modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ribesstefano/RuleBert-v0.4-k4
ribesstefano
2024-01-07T23:12:30Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:papluca/xlm-roberta-base-language-detection", "base_model:finetune:papluca/xlm-roberta-base-language-detection", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T23:04:16Z
--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.4-k4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.4-k4 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3517 - F1: 0.5190 - Roc Auc: 0.6864 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3447 | 0.12 | 250 | 0.3402 | 0.4810 | 0.6688 | 0.0 | | 0.3501 | 0.24 | 500 | 0.3548 | 0.4884 | 0.6786 | 0.0 | | 0.3433 | 0.36 | 750 | 0.3596 | 0.4946 | 0.6885 | 0.0 | | 0.3521 | 0.48 | 1000 | 0.3762 | 0.4861 | 0.6648 | 0.0 | | 0.3466 | 0.6 | 1250 | 0.3496 | 0.4861 | 0.6648 | 0.0 | | 0.3285 | 0.72 | 1500 | 0.3519 | 0.4861 | 0.6648 | 0.0 | | 0.333 | 0.84 | 1750 | 0.3550 | 0.4861 | 0.6648 | 0.0 | | 0.3268 | 0.96 | 2000 | 0.3436 | 0.5190 | 0.6864 | 0.0 | | 0.3376 | 1.08 | 2250 | 0.3637 | 0.4978 | 0.6891 | 0.0 | | 0.3319 | 1.19 | 2500 | 0.3459 | 0.5190 | 0.6864 | 0.0 | | 0.3169 | 1.31 | 2750 | 0.3430 | 0.4810 | 0.6688 | 0.0 | | 0.3293 | 1.43 | 3000 | 0.3480 | 0.4861 | 0.6648 | 0.0 | | 0.3293 | 1.55 | 3250 | 0.3517 | 0.5190 | 0.6864 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ntc-ai/SDXL-LoRA-slider.double-exposure
ntc-ai
2024-01-07T23:11:10Z
41
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-07T23:11:07Z
--- language: - en thumbnail: "images/evaluate/double exposure.../double exposure_17_3.0.png" widget: - text: double exposure output: url: images/double exposure_17_3.0.png - text: double exposure output: url: images/double exposure_19_3.0.png - text: double exposure output: url: images/double exposure_20_3.0.png - text: double exposure output: url: images/double exposure_21_3.0.png - text: double exposure output: url: images/double exposure_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "double exposure" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - double exposure (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/double exposure_17_-3.0.png" width=256 height=256 /> | <img src="images/double exposure_17_0.0.png" width=256 height=256 /> | <img src="images/double exposure_17_3.0.png" width=256 height=256 /> | | <img src="images/double exposure_19_-3.0.png" width=256 height=256 /> | <img src="images/double exposure_19_0.0.png" width=256 height=256 /> | <img src="images/double exposure_19_3.0.png" width=256 height=256 /> | | <img src="images/double exposure_20_-3.0.png" width=256 height=256 /> | <img src="images/double exposure_20_0.0.png" width=256 height=256 /> | <img src="images/double exposure_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` double exposure ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.double-exposure', weight_name='double exposure.safetensors', adapter_name="double exposure") # Activate the LoRA pipe.set_adapters(["double exposure"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, double exposure" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 920+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ribesstefano/RuleBert-v0.4-k3
ribesstefano
2024-01-07T23:02:26Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:papluca/xlm-roberta-base-language-detection", "base_model:finetune:papluca/xlm-roberta-base-language-detection", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T22:57:47Z
--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.4-k3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.4-k3 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3407 - F1: 0.4872 - Roc Auc: 0.6726 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3575 | 0.12 | 250 | 0.3463 | 0.5176 | 0.6948 | 0.0 | | 0.347 | 0.24 | 500 | 0.3424 | 0.4507 | 0.6503 | 0.0714 | | 0.347 | 0.36 | 750 | 0.3390 | 0.4507 | 0.6503 | 0.0714 | | 0.3398 | 0.48 | 1000 | 0.3248 | 0.4872 | 0.6726 | 0.0 | | 0.3485 | 0.6 | 1250 | 0.3322 | 0.5000 | 0.6785 | 0.0 | | 0.3355 | 0.71 | 1500 | 0.3407 | 0.4872 | 0.6726 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tsunemoto/LiteLlama-460M-1T-GGUF
tsunemoto
2024-01-07T22:43:22Z
98
6
null
[ "gguf", "GGUF", "en", "endpoints_compatible", "region:us" ]
null
2024-01-07T22:41:51Z
--- title: "LiteLlama-460M-1T Quantized in GGUF" tags: - GGUF language: en --- ![Image description](https://i.postimg.cc/MGwhtFfF/tsune-fixed.png) # Tsunemoto GGUF's of LiteLlama-460M-1T This is a GGUF quantization of LiteLlama-460M-1T. ## Original Repo Link: [Original Repository](https://huggingface.co/ahxt/LiteLlama-460M-1T) ## Original Model Card: --- # LiteLlama: Reduced-Scale Llama In this series of repos, we present an open-source reproduction of Meta AI's [LLaMa 2](https://ai.meta.com/llama/). However, with significantly reduced model sizes, [LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) has 460M parameters trained with 1T tokens. ## Dataset and Tokenization We train our models on part of [RedPajama](https://www.together.xyz/blog/redpajama) dataset. We use the [GPT2Tokenizer](https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/gpt2#transformers.GPT2Tokenizer) to tokenize the text. ## Training Details The model was trained with ~1T tokens (0.98T). num of tokens = steps*length*batch_size=499679*1024*192=98240888832≈0.98T. The training curve is at this [WandB project](https://wandb.ai/ahxt/llama2_xs_460M_training_loss/reports/reduced_train_loss-23-09-05-20-25-43---Vmlldzo1MzIwNDUx?accessToken=x2ch3n30jo77p1x8y7q9js4h4d8zpjtz1tzot4xxullyefixp4jwt7au2q37k2q6). ### Using with HuggingFace Transformers The experimental checkpoints can be directly loaded by [Transformers](https://huggingface.co/transformers/) library. The following code snippet shows how to load the our experimental model and generate text with it. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_path = 'ahxt/LiteLlama-460M-1T' model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model.eval() prompt = 'Q: What is the largest bird?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids tokens = model.generate(input_ids, max_length=20) print( tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True) ) # Q: What is the largest bird?\nA: The largest bird is a black-headed gull. ``` ## Evaluation ### We evaluate our models on the MMLU task. | Models | #parameters |zero-shot | 5-shot | | --- | --- | --- | --- | | llama | 7B | 28.46 | 35.05 | | openllama | 3B | 24.90 | 26.71 | |TinyLlama-1.1B-step-50K-105b | 1.1B | 19.00 | 26.53 | | LiteLlama-460M-1T | 0.46B | 21.13 | 26.39 | ### [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__llama2_xs_460M_experimental) | Metric | Value | |-----------------------|---------------------------| | Avg. | 26.65 | | ARC (25-shot) | 24.91 | | HellaSwag (10-shot) | 38.47 | | MMLU (5-shot) | 26.17 | | TruthfulQA (0-shot) | 41.59 | | Winogrande (5-shot) | 49.88 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 5.51 | ## Contact This model is developed by [Xiaotian Han](https://ahxt.github.io/) from Texas A&M University and released under MIT License.
Jorsini/distilroberta-base-finetuned-media-center
Jorsini
2024-01-07T22:39:44Z
173
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-07T17:00:15Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-media-center results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-media-center This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 38 | 1.6960 | | No log | 2.0 | 76 | 1.5674 | | No log | 3.0 | 114 | 1.5541 | | No log | 4.0 | 152 | 1.5729 | | No log | 5.0 | 190 | 1.5164 | | No log | 6.0 | 228 | 1.5343 | | No log | 7.0 | 266 | 1.5232 | | No log | 8.0 | 304 | 1.4354 | | No log | 9.0 | 342 | 1.4203 | | No log | 10.0 | 380 | 1.3526 | | No log | 11.0 | 418 | 1.3911 | | No log | 12.0 | 456 | 1.4522 | | No log | 13.0 | 494 | 1.4324 | | 1.4666 | 14.0 | 532 | 1.3606 | | 1.4666 | 15.0 | 570 | 1.3669 | | 1.4666 | 16.0 | 608 | 1.3420 | | 1.4666 | 17.0 | 646 | 1.3544 | | 1.4666 | 18.0 | 684 | 1.3346 | | 1.4666 | 19.0 | 722 | 1.3747 | | 1.4666 | 20.0 | 760 | 1.3850 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
articblue/ppo-Pyramids
articblue
2024-01-07T22:38:42Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-01-07T22:38:40Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: articblue/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
christopheparisse/complexity_80_model
christopheparisse
2024-01-07T22:37:21Z
48
0
transformers
[ "transformers", "tf", "flaubert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-03T19:20:53Z
--- tags: - generated_from_keras_callback model-index: - name: complexity_80_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # complexity_80_model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.36.0 - TensorFlow 2.13.1 - Datasets 2.15.0 - Tokenizers 0.15.0
johnatanebonilla/es_pipeline
johnatanebonilla
2024-01-07T22:36:04Z
1
0
spacy
[ "spacy", "es", "doi:10.57967/hf/2998", "model-index", "region:us" ]
null
2024-01-07T18:13:11Z
--- tags: - spacy language: - es model-index: - name: es_pipeline results: - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.8148148148 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.96 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9407407407 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.7908256881 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.6862385321 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.8545454545 --- | Feature | Description | | --- | --- | | **Name** | `es_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `transformer`, `parser`, `morphologizer`, `tagger` | | **Components** | `transformer`, `parser`, `morphologizer`, `tagger` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (423 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `conj`, `cop`, `dep`, `det`, `discourse`, `expl:pass`, `expl:pv`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `obl:arg`, `punct`, `reparandum`, `xcomp` | | **`morphologizer`** | `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `POS=SCONJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT\|PunctType=Comm`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Degree=Dim\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Dem`, `NumType=Card\|Number=Plur\|POS=NUM`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Ger`, `NumForm=Digit\|POS=NOUN`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADV\|Polarity=Neg`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Quot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Quot`, `POS=NOUN`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `POS=PROPN`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=PUNCT\|PunctType=Colo`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Int`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `POS=X`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Degree=Dim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Semi`, `Degree=Dim\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=NOUN`, `POS=VERB`, `POS=PRON\|PronType=Exc`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=PRON`, `POS=ADJ`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=AUX\|VerbForm=Inf`, `Degree=Abs\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Degree=Dim\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Degree=Dim\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Degree=Dim\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `NumType=Card\|Number=Sing\|POS=NUM`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Quot`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `POS=ADV\|PronType=Int`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=PRON\|PronType=Int,Rel`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=SCONJ\|PronType=Int`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres`, `POS=PRON\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET`, `Number=Plur\|POS=PRON\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=X`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs` | | **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `VERB`, `X`, `ac0fs0`, `ac0ms0`, `ad0ms0`, `ao0fs0`, `ao0ms0`, `ap1fs0`, `ap1ms0`, `aq0cn0`, `aq0cp0`, `aq0cs0`, `aq0fp0`, `aq0fs0`, `aq0mp0`, `aq0ms0`, `aqccs0`, `aqdms0`, `az0000`, `cc`, `cs`, `da0fp0`, `da0fs0`, `da0mp0`, `da0ms0`, `da0ns0`, `dd0fp0`, `dd0fs0`, `dd0mp0`, `dd0ms0`, `de0cn0`, `di0cn0`, `di0cp0`, `di0cs0`, `di0fp0`, `di0fs0`, `di0mp0`, `di0ms0`, `dp1cps`, `dp1css`, `dp1msp`, `dp2cps`, `dp3cp0`, `dp3cs0`, `dt0cn0`, `dt0mp0`, `faa`, `fat`, `fc`, `fd`, `fia`, `fit`, `fp`, `fs`, `fx`, `i`, `nccp000`, `nccs000`, `ncfp000`, `ncfp00d`, `ncfs000`, `ncfs00d`, `ncmc000`, `ncmn000`, `ncmp000`, `ncms000`, `ncms00d`, `np00000`, `pc0cn000`, `pc1cp000`, `pc1cs000`, `pc2cp000`, `pc2cs000`, `pc3cn000`, `pc3cna00`, `pc3cpd00`, `pc3csd00`, `pc3fpa00`, `pc3fsa00`, `pc3mpa00`, `pc3msa00`, `pd0cs000`, `pd0fs000`, `pd0mp000`, `pd0ms000`, `pd0ns000`, `pi0cs000`, `pi0fp000`, `pi0fs000`, `pi0mp000`, `pi0ms000`, `pp1csn00`, `pp1cso00`, `pp1mp000`, `pp2cp00p`, `pp2cs00p`, `pp2csn00`, `pp3fp000`, `pp3fs000`, `pp3mp000`, `pp3ms000`, `pr000000`, `pr0cn000`, `pr0cs000`, `pt000000`, `pt0cn000`, `pt0cs000`, `rg`, `rn`, `spc00`, `sps00`, `vmg0000`, `vmic1s0`, `vmic3s0`, `vmif1s0`, `vmif3s0`, `vmii1p0`, `vmii1s0`, `vmii2s0`, `vmii3p0`, `vmii3s0`, `vmip1p0`, `vmip1s0`, `vmip2p0`, `vmip2s0`, `vmip3p0`, `vmip3s0`, `vmis1p0`, `vmis1s0`, `vmis2s0`, `vmis3p0`, `vmis3s0`, `vmm02s0`, `vmm03s0`, `vmn0000`, `vmp00pf`, `vmp00pm`, `vmp00sf`, `vmp00sm`, `vmsi2s0`, `vmsi3p0`, `vmsi3s0`, `vmsp2s0`, `vmsp3s0`, `vsii1s0`, `vsii2s0`, `vsii3p0`, `vsii3s0`, `vsip2s0`, `vsip3p0`, `vsip3s0`, `vsis1p0`, `vsis1s0`, `vsis3p0`, `vsis3s0`, `vsp00sm`, `vssi3p0`, `vssp3s0` | </details> ### Accuracy | Type | Score | | --- | --- | | `DEP_UAS` | 79.08 | | `DEP_LAS` | 68.62 | | `SENTS_P` | 82.46 | | `SENTS_R` | 88.68 | | `SENTS_F` | 85.45 | | `POS_ACC` | 96.00 | | `MORPH_ACC` | 94.07 | | `TAG_ACC` | 81.48 | | `TRANSFORMER_LOSS` | 702051.96 | | `PARSER_LOSS` | 1571327.24 | | `MORPHOLOGIZER_LOSS` | 73250.67 | | `TAGGER_LOSS` | 51762.61 |
vanidalearns/mobythecorgi
vanidalearns
2024-01-07T22:30:14Z
0
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-07T22:26:13Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mobythecorgi Dreambooth model trained by vanidalearns with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
christopheparisse/complexity_90mChildCorpora_model
christopheparisse
2024-01-07T22:29:13Z
47
0
transformers
[ "transformers", "tf", "flaubert", "text-classification", "generated_from_keras_callback", "base_model:flaubert/flaubert_base_cased", "base_model:finetune:flaubert/flaubert_base_cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-02T11:34:00Z
--- license: mit base_model: flaubert/flaubert_base_cased tags: - generated_from_keras_callback model-index: - name: complexity_90mChildCorpora_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # complexity_90mChildCorpora_model This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co/flaubert/flaubert_base_cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1001 - Validation Loss: 0.0943 - Train Accuracy: 0.9661 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 196040, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.1175 | 0.1154 | 0.9661 | 0 | | 0.1009 | 0.0963 | 0.9661 | 1 | | 0.1001 | 0.0943 | 0.9661 | 2 | ### Framework versions - Transformers 4.36.0 - TensorFlow 2.13.1 - Datasets 2.15.0 - Tokenizers 0.15.0
GDavila/sdxl-bling
GDavila
2024-01-07T22:26:11Z
12
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-07T22:02:16Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: 'a photo of a diamond watch, in the style of TOK' output: url: images/b3.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: TOK --- # sdxl-bling <Gallery /> ## Model description SDXL lora trained on diamond watches https:&#x2F;&#x2F;huggingface.co&#x2F;datasets&#x2F;GDavila&#x2F;diamondWatches ## Trigger words You should use `TOK` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/GDavila/sdxl-bling/tree/main) them in the Files & versions tab.
jysssacc/roberta-base_IA3_lr0.0005_bs4_epoch20_wd0.01
jysssacc
2024-01-07T22:19:05Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2024-01-07T21:56:55Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-base model-index: - name: roberta-base_IA3_lr0.0005_bs4_epoch20_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_IA3_lr0.0005_bs4_epoch20_wd0.01 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.5038 | 1.0 | 157 | 18.4857 | | 8.9314 | 2.0 | 314 | 5.8495 | | 5.4493 | 3.0 | 471 | 4.2791 | | 3.8453 | 4.0 | 628 | 3.4174 | | 3.4001 | 5.0 | 785 | 2.8767 | | 2.8518 | 6.0 | 942 | 2.5189 | | 2.7181 | 7.0 | 1099 | 2.2672 | | 2.3938 | 8.0 | 1256 | 2.0897 | | 2.2025 | 9.0 | 1413 | 1.9660 | | 2.1035 | 10.0 | 1570 | 1.8055 | | 1.9748 | 11.0 | 1727 | 1.6968 | | 1.8698 | 12.0 | 1884 | 1.6367 | | 1.7843 | 13.0 | 2041 | 1.5600 | | 1.7277 | 14.0 | 2198 | 1.5018 | | 1.6915 | 15.0 | 2355 | 1.4518 | | 1.5865 | 16.0 | 2512 | 1.4089 | | 1.5934 | 17.0 | 2669 | 1.3896 | | 1.5713 | 18.0 | 2826 | 1.3617 | | 1.5521 | 19.0 | 2983 | 1.3453 | | 1.5471 | 20.0 | 3140 | 1.3406 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
rjaiswal/segmind-1B-watches-all-brands-model-lora
rjaiswal
2024-01-07T22:16:26Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:segmind/SSD-1B", "base_model:adapter:segmind/SSD-1B", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-07T19:30:25Z
--- license: creativeml-openrail-m base_model: segmind/SSD-1B dataset: rjaiswal/watches_all_brands tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - rjaiswal/segmind-1B-watches-all-brands-model-lora These are LoRA adaption weights for segmind/SSD-1B. The weights were fine-tuned on the rjaiswal/watches_all_brands dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
stablediffusionapi/ae-t-pagepal
stablediffusionapi
2024-01-07T22:14:44Z
32
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-01-07T22:12:53Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # AE-t-pagepal API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/951895311704664375.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "ae-t-pagepal" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/ae-t-pagepal) Model link: [View model](https://modelslab.com/models/ae-t-pagepal) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "ae-t-pagepal", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
Felladrin/onnx-TinyMistral-248M
Felladrin
2024-01-07T22:07:16Z
18
7
transformers.js
[ "transformers.js", "onnx", "mistral", "text-generation", "conversational", "base_model:Locutusque/TinyMistral-248M", "base_model:quantized:Locutusque/TinyMistral-248M", "license:apache-2.0", "region:us" ]
text-generation
2023-11-16T07:20:42Z
--- license: apache-2.0 library_name: "transformers.js" base_model: Locutusque/TinyMistral-248M --- INT8 ONNX version of [Locutusque/TinyMistral-248M](https://huggingface.co/Locutusque/TinyMistral-248M) to use with [Transformers.js](https://huggingface.co/docs/transformers.js). ### Example usage #### Pipeline API ```js import { pipeline } from '@xenova/transformers'; const generator = await pipeline('text-generation', 'Felladrin/onnx-int8-TinyMistral-248M'); const output = await generator('Once upon a time,', { add_special_tokens: true, max_new_tokens: 60, repetition_penalty: 1.2}); console.log(output); // 'Once upon a time, the world was in turmoil. The United States had been on an unprecedented hiatus since 1970 and it seemed that America’s role as a global powerhouse would be at risk if we were to continue with our current political system.\n\nThe US has become' ``` #### Auto Classes ```js import { AutoModelForCausalLM, AutoTokenizer } from '@xenova/transformers'; const model_path = 'Felladrin/onnx-int8-TinyMistral-248M'; const model = await AutoModelForCausalLM.from_pretrained(model_path); const tokenizer = await AutoTokenizer.from_pretrained(model_path); const prompt = 'Once upon a time,'; const { input_ids } = tokenizer(prompt); const tokens = await model.generate(input_ids, { max_new_tokens: 60, repetition_penalty: 1.2}); console.log(tokenizer.decode(tokens[0], { skip_special_tokens: true })); // 'Once upon a time, the world was in turmoil. The United States had been on an unprecedented hiatus since 1970 and it seemed that America’s role as a global powerhouse would be at risk if we were to continue with our current political system.\n\nThe US has become' ```
ribesstefano/RuleBert-v0.3-k2
ribesstefano
2024-01-07T21:56:49Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:papluca/xlm-roberta-base-language-detection", "base_model:finetune:papluca/xlm-roberta-base-language-detection", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T21:55:23Z
--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.3-k2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.3-k2 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3031 - F1: 0.5103 - Roc Auc: 0.6747 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.452 | 0.06 | 250 | 0.3816 | 0.5227 | 0.6861 | 0.0 | | 0.3694 | 0.12 | 500 | 0.3191 | 0.5103 | 0.6747 | 0.0 | | 0.3523 | 0.18 | 750 | 0.3031 | 0.5103 | 0.6747 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Felladrin/onnx-TinyMistral-248M-SFT-v4
Felladrin
2024-01-07T21:56:37Z
6
0
transformers.js
[ "transformers.js", "onnx", "mistral", "text-generation", "conversational", "base_model:Felladrin/TinyMistral-248M-Chat-v2", "base_model:quantized:Felladrin/TinyMistral-248M-Chat-v2", "license:apache-2.0", "region:us" ]
text-generation
2023-12-11T20:30:04Z
--- license: apache-2.0 library_name: "transformers.js" base_model: Felladrin/TinyMistral-248M-SFT-v4 --- INT8 ONNX version of [Felladrin/TinyMistral-248M-SFT-v4](https://huggingface.co/Felladrin/TinyMistral-248M-SFT-v4) to use with [Transformers.js](https://huggingface.co/docs/transformers.js). ## Usage ```js import { pipeline } from '@xenova/transformers'; const prompt = `<|im_start|>user Invited some friends to come home today. Give me some ideas for games to play with them!<|im_end|> <|im_start|>assistant`; const generator = await pipeline('text-generation', 'Felladrin/onnx-TinyMistral-248M-SFT-v4'); const output = await generator(prompt, { add_special_tokens: true, max_new_tokens: 128, do_sample: true, penalty_alpha: 0.6, top_k: 4, repetition_penalty: 1.07 }); console.log(output[0].generated_text); // Sure! Here are a few suggestions for activities that could be added to a game night: // 1. Play board games and puzzle games // 2. Watch the movie trailer or gameplay videos // 3. Play a board game tournament or tournament with friends // 4. Watch movies on video or TV shows like Netflix, Hulu, and IFC.<|im_end|> ```
jysssacc/roberta-base_IA3_lr5e-05_bs4_epoch20_wd0.01
jysssacc
2024-01-07T21:51:05Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2024-01-07T17:59:14Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-base model-index: - name: roberta-base_IA3_lr5e-05_bs4_epoch20_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_IA3_lr5e-05_bs4_epoch20_wd0.01 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.9021 | 1.0 | 157 | 21.8572 | | 19.0595 | 2.0 | 314 | 20.8634 | | 18.1837 | 3.0 | 471 | 18.9005 | | 14.9492 | 4.0 | 628 | 15.5693 | | 12.6827 | 5.0 | 785 | 11.7522 | | 9.1129 | 6.0 | 942 | 8.7107 | | 7.9692 | 7.0 | 1099 | 6.9363 | | 6.5195 | 8.0 | 1256 | 6.1572 | | 5.932 | 9.0 | 1413 | 5.7736 | | 5.8208 | 10.0 | 1570 | 5.5329 | | 5.5728 | 11.0 | 1727 | 5.3653 | | 5.447 | 12.0 | 1884 | 5.2402 | | 5.2935 | 13.0 | 2041 | 5.1424 | | 5.243 | 14.0 | 2198 | 5.0646 | | 5.143 | 15.0 | 2355 | 5.0053 | | 5.0448 | 16.0 | 2512 | 4.9583 | | 5.0317 | 17.0 | 2669 | 4.9230 | | 5.0272 | 18.0 | 2826 | 4.8999 | | 4.9883 | 19.0 | 2983 | 4.8863 | | 4.9729 | 20.0 | 3140 | 4.8816 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/Sao10K-Winterreise-m7-GGUF
s3nh
2024-01-07T21:46:47Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T21:12:44Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Sao10K/Winterreise-m7). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
