wolf.one.girl.Video.Tutorial.Official | VIDEOS-two-wolf-one-girl-Viral-Video | 2025-06-16T04:24:16Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:20:01Z | <animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> |
Henil1/vit-axavision-2-ChestX | Henil1 | 2025-06-16T04:24:06Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"image-captioning",
"vision-language",
"vit-gpt2",
"chest-xray",
"healthcare",
"axamine",
"finetuned",
"nlpconnect/vit-gpt2-image-captioning",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-14T18:50:44Z | ---
library_name: transformers
tags:
- image-captioning
- vision-language
- vit-gpt2
- chest-xray
- healthcare
- axamine
- finetuned
- nlpconnect/vit-gpt2-image-captioning
---
# Vit-Axavision-2-ChestX ๐ฉบ
This model is a fine-tuned version of [`nlpconnect/vit-gpt2-image-captioning`](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on a chest X-ray dataset. It is developed as part of the Axamine AI research efforts to explore medical vision-language applications. The model takes chest X-ray images as input and generates descriptive captions that may help in automated reporting, healthcare research, or AI-assisted diagnostics.
---
## Model Details
- **Base model:** nlpconnect/vit-gpt2-image-captioning
- **Architecture:** VisionEncoderDecoderModel (ViT encoder + GPT2 decoder)
- **Fine-tuned on dataset:** [Shrey-1329/cxiu_hf_dataset](https://huggingface.co/datasets/Shrey-1329/cxiu_hf_dataset)
- **Model size:** ~250M parameters
- **Developed by:** Henilsinh Raj (Axamine AI)
---
## Use Cases
### Intended Use
- Chest X-ray image captioning
- Healthcare research
- Medical AI experiments
- Educational purposes
### Limitations
- This model does **not** provide medical diagnosis.
- Captions are purely descriptive and may not fully reflect clinical accuracy.
---
## Usage
Hereโs how you can use the model for inference:
```python
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
from PIL import Image
import torch
import requests
# Load model
model_id = "Henil1/vit-axavision-2-ChestX"
model = VisionEncoderDecoderModel.from_pretrained(model_id)
feature_extractor = ViTImageProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Preprocess image
image = Image.open("your_image_path.jpg").convert("RGB")
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
# Generate caption
output_ids = model.generate(pixel_values, max_length=64, num_beams=4)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print("Generated caption:", caption)
```
---
## Citation
If you use this model, please cite:
```bibtex
@misc{henil2025axavision,
author = {Henilsinh Raj},
title = {Vit-Axavision-2-ChestX: Vision-Language Model for Chest X-Ray Captioning},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/Henil1/vit-axavision-2-ChestX}
}
|
IoanaLiviaPopescu/real-data-synth-data-1600-1-Standard-B-v0-whisper-small | IoanaLiviaPopescu | 2025-06-16T04:23:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ro",
"dataset:IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Standard-B-v0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-06-16T03:01:30Z | ---
library_name: transformers
language:
- ro
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Standard-B-v0
metrics:
- wer
model-index:
- name: IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1600-1-Standard-B-v0-whisper-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Standard-B-v0
type: IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Standard-B-v0
config: default
split: test
args: 'split: validation'
metrics:
- name: Wer
type: wer
value: 16.817259819288218
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1600-1-Standard-B-v0-whisper-small
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Standard-B-v0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3743
- Wer: 16.8173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 0 | 0 | 0.6024 | 27.8812 |
| 0.2466 | 1.0 | 63 | 0.3919 | 17.2414 |
| 0.0899 | 2.0 | 126 | 0.3716 | 16.8357 |
| 0.0465 | 3.0 | 189 | 0.3743 | 16.8173 |
| 0.0265 | 4.0 | 252 | 0.3880 | 17.2414 |
| 0.0187 | 5.0 | 315 | 0.4032 | 17.4073 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
AntonVoronov/ZulGene-v0.3 | AntonVoronov | 2025-06-16T04:20:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"biogpt",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-16T04:17:59Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
HajimeOgawa/gemma3-4b-mbti-chat-nature | HajimeOgawa | 2025-06-16T04:18:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-16T04:15:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
New-tutorial-College-Girls-viral-video-tv/FULL.VIDEO.College.Girls.Viral.Video.Tutorial.Official | New-tutorial-College-Girls-viral-video-tv | 2025-06-16T04:14:38Z | 0 | 0 | null | [
"region:us"
] | null | 2025-06-16T04:14:27Z | 01 seconds ago
[๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ](https://infobal.com.ar/watch-full-video/?Bados.all)
[๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ FREE](https://infobal.com.ar/watch-full-video/?Bados.all)
<a href="https://infobal.com.ar/watch-full-video/?Bados.all" rel="nofollow" data-target="animated-image.originalLink"><img src="https://media.post.rvohealth.io/wp-content/uploads/2024/02/video-overlay-bed-sex-couple-original.jpg" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Cnam-LMSSC/mimi_throat_microphone | Cnam-LMSSC | 2025-06-16T04:14:27Z | 158 | 0 | transformers | [
"transformers",
"safetensors",
"mimi",
"feature-extraction",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-06-03T01:29:56Z | ---
library_name: transformers
tags: []
---
## Inference script :
```python
import torch, torchaudio
from datasets import load_dataset
from moshi.models import loaders
weight_path = loaders.hf_hub_download("Cnam-LMSSC/mimi_throat_microphone", "kyutai_implementation.safetensors")
model = loaders.get_mimi(weight_path).eval()
model.set_num_codebooks(model.total_codebooks) # use all codebooks
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.throat_microphone"]["array"])
audio_24kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=24_000)
enhanced_audio_24kHz = model.decode(model.encode(audio_24kHz[None, None, :]))
```
For streaming usage, please refer to this [script](https://github.com/kyutai-labs/moshi/blob/main/scripts/mimi_streaming_test.py) |
Subsets and Splits