modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-25 06:27:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
476 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-25 06:22:25
card
stringlengths
11
1.01M
99eren99/ColBERT-ModernBERT-base-Turkish-uncased
99eren99
2025-05-21T23:18:56Z
66
5
PyLate
[ "PyLate", "safetensors", "modernbert", "ColBERT", "sentence-transformers", "sentence-similarity", "generated_from_trainer", "reranker", "bert", "tr", "base_model:99eren99/ModernBERT-base-Turkish-uncased-mlm", "base_model:finetune:99eren99/ModernBERT-base-Turkish-uncased-mlm", "license:apache-2.0", "region:us" ]
sentence-similarity
2025-02-14T09:36:16Z
--- base_model: 99eren99/ModernBERT-base-Turkish-uncased-mlm language: - tr library_name: PyLate pipeline_tag: sentence-similarity tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - generated_from_trainer - reranker - bert license: apache-2.0 --- # Turkish Long Context ColBERT Based Reranker This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [99eren99/ModernBERT-base-Turkish-uncased-mlm](99eren99/ModernBERT-base-Turkish-uncased-mlm). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. # Better Models 512 context length: [99eren99/TrColBERT](https://huggingface.co/99eren99/TrColBERT)<br> 8192 context length: [99eren99/TrColBERT-Long](https://huggingface.co/99eren99/TrColBERT-Long) # Model Sources - **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) - **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) - **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) # Evaluation Results nDCG and Recall scores for long context late interaction retrieval models, test code and detailed metrics in ["./assets"](https://huggingface.co/99eren99/ColBERT-ModernBERT-base-Turkish-uncased/tree/main/assets) <img src="https://huggingface.co/99eren99/ColBERT-ModernBERT-base-Turkish-uncased/resolve/main/assets/tokenlengths.png" alt="drawing"/> # Usage First install the PyLate library: ```bash pip install -U einops flash_attn pip install -U pylate ``` Then normalize your text - > lambda x: x.replace("İ", "i").replace("I", "ı").lower() # Retrieval PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval. # Indexing documents First, load the ColBERT model and initialize the Voyager index, then encode and index your documents: ```python from pylate import indexes, models, retrieve # Step 1: Load the ColBERT model document_length = 180#some integer [0,8192] for truncating documents, you can maybe try rope scaling for longer inputs model = models.ColBERT( model_name_or_path="99eren99/ColBERT-ModernBERT-base-Turkish-uncased", document_length=document_length ) try: model.tokenizer.model_input_names.remove("token_type_ids") except: pass #model.to("cuda") # Step 2: Initialize the Voyager index index = indexes.Voyager( index_folder="pylate-index", index_name="index", override=True, # This overwrites the existing index if any ) # Step 3: Encode the documents documents_ids = ["1", "2", "3"] documents = ["document 1 text", "document 2 text", "document 3 text"] documents_embeddings = model.encode( documents, batch_size=32, is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries show_progress_bar=True, ) # Step 4: Add document embeddings to the index by providing embeddings and corresponding ids index.add_documents( documents_ids=documents_ids, documents_embeddings=documents_embeddings, ) ``` Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: ```python # To load an index, simply instantiate it with the correct folder/name and without overriding it index = indexes.Voyager( index_folder="pylate-index", index_name="index", ) ``` # Retrieving top-k documents for queries Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: ```python # Step 1: Initialize the ColBERT retriever retriever = retrieve.ColBERT(index=index) # Step 2: Encode the queries queries_embeddings = model.encode( ["query for document 3", "query for document 1"], batch_size=32, is_query=True, # # Ensure that it is set to False to indicate that these are queries show_progress_bar=True, ) # Step 3: Retrieve top-k documents scores = retriever.retrieve( queries_embeddings=queries_embeddings, k=10, # Retrieve the top 10 matches for each query ) ``` # Reranking If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path=pylate_model_id, ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ```
mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF
mradermacher
2025-05-21T23:16:04Z
21
0
transformers
[ "transformers", "gguf", "text-generation-inference", "pt", "base_model:amadeusai/Amadeus-Verbo-BI-Qwen-2.5-72B-PT-BR-Instruct-Experimental", "base_model:quantized:amadeusai/Amadeus-Verbo-BI-Qwen-2.5-72B-PT-BR-Instruct-Experimental", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-16T09:16:07Z
--- base_model: amadeusai/Amadeus-Verbo-BI-Qwen-2.5-72B-PT-BR-Instruct-Experimental language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/amadeusai/Amadeus-Verbo-BI-Qwen-2.5-72B-PT-BR-Instruct-Experimental <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-72B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-72B-PT-BR-Instruct.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF
mradermacher
2025-05-21T23:15:53Z
25
0
transformers
[ "transformers", "gguf", "text-generation-inference", "pt", "base_model:amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental", "base_model:quantized:amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-16T09:41:54Z
--- base_model: amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF
mradermacher
2025-05-21T23:15:46Z
53
0
transformers
[ "transformers", "gguf", "text-generation-inference", "pt", "base_model:amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental", "base_model:quantized:amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-16T10:07:33Z
--- base_model: amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/amadeusai/Amadeus-Verbo-BI-Qwen-2.5-3B-PT-BR-Instruct-Experimental <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 1.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.7 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 1.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/AV-BI-Qwen2.5-3B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-BI-Qwen2.5-3B-PT-BR-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 2.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/General-Reasoner-7B-preview-GGUF
mradermacher
2025-05-21T23:15:23Z
201
1
transformers
[ "transformers", "gguf", "General-Reasoner-7B", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:TIGER-Lab/General-Reasoner-Qwen2.5-7B", "base_model:quantized:TIGER-Lab/General-Reasoner-Qwen2.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-16T12:04:03Z
--- base_model: TIGER-Lab/General-Reasoner-Qwen2.5-7B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - General-Reasoner-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TIGER-Lab/General-Reasoner-Qwen2.5-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/General-Reasoner-7B-preview-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-7B-preview-GGUF/resolve/main/General-Reasoner-7B-preview.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF
mradermacher
2025-05-21T23:14:36Z
15
0
transformers
[ "transformers", "gguf", "text-generation-inference", "pt", "base_model:amadeusai/Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct", "base_model:quantized:amadeusai/Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-16T15:00:30Z
--- base_model: amadeusai/Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/amadeusai/Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct-GGUF/resolve/main/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jinx2321/mt5-tagged-1e4-paper
jinx2321
2025-05-21T23:14:28Z
0
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-21T21:28:31Z
--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer model-index: - name: mt5-tagged-1e4-paper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-tagged-1e4-paper This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
rosieyzh/uf-dpo-llama3_1_8b_instruct-checkpoint_2625-seed_42
rosieyzh
2025-05-21T23:12:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T23:05:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Neo-theone2000/unique-quality
Neo-theone2000
2025-05-21T23:11:57Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T23:11:57Z
--- license: apache-2.0 ---
mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF
mradermacher
2025-05-21T23:09:43Z
313
0
transformers
[ "transformers", "gguf", "text-generation-inference", "pt", "base_model:amadeusai/Amadeus-Verbo-FI-Qwen2.5-72B-PT-BR-Instruct", "base_model:quantized:amadeusai/Amadeus-Verbo-FI-Qwen2.5-72B-PT-BR-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-19T00:40:02Z