gputrain/rl_course_vizdoom_health_gathering_supreme
gputrain
2024-01-07T21:46:19Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T21:45:56Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.44 +/- 3.57 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r gputrain/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
s3nh/Sao10K-Stheno-L2-13B-GGUF
s3nh
2024-01-07T21:46:09Z
17
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T20:55:30Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Sao10K/Stheno-L2-13B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
vkamenski/Reinforce-cart-pole-v1
vkamenski
2024-01-07T21:44:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-12-31T16:13:04Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cart-pole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 482.00 +/- 19.19 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
articblue/ppo-Pyramid
articblue
2024-01-07T21:37:42Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-01-07T21:37:40Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: articblue/ppo-Pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
andlock/ppo-LunarLander-v2
andlock
2024-01-07T21:31:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T21:30:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.43 +/- 19.68 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kiriku/whisper-base-en-homophone
kiriku
2024-01-07T21:26:11Z
89
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "en", "dataset:kiriku/Homophones_filted_dataset", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-07T16:28:52Z
--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - kiriku/Homophones_filted_dataset metrics: - wer model-index: - name: Homophones_filted_dataset Whisper base en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'Homophones in Common Voice 15.0 ' type: kiriku/Homophones_filted_dataset args: 'config: en, split: test' metrics: - name: Wer type: wer value: 22.51904761904762 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Homophones_filted_dataset Whisper base en This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Homophones in Common Voice 15.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4026 - Wer: 22.5190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3224 | 0.25 | 1000 | 0.4419 | 24.7690 | | 0.3445 | 0.5 | 2000 | 0.4162 | 23.0405 | | 0.3141 | 0.75 | 3000 | 0.4077 | 22.9357 | | 0.3017 | 1.0 | 4000 | 0.4026 | 22.5190 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.15.0 - Tokenizers 0.15.0
NLPProject2023Z/xlnet_regression_corrected
NLPProject2023Z
2024-01-07T21:24:49Z
117
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-07T21:24:30Z
--- tags: - generated_from_trainer model-index: - name: xlnet_regression_corrected results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet_regression_corrected This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 160 | 0.3655 | | No log | 2.0 | 320 | 0.3655 | | No log | 3.0 | 480 | 0.3655 | | 0.3548 | 4.0 | 640 | 0.3655 | | 0.3548 | 5.0 | 800 | 0.3655 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
stannisozbov/whisper-small-tr-stann
stannisozbov
2024-01-07T21:20:29Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "dataset:mozilla-foundation/common_voice_16_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-07T00:24:25Z
--- language: - tr license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 model-index: - name: Whisper Small TR - Stann results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small TR - Stann This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2717 - eval_wer: 103.1665 - eval_runtime: 5470.4107 - eval_samples_per_second: 2.017 - eval_steps_per_second: 0.252 - epoch: 0.37 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
AlaGrine/distilgpt2-finetuned-3GPP-5G
AlaGrine
2024-01-07T21:08:04Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:AlaGrine/distilgpt2-finetuned-3GPP-5G", "base_model:finetune:AlaGrine/distilgpt2-finetuned-3GPP-5G", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-06T18:14:48Z
--- license: apache-2.0 base_model: AlaGrine/distilgpt2-finetuned-3GPP-5G tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-3GPP-5G results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-3GPP-5G This model is a fine-tuned version of [AlaGrine/distilgpt2-finetuned-3GPP-5G](https://huggingface.co/AlaGrine/distilgpt2-finetuned-3GPP-5G) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7394 | 2.7276 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
Akbartus/Lora-360-model
Akbartus
2024-01-07T21:06:37Z
6
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-07T20:54:54Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: 360, 360 view widget: - text: 360 view ---
learn3r/longt5_xl_govreport_4096_e40
learn3r
2024-01-07T20:56:47Z
11
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "generated_from_trainer", "dataset:scrolls", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-06T13:52:27Z
--- tags: - generated_from_trainer datasets: - scrolls model-index: - name: longt5_xl_govreport_4096_e40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longt5_xl_govreport_4096_e40 This model was trained from scratch on the scrolls dataset. It achieves the following results on the evaluation set: - Loss: 3.8241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0366 | 1.0 | 68 | 3.8434 | | 0.0343 | 1.99 | 136 | 3.9506 | | 0.0347 | 2.99 | 204 | 3.9071 | | 0.039 | 3.99 | 272 | 3.6371 | | 0.0367 | 4.99 | 340 | 3.8241 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
NLPProject2023Z/roberta_regression_corrected
NLPProject2023Z
2024-01-07T20:50:01Z
173
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-07T20:49:35Z
--- tags: - generated_from_trainer model-index: - name: roberta_regression_corrected results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_regression_corrected This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 160 | 0.5899 | | No log | 2.0 | 320 | 0.5899 | | No log | 3.0 | 480 | 0.5899 | | 0.5781 | 4.0 | 640 | 0.5899 | | 0.5781 | 5.0 | 800 | 0.5899 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
spolivin/alz-mri-vit
spolivin
2024-01-07T20:44:50Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:Falah/Alzheimer_MRI", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-07T19:54:17Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - f1 model-index: - name: alz-mri-vit results: - task: name: image-classification type: image-classification dataset: name: Falah/Alzheimer_MRI type: Falah/Alzheimer_MRI config: default split: train args: default metrics: - name: f1 type: f1 value: 0.930865 datasets: - Falah/Alzheimer_MRI --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alz-mri-vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on Falah/Alzheimer_MRI dataset (fine-tuning procedure is described [here](https://huggingface.co/spolivin/alz-mri-vit/blob/main/vit_finetuning.ipynb)). It achieves the following results on the evaluation set: - Loss: 0.1875 - F1: 0.9309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1218 | 1.0 | 64 | 0.9419 | 0.5742 | | 0.94 | 2.0 | 128 | 0.9054 | 0.6029 | | 0.9123 | 3.0 | 192 | 0.9019 | 0.5262 | | 0.8625 | 4.0 | 256 | 0.8465 | 0.6029 | | 0.8104 | 5.0 | 320 | 0.7810 | 0.6319 | | 0.7244 | 6.0 | 384 | 0.7278 | 0.7037 | | 0.697 | 7.0 | 448 | 0.6300 | 0.7480 | | 0.5865 | 8.0 | 512 | 0.5659 | 0.7662 | | 0.5199 | 9.0 | 576 | 0.5445 | 0.7721 | | 0.4734 | 10.0 | 640 | 0.6750 | 0.7185 | | 0.4399 | 11.0 | 704 | 0.4893 | 0.8274 | | 0.3817 | 12.0 | 768 | 0.5578 | 0.7844 | | 0.3318 | 13.0 | 832 | 0.4699 | 0.8228 | | 0.3096 | 14.0 | 896 | 0.4460 | 0.8399 | | 0.2787 | 15.0 | 960 | 0.4105 | 0.8399 | | 0.2517 | 16.0 | 1024 | 0.3488 | 0.8578 | | 0.2346 | 17.0 | 1088 | 0.3877 | 0.8773 | | 0.2286 | 18.0 | 1152 | 0.3420 | 0.8575 | | 0.1914 | 19.0 | 1216 | 0.4123 | 0.8682 | | 0.1844 | 20.0 | 1280 | 0.2894 | 0.8913 | | 0.173 | 21.0 | 1344 | 0.3197 | 0.8887 | | 0.1687 | 22.0 | 1408 | 0.2626 | 0.9075 | | 0.1601 | 23.0 | 1472 | 0.2951 | 0.9068 | | 0.1466 | 24.0 | 1536 | 0.2666 | 0.9049 | | 0.1468 | 25.0 | 1600 | 0.2136 | 0.9103 | | 0.1226 | 26.0 | 1664 | 0.2387 | 0.9127 | | 0.1186 | 27.0 | 1728 | 0.2131 | 0.9271 | | 0.0951 | 28.0 | 1792 | 0.2520 | 0.9130 | | 0.1049 | 29.0 | 1856 | 0.2096 | 0.9259 | | 0.0936 | 30.0 | 1920 | 0.1875 | 0.9309 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
yy0514/llama2-7b-chat-qlora-lek-train-4-epochs-run2
yy0514
2024-01-07T20:44:24Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-07T19:52:03Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: llama2-7b-chat-qlora-lek-train-4-epochs-recheck results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b-chat-qlora-lek-train-4-epochs-recheck This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
AswanthCManoj/azma-tinyllama-instruct-v2-adapter
AswanthCManoj
2024-01-07T20:37:10Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-01-07T20:33:08Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
ostapeno/newt_adaNeo1B_wiqa_what_is_the_final_step_of_the_following_process_sbs0.5_svdemb_sgd_fu
ostapeno
2024-01-07T20:36:50Z
0
0
null
[ "region:us" ]
null
2024-01-07T11:22:13Z
Number of experts present in the library: 5 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | wiqa_what_is_the_final_step_of_the_following_process_v3 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora | | wiqa_what_is_the_final_step_of_the_following_process_v2 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora | | wiqa_what_is_the_final_step_of_the_following_process | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora | | wiqa_what_is_the_final_step_of_the_following_process_v4 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora | | wiqa_what_is_the_final_step_of_the_following_process_v1 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora | Last updated on: 2024-01-07 20:36:50+00:00
s3nh/BEE-spoke-data-TinyLlama-3T-1.1bee-GGUF
s3nh
2024-01-07T20:34:46Z
0
0
transformers
[ "transformers", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T20:34:46Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/BEE-spoke-data/TinyLlama-3T-1.1bee). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
LoneStriker/MistralTrix-v1-4.0bpw-h6-exl2
LoneStriker
2024-01-07T20:26:54Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T20:24:51Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation dtype: bfloat16 --- # Results: T: 🟦 Model: CultriX/MistralTrix-v1 📑 Average: 73.39 ARC: 72.27 HellaSwag: 88.33 MMLU: 65.24 TruthfulQA: 70.73 Winogrande: 80.98 GSM8K: 62.77 # Edit/Disclaimer: Currently the #1 ranked 7B LLM on the LLM Leaderboards, woah! I did not expect that result at all and am in no way a professional when it comes to LLM's or computer science in general, just a guy that likes to nerd about and tinker around. For those wondering how I achieved this, the answer is that I simply attempted to apply the techniques outlined in this amazing article myself: https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac Therefore, all credit basically goes to the guy who wrote that. He offers the exact Colab notebook I used to train this model for free, as well as a really nice GitHub page I hope he doesn't mind me sharing: https://github.com/mlabonne/llm-course/ So huge thank you to him for sharing his knowledge and learning me a thing or two in the process! # GGUF I attempted to quantisize the model myself, which again I pretty much have no clue about, but it seems to run fine for me when I test them: https://huggingface.co/CultriX/MistralTrix-v1-GGUF I'll say it one more time though: "I am a complete beginner to all of this, so if these do end up sucking don't be surprised." You have been warned :) # Description: (trained on a single Colab GPU in less than a few hours) MistralTrix-v1 is an zyh3826/GML-Mistral-merged-v1 model that has been further fine-tuned with Direct Preference Optimization (DPO) using Intel's dataset for neural-chat-7b-v3-1. It surpasses the original model on several benchmarks (see results). It is directly inspired by the RLHF process described by Intel/neural-chat-7b-v3-1's authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. The code to train this model is available on Google Colab and GitHub. Fine-tuning took about an hour on Google Colab A-1000 GPU with 40GB VRAM. # TRAINING SPECIFICATIONS > LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) > Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False > Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) > Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=200, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) > Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, )
LoneStriker/MistralTrix-v1-3.0bpw-h6-exl2
LoneStriker
2024-01-07T20:19:53Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T20:18:18Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation dtype: bfloat16 --- # Results: T: 🟦 Model: CultriX/MistralTrix-v1 📑 Average: 73.39 ARC: 72.27 HellaSwag: 88.33 MMLU: 65.24 TruthfulQA: 70.73 Winogrande: 80.98 GSM8K: 62.77 # Edit/Disclaimer: Currently the #1 ranked 7B LLM on the LLM Leaderboards, woah! I did not expect that result at all and am in no way a professional when it comes to LLM's or computer science in general, just a guy that likes to nerd about and tinker around. For those wondering how I achieved this, the answer is that I simply attempted to apply the techniques outlined in this amazing article myself: https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac Therefore, all credit basically goes to the guy who wrote that. He offers the exact Colab notebook I used to train this model for free, as well as a really nice GitHub page I hope he doesn't mind me sharing: https://github.com/mlabonne/llm-course/ So huge thank you to him for sharing his knowledge and learning me a thing or two in the process! # GGUF I attempted to quantisize the model myself, which again I pretty much have no clue about, but it seems to run fine for me when I test them: https://huggingface.co/CultriX/MistralTrix-v1-GGUF I'll say it one more time though: "I am a complete beginner to all of this, so if these do end up sucking don't be surprised." You have been warned :) # Description: (trained on a single Colab GPU in less than a few hours) MistralTrix-v1 is an zyh3826/GML-Mistral-merged-v1 model that has been further fine-tuned with Direct Preference Optimization (DPO) using Intel's dataset for neural-chat-7b-v3-1. It surpasses the original model on several benchmarks (see results). It is directly inspired by the RLHF process described by Intel/neural-chat-7b-v3-1's authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. The code to train this model is available on Google Colab and GitHub. Fine-tuning took about an hour on Google Colab A-1000 GPU with 40GB VRAM. # TRAINING SPECIFICATIONS > LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) > Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False > Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) > Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=200, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) > Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, )
Yntec/ResidentCNZCartoon3D
Yntec
2024-01-07T20:17:34Z
1,502
2
diffusers
[ "diffusers", "safetensors", "Style", "Cartoon", "Disney", "Pixar", "Dreamworks", "residentchiefnz", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-07T19:25:13Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Style - Cartoon - Disney - Pixar - Dreamworks - residentchiefnz - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers --- # RCNZ Cartoon 3D v2 Original page: https://civitai.com/models/66347?modelVersionId=82547 Samples and prompts (in no particular order): ![Cartoon 3D Free AI image generator samples](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/A0V4NM4RSEJzvFUi96UqM.png) (Click for larger) highquality, masterpiece, 1girl, Chi-Chi, close up, arms up, pink helmet, black hair, black eyes, blush, bikini armor, enjoying, aqua cape, pink gloves, pink boots, cleavage. cave, rock, mountain. blue collar ultra high res, a cute girl, detailed, cg, zelda princess, AS Younger, cute pose cute sister playing chess, DETAILED CHIBI, Magazine ad, iconic, 1940, from the movie, Cartoon, sharp focus. acrylic art on canvas by Disney and Clay Mann and ROSSDRAWS. Highly detailed, High Quality, Masterpiece, beautiful, cute girl as toon plumber, blue cap, red overalls, Peach
ryusangwon/7243_Llama-2-13b-hf
ryusangwon
2024-01-07T20:10:43Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:cnn_dailymail", "base_model:meta-llama/Llama-2-13b-hf", "base_model:adapter:meta-llama/Llama-2-13b-hf", "region:us" ]
null
2024-01-07T20:10:35Z
--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: 7243_Llama-2-13b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 7243_Llama-2-13b-hf This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
EscVM/gpt2-alpaca-single-gpu-train
EscVM
2024-01-07T20:09:02Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T18:51:27Z
--- license: apache-2.0 language: - en metrics: - perplexity library_name: transformers widget: - text: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nWhat is life?\n\n### Response:\n" example_title: "Example: what is life?" --- # GPT-2 Instruction Tuning with a Single GPU 😋 The model and all artifacts in this repository are obtained by full fine-tuning the base GPT-2 model on the [Stanford Alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca) with a single GPU with less than 8 GB of memory. The dataset was filtered using the `max_length` hyperparameter (maximum number of tokens per example), and gradient accumulation was applied to significantly reduce the memory footprint. Results with the base model (124M parameters) are acceptable 😊, but further hyperparameters search and tricks could most probably lead to better results. Surely, it is an “affordable” playground to play with this important step of the pipeline that transforms a model from an LLM to a usable and querable model. ## 1.0 Fine-Tuning Hyperparameters | Parameter | Value | |-----------------------------|------------------------| | num_epochs | 35 | | lr | 1e-5 | | num_warmup_steps | 300 | | weight_decay | 0.0 | | batch_size | 16 | | gradient_accumulation_steps | 8 | | max_grad_norm | 2.0 | | checkpoint_path | 'modelstore' | | logs_path | 'logs' | | max_length | 140 | | eval_split | 0.1 | | seed | 9 | ## 2.0 Examples | Key | Value | | -------------- | ------------ | | temperature | 0.7 | | do_sample | True | | max_new_tokens | 150 | | top_p | 0.92 | | top_k | 0 | ### 2.1 First example **Instruction:** ``` What is the capital of France? ``` **Response:** ``` The capital of France is Paris. ``` ### 2.2 Second example **Instruction:** ``` Give three tips to improve my writing. ``` **Response:** ``` 1. Break up the sentences into smaller, more manageable chunks. 2. Use regular and non-consecutive paragraphs. 3. Include a clear goal in your writing. ``` ### 2.3 Third example **Instruction:** ``` What is life? ``` **Response:** ``` Life is like a rollercoaster ride, filled with ups and downs and twists and turns. It is a journey full of highs and lows, but there are also rewards and punishments to be found along the way. Life can be unpredictable and unpredictable, so it is important to have a plan in place to stay on track and make the most of your opportunities. ``` ## 3.0 References - **🚀 Dive into the Code:** [GitHub Repository](https://github.com/EscVM/EscVM_YT/blob/master/Notebooks/2%20-%20PT1.X%20DeepAI-Quickie/pt_1_instruction_tuning.ipynb) - **📚 Explore the Dataset:** [Stanford Alpaca Dataset](https://huggingface.co/datasets/tatsu-lab/alpaca)
debisoft/stamen-wc-gan
debisoft
2024-01-07T20:04:14Z
0
0
null
[ "pytorch", "huggan", "gan", "license:mit", "region:us" ]
null
2024-01-06T18:51:00Z
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-7.0bpw-h6-exl2
LoneStriker
2024-01-07T19:49:15Z
8
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T18:52:55Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
Buseak/canine_vowelizer_0706_v2_retrain_on_0701
Buseak
2024-01-07T19:46:45Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-07T18:57:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: canine_vowelizer_0706_v2_retrain_on_0701 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine_vowelizer_0706_v2_retrain_on_0701 This model is a fine-tuned version of [Buseak/canine_vowelizer_0706_v2](https://huggingface.co/Buseak/canine_vowelizer_0706_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0015 - Precision: 1.0000 - Recall: 1.0000 - F1: 1.0000 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 488 | 0.0264 | 1.0000 | 1.0000 | 1.0000 | 0.9921 | | 0.0548 | 2.0 | 976 | 0.0165 | 1.0000 | 1.0000 | 1.0000 | 0.9950 | | 0.0396 | 3.0 | 1464 | 0.0109 | 1.0000 | 1.0000 | 1.0000 | 0.9966 | | 0.0308 | 4.0 | 1952 | 0.0070 | 1.0000 | 1.0000 | 1.0000 | 0.9978 | | 0.0243 | 5.0 | 2440 | 0.0047 | 1.0000 | 1.0000 | 1.0000 | 0.9986 | | 0.0199 | 6.0 | 2928 | 0.0034 | 1.0000 | 1.0000 | 1.0000 | 0.9991 | | 0.0167 | 7.0 | 3416 | 0.0024 | 1.0000 | 1.0000 | 1.0000 | 0.9993 | | 0.0136 | 8.0 | 3904 | 0.0020 | 1.0000 | 1.0000 | 1.0000 | 0.9995 | | 0.0121 | 9.0 | 4392 | 0.0016 | 1.0000 | 1.0000 | 1.0000 | 0.9996 | | 0.0109 | 10.0 | 4880 | 0.0015 | 1.0000 | 1.0000 | 1.0000 | 0.9996 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.3
digiplay/PolyMorphMix
digiplay
2024-01-07T19:33:36Z
40,601
5
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-07T19:19:32Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/84887?modelVersionId=90238
daniel-gordon/Reinforce-Pixelcopter-PLE-v0
daniel-gordon
2024-01-07T19:30:47Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T19:30:42Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.90 +/- 18.44 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AlbelTec/mistral-dpo-old
AlbelTec
2024-01-07T19:26:54Z
0
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-v0.1-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-07T19:18:43Z
--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: TheBloke/Mistral-7B-v0.1-GPTQ model-index: - name: mistral-dpo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-dpo This model is a fine-tuned version of [TheBloke/Mistral-7B-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Rewards/chosen: -2.0502 - Rewards/rejected: -28.3632 - Rewards/accuracies: 1.0 - Rewards/margins: 26.3129 - Logps/rejected: -399.8283 - Logps/chosen: -35.7179 - Logits/rejected: -2.1171 - Logits/chosen: -1.8480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6453 | 0.2 | 10 | 0.4086 | 0.1393 | -0.7001 | 1.0 | 0.8394 | -123.1976 | -13.8225 | -2.5461 | -2.5162 | | 0.1759 | 0.4 | 20 | 0.0051 | 0.3963 | -6.4413 | 1.0 | 6.8376 | -180.6101 | -11.2527 | -2.5253 | -2.4045 | | 0.0015 | 0.6 | 30 | 0.0000 | 0.2885 | -20.7441 | 1.0 | 21.0326 | -323.6376 | -12.3309 | -2.2440 | -1.8851 | | 0.0 | 0.8 | 40 | 0.0000 | -0.6913 | -26.5964 | 1.0 | 25.9051 | -382.1607 | -22.1282 | -1.9054 | -1.5507 | | 0.0 | 1.0 | 50 | 0.0000 | -1.6661 | -28.8376 | 1.0 | 27.1715 | -404.5731 | -31.8766 | -1.7581 | -1.4145 | | 0.0 | 1.2 | 60 | 0.0000 | -2.1659 | -29.6823 | 1.0 | 27.5164 | -413.0200 | -36.8745 | -1.7071 | -1.3649 | | 0.0 | 1.4 | 70 | 0.0000 | -2.0973 | -30.0476 | 1.0 | 27.9503 | -416.6729 | -36.1886 | -1.6955 | -1.3541 | | 0.0 | 1.6 | 80 | 0.0000 | -2.0065 | -30.1726 | 1.0 | 28.1661 | -417.9230 | -35.2805 | -1.6941 | -1.3519 | | 0.0 | 1.8 | 90 | 0.0000 | -1.9541 | -30.2266 | 1.0 | 28.2724 | -418.4622 | -34.7568 | -1.6935 | -1.3518 | | 0.0023 | 2.0 | 100 | 0.0000 | -0.7061 | -30.2814 | 1.0 | 29.5753 | -419.0107 | -22.2763 | -1.7664 | -1.4215 | | 0.0 | 2.2 | 110 | 0.0000 | -1.6234 | -29.4682 | 1.0 | 27.8448 | -410.8783 | -31.4494 | -2.0371 | -1.7164 | | 0.0 | 2.4 | 120 | 0.0000 | -1.9528 | -28.6154 | 1.0 | 26.6626 | -402.3507 | -34.7431 | -2.0991 | -1.8126 | | 0.0 | 2.6 | 130 | 0.0000 | -2.0210 | -28.3739 | 1.0 | 26.3529 | -399.9358 | -35.4253 | -2.1141 | -1.8394 | | 0.0 | 2.8 | 140 | 0.0000 | -2.0443 | -28.2878 | 1.0 | 26.2435 | -399.0752 | -35.6588 | -2.1185 | -1.8487 | | 0.0 | 3.0 | 150 | 0.0000 | -2.0504 | -28.2651 | 1.0 | 26.2147 | -398.8474 | -35.7192 | -2.1201 | -1.8510 | | 0.0 | 3.2 | 160 | 0.0000 | -2.0500 | -28.2657 | 1.0 | 26.2157 | -398.8541 | -35.7157 | -2.1202 | -1.8519 | | 0.0 | 3.4 | 170 | 0.0000 | -2.0530 | -28.2687 | 1.0 | 26.2157 | -398.8837 | -35.7460 | -2.1205 | -1.8521 | | 0.0 | 3.6 | 180 | 0.0000 | -2.0529 | -28.2660 | 1.0 | 26.2131 | -398.8570 | -35.7444 | -2.1202 | -1.8515 | | 0.0 | 3.8 | 190 | 0.0000 | -2.0531 | -28.2649 | 1.0 | 26.2119 | -398.8461 | -35.7464 | -2.1202 | -1.8519 | | 0.0 | 4.0 | 200 | 0.0000 | -2.0579 | -28.3150 | 1.0 | 26.2571 | -399.3466 | -35.7943 | -2.1191 | -1.8507 | | 0.0 | 4.2 | 210 | 0.0000 | -2.0509 | -28.3341 | 1.0 | 26.2832 | -399.5381 | -35.7246 | -2.1178 | -1.8487 | | 0.0 | 4.4 | 220 | 0.0000 | -2.0516 | -28.3405 | 1.0 | 26.2889 | -399.6018 | -35.7316 | -2.1178 | -1.8490 | | 0.0 | 4.6 | 230 | 0.0000 | -2.0516 | -28.3495 | 1.0 | 26.2979 | -399.6917 | -35.7317 | -2.1176 | -1.8489 | | 0.0 | 4.8 | 240 | 0.0000 | -2.0508 | -28.3684 | 1.0 | 26.3176 | -399.8806 | -35.7236 | -2.1173 | -1.8488 | | 0.0 | 5.0 | 250 | 0.0000 | -2.0502 | -28.3632 | 1.0 | 26.3129 | -399.8283 | -35.7179 | -2.1171 | -1.8480 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Ilhamben/sarcasm_detection_french_camembert