--- base_model: amadeusai/Amadeus-Verbo-FI-Qwen2.5-72B-PT-BR-Instruct language: - pt library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/amadeusai/Amadeus-Verbo-FI-Qwen2.5-72B-PT-BR-Instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 45.8 | | | [GGUF](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/AV-FI-Qwen2.5-72B-PT-BR-Instruct-i1-GGUF/resolve/main/AV-FI-Qwen2.5-72B-PT-BR-Instruct.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Inabia-AI/Kymera_Revage_standalone_lora_3.1_2025_05_21_23_04_14
Inabia-AI
2025-05-21T23:09:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T23:07:29Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Inabia-AI - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aiden200/anon
aiden200
2025-05-21T23:06:55Z
348
0
peft
[ "peft", "safetensors", "generated_from_trainer", "video-text-to-text", "en", "base_model:lmms-lab/llava-onevision-qwen2-7b-ov", "base_model:adapter:lmms-lab/llava-onevision-qwen2-7b-ov", "license:apache-2.0", "region:us" ]
video-text-to-text
2025-04-01T22:56:18Z
--- license: apache-2.0 base_model: lmms-lab/llava-onevision-qwen2-7b-ov tags: - generated_from_trainer model-index: - name: aha results: [] library_name: peft language: - en pipeline_tag: video-text-to-text --- # anon for paper submission This model is a fine-tuned version of [lmms-lab/llava-onevision-qwen2-7b-ov](https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov) on an unknown dataset. <!-- ## Model description More information needed --> ## Training and evaluation data Please check out the [dataset]() for more information. ## Training procedure Please check out our [main repository]() for more information. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.40.0 - Pytorch 2.5.1+cu124 - Datasets 2.16.1 - Tokenizers 0.19.1
Kurosawama/Llama-2-7b-DPO-beamsearch-align
Kurosawama
2025-05-21T23:06:42Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T23:06:30Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
greenwich157/granite-3.3-8b-instruct-telcollm-c
greenwich157
2025-05-21T23:05:37Z
0
0
transformers
[ "transformers", "safetensors", "granite", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:55:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mohhtl/7af1cbe9-53d8-4a82-93f8-37b3c28e6ac6
mohhtl
2025-05-21T23:05:30Z
0
0
peft
[ "peft", "safetensors", "mistral", "generated_from_trainer", "dataset:train.json", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2025-05-21T21:34:31Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - generated_from_trainer datasets: - train.json model-index: - name: 7af1cbe9-53d8-4a82-93f8-37b3c28e6ac6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.9.2` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto dataset_prepared_path: 1bfb3e29-461b-417c-9436-3ae19614ca7d_last_run_prepared datasets: - path: train.json type: field: null field_input: Complex_CoT field_instruction: Question field_output: Response field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' flash_attention: true gradient_accumulation_steps: 4 gradient_checkpointing: true learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj loss_watchdog_patience: 3 loss_watchdog_threshold: 5.0 lr_scheduler: constant micro_batch_size: 2 model_type: MistralForCausalLM num_epochs: 10 optimizer: adamw_bnb_8bit output_dir: 7af1cbe9-53d8-4a82-93f8-37b3c28e6ac6 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true save_epochs: 1 save_strategy: 'no' save_total_limit: 1 saves_per_epoch: 1 sequence_len: 8192 special_tokens: null tf32: false tokenizer_type: LlamaTokenizer val_set_size: 0.0 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_ratio: 0.0 warmup_steps: 0 weight_decay: 0.0 ``` </details><br> # 7af1cbe9-53d8-4a82-93f8-37b3c28e6ac6 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the train.json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 10.0 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.4.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
longRAG/mistral-nemo-longragft-reasoning
longRAG
2025-05-21T23:03:38Z
0
0
null
[ "safetensors", "mistral", "generated_from_trainer", "base_model:mistralai/Mistral-Nemo-Base-2407", "base_model:finetune:mistralai/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-05-21T22:59:54Z
--- license: apache-2.0 base_model: mistralai/Mistral-Nemo-Base-2407 tags: - generated_from_trainer model-index: - name: home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-mistral-nemo-epoch4-lr1e-6-eos-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Base-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # mistral and gemma share the same format of training data chat_template: mistral datasets: - path: /home/peterjin/mnt/axolotl_train/nq_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/mmlu_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/wow_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/fever_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: /home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-mistral-nemo-epoch4-lr1e-6-eos-new sequence_len: 8192 # 24576 can be supported by 8 h100s, sample_packing: false eval_sample_packing: false pad_to_sequence_len: true wandb_project: RAG-tune-llm wandb_entity: uiuc-dmg wandb_watch: wandb_name: nq_mmlu_wow_fever_50000_rationale-e5-mistral-nemo-epoch4-lr1e-6-eos-new wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 1 eval_table_size: saves_per_epoch: 1 save_total_limit: 10 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: </s> ``` </details><br> # home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-mistral-nemo-epoch4-lr1e-6-eos-new This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 148 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3935 | 0.0013 | 1 | 1.3820 | | 0.5652 | 0.9997 | 741 | 0.5765 | | 0.5178 | 1.9993 | 1482 | 0.5643 | | 0.4026 | 2.9990 | 2223 | 0.5871 | | 0.3487 | 3.9987 | 2964 | 0.6141 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.3.1 - Datasets 2.19.1 - Tokenizers 0.19.1
longRAG/gemma2-9b-longragft-reasoning
longRAG
2025-05-21T23:01:19Z
0
0
null
[ "safetensors", "gemma2", "generated_from_trainer", "base_model:google/gemma-2-9b", "base_model:finetune:google/gemma-2-9b", "license:gemma", "region:us" ]
null
2025-05-21T22:57:54Z
--- license: gemma base_model: google/gemma-2-9b tags: - generated_from_trainer model-index: - name: home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: google/gemma-2-9b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: gemma datasets: - path: /home/peterjin/mnt/axolotl_train/nq_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: gemma field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/mmlu_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: gemma field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/wow_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: gemma field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/fever_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl ds_type: json type: chat_template chat_template: gemma field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: /home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new sequence_len: 8192 # 24576 can be supported by 8 h100s sample_packing: false eval_sample_packing: false pad_to_sequence_len: true wandb_project: RAG-tune-llm wandb_entity: uiuc-dmg wandb_watch: wandb_name: nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: false sdp_attention: false s2_attention: false eager_attention: true warmup_ratio: 0.05 evals_per_epoch: 1 eval_table_size: saves_per_epoch: 1 save_total_limit: 10 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 148 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3349 | 0.0013 | 1 | nan | | 0.623 | 0.9990 | 741 | nan | | 0.5101 | 1.9980 | 1482 | nan | | 0.3635 | 2.9970 | 2223 | nan | | 0.2928 | 3.9960 | 2964 | nan | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.3.1 - Datasets 2.19.1 - Tokenizers 0.19.1
BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayilpi703k6u1cgqh53d03c
BootesVoid
2025-05-21T23:00:56Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T23:00:47Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BELOWZERO --- # Cmaygehmz03Iju1Cgc8Dee12H_Cmayilpi703K6U1Cgqh53D03C <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BELOWZERO` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BELOWZERO", "lora_weights": "https://huggingface.co/BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayilpi703k6u1cgqh53d03c/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayilpi703k6u1cgqh53d03c', weight_name='lora.safetensors') image = pipeline('BELOWZERO').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayilpi703k6u1cgqh53d03c/discussions) to add images that show off what you’ve made with this LoRA.