Ilhamben
2024-01-07T19:23:12Z
101
0
transformers
[ "transformers", "tensorboard", "safetensors", "camembert", "text-classification", "generated_from_trainer", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T00:21:03Z
--- license: mit base_model: camembert-base tags: - generated_from_trainer model-index: - name: sarcasm_detection_french_camembert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm_detection_french_camembert This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
ostapeno/newt_adaNeo1B_niv2_dialogue_act_recognition_lora_sim_sgd_full_ft_CG
ostapeno
2024-01-07T19:20:54Z
0
0
null
[ "region:us" ]
null
2024-01-07T17:21:40Z
Number of experts present in the library: 4 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | niv2_dialogue_act_recognition_v1 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v2 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | | niv2_dialogue_act_recognition_v3 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora | Last updated on: 2024-01-07 19:20:51+00:00
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-8.0bpw-h8-exl2
LoneStriker
2024-01-07T19:16:38Z
3
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T18:52:55Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
Felladrin/mlc-chat-llama-160m-q4f32_1
Felladrin
2024-01-07T19:13:40Z
0
1
null
[ "en", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2023-12-14T15:12:16Z
--- license: apache-2.0 language: - en datasets: - wikipedia --- # JackFram's llama-160m for Web-LLM This is a compiled version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) for [MLC Web-LLM](https://webllm.mlc.ai/), using `q4f32_1` quantization.
LeytonC/my_awesome_qa_model
LeytonC
2024-01-07T19:10:28Z
109
0
transformers
[ "transformers", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-12-31T15:24:39Z
--- tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 1.1613 | | No log | 2.0 | 4 | 1.1001 | | No log | 3.0 | 6 | 1.0620 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
ostapeno/newt_adaNeo1B_high_school_psychology_svdemb_sgd_full_ft_CG
ostapeno
2024-01-07T19:10:18Z
0
0
null
[ "region:us" ]
null
2024-01-07T15:57:30Z
Number of experts present in the library: 2 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | high_school_psychology | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/high_school_psychology | lora | | high_school_psychology_v1 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/high_school_psychology | lora | Last updated on: 2024-01-07 19:10:16+00:00
daniel-gordon/PolicyGradient-Pixelcopter-PLE-v0
daniel-gordon
2024-01-07T18:51:21Z
0
0
null
[ "region:us" ]
null
2024-01-07T18:47:23Z
5000 steps --- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PolicyGradient-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 4.00 +/- 5.25 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Nerdofdot/nickprock_mmarco-bert-base-italian-uncased_E_5_nli
Nerdofdot
2024-01-07T18:48:35Z
49
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-19T13:10:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7975 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3987, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
wayaway/test_m
wayaway
2024-01-07T18:38:59Z
7
0
transformers
[ "transformers", "deberta-v2", "text-classification", "generated_from_trainer", "en", "de", "dataset:deepset/prompt-injections", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T18:36:42Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-base model-index: - name: deberta-v3-base-injection results: [] datasets: - deepset/prompt-injections language: - en - de --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-injection This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset. It achieves the following results on the evaluation set: - Loss: 0.0673 - Accuracy: 0.9914 ## Model description This model detects prompt injection attempts and classifies them as "INJECTION". Legitimate requests are classified as "LEGIT". The dataset assumes that legitimate requests are either all sorts of questions of key word searches. ## Intended uses & limitations If you are using this model to secure your system and it is overly "trigger-happy" to classify requests as injections, consider collecting legitimate examples and retraining the model with the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset. ## Training and evaluation data Based in the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 69 | 0.2353 | 0.9741 | | No log | 2.0 | 138 | 0.0894 | 0.9741 | | No log | 3.0 | 207 | 0.0673 | 0.9914 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
li-ping/trained_model
li-ping
2024-01-07T18:32:47Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:intfloat/e5-mistral-7b-instruct", "base_model:adapter:intfloat/e5-mistral-7b-instruct", "region:us" ]
null
2024-01-07T18:25:11Z
--- library_name: peft base_model: intfloat/e5-mistral-7b-instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
rikhoffbauer2/naomi-makkelie-seaweed-painting-style
rikhoffbauer2
2024-01-07T18:28:07Z
5
2
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-07T18:28:03Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'in the style of a seaweed painting' base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: in the style of a seaweed painting license: openrail++ --- # SDXL LoRA DreamBooth - naomi-makkelie-seaweed-painting-style <Gallery /> ## Model description ### These are naomi-makkelie-seaweed-painting-style LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`naomi-makkelie-seaweed-painting-style.safetensors` here 💾](/naomi-makkelie-seaweed-painting-style/blob/main/naomi-makkelie-seaweed-painting-style.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:naomi-makkelie-seaweed-painting-style:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('naomi-makkelie-seaweed-painting-style', weight_name='pytorch_lora_weights.safetensors') image = pipeline('in the style of a seaweed painting').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words You should use in the style of a seaweed painting to trigger the image generation. ## Details All [Files & versions](/naomi-makkelie-seaweed-painting-style/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. True. Pivotal tuning was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
LoneStriker/Mixtral_34Bx2_MoE_60B-4.0bpw-h6-exl2
LoneStriker
2024-01-07T18:21:11Z
7
2
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T18:08:33Z
--- license: cc-by-nc-4.0 --- # Mixtral MOE 2x34B This is my first English & Chinese MoE Model based on * [jondurbin/bagel-dpo-34b-v0.2] * [SUSTech/SUS-Chat-34B] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_34Bx2_MoE_60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_34Bx2_MoE_60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='cpu' ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` Output Examples: ``` please input prompt:write a story about yosemite write a story about yosemite national park Yosemite National Park is located in the Sierra Nevada Mountains of California, USA. It was established on October 1st, 1890 and covers an area of approximately 747,956 acres (302,687 hectares). The park boasts some of America's most iconic natural wonders such as Yosemite Valley, Half Dome, El Capitan, Bridalveil Fall, Tuolumne Meadows, Glacier Point, Mariposa Grove, and many more breathtaking landscapes that attract millions of visitors each year. The history of Yosemite dates back to over seven million years ago when glaciers carved out its stunning granite cliffs and valleys. Native American tribes like Miwok and Paiute have lived here for thousands of years before European explorers arrived during the mid-nineteenth century. In fact, it was John Muir - one of America’s greatest conservationists who helped establish this region as a protected wilderness area by advocating for its preservation through his writings and activism. Today, Yosemite offers various recreational activities including hiking, rock climbing, camping, fishing, horseback riding, wildlife watching, photography, and winter sports like skiing and snowshoeing. Visitors can also enjoy ranger programs, guided tours, educational exhibits at visitor centers, or simply take time to appreciate nature while strolling along scenic trails surrounded by towering sequoia trees, cascading waterfalls, and crystal clear lakes. In addition to preserving these awe-inspiring vistas, Yosemite plays a crucial role in protecting numerous plant and animal species found within its boundaries. Some notable inhabitants include black bears, mountain lions, mule deer, coyotes, bobcats, golden eagles, peregrine falcons, bighorn sheep, and several types of fish native to the Merced River which runs through the heart of the valley. As we continue our journey into the future, let us remember the importance of safeguarding places like Yosemite so they may remain pristine sanctuaries where both humans and animals alike can thrive together amidst unspoiled beauty.</s> please input prompt:李开复是谁? 李开复是谁? 他是一个在人工智能领域有着卓越贡献的科学家,也是一位成功的企业家。他的名字与谷歌、微软等科技巨头紧密相连,他是创新工场的创始人之一,更是无数创业者心中的偶像和导师。然而,除了这些耀眼的光环之外,李开复还有着怎样的故事呢?让我们一起来揭秘这位传奇人物的人生历程吧!</s> ```
anismahmahi/checkpoint-177-epoch-3
anismahmahi
2024-01-07T18:16:53Z
89
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T18:15:07Z
--- tags: - generated_from_trainer model-index: - name: checkpoint-177-epoch-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint-177-epoch-3 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
sefaburak/dinov2-small-onnx
sefaburak
2024-01-07T18:16:17Z
0
0
null
[ "onnx", "dino", "vision", "dinov2", "feature-extraction", "arxiv:2304.07193", "license:apache-2.0", "region:us" ]
feature-extraction
2024-01-07T15:12:35Z
--- license: apache-2.0 tags: - dino - vision - onnx - dinov2 pipeline_tag: feature-extraction --- # ONNX Vision Transformer (small-sized model) trained using DINOv2 Vision Transformer (ViT) model trained using the DINOv2 method. It was introduced in the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). The model has been exported to ONNX format. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion. Images are presented to the model as a sequence of fixed-size patches, which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. **Model Properties**: * Input name: input * Output name: output * Input size: 224x224 * Output size: 384 ## Intended uses & limitations You can use the ONNX model for feature extraction using ONNXRuntime. ### How to use Models can be executed using ONNXRuntime. Example usage can be found in the [dinov2_onnx repository](https://github.com/sefaburakokcu/dinov2_onnx). ```bash git clone [email protected]:sefaburakokcu/dinov2_onnx.git cd dinov2_onnx python onnx_inference.py ``` Optional arguments: - `--onnx_model`: Path to the ONNX model file (default: `./dinov2_vits14.onnx`). - `--image_folder`: Path to the folder containing input images (default: `./inputs/`). ### BibTeX entry and citation info ```bibtex misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski}, year={2023}, eprint={2304.07193}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
mikolaj-mialkowski/ppo-MountainCar-v0
mikolaj-mialkowski
2024-01-07T17:47:22Z
1
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T16:48:34Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 metrics: - type: mean_reward value: -117.00 +/- 3.00 name: mean_reward verified: false --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
darkavenger00/roberta-finetuned-subjqa-movies_2
darkavenger00
2024-01-07T17:45:27Z
97
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "base_model:deepset/roberta-base-squad2", "base_model:finetune:deepset/roberta-base-squad2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2024-01-07T17:30:16Z
--- license: cc-by-4.0 base_model: deepset/roberta-base-squad2 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-movies_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-movies_2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
alexandrualexandru/text-to-sparql-disertatie-t5-large-2024-01-07_16-12
alexandrualexandru
2024-01-07T17:25:08Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-large", "base_model:finetune:google-t5/t5-large", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-07T16:16:29Z
--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer model-index: - name: text-to-sparql-disertatie-t5-large-2024-01-07_16-12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-disertatie-t5-large-2024-01-07_16-12 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
dapa93/dqn-SpaceInvadersNoFrameskip-v4
dapa93
2024-01-07T17:19:33Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T17:18:55Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 621.50 +/- 158.32 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dapa93 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dapa93 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dapa93 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ntc-ai/SDXL-LoRA-slider.bride
ntc-ai
2024-01-07T17:10:41Z
46
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-07T17:10:38Z
--- language: - en thumbnail: "images/evaluate/bride.../bride_17_3.0.png" widget: - text: bride output: url: images/bride_17_3.0.png - text: bride output: url: images/bride_19_3.0.png - text: bride output: url: images/bride_20_3.0.png - text: bride output: url: images/bride_21_3.0.png - text: bride output: url: images/bride_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "bride" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - bride (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/bride_17_-3.0.png" width=256 height=256 /> | <img src="images/bride_17_0.0.png" width=256 height=256 /> | <img src="images/bride_17_3.0.png" width=256 height=256 /> | | <img src="images/bride_19_-3.0.png" width=256 height=256 /> | <img src="images/bride_19_0.0.png" width=256 height=256 /> | <img src="images/bride_19_3.0.png" width=256 height=256 /> | | <img src="images/bride_20_-3.0.png" width=256 height=256 /> | <img src="images/bride_20_0.0.png" width=256 height=256 /> | <img src="images/bride_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` bride ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.bride', weight_name='bride.safetensors', adapter_name="bride") # Activate the LoRA pipe.set_adapters(["bride"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, bride" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 920+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss
Doctor-Shotgun
2024-01-07T17:08:32Z
27
18
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-04T04:54:43Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. My current generation settings are: ``` Temperature: 1.25 Min-p: 0.05 Repetition penalty: 1.05 Repetition penalty: range 1024 ``` And this seems to avoid the Mixtral looping pitfalls for me so far. Play around with it and see what works well for you. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) Quants courtesy of TheBloke: - [GPTQ](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-GPTQ) - [GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-GGUF) - [AWQ](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ) Exl2 Quants courtesy of LoneStriker: - [2.4bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-2.4bpw-h6-exl2) - [3.0bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.0bpw-h6-exl2) - [3.5bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.5bpw-h6-exl2) - [3.75bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.75bpw-h6-exl2) - [4.0bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-4.0bpw-h6-exl2) - [5.0bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-5.0bpw-h6-exl2) - [6.0bpw](https://huggingface.co/LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-6.0bpw-h6-exl2) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` My current templates have been uploaded to a [folder](https://huggingface.co/Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss/tree/main/ST%20Templates). ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
ribesstefano/RuleBert-v0.1-k3
ribesstefano
2024-01-07T16:55:45Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:classla/xlm-roberta-base-multilingual-text-genre-classifier", "base_model:finetune:classla/xlm-roberta-base-multilingual-text-genre-classifier", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T16:47:41Z
--- license: mit base_model: classla/xlm-roberta-base-multilingual-text-genre-classifier tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.1-k3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.1-k3 This model is a fine-tuned version of [classla/xlm-roberta-base-multilingual-text-genre-classifier](https://huggingface.co/classla/xlm-roberta-base-multilingual-text-genre-classifier) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3285 - F1: 0.4638 - Roc Auc: 0.6576 - Accuracy: 0.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3423 | 0.13 | 250 | 0.3539 | 0.4497 | 0.6562 | 0.0670 | | 0.3231 | 0.27 | 500 | 0.3425 | 0.4596 | 0.6594 | 0.0670 | | 0.3248 | 0.4 | 750 | 0.3364 | 0.4495 | 0.6541 | 0.0714 | | 0.3283 | 0.54 | 1000 | 0.3351 | 0.4529 | 0.6555 | 0.0714 | | 0.3237 | 0.67 | 1250 | 0.3315 | 0.4600 | 0.6581 | 0.0625 | | 0.325 | 0.81 | 1500 | 0.3313 | 0.4681 | 0.6624 | 0.0312 | | 0.3316 | 0.94 | 1750 | 0.3290 | 0.4595 | 0.6564 | 0.0714 | | 0.3239 | 1.08 | 2000 | 0.3310 | 0.4592 | 0.6572 | 0.0625 | | 0.3085 | 1.21 | 2250 | 0.3280 | 0.4614 | 0.6567 | 0.0670 | | 0.3161 | 1.35 | 2500 | 0.3303 | 0.4623 | 0.6574 | 0.0670 | | 0.314 | 1.48 | 2750 | 0.3289 | 0.4613 | 0.6566 | 0.0714 | | 0.3187 | 1.62 | 3000 | 0.3293 | 0.4594 | 0.6554 | 0.0714 | | 0.3145 | 1.75 | 3250 | 0.3295 | 0.4629 | 0.6569 | 0.0714 | | 0.3128 | 1.89 | 3500 | 0.3285 | 0.4629 | 0.6569 | 0.0714 | | 0.3135 | 2.02 | 3750 | 0.3285 | 0.4615 | 0.6566 | 0.0714 | | 0.3171 | 2.16 | 4000 | 0.3285 | 0.4638 | 0.6576 | 0.0714 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
r2429/Lua_Tiny
r2429
2024-01-07T16:51:06Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-01-07T16:41:12Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
adsazad/sikhchat-transformer
adsazad
2024-01-07T16:48:18Z
173
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T16:45:38Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: sikhchat-transformer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sikhchat-transformer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4581 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.6371 | 0.0 | | No log | 2.0 | 2 | 1.4761 | 0.5 | | No log | 3.0 | 3 | 1.4581 | 0.5 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0 - Datasets 2.16.1 - Tokenizers 0.15.0
ribesstefano/RuleBert-v0.1-k2
ribesstefano
2024-01-07T16:46:05Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:classla/xlm-roberta-base-multilingual-text-genre-classifier", "base_model:finetune:classla/xlm-roberta-base-multilingual-text-genre-classifier", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T16:39:07Z
--- license: mit base_model: classla/xlm-roberta-base-multilingual-text-genre-classifier tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.1-k2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.1-k2 This model is a fine-tuned version of [classla/xlm-roberta-base-multilingual-text-genre-classifier](https://huggingface.co/classla/xlm-roberta-base-multilingual-text-genre-classifier) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3049 - F1: 0.5103 - Roc Auc: 0.6747 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3592 | 0.14 | 250 | 0.3131 | 0.5179 | 0.6796 | 0.0 | | 0.3369 | 0.27 | 500 | 0.3063 | 0.5109 | 0.6758 | 0.0 | | 0.3352 | 0.41 | 750 | 0.3087 | 0.5110 | 0.6750 | 0.0 | | 0.3283 | 0.54 | 1000 | 0.3042 | 0.5105 | 0.6749 | 0.0 | | 0.3246 | 0.68 | 1250 | 0.3068 | 0.5101 | 0.6747 | 0.0 | | 0.3264 | 0.82 | 1500 | 0.3028 | 0.5152 | 0.6771 | 0.0 | | 0.3365 | 0.95 | 1750 | 0.3051 | 0.5103 | 0.6747 | 0.0 | | 0.3269 | 1.09 | 2000 | 0.3042 | 0.5103 | 0.6747 | 0.0 | | 0.3173 | 1.22 | 2250 | 0.3059 | 0.5103 | 0.6747 | 0.0 | | 0.3127 | 1.36 | 2500 | 0.3053 | 0.5110 | 0.6750 | 0.0 | | 0.3211 | 1.49 | 2750 | 0.3067 | 0.5103 | 0.6747 | 0.0 | | 0.3155 | 1.63 | 3000 | 0.3067 | 0.5103 | 0.6747 | 0.0 | | 0.319 | 1.77 | 3250 | 0.3051 | 0.5103 | 0.6747 | 0.0 | | 0.3286 | 1.9 | 3500 | 0.3042 | 0.5103 | 0.6747 | 0.0 | | 0.3243 | 2.04 | 3750 | 0.3051 | 0.5103 | 0.6747 | 0.0 | | 0.3111 | 2.17 | 4000 | 0.3049 | 0.5103 | 0.6747 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
BallisticAI/Ballistic-CodeLlama-34B-v1
BallisticAI
2024-01-07T16:41:09Z
19
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code llama", "base_model:BallisticAI/Ballistic-CodeLlama-34B-v1", "base_model:finetune:BallisticAI/Ballistic-CodeLlama-34B-v1", "license:llama2", "model-index", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-21T00:22:16Z
--- license: llama2 tags: - code llama base_model: BallisticAI/Ballistic-CodeLlama-34B-v1 inference: false model_creator: BallisticAI model_type: llama prompt_template: '### System Prompt {system_message} ### User Message {prompt} ### Assistant ' quantized_by: BallisticAI model-index: - name: Ballistic-CodeLlama-34B-v1 results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: n/a value: n/a name: n/a verified: false --- # CodeLlama 34B v1 - Model creator: [BallisticAI](https://huggingface.co/BallisticAI) - Based on: [CodeLlama 34B hf](https://huggingface.co/codellama/CodeLlama-34b-hf) - Merged with: [CodeLlama 34B v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2) && [speechless-codellama-34b-v2](https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0) - Additional training with: [jondurbin/airoboros-2.2](https://huggingface.co/datasets/jondurbin/airoboros-2.2) <!-- description start --> ## Description This repo contains model for [Ballistic-CodeLlama-34B-v1](https://huggingface.co/BallisticAI/Ballistic-CodeLlama-34B-v1). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model for GPU inference.](https://huggingface.co/BallisticAI/Ballistic-CodeLlama-34B-v1-AWQ) * [GGUF model for CPU inference.](https://huggingface.co/BallisticAI/Ballistic-CodeLlama-34B-v1-GGUF) <!-- repositories-available end --> <!-- prompt-template start --> ## How to Prompt the Model This model accepts the Alpaca/Vicuna instruction format. For example: ``` ### System Prompt You are an intelligent programming assistant. ### User Message Implement a linked list in C++ ### Assistant ... ``` <!-- prompt-template end --> ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments. ## Thanks Thanks to: - The Original Llama team - [Phind](https://huggingface.co/phind) - [uukuguy](https://huggingface.co/uukuguy) - [jondurbin](https://huggingface.co/jondurbin) - And everyone else who's involved in the Open Source AI/ML Community.