refikcam/poca-SoccerTwos
refikcam
2025-05-21T23:00:31Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-05-21T23:00:10Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: refikcam/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Elcaida/qwen72binstruct-firstscenario
Elcaida
2025-05-21T23:00:29Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-72B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Qwen2.5-72B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:59:43Z
--- base_model: unsloth/Qwen2.5-72B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Elcaida - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-72B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
salmanalii/ppo-LunarLander-v2
salmanalii
2025-05-21T22:59:48Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-05-21T22:59:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.27 +/- 16.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jamjampogi22/Pigeon_race
Jamjampogi22
2025-05-21T22:58:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T22:58:05Z
--- license: apache-2.0 ---
async0x42/Devstral-Small-2505-exl3_4.5bpw
async0x42
2025-05-21T22:57:59Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text2text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "exl3", "region:us" ]
text2text-generation
2025-05-21T22:52:01Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Devstral-Small-2505 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text2text-generation --- # Model Card for mistralai/Devstrall-Small-2505 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%. | Model | Scaffold | SWE-Bench Verified (%) | |------------------|--------------------|------------------------| | Devstral | OpenHands Scaffold | **46.8** | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_bench.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY=<MY_KEY> docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.39 ``` ### Local inference You can also run the model locally. It can be done with LMStudio or other providers listed below. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` The server will start at http://0.0.0.0:3000. Open it in your browser and you will see a tab AI Provider Configuration. Now you can start a new conversation with the agent by clicking on the plus sign on the left bar. The model can also be deployed with the following libraries: - [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio-recommended-for-quantized-model) - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) ### OpenHands (recommended) #### Launch a server to deploy Devstral-Small-2505 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://<your-server-url>:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2505` - **Base URL**: `http://<your-server-url>:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any) #### Use OpenHands powered by Devstral Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app. <details> <summary>To-Do list app</summary 1. Let's ask Devstral to generate the app with the following prompt: ```txt Build a To-Do list app with the following requirements: - Built using FastAPI and React. - Make it a one page app that: - Allows to add a task. - Allows to delete a task. - Allows to mark a task as done. - Displays the list of tasks. - Store the tasks in a SQLite database. ``` ![Agent prompting](assets/tuto_open_hands/agent_prompting.png) 2. Let's see the result You should see the agent construct the app and be able to explore the code it generated. If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app. ![Agent working](assets/tuto_open_hands/agent_working.png) ![App UI](assets/tuto_open_hands/app_ui.png) 3. Iterate Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status. Enjoy building with Devstral Small and OpenHands! </details> ### LMStudio (recommended for quantized model) Download the weights from huggingface: ``` pip install -U "huggingface_hub[cli]" huggingface-cli download \ "mistralai/Devstral-Small-2505_gguf" \ --include "devstralQ4_K_M.gguf" \ --local-dir "mistralai/Devstral-Small-2505_gguf/" ``` You can serve the model locally with [LMStudio](https://lmstudio.ai/). * Download [LM Studio](https://lmstudio.ai/) and install it * Install `lms cli ~/.lmstudio/bin/lms bootstrap` * In a bash terminal, run `lms import devstralQ4_K_M.ggu` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`) * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on. * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Click “see advanced setting” on the second line. In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes. ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://<your-server-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2505" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "<your-command>", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ``` ### Mistral-inference We recommend using mistral-inference to quickly try out / "vibe-check" Devstral. #### Install Make sure to have mistral_inference >= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` #### Download ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Python You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like. ### Ollama You can run Devstral using the [Ollama](https://ollama.ai/) CLI. ```bash ollama run devstral ``` ### Transformers To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) ` mistral-common >= 1.5.5` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2505" tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json") SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_file(tekken_file) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content="<your-command>"), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ```
longRAG/mistral-nemo-longragft
longRAG
2025-05-21T22:57:43Z
0
0
null
[ "safetensors", "mistral", "generated_from_trainer", "base_model:mistralai/Mistral-Nemo-Base-2407", "base_model:finetune:mistralai/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-05-21T22:54:29Z
--- license: apache-2.0 base_model: mistralai/Mistral-Nemo-Base-2407 tags: - generated_from_trainer model-index: - name: home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000-e5-mistral-nemo-epoch4-lr1e-6-eos-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Base-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # mistral and gemma share the same format of training data chat_template: mistral datasets: - path: /home/peterjin/mnt/axolotl_train/nq_train/e5/gemma2-9B-chat/train_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/mmlu_train/e5/gemma2-9B-chat/train_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/wow_train/e5/gemma2-9B-chat/train_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant - path: /home/peterjin/mnt/axolotl_train/fever_train/e5/gemma2-9B-chat/train_12500.jsonl ds_type: json type: chat_template chat_template: mistral field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: /home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000-e5-mistral-nemo-epoch4-lr1e-6-eos-new sequence_len: 8192 # 24576 can be supported by 8 h100s, sample_packing: false eval_sample_packing: false pad_to_sequence_len: true wandb_project: RAG-tune-llm wandb_entity: uiuc-dmg wandb_watch: wandb_name: nq_mmlu_wow_fever_50000-e5-mistral-nemo-epoch4-lr1e-6-eos-new wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 1 eval_table_size: saves_per_epoch: 1 save_total_limit: 10 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: </s> ``` </details><br> # home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000-e5-mistral-nemo-epoch4-lr1e-6-eos-new This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 148 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9325 | 0.0013 | 1 | 3.1246 | | 0.659 | 0.9990 | 741 | 0.6612 | | 0.6154 | 1.9980 | 1482 | 0.6728 | | 0.3086 | 2.9970 | 2223 | 0.7489 | | 0.2657 | 3.9960 | 2964 | 0.8402 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.3.1 - Datasets 2.19.1 - Tokenizers 0.19.1
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep10_66
MinaMila
2025-05-21T22:57:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:57:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alexanderyj/gemma3_fine_tuning2025-05-21
alexanderyj
2025-05-21T22:56:18Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "endpoints_compatible", "region:us" ]
null
2025-05-21T00:21:57Z
--- base_model: google/gemma-3-4b-it library_name: transformers model_name: gemma3_fine_tuning2025-05-21 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma3_fine_tuning2025-05-21 This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="alexanderyj/gemma3_fine_tuning2025-05-21", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
zou-lab/BioMed-R1-8B
zou-lab
2025-05-21T22:52:49Z
2
0
null
[ "safetensors", "llama", "medical", "text-generation", "conversational", "en", "arxiv:2505.11462", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
text-generation
2025-05-20T17:02:38Z
--- license: llama3.1 language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation tags: - medical --- <div align="center"> <h1> Disentangling Reasoning and Knowledge in Medical Large Language Models </h1> </div> ## Introduction <div align="center"> <img src="overall_workflow.jpg" width="90%" alt="overall_workflow" /> </div> Medical reasoning in large language models (LLMs) aims to replicate clinicians' cognitive processes when interpreting patient data and making diagnostic decisions. However, evaluating true reasoning capabilities remains challenging, as widely used benchmarks-such as MedQA-USMLE, MedMCQA, and PubMedQA-often conflate questions requiring medical reasoning with those solvable through factual recall. We address this limitation by systematically disentangling reasoning-heavy from knowledge-heavy questions across 11 biomedical QA benchmarks using a PubMedBERT-based classifier that achieves human-level performance (81\%). Our analysis reveals that only 32.8\% of benchmark questions involve complex reasoning, with the majority focused on factual understanding. Using this stratified dataset, we evaluate recent biomedical reasoning models (HuatuoGPT-o1, MedReason, m1) alongside general-domain models (DeepSeek-R1, o4-mini, Qwen3) and observe a consistent performance gap between knowledge and reasoning—for example, m1 scores 60.5\% vs. 47.1\%, respectively. To assess robustness, we conduct adversarial evaluations where models are prefilled with incorrect answers before being asked to reconsider. Biomedical models show substantial degradation in this setting (e.g., MedReason drops from 44.4\% to 29.3\%), while RL-trained and larger general-domain models are more resilient. Based on these insights, we train BioMed-R1-8B using supervised fine-tuning and reinforcement learning on reasoning-heavy examples. While it achieves the strongest overall and adversarial performance among similarly sized models, there remains ample room for improvement. Incorporating additional reasoning-rich data sources, such as clinical case reports, and training on adversarial or backtracking scenarios—with reinforcement learning to encourage self-correction—may further enhance robustness and reliability. <div align=center> <img src="reasoning_vs_knowledge.png" width = "90%" alt="reason_vs_knowledge" align=center/> </div> BioMed-R1 can be used just like `Llama-3.1-8B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("BioMed-R1",torch_dtype="auto",device_map="auto") tokenizer = AutoTokenizer.from_pretrained("BioMed-R1") input_text = "Does vagus nerve contribute to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice?" messages = [{"role": "user", "content": input_text}] inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True ), return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=2048) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## 🙏🏼 Acknowledgement We gratefully acknowledge the contributions of [HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1), [MedReason](https://github.com/UCSC-VLAA/MedReason), and [M1](https://github.com/UCSC-VLAA/m1). We also thank the developers of the outstanding tools [Curator](https://github.com/bespokelabsai/curator), [TRL](https://github.com/huggingface/trl), [vLLM](https://github.com/vllm-project/vllm), and [SGLang](https://github.com/sgl-project/sglang), which made this work possible. ## 📖 Citation ``` @article{thapa2025disentangling, title={Disentangling Reasoning and Knowledge in Medical Large Language Models}, author={Thapa, Rahul and Wu, Qingyang and Wu, Kevin and Zhang, Harrison and Zhang, Angela and Wu, Eric and Ye, Haotian and Bedi, Suhana and Aresh, Nevin and Boen, Joseph and Reddy, Shriya and Athiwaratkun, Ben and Song, Shuaiwen Leon and Zou, James}, journal={arXiv preprint arXiv:2505.11462}, year={2025}, url={https://arxiv.org/abs/2505.11462} } ```
papacliff/orpheus-3b-0.1-ft-ru
papacliff
2025-05-21T22:52:23Z
0
0
null
[ "text-to-speech", "ru", "dataset:its5Q/bigger-ru-book", "base_model:canopylabs/orpheus-3b-0.1-ft", "base_model:finetune:canopylabs/orpheus-3b-0.1-ft", "license:apache-2.0", "region:us" ]
text-to-speech
2025-05-21T10:59:04Z
--- license: apache-2.0 datasets: - its5Q/bigger-ru-book language: - ru base_model: - canopylabs/orpheus-3b-0.1-ft pipeline_tag: text-to-speech --- ### (WIP) 40_000 / 100_000 steps done. - Total dataset length: ~188 hours of russian speech. - Training steps: 10 epochs of 10_000 steps - Loss: (To be updated. Current value avg) 3.794000 ### Available russian speakers (original dataset speaker names): | Speaker | Samples | Duration (hours) | |-------------------|---------|------------------| | irina_bulekova | 8012 | 17.50 | | smelova_s | 26371 | 41.65 | | alina_archibasova | 14097 | 22.07 | | maksim_suslov | 6440 | 20.70 | | daniel_che | 5502 | 19.20 | | evgenii_lebedev | 3811 | 12.50 | | evgenii_babincev | 5614 | 8.90 | | aleksandr_zbarovskii | 6212 | 9.39 | | jam_nebesky | 8052 | 19.82 | | aleksandr_kotov | 12706 | 16.63 | | **TOTAL** | 96817 | 188.35 | --- # Original model card Orpheus TTS is a state-of-the-art, Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been finetuned to deliver human-level speech synthesis, achieving exceptional clarity, expressiveness, and real-time streaming performances. # Model Details ### Model Capabilities - **Human-Like Speech**: Natural intonation, emotion, and rhythm that is superior to SOTA closed source models - **Zero-Shot Voice Cloning**: Clone voices without prior fine-tuning - **Guided Emotion and Intonation**: Control speech and emotion characteristics with simple tags - **Low Latency**: ~200ms streaming latency for realtime applications, reducible to ~100ms with input streaming ### Model Sources - **GitHub Repo:** [https://github.com/canopyai/Orpheus-TTS](https://github.com/canopyai/Orpheus-TTS) - **Blog Post:** [https://canopylabs.ai/model-releases](https://canopylabs.ai/model-releases) - **Colab Inference Notebook:** [notebook link](https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing) - **One-Click Deployment on Baseten:** [https://www.baseten.co/library/orpheus-tts/](https://www.baseten.co/library/orpheus-tts/) # Usage Check out our Colab ([link to Colab](https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing)) or GitHub ([link to GitHub](https://github.com/canopyai/Orpheus-TTS)) on how to run easy inference on our finetuned models. # Model Misuse Do not use our models for impersonation without consent, misinformation or deception (including fake news or fraudulent calls), or any illegal or harmful activity. By using this model, you agree to follow all applicable laws and ethical guidelines. We disclaim responsibility for any use.
rosieyzh/uf-dpo-llama3_1_8b_instruct-checkpoint_2375-seed_42
rosieyzh
2025-05-21T22:51:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:45:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
haihp02/147143ee-df4f-4a04-b39b-0dfaca9271dd
haihp02
2025-05-21T22:51:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "sft", "dpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:50:21Z
--- library_name: transformers tags: - trl - sft - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep9_66
MinaMila
2025-05-21T22:51:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:51:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sukisdreams/test
Sukisdreams
2025-05-21T22:50:55Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T22:50:55Z
--- license: apache-2.0 ---
bruhzair/group1-c
bruhzair
2025-05-21T22:49:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:30:44Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # group1-c This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/cache/models--TheSkullery--L3.1x3.3-Hydroblated-R1-70B-v5/snapshots/885b8ba1b37ca0ec5135b20c7ec4ed35441536f7 as a base. ### Models Merged The following models were included in the merge: * /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 * /workspace/cache/models--Sao10K--70B-L3.3-Cirrus-x1/snapshots/31d7ca33f3098d1eabe6f87a2c5b5bde85b20f35 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /workspace/cache/models--TheSkullery--L3.1x3.3-Hydroblated-R1-70B-v5/snapshots/885b8ba1b37ca0ec5135b20c7ec4ed35441536f7 - model: /workspace/cache/models--Sao10K--70B-L3.3-Cirrus-x1/snapshots/31d7ca33f3098d1eabe6f87a2c5b5bde85b20f35 - model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 base_model: /workspace/cache/models--TheSkullery--L3.1x3.3-Hydroblated-R1-70B-v5/snapshots/885b8ba1b37ca0ec5135b20c7ec4ed35441536f7 merge_method: model_stock tokenizer: source: union int8_mask: true dtype: bfloat16 ```
the-acorn-ai/Qwen3-4B-Leon-0521-sft-lora-merged
the-acorn-ai
2025-05-21T22:48:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:45:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlfoundations-dev/openmathreasoning_300k
mlfoundations-dev
2025-05-21T22:46:42Z
55
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-04T16:27:51Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: openmathreasoning_300k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openmathreasoning_300k This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/openmathreasoning_300k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - total_eval_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0a0+b465a5843b.nv24.09 - Datasets 3.5.0 - Tokenizers 0.20.3
mradermacher/Jedi-3B-1080p-GGUF
mradermacher
2025-05-21T22:46:22Z
167
0
transformers
[ "transformers", "gguf", "en", "base_model:xlangai/Jedi-3B-1080p", "base_model:quantized:xlangai/Jedi-3B-1080p", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-30T15:01:26Z
--- base_model: xlangai/Jedi-3B-1080p language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/xlangai/Jedi-3B-1080p <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.mmproj-fp16.gguf) | mmproj-fp16 | 1.4 | vision supplement | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Jedi-3B-1080p-GGUF/resolve/main/Jedi-3B-1080p.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kenonix/h1-merged-4
kenonix
2025-05-21T22:46:20Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B-Base", "base_model:finetune:unsloth/Qwen3-4B-Base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:46:19Z
--- base_model: unsloth/Qwen3-4B-Base tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kenonix - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-Base This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ngetichkevinhector/athens-ai-llama-3.1-8b-gguf
ngetichkevinhector
2025-05-21T22:46:11Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T22:44:52Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ngetichkevinhector - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep8_66
MinaMila
2025-05-21T22:44:57Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:44:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aiden200/anon-annotationsv1
aiden200
2025-05-21T22:44:42Z
0
0
null
[ "en", "license:mit", "region:us" ]
null
2025-05-21T22:43:54Z
--- license: mit language: - en pretty_name: anon --- # aha-annotationsv1 ## Dataset Description This repo contains the dataset **anon-annotationsv1**, which is used for training **anon**, and benchmarks for evaluating **anon**. The data distribution of anon-annotationsv1 is as follows: <!-- - HIHD - [HIHD](https://github.com/MRHiSum/MR.HiSum/tree/main): 31892 examples (not all of them used) - Dense Captioning - [Shot2Story](https://github.com/bytedance/Shot2Story): 36949 examples from human_anno subset - [COIN](https://coin-dataset.github.io/): 4574 examples from the train set with 2-4 minutes videos - Multi-Answer Grounded Video Question Answering (MAGQA) - The proposed dataset for Multi-Answer Grounded Video Question Answering (MAGQA), **Shot2Story-MAGQA-39k**, is also included in this repository. Its training set is `shot2story/annotations/magqa_train-0.25_0.5-earlier.json`, and its test set is `shot2story/annotations/magqa_test.json`. This dataset is generated from the [MMDuet](https://huggingface.co/datasets/wangyueqian/MMDuetIT) work, please refer to their work for the details. --> Please refer our github page for the usage. ## Related Resources
silverside/PBCUP_BITE_v2
silverside
2025-05-21T22:41:06Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T21:05:44Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: PBCUP_BITE --- # Pbcup_Bite_V2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `PBCUP_BITE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "PBCUP_BITE", "lora_weights": "https://huggingface.co/silverside/PBCUP_BITE_v2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('silverside/PBCUP_BITE_v2', weight_name='lora.safetensors') image = pipeline('PBCUP_BITE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1200 - Learning rate: 0.0003 - LoRA rank: 32 ## Contribute your own examples You can use the [community tab](https://huggingface.co/silverside/PBCUP_BITE_v2/discussions) to add images that show off what you’ve made with this LoRA.