ribesstefano/RuleBert-v0.1-k1
ribesstefano
2024-01-07T16:37:33Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:classla/xlm-roberta-base-multilingual-text-genre-classifier", "base_model:finetune:classla/xlm-roberta-base-multilingual-text-genre-classifier", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T16:29:33Z
--- license: mit base_model: classla/xlm-roberta-base-multilingual-text-genre-classifier tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.1-k1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.1-k1 This model is a fine-tuned version of [classla/xlm-roberta-base-multilingual-text-genre-classifier](https://huggingface.co/classla/xlm-roberta-base-multilingual-text-genre-classifier) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3207 - F1: 0.4762 - Roc Auc: 0.6657 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3316 | 0.14 | 250 | 0.3375 | 0.4771 | 0.6730 | 0.0 | | 0.3343 | 0.28 | 500 | 0.3277 | 0.4724 | 0.6700 | 0.0 | | 0.3328 | 0.41 | 750 | 0.3235 | 0.4624 | 0.6623 | 0.0 | | 0.3365 | 0.55 | 1000 | 0.3227 | 0.4663 | 0.6635 | 0.0 | | 0.3257 | 0.69 | 1250 | 0.3236 | 0.4669 | 0.6633 | 0.0 | | 0.3194 | 0.83 | 1500 | 0.3243 | 0.4912 | 0.6768 | 0.0 | | 0.3232 | 0.97 | 1750 | 0.3223 | 0.4714 | 0.6645 | 0.0 | | 0.3151 | 1.11 | 2000 | 0.3216 | 0.4727 | 0.6650 | 0.0 | | 0.3229 | 1.24 | 2250 | 0.3217 | 0.4756 | 0.6665 | 0.0 | | 0.323 | 1.38 | 2500 | 0.3237 | 0.4736 | 0.6651 | 0.0 | | 0.3175 | 1.52 | 2750 | 0.3222 | 0.4731 | 0.6647 | 0.0 | | 0.3133 | 1.66 | 3000 | 0.3203 | 0.4739 | 0.6651 | 0.0 | | 0.3089 | 1.8 | 3250 | 0.3205 | 0.4751 | 0.6654 | 0.0 | | 0.3285 | 1.94 | 3500 | 0.3208 | 0.4759 | 0.6657 | 0.0 | | 0.3119 | 2.07 | 3750 | 0.3207 | 0.4768 | 0.6660 | 0.0 | | 0.3169 | 2.21 | 4000 | 0.3207 | 0.4762 | 0.6657 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
lilianz/ppo-MountainCar-v0
lilianz
2024-01-07T16:24:13Z
2
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T16:22:14Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 metrics: - type: mean_reward value: -152.80 +/- 38.72 name: mean_reward verified: false --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ostapeno/newt_adaNeo1B_ultrachat_25_sbs0.5_svdemb_sgd_full_ft_coarsegrained
ostapeno
2024-01-07T16:23:45Z
0
0
null
[ "region:us" ]
null
2024-01-06T19:49:47Z
Number of experts present in the library: 4 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | ultrachat_25_v1 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/ultrachat_25 | lora | | ultrachat_25 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/ultrachat_25 | lora | | ultrachat_25_v2 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/ultrachat_25 | lora | | ultrachat_25_v3 | EleutherAI/gpt-neo-1.3B | ostapeno/adauni-v3-10k-flat/ultrachat_25 | lora | Last updated on: 2024-01-07 16:23:45+00:00
skverma2009/Llama-2-7b-chat-hf-fine-tuned-adapters
skverma2009
2024-01-07T16:23:02Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-07T16:22:49Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
spellingdragon/whisper-small-zh-foriegn
spellingdragon
2024-01-07T16:20:25Z
64
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-03T15:55:56Z
--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: Whisper small zh - foriegn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper small zh - foriegn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 9 dataset. It achieves the following results on the evaluation set: - Loss: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3178 | 1.54 | 3000 | 0.9294 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
mikolaj-mialkowski/ppo-LunarLander-v2
mikolaj-mialkowski
2024-01-07T16:15:53Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T19:38:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.38 +/- 25.03 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-5.0bpw-h6-exl2
LoneStriker
2024-01-07T16:11:58Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T16:00:02Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
elijahww/mistral-7b-unmerged
elijahww
2024-01-07T16:08:10Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-07T16:06:42Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-4.0bpw-h6-exl2
LoneStriker
2024-01-07T16:00:00Z
3
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T15:49:26Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
Nerdofdot/nickprock_mmarco-bert-base-italian-uncased_E_1_nli
Nerdofdot
2024-01-07T15:57:53Z
48
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-07T15:57:37Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.75bpw-h6-exl2
LoneStriker
2024-01-07T15:49:23Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T15:36:30Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
ddpr/Didi
ddpr
2024-01-07T15:41:12Z
22
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-07T15:22:51Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: 'Fullbody photorealistic, best quality, Handsome Men, Sexy Muscular, real life, best shadow, RAW,without noise,clear ,high_resolution,8K masterpiece, photograph, 1man, handsome , minimal background, soft lighting, shadows accentuating muscles, full body, realistic skin, photographic, (best quality):1.5, Sexy Muscular, high resolution, high detailed,Masterpiece, intricate details, Best Quality), high resolution, 8k, sweating profusely, wet skin, muscular, extremely detailed, ((entire image)), soft natural light, bounce light, reflected light, highly detailed,dark_skin,handsome,pumpkins,Halloween, pumpkin head' parameters: negative_prompt: duplicated, cloned, duplicate body parts, extra limbs, twisted, distorted, malformed hands, malformed fingers, conjoined, missing limbs, logo, mutated, artifacts, gross, misshapen eyes, BadDreamFastNegativeV2, EasynegativeV2, UnrealisticDream, JuggernautNegative, bad-artist-anime, bad-hands-5, lowres, text, cropped, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad anatomy, bad hands, error, missing fingers, extra digits, fewer digits, bad feet, bad colours, missing arms, water print, logo, 3d, anime, out of frame, small nipples, Unperfected body, unperfected face, unperfected hand, unperfected fingers, unperfected eyes, unperfected legs, ugly face, cartoon, low resolution, poorly drawn hand, poorly drawn face, body out of frame, grain, over saturated, malformed hands, extra limbs, missing limbs, mutations, two faces, duplicate, multi, two, disfigured, low-res, deformed, mutation, mutated, out of focus, long body, Dripping paint, 2 heads, 2 faces, cropped image, out of frame, deformed hands, twisted fingers, double image, malformed hands, multiple heads, extra limb, cut off, floating limbs, disconnected limbs, disgusting, poorly drawn, mutilated, mangled, extra fingers, duplicate artifacts, missing arms, mutated hands, mutilated hands, cloned face, malformed, wordmark,extra nipples, three nipples, writing, heading, verybadimagenegative_v1.3, negative_hand-neg, modern, UnrealisticDream, bad-hands-5, badhandv4, Dark shadows,ugly face, cartoon,girl,naked output: url: images/1704519855443.png.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: didi --- # Didi <Gallery /> ## Trigger words You should use `didi` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/ddpr/Didi/tree/main) them in the Files & versions tab.