the-acorn-ai/Qwen3-4B-Leon-0521-sft-lora
the-acorn-ai
2025-05-21T22:40:13Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-05-21T22:39:14Z
--- base_model: Qwen/Qwen3-4B-base library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.0
kureha295/ortho_model_pr
kureha295
2025-05-21T22:40:09Z
3
0
null
[ "safetensors", "llama", "license:mit", "region:us" ]
null
2025-05-15T16:22:01Z
--- license: mit --- This model has been created by taking the activations from the first 150 tokens in the prompt-cot combo.
Kudod/roberta-mlm-model-v2.4
Kudod
2025-05-21T22:35:35Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-05-21T03:31:40Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: roberta-mlm-model-v2.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-mlm-model-v2.4 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 9.3279 | 0.8315 | 10000 | 10.3457 | | 8.983 | 1.6631 | 20000 | 9.0828 | | 12.3327 | 2.4946 | 30000 | nan | | 0.0 | 3.3261 | 40000 | nan | | 0.0 | 4.1577 | 50000 | nan | | 0.0 | 4.9892 | 60000 | nan | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
mradermacher/pc-agent-72b-GGUF
mradermacher
2025-05-21T22:35:15Z
60
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "en", "dataset:henryhe0123/PC-Agent-E", "base_model:henryhe0123/PC-Agent-E", "base_model:quantized:henryhe0123/PC-Agent-E", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-05T22:51:42Z
--- base_model: henryhe0123/PC-Agent-E datasets: - henryhe0123/PC-Agent-E language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - llama-factory - full - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/henryhe0123/PC-Agent-E <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-GGUF/resolve/main/pc-agent-72b.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/pc-agent-72b-i1-GGUF
mradermacher
2025-05-21T22:34:26Z
313
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "en", "dataset:henryhe0123/PC-Agent-E", "base_model:henryhe0123/PC-Agent-E", "base_model:quantized:henryhe0123/PC-Agent-E", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-05-06T02:21:03Z
--- base_model: henryhe0123/PC-Agent-E datasets: - henryhe0123/PC-Agent-E language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - llama-factory - full - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/henryhe0123/PC-Agent-E <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/pc-agent-72b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q4_1.gguf) | i1-Q4_1 | 45.8 | | | [GGUF](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/pc-agent-72b-i1-GGUF/resolve/main/pc-agent-72b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
g-assismoraes/gemma-3-4b-it-fpi-alpha1.0-mlp-tiebe
g-assismoraes
2025-05-21T22:32:56Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-05-21T22:27:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep6_66
MinaMila
2025-05-21T22:32:12Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:32:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rosieyzh/uf-dpo-llama3_1_8b_instruct-checkpoint_2000-seed_42
rosieyzh
2025-05-21T22:32:01Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:25:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
helena-balabin/clip-graphormer_filtered_image_graphs
helena-balabin
2025-05-21T22:30:57Z
29
0
transformers
[ "transformers", "safetensors", "graph_clip", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-04-30T14:40:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ymroddi/gemma-3-finetune
ymroddi
2025-05-21T22:30:48Z
3
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T22:50:03Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ymroddi - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MinaMila/llama_instbase_LoRa_GermanCredit_ep6_66
MinaMila
2025-05-21T22:30:22Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:30:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/GLM-V5-Mag-GGUF
mradermacher
2025-05-21T22:27:03Z
524
1
transformers
[ "transformers", "gguf", "roleplay", "storywriting", "axolotl", "text-generation-inference", "finetune", "en", "dataset:PocketDoc/Dans-Personamaxx-Logs", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:lodrick-the-lafted/kalo-opus-instruct-3k-filtered", "dataset:anthracite-org/nopm_claude_writing_fixed", "dataset:anthracite-org/kalo_opus_misc_240827", "dataset:anthracite-org/kalo_misc_part2", "dataset:NewEden/Claude-Instruct-5K", "dataset:NewEden/Claude-Instruct-2.7K", "base_model:Delta-Vector/Rei-V1-32B-Base", "base_model:quantized:Delta-Vector/Rei-V1-32B-Base", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-07T07:24:51Z
--- base_model: Delta-Vector/Rei-V1-32B-Base datasets: - PocketDoc/Dans-Personamaxx-Logs - anthracite-org/kalo-opus-instruct-22k-no-refusal - lodrick-the-lafted/kalo-opus-instruct-3k-filtered - anthracite-org/nopm_claude_writing_fixed - anthracite-org/kalo_opus_misc_240827 - anthracite-org/kalo_misc_part2 - NewEden/Claude-Instruct-5K - NewEden/Claude-Instruct-2.7K language: - en library_name: transformers quantized_by: mradermacher tags: - roleplay - storywriting - axolotl - text-generation-inference - finetune --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Delta-Vector/Rei-V1-32B-Base <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.IQ4_XS.gguf) | IQ4_XS | 17.9 | | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q4_K_S.gguf) | Q4_K_S | 18.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q4_K_M.gguf) | Q4_K_M | 19.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q5_K_S.gguf) | Q5_K_S | 22.6 | | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q5_K_M.gguf) | Q5_K_M | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q6_K.gguf) | Q6_K | 26.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GLM-V5-Mag-GGUF/resolve/main/GLM-V5-Mag.Q8_0.gguf) | Q8_0 | 34.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Abey6/Abey
Abey6
2025-05-21T22:26:11Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T22:26:11Z
--- license: apache-2.0 ---
rosieyzh/uf-dpo-llama3_1_8b_instruct-checkpoint_1875-seed_42
rosieyzh
2025-05-21T22:25:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:18:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ymroddi/gemma-3
ymroddi
2025-05-21T22:24:12Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:24:05Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ymroddi - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
anonymousneurips008/empiar11120-ddpm-ema-cryoem-128x128
anonymousneurips008
2025-05-21T22:22:35Z
0
0
diffusers
[ "diffusers", "safetensors", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2025-05-20T19:22:09Z
--- license: mit library_name: diffusers --- DDPM trained on EMPIAR11120 training dataset with 310,431 images of size 128x128
anonymousneurips008/CryoDRGN_model_weights
anonymousneurips008
2025-05-21T22:22:18Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-05-21T20:53:52Z
--- license: mit --- Model weights of 3 CryoDRGN models trained on the validation dataset of EMPIAR-10076: 1. Using the original images 2. Using low-res images (16x downsampled) 3. Using CryoGEN reconstructed images (16x downsampled, sampling ratio 0.8)
benavaru/agent-flux-lora
benavaru
2025-05-21T22:20:18Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-21T21:17:31Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
anonymousneurips008/empiar10076-ddpm-ema-cryoem-128x128
anonymousneurips008
2025-05-21T22:20:15Z
12
0
diffusers
[ "diffusers", "safetensors", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2025-05-20T19:30:28Z
--- license: mit library_name: diffusers --- DDPM trained on EMPIAR10076 training dataset with 105,519 images of size 128x128
DivineWInter/Luna2
DivineWInter
2025-05-21T22:19:58Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T21:55:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Luna2 --- # Luna2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Luna2` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Luna2", "lora_weights": "https://huggingface.co/DivineWInter/Luna2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('DivineWInter/Luna2', weight_name='lora.safetensors') image = pipeline('Luna2').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/DivineWInter/Luna2/discussions) to add images that show off what you’ve made with this LoRA.
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep4_66
MinaMila
2025-05-21T22:19:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:19:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PeterAM4/deepseek-paraphrase
PeterAM4
2025-05-21T22:19:08Z
0
1
null
[ "safetensors", "qwen2", "deepseek", "paraphrase", "lora", "text-generation", "conversational", "en", "dataset:quora", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:adapter:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "license:mit", "region:us" ]
text-generation
2025-05-21T21:56:17Z
--- language: - en tags: - deepseek - paraphrase - lora - text-generation license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B datasets: - quora model-index: - name: Deepseek Paraphrase results: [] --- # Deepseek Paraphrase This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) that has been specialized for high-quality paraphrase generation. It was trained using LoRA (Low-Rank Adaptation) and then merged back into the base model for efficient inference. ## Model Details - **Base Model**: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B - **Task**: Paraphrase Generation - **Training Method**: LoRA fine-tuning with r=16, alpha=32 - **Training Data**: Multi-domain text from literary works, technical documentation, academic papers, and articles, plus the Quora paraphrase dataset ## Performance This model outperforms standard paraphrasing models like BART and T5 on key metrics: - **Semantic Preservation** (BERTScore): 0.952 - Excellent - **Lexical Diversity** (BLEU Diversity): 0.513 - Acceptable - **Character-level Changes** (Edit Distance): 0.344 - Acceptable - **Structural Variation** (Syntactic Diversity): 0.147 - Moderate - **Overall Balance** (Harmonic Score): 0.468 - Acceptable ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "PeterAM4/deepseek-paraphrase" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "Learn Once, Write Anywhere: We don't make assumptions about the rest of your technology stack, so you can develop new features in React without rewriting existing code." prompt = f"<|begin▁of▁sentence|><|User|>Paraphrase the following text while preserving its meaning but changing the wording and structure: {text}<|Assistant|><think>\nLet me analyze this text and find ways to rephrase it while keeping the same meaning.\nI need to use different vocabulary and structure.\n</think>\n\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=200, temperature=0.7, top_p=0.95, do_sample=True ) paraphrase = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(prompt, "") print(paraphrase) ``` ## Limitations - Very technical or domain-specific terminology may not be paraphrased optimally - Always review paraphrases for factual accuracy and meaning preservation ## Citation If you use this model in your research or applications, please cite: ``` @misc{deepseek-paraphrase, author = {PeterAM4}, title = {DeepSeek Paraphrase: Fine-tuned DeepSeek model for high-quality paraphrasing}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/PeterAM4/deepseek-paraphrase}} } ```
rosieyzh/uf-dpo-llama3_1_8b_instruct-checkpoint_1750-seed_42
rosieyzh
2025-05-21T22:18:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:11:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ngetichkevinhector/athens-ai-llama-3.1-8b-LORA
ngetichkevinhector
2025-05-21T22:17:50Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:17:45Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ngetichkevinhector - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cheetahbooked/ppo-SnowballTarget
cheetahbooked
2025-05-21T22:17:39Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-05-21T11:06:50Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cheetahbooked/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cheetahbooked/ppo-Pyramids-Training
cheetahbooked
2025-05-21T22:17:30Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2025-05-21T22:17:27Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cheetahbooked/ppo-Pyramids-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dzanbek/6928f9d7-dce5-46ab-8761-cad3c2901e2f
dzanbek
2025-05-21T22:16:49Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-21T21:56:34Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct library_name: transformers model_name: 6928f9d7-dce5-46ab-8761-cad3c2901e2f tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 6928f9d7-dce5-46ab-8761-cad3c2901e2f This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dzanbek/6928f9d7-dce5-46ab-8761-cad3c2901e2f", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-2/runs/zjoz6zps) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
laion/Empathic-Insight-Voice-Small
laion
2025-05-21T22:15:27Z
0
0
null
[ "license:cc-by-4.0", "region:us" ]
null
2025-05-18T20:06:13Z
--- license: cc-by-4.0 --- # Empathic-Insight-Voice-Small [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1WR-B6j--Y5RdhIyRGF_tJ3YdFF8BkUA2) **Empathic-Insight-Voice-Small** is a suite of 40+ emotion and attribute regression models trained on the large-scale, multilingual synthetic voice-acting dataset LAION'S GOT TALENT (~ 5.000 hours) & an "in the wild" dataset of voice snippets (also ~ 5.000 hours). Each model is designed to predict the intensity of a specific fine-grained emotion or attribute from speech audio. These models leverage embeddings from a fine-tuned Whisper model (laion/BUD-E-Whisper) followed by dedicated MLP regression heads for each dimension. This work is based on the research paper: **"EMONET-VOICE: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection"** ## Example Video Analyses (Top 3 Emotions) <!-- This section will be populated by the HTML from Cell 0 --> <div style='display: flex; flex-wrap: wrap; justify-content: flex-start; gap: 15px;'> <div style='flex: 0 1 auto; margin-bottom: 15px; text-align: center; width: 480px; max-width: 480px;'> <a href='https://www.youtube.com/watch?v=TsTVKCmqHhk' target='_blank' title='Watch video TsTVKCmqHhk'> <img src='https://img.youtube.com/vi/TsTVKCmqHhk/hqdefault.jpg' alt='YouTube Thumbnail for TsTVKCmqHhk' style='width: 100%; height: auto; border: 1px solid #ccc; border-radius: 4px; display: block;'> </a> <p style='font-size: 0.8em; margin-top: 5px; word-break: break-all;'>ID: TsTVKCmqHhk</p> </div> <div style='flex: 0 1 auto; margin-bottom: 15px; text-align: center; width: 480px; max-width: 480px;'> <a href='https://www.youtube.com/watch?v=sErqFgL4vA8' target='_blank' title='Watch video sErqFgL4vA8'> <img src='https://img.youtube.com/vi/sErqFgL4vA8/hqdefault.jpg' alt='YouTube Thumbnail for sErqFgL4vA8' style='width: 100%; height: auto; border: 1px solid #ccc; border-radius: 4px; display: block;'> </a> <p style='font-size: 0.8em; margin-top: 5px; word-break: break-all;'>ID: sErqFgL4vA8</p> </div> <div style='flex: 0 1 auto; margin-bottom: 15px; text-align: center; width: 480px; max-width: 480px;'> <a href='https://www.youtube.com/watch?v=BUnfuiwE_IM' target='_blank' title='Watch video BUnfuiwE_IM'> <img src='https://img.youtube.com/vi/BUnfuiwE_IM/hqdefault.jpg' alt='YouTube Thumbnail for BUnfuiwE_IM' style='width: 100%; height: auto; border: 1px solid #ccc; border-radius: 