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.5bpw-h6-exl2
LoneStriker
2024-01-07T15:36:29Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T15:27:22Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
anismahmahi/doubt_repetition_with_noPropaganda_SetFit
anismahmahi
2024-01-07T15:36:18Z
46
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2024-01-07T15:35:50Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: 'Texas: Cop Walks Into Home She Thought Was Hers, Kills Innocent Homeowner—Not Arrested' - text: Ellison subsequently agreed to dismiss his restraining order against her if she no longer contacted him. - text: Gina Haspel will become the new Director of the CIA, and the first woman so chosen. - text: At some point, the officer fired her weapon striking the victim. - text: Ronaldo Rauseo-Ricupero, a lawyer for the Indonesians, argued they should have 90 days to move to reopen their cases after receiving copies of their administrative case files and time to appeal any decision rejecting those motions. pipeline_tag: text-classification inference: false base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8151016456921588 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens <!-- - **Number of Classes:** Unknown --> <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8151 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_SetFit") # Run inference preds = model("At some point, the officer fired her weapon striking the victim.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 20.8138 | 129 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0004 | 1 | 0.3567 | - | | 0.0209 | 50 | 0.3286 | - | | 0.0419 | 100 | 0.2663 | - | | 0.0628 | 150 | 0.2378 | - | | 0.0838 | 200 | 0.1935 | - | | 0.1047 | 250 | 0.2549 | - | | 0.1257 | 300 | 0.2654 | - | | 0.1466 | 350 | 0.1668 | - | | 0.1676 | 400 | 0.1811 | - | | 0.1885 | 450 | 0.1884 | - | | 0.2095 | 500 | 0.157 | - | | 0.2304 | 550 | 0.1237 | - | | 0.2514 | 600 | 0.1318 | - | | 0.2723 | 650 | 0.1334 | - | | 0.2933 | 700 | 0.1067 | - | | 0.3142 | 750 | 0.1189 | - | | 0.3351 | 800 | 0.135 | - | | 0.3561 | 850 | 0.0782 | - | | 0.3770 | 900 | 0.0214 | - | | 0.3980 | 950 | 0.0511 | - | | 0.4189 | 1000 | 0.0924 | - | | 0.4399 | 1050 | 0.1418 | - | | 0.4608 | 1100 | 0.0132 | - | | 0.4818 | 1150 | 0.0018 | - | | 0.5027 | 1200 | 0.0706 | - | | 0.5237 | 1250 | 0.1502 | - | | 0.5446 | 1300 | 0.133 | - | | 0.5656 | 1350 | 0.0207 | - | | 0.5865 | 1400 | 0.0589 | - | | 0.6075 | 1450 | 0.0771 | - | | 0.6284 | 1500 | 0.0241 | - | | 0.6494 | 1550 | 0.0905 | - | | 0.6703 | 1600 | 0.0106 | - | | 0.6912 | 1650 | 0.0451 | - | | 0.7122 | 1700 | 0.0011 | - | | 0.7331 | 1750 | 0.0075 | - | | 0.7541 | 1800 | 0.0259 | - | | 0.7750 | 1850 | 0.0052 | - | | 0.7960 | 1900 | 0.0464 | - | | 0.8169 | 1950 | 0.0039 | - | | 0.8379 | 2000 | 0.0112 | - | | 0.8588 | 2050 | 0.0061 | - | | 0.8798 | 2100 | 0.0143 | - | | 0.9007 | 2150 | 0.0886 | - | | 0.9217 | 2200 | 0.2225 | - | | 0.9426 | 2250 | 0.0022 | - | | 0.9636 | 2300 | 0.0035 | - | | 0.9845 | 2350 | 0.002 | - | | **1.0** | **2387** | **-** | **0.2827** | | 1.0054 | 2400 | 0.0315 | - | | 1.0264 | 2450 | 0.0049 | - | | 1.0473 | 2500 | 0.0305 | - | | 1.0683 | 2550 | 0.0334 | - | | 1.0892 | 2600 | 0.0493 | - | | 1.1102 | 2650 | 0.0424 | - | | 1.1311 | 2700 | 0.0011 | - | | 1.1521 | 2750 | 0.0109 | - | | 1.1730 | 2800 | 0.0009 | - | | 1.1940 | 2850 | 0.0005 | - | | 1.2149 | 2900 | 0.0171 | - | | 1.2359 | 2950 | 0.0004 | - | | 1.2568 | 3000 | 0.0717 | - | | 1.2778 | 3050 | 0.0019 | - | | 1.2987 | 3100 | 0.062 | - | | 1.3196 | 3150 | 0.0003 | - | | 1.3406 | 3200 | 0.0018 | - | | 1.3615 | 3250 | 0.0011 | - | | 1.3825 | 3300 | 0.0005 | - | | 1.4034 | 3350 | 0.0208 | - | | 1.4244 | 3400 | 0.0004 | - | | 1.4453 | 3450 | 0.001 | - | | 1.4663 | 3500 | 0.0003 | - | | 1.4872 | 3550 | 0.0015 | - | | 1.5082 | 3600 | 0.0004 | - | | 1.5291 | 3650 | 0.0473 | - | | 1.5501 | 3700 | 0.0092 | - | | 1.5710 | 3750 | 0.032 | - | | 1.5920 | 3800 | 0.0016 | - | | 1.6129 | 3850 | 0.0623 | - | | 1.6339 | 3900 | 0.0291 | - | | 1.6548 | 3950 | 0.0386 | - | | 1.6757 | 4000 | 0.002 | - | | 1.6967 | 4050 | 0.0006 | - | | 1.7176 | 4100 | 0.0005 | - | | 1.7386 | 4150 | 0.0004 | - | | 1.7595 | 4200 | 0.0004 | - | | 1.7805 | 4250 | 0.0007 | - | | 1.8014 | 4300 | 0.033 | - | | 1.8224 | 4350 | 0.0001 | - | | 1.8433 | 4400 | 0.0489 | - | | 1.8643 | 4450 | 0.0754 | - | | 1.8852 | 4500 | 0.0086 | - | | 1.9062 | 4550 | 0.0092 | - | | 1.9271 | 4600 | 0.0591 | - | | 1.9481 | 4650 | 0.0013 | - | | 1.9690 | 4700 | 0.0043 | - | | 1.9899 | 4750 | 0.0338 | - | | 2.0 | 4774 | - | 0.3304 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
cibernicola/FLOR-6.3B-xat-Q5_K
cibernicola
2024-01-07T15:28:29Z
11
0
transformers
[ "transformers", "safetensors", "gguf", "bloom", "text-generation", "finetune", "chatml", "gpt4", "catalan", "Q8", "ca", "en", "es", "dataset:xaviviro/oasst2_ca_gpt", "base_model:projecte-aina/FLOR-6.3B", "base_model:quantized:projecte-aina/FLOR-6.3B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T15:24:09Z
--- license: apache-2.0 base_model: projecte-aina/FLOR-6.3B datasets: - xaviviro/oasst2_ca_gpt tags: - finetune - chatml - gpt4 - catalan - Q8 model-index: - name: FLOR-6.3B-xat results: [] library_name: transformers widget: - text: | <|im_start|>user Qui va ser Isaac Newton?<|im_end|> <|im_start|>assistant language: - ca - en - es --- # FLOR-6.3B-xat-Q5_K FLOR-6.3B-xat-Q5_K és la versió quantitzada del model [FLOR-6.3B-xat](/xaviviro/FLOR-6.3B-xat) d'en [xaviviro](/xaviviro) # Prompt Template FLOR-6.3B-xat-Q5_K usa **ChatML** com a prompt template: ``` <|im_start|>user Qui va ser Isaac Newton?<|im_end|> <|im_start|>assistant\n ```
LoneStriker/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.0bpw-h6-exl2
LoneStriker
2024-01-07T15:27:19Z
3
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "dataset:lemonilia/LimaRP", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-07T15:19:25Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - mixtral license: apache-2.0 datasets: - lemonilia/LimaRP --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
christinacdl/Mistral-LoRA-Hate-Target-Detection-new
christinacdl
2024-01-07T15:24:42Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-07T00:56:30Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-LoRA-Hate-Target-Detection-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-LoRA-Hate-Target-Detection-new This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7969 - Micro F1: 0.8409 - Macro F1: 0.6542 - Accuracy: 0.8409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2
ribesstefano/RuleBert-v0.0-k0
ribesstefano
2024-01-07T15:24:36Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "Italian", "legal ruling", "generated_from_trainer", "base_model:classla/xlm-roberta-base-multilingual-text-genre-classifier", "base_model:finetune:classla/xlm-roberta-base-multilingual-text-genre-classifier", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-07T15:09:17Z
--- license: mit base_model: classla/xlm-roberta-base-multilingual-text-genre-classifier tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.0-k0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ribesstefano/RuleBert-v0.0-k0 This model is a fine-tuned version of [classla/xlm-roberta-base-multilingual-text-genre-classifier](https://huggingface.co/classla/xlm-roberta-base-multilingual-text-genre-classifier) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3777 - F1: 0.5004 - Roc Auc: 0.6722 - Accuracy: 0.0375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3811 | 0.88 | 50 | 0.3716 | 0.4904 | 0.6685 | 0.0583 | | 0.3257 | 1.77 | 100 | 0.3708 | 0.4953 | 0.6701 | 0.0583 | | 0.3178 | 2.65 | 150 | 0.3745 | 0.4977 | 0.6712 | 0.0417 | | 0.3091 | 3.54 | 200 | 0.3750 | 0.4989 | 0.6719 | 0.0417 | | 0.3115 | 4.42 | 250 | 0.3768 | 0.5007 | 0.6724 | 0.0417 | | 0.3092 | 5.31 | 300 | 0.3762 | 0.5021 | 0.6727 | 0.0458 | | 0.3057 | 6.19 | 350 | 0.3772 | 0.5005 | 0.6723 | 0.0375 | | 0.3062 | 7.08 | 400 | 0.3777 | 0.5002 | 0.6721 | 0.0417 | | 0.3086 | 7.96 | 450 | 0.3777 | 0.5005 | 0.6723 | 0.0417 | | 0.3075 | 8.85 | 500 | 0.3777 | 0.5004 | 0.6722 | 0.0375 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Sharathhebbar24/convo_bot_gpt2
Sharathhebbar24
2024-01-07T15:16:01Z
176
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "dataset:vicgalle/alpaca-gpt4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-29T11:23:02Z
--- license: apache-2.0 datasets: - vicgalle/alpaca-gpt4 language: - en --- This model is a finetuned version of ```gpt2``` using ```vicgalle/alpaca-gpt4``` ## Model description GPT-2 is a transformers model pre-trained on a very large corpus of English data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifting one token (word or piece of word) to the right. The model uses a masking mechanism to make sure the predictions for the token `i` only use the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was trained for, however, which is generating texts from a prompt. ### To use this model ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model_name = "Sharathhebbar24/convo_bot_gpt2" >>> model = AutoModelForCausalLM.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> def generate_text(prompt): >>> inputs = tokenizer.encode(prompt, return_tensors='pt') >>> outputs = mod1.generate(inputs, max_length=64, pad_token_id=tokenizer.eos_token_id) >>> generated = tokenizer.decode(outputs[0], skip_special_tokens=True) >>> return generated >>> prompt = """ >>> Below is an instruction that describes a task. Write a response that appropriately completes the request. >>> ### Instruction: Who is the world's most famous painter? >>> ### >>> """ >>> res = generate_text(prompt) >>> res ```
cibernicola/FLOR-1.3B-xat-Q8
cibernicola
2024-01-07T15:01:52Z
3
0
transformers
[ "transformers", "gguf", "bloom", "text-generation", "finetune", "chatml", "gpt4", "catalan", "Q8", "ca", "en", "es", "dataset:xaviviro/oasst2_ca_gpt", "base_model:projecte-aina/FLOR-6.3B", "base_model:quantized:projecte-aina/FLOR-6.3B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T14:57:46Z
--- license: apache-2.0 base_model: projecte-aina/FLOR-6.3B datasets: - xaviviro/oasst2_ca_gpt tags: - finetune - chatml - gpt4 - catalan - Q8 model-index: - name: FLOR-6.3B-xat results: [] library_name: transformers widget: - text: | <|im_start|>user Qui va ser Isaac Newton?<|im_end|> <|im_start|>assistant language: - ca - en - es --- # FLOR-6.3B-xat-Q8_0 FLOR-1.3B-xat és la versió quantitzada del model [FLOR-1.3B-xat](/xaviviro/FLOR-1.3B-xat) d'en [xaviviro](/xaviviro) # Prompt Template FLOR-1.3B-xat usa **ChatML** com a prompt template: ``` <|im_start|>user Qui va ser Isaac Newton?<|im_end|> <|im_start|>assistant\n ```
spasis/ppo-LunarLander-v2
spasis
2024-01-07T14:55:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T14:54:52Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.67 +/- 18.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Destiny0621/dqn-SpaceInvadersNoFrameskip-v4
Destiny0621
2024-01-07T14:38:55Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T14:38:28Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 373.00 +/- 93.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Destiny0621 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Destiny0621 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Destiny0621 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Vishu7797/bert-finetuned-ner
Vishu7797
2024-01-07T14:38:15Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-07T14:16:21Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0618 - Precision: 0.9377 - Recall: 0.9517 - F1: 0.9446 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0701 | 1.0 | 1756 | 0.0678 | 0.9101 | 0.9349 | 0.9223 | 0.9814 | | 0.033 | 2.0 | 3512 | 0.0646 | 0.9353 | 0.9505 | 0.9428 | 0.9863 | | 0.0213 | 3.0 | 5268 | 0.0618 | 0.9377 | 0.9517 | 0.9446 | 0.9863 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
mtc/mistralai-Mistral-7B-v0.1-arxiv-summarization-5000-v3-qlora-4bit
mtc
2024-01-07T14:36:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-07T14:35:21Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Floyd93/Grammar_Jan_07
Floyd93
2024-01-07T14:33:44Z
174
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-07T13:24:11Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer model-index: - name: Grammar_Jan_07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Grammar_Jan_07 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 13.5291 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
daniel123321/whisper-small-de-colab
daniel123321
2024-01-07T14:27:47Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ger", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-06T00:56:38Z
--- language: - ger license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Small Ger - Daniel Dumschat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ger - Daniel Dumschat This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5311 - eval_wer: 91.3258 - eval_runtime: 990.1974 - eval_samples_per_second: 1.624 - eval_steps_per_second: 0.203 - epoch: 0.29 - step: 900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/Sao10K-Sensualize-Solar-10.7B-GGUF
s3nh
2024-01-07T14:26:48Z
4
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T13:31:50Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Sao10K/Sensualize-Solar-10.7B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
s3nh/Edentns-DataVortexM-7B-Instruct-v0.1-GGUF
s3nh
2024-01-07T14:25:12Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T13:15:06Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Edentns/DataVortexM-7B-Instruct-v0.1). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card