4px; display: block;'> </a> <p style='font-size: 0.8em; margin-top: 5px; word-break: break-all;'>ID: BUnfuiwE_IM</p> </div> <div style='flex: 0 1 auto; margin-bottom: 15px; text-align: center; width: 480px; max-width: 480px;'> <a href='https://www.youtube.com/watch?v=dDrmjcUq8W4' target='_blank' title='Watch video dDrmjcUq8W4'> <img src='https://img.youtube.com/vi/dDrmjcUq8W4/hqdefault.jpg' alt='YouTube Thumbnail for dDrmjcUq8W4' style='width: 100%; height: auto; border: 1px solid #ccc; border-radius: 4px; display: block;'> </a> <p style='font-size: 0.8em; margin-top: 5px; word-break: break-all;'>ID: dDrmjcUq8W4</p> </div> </div> ## Model Description The Empathic-Insight-Voice-Small suite consists of over 54 individual MLP models (40 for primary emotions, plus others for attributes like valence, arousal, gender, etc.). Each model takes a Whisper audio embedding as input and outputs a continuous score for one of the emotion/attribute categories defined in the EMONET-VOICE taxonomy and extended attribute set. The models were trained on a large dataset of synthetic & "in the wild" speech (both each ~ 5.000 hours). ## Intended Use These models are intended for research purposes in affective computing, speech emotion recognition (SER), human-AI interaction, and voice AI development. They can be used to: * Analyze and predict fine-grained emotional states and vocal attributes from speech. * Serve as a baseline for developing more advanced SER systems. * Facilitate research into nuanced emotional understanding in voice AI. * Explore multilingual and cross-cultural aspects of speech emotion (given the foundation dataset). **Out-of-Scope Use:** These models are trained on synthetic speech and their generalization to spontaneous real-world speech needs further evaluation. They should not be used for making critical decisions about individuals, for surveillance, or in any manner that could lead to discriminatory outcomes or infringe on privacy without due diligence and ethical review. ## How to Use The primary way to use these models is through the provided [Google Colab Notebook](https://colab.research.google.com/drive/1WR-B6j--Y5RdhIyRGF_tJ3YdFF8BkUA2). The notebook handles dependencies, model loading, audio processing, and provides examples for: * Batch processing a folder of audio files. * Generating a comprehensive HTML report with per-file emotion scores, waveforms, and audio players. * Generating individual JSON files with all predicted scores for each audio file. Below is a conceptual example of how to perform inference for a single audio file, extracting all emotion and attribute scores. For the full, runnable version, please refer to the Colab notebook. **Conceptual Python Example for Single Audio File Inference:** ```python import torch import torch.nn as nn import librosa import numpy as np from pathlib import Path from transformers import WhisperProcessor, WhisperForConditionalGeneration from huggingface_hub import snapshot_download # For downloading MLP models import gc # For memory management # --- Configuration (should match Cell 2 of the Colab) --- SAMPLING_RATE = 16000 MAX_AUDIO_SECONDS = 30.0 WHISPER_MODEL_ID = "mkrausio/EmoWhisper-AnS-Small-v0.1" HF_MLP_REPO_ID = "laion/Empathic-Insight-Voice-Small" # Or -Large if using those LOCAL_MLP_MODELS_DOWNLOAD_DIR = Path("./empathic_insight_voice_small_models_downloaded") WHISPER_SEQ_LEN = 1500 WHISPER_EMBED_DIM = 768 PROJECTION_DIM_FOR_FULL_EMBED = 64 # For 'Small' models MLP_HIDDEN_DIMS = [64, 32, 16] # For 'Small' models MLP_DROPOUTS = [0.0, 0.1, 0.1, 0.1] # For 'Small' models # Mapping from .pth file name parts to human-readable dimension keys # (Abridged, full map in Colab Cell 2) FILENAME_PART_TO_TARGET_KEY_MAP: Dict[str, str] = { "Affection": "Affection", "Age": "Age", "Amusement": "Amusement", "Anger": "Anger", "Arousal": "Arousal", "Astonishment_Surprise": "Astonishment/Surprise", "Authenticity": "Authenticity", "Awe": "Awe", "Background_Noise": "Background_Noise", "Bitterness": "Bitterness", "Concentration": "Concentration", "Confident_vs._Hesitant": "Confident_vs._Hesitant", "Confusion": "Confusion", "Contemplation": "Contemplation", "Contempt": "Contempt", "Contentment": "Contentment", "Disappointment": "Disappointment", "Disgust": "Disgust", "Distress": "Distress", "Doubt": "Doubt", "Elation": "Elation", "Embarrassment": "Embarrassment", "Emotional_Numbness": "Emotional Numbness", "Fatigue_Exhaustion": "Fatigue/Exhaustion", "Fear": "Fear", "Gender": "Gender", "Helplessness": "Helplessness", "High-Pitched_vs._Low-Pitched": "High-Pitched_vs._Low-Pitched", "Hope_Enthusiasm_Optimism": "Hope/Enthusiasm/Optimism", "Impatience_and_Irritability": "Impatience and Irritability", "Infatuation": "Infatuation", "Interest": "Interest", "Intoxication_Altered_States_of_Consciousness": "Intoxication/Altered States of Consciousness", "Jealousy_&_Envy": "Jealousy / Envy", "Longing": "Longing", "Malevolence_Malice": "Malevolence/Malice", "Monotone_vs._Expressive": "Monotone_vs._Expressive", "Pain": "Pain", "Pleasure_Ecstasy": "Pleasure/Ecstasy", "Pride": "Pride", "Recording_Quality": "Recording_Quality", "Relief": "Relief", "Sadness": "Sadness", "Serious_vs._Humorous": "Serious_vs._Humorous", "Sexual_Lust": "Sexual Lust", "Shame": "Shame", "Soft_vs._Harsh": "Soft_vs._Harsh", "Sourness": "Sourness", "Submissive_vs._Dominant": "Submissive_vs._Dominant", "Teasing": "Teasing", "Thankfulness_Gratitude": "Thankfulness/Gratitude", "Triumph": "Triumph", "Valence": "Valence", "Vulnerable_vs._Emotionally_Detached": "Vulnerable_vs._Emotionally_Detached", "Warm_vs._Cold": "Warm_vs._Cold" } TARGET_EMOTION_KEYS_FOR_REPORT: List[str] = [ "Amusement", "Elation", "Pleasure/Ecstasy", "Contentment", "Thankfulness/Gratitude", "Affection", "Infatuation", "Hope/Enthusiasm/Optimism", "Triumph", "Pride", "Interest", "Awe", "Astonishment/Surprise", "Concentration", "Contemplation", "Relief", "Longing", "Teasing", "Impatience and Irritability", "Sexual Lust", "Doubt", "Fear", "Distress", "Confusion", "Embarrassment", "Shame", "Disappointment", "Sadness", "Bitterness", "Contempt", "Disgust", "Anger", "Malevolence/Malice", "Sourness", "Pain", "Helplessness", "Fatigue/Exhaustion", "Emotional Numbness", "Intoxication/Altered States of Consciousness", "Jealousy / Envy" ] # --- MLP Model Definition (from Colab Cell 2) --- class FullEmbeddingMLP(nn.Module): def __init__(self, seq_len, embed_dim, projection_dim, mlp_hidden_dims, mlp_dropout_rates): super().__init__() if len(mlp_dropout_rates) != len(mlp_hidden_dims) + 1: raise ValueError("Dropout rates length error.") self.flatten = nn.Flatten() self.proj = nn.Linear(seq_len * embed_dim, projection_dim) layers = [nn.ReLU(), nn.Dropout(mlp_dropout_rates[0])] current_dim = projection_dim for i, h_dim in enumerate(mlp_hidden_dims): layers.extend([nn.Linear(current_dim, h_dim), nn.ReLU(), nn.Dropout(mlp_dropout_rates[i+1])]) current_dim = h_dim layers.append(nn.Linear(current_dim, 1)) self.mlp = nn.Sequential(*layers) def forward(self, x): if x.ndim == 4 and x.shape[1] == 1: x = x.squeeze(1) return self.mlp(self.proj(self.flatten(x))) # --- Global Model Placeholders --- whisper_model_global = None whisper_processor_global = None all_mlp_model_paths_dict = {} # To be populated WHISPER_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") MLP_DEVICE = torch.device("cpu") # As per USE_CPU_OFFLOADING_FOR_MLPS in Colab def initialize_models(): global whisper_model_global, whisper_processor_global, all_mlp_model_paths_dict print(f"Whisper will run on: {WHISPER_DEVICE}") print(f"MLPs will run on: {MLP_DEVICE}") # Load Whisper if whisper_model_global is None: print(f"Loading Whisper model '{WHISPER_MODEL_ID}'...") whisper_processor_global = WhisperProcessor.from_pretrained(WHISPER_MODEL_ID) whisper_model_global = WhisperForConditionalGeneration.from_pretrained(WHISPER_MODEL_ID).to(WHISPER_DEVICE).eval() print("Whisper model loaded.") # Download and map MLPs (paths only, models loaded on-demand) if not all_mlp_model_paths_dict: print(f"Downloading MLP checkpoints from {HF_MLP_REPO_ID} to {LOCAL_MLP_MODELS_DOWNLOAD_DIR}...") LOCAL_MLP_MODELS_DOWNLOAD_DIR.mkdir(parents=True, exist_ok=True) snapshot_download( repo_id=HF_MLP_REPO_ID, local_dir=LOCAL_MLP_MODELS_DOWNLOAD_DIR, local_dir_use_symlinks=False, allow_patterns=["*.pth"], repo_type="model" ) print("MLP checkpoints downloaded.") # Map .pth files to target keys (simplified from Colab Cell 2) for pth_file in LOCAL_MLP_MODELS_DOWNLOAD_DIR.glob("model_*_best.pth"): try: filename_part = pth_file.name.split("model_")[1].split("_best.pth")[0] if filename_part in FILENAME_PART_TO_TARGET_KEY_MAP: target_key = FILENAME_PART_TO_TARGET_KEY_MAP[filename_part] all_mlp_model_paths_dict[target_key] = pth_file except IndexError: print(f"Warning: Could not parse filename part from {pth_file.name}") print(f"Mapped {len(all_mlp_model_paths_dict)} MLP model paths.") if not all_mlp_model_paths_dict: raise RuntimeError("No MLP model paths could be mapped. Check FILENAME_PART_TO_TARGET_KEY_MAP and downloaded files.") @torch.no_grad() def get_whisper_embedding(audio_waveform_np): if whisper_model_global is None or whisper_processor_global is None: raise RuntimeError("Whisper model not initialized. Call initialize_models() first.") input_features = whisper_processor_global( audio_waveform_np, sampling_rate=SAMPLING_RATE, return_tensors="pt" ).input_features.to(WHISPER_DEVICE).to(whisper_model_global.dtype) encoder_outputs = whisper_model_global.get_encoder()(input_features=input_features) embedding = encoder_outputs.last_hidden_state current_seq_len = embedding.shape[1] if current_seq_len < WHISPER_SEQ_LEN: padding = torch.zeros((1, WHISPER_SEQ_LEN - current_seq_len, WHISPER_EMBED_DIM), device=WHISPER_DEVICE, dtype=embedding.dtype) embedding = torch.cat((embedding, padding), dim=1) elif current_seq_len > WHISPER_SEQ_LEN: embedding = embedding[:, :WHISPER_SEQ_LEN, :] return embedding def load_single_mlp(model_path, target_key): # Simplified loading for example (Colab Cell 2 has more robust loading) # For this example, assumes USE_HALF_PRECISION_FOR_MLPS=False, USE_TORCH_COMPILE_FOR_MLPS=False print(f" Loading MLP for '{target_key}'...") model_instance = FullEmbeddingMLP( WHISPER_SEQ_LEN, WHISPER_EMBED_DIM, PROJECTION_DIM_FOR_FULL_EMBED, MLP_HIDDEN_DIMS, MLP_DROPOUTS ) state_dict = torch.load(model_path, map_location='cpu') # Handle potential '_orig_mod.' prefix if model was torch.compile'd during training if any(k.startswith("_orig_mod.") for k in state_dict.keys()): state_dict = {k.replace("_orig_mod.", ""): v for k, v in state_dict.items()} model_instance.load_state_dict(state_dict) model_instance = model_instance.to(MLP_DEVICE).eval() return model_instance @torch.no_grad() def predict_with_mlp(embedding, mlp_model): embedding_for_mlp = embedding.to(MLP_DEVICE) # Ensure dtype matches (simplified) mlp_dtype = next(mlp_model.parameters()).dtype prediction = mlp_model(embedding_for_mlp.to(mlp_dtype)) return prediction.item() def process_audio_file(audio_file_path_str: str) -> Dict[str, float]: if not all_mlp_model_paths_dict: initialize_models() # Ensure models are ready print(f"Processing audio file: {audio_file_path_str}") try: waveform, sr = librosa.load(audio_file_path_str, sr=SAMPLING_RATE, mono=True) max_samples = int(MAX_AUDIO_SECONDS * SAMPLING_RATE) if len(waveform) > max_samples: waveform = waveform[:max_samples] print(f"Audio loaded. Duration: {len(waveform)/SAMPLING_RATE:.2f}s") except Exception as e: print(f"Error loading audio {audio_file_path_str}: {e}") return {} embedding = get_whisper_embedding(waveform) del waveform; gc.collect(); if WHISPER_DEVICE.type == 'cuda': torch.cuda.empty_cache() all_scores: Dict[str, float] = {} for target_key, mlp_model_path in all_mlp_model_paths_dict.items(): if target_key not in FILENAME_PART_TO_TARGET_KEY_MAP.values(): # Only process mapped keys continue current_mlp_model = load_single_mlp(mlp_model_path, target_key) if current_mlp_model: score = predict_with_mlp(embedding, current_mlp_model) all_scores[target_key] = score print(f" {target_key}: {score:.4f}") del current_mlp_model # Unload after use gc.collect() if MLP_DEVICE.type == 'cuda': torch.cuda.empty_cache() else: all_scores[target_key] = float('nan') del embedding; gc.collect(); if WHISPER_DEVICE.type == 'cuda': torch.cuda.empty_cache() # Optional: Calculate Softmax for the 40 primary emotions emotion_raw_scores = [all_scores.get(k, -float('inf')) for k in TARGET_EMOTION_KEYS_FOR_REPORT if k in all_scores] if emotion_raw_scores: softmax_probs = torch.softmax(torch.tensor(emotion_raw_scores, dtype=torch.float32), dim=0) print("\nTop 3 Emotions (Softmax Probabilities):") # Create a dictionary of {emotion_key: softmax_prob} emotion_softmax_dict = { key: prob.item() for key, prob in zip( [k for k in TARGET_EMOTION_KEYS_FOR_REPORT if k in all_scores], # only keys that had scores softmax_probs ) } sorted_emotions = sorted(emotion_softmax_dict.items(), key=lambda item: item[1], reverse=True) for i, (emotion, prob) in enumerate(sorted_emotions[:3]): print(f" {i+1}. {emotion}: {prob:.4f} (Raw: {all_scores.get(emotion, float('nan')):.4f})") return all_scores # --- Example Usage (Run this after defining functions and initializing models) --- # Make sure to have an audio file (e.g., "sample.mp3") in your current directory or provide a full path. # And ensure FILENAME_PART_TO_TARGET_KEY_MAP and TARGET_EMOTION_KEYS_FOR_REPORT are fully populated. # # initialize_models() # Call this once # # # Create a dummy sample.mp3 for testing if it doesn't exist # if not Path("sample.mp3").exists(): # print("Creating dummy sample.mp3 for testing...") # dummy_sr = 16000 # dummy_duration = 5 # seconds # dummy_tone_freq = 440 # A4 note # t = np.linspace(0, dummy_duration, int(dummy_sr * dummy_duration), endpoint=False) # dummy_waveform = 0.5 * np.sin(2 * np.pi * dummy_tone_freq * t) # import soundfile as sf # sf.write("sample.mp3", dummy_waveform, dummy_sr) # print("Dummy sample.mp3 created.") # # if Path("sample.mp3").exists() and FILENAME_PART_TO_TARGET_KEY_MAP and TARGET_EMOTION_KEYS_FOR_REPORT: # results = process_audio_file("sample.mp3") # # print("\nFull Scores Dictionary:", results) # else: # print("Skipping example usage: 'sample.mp3' not found or maps are not fully populated.") ``` ## Taxonomy The core 40 emotion categories are (from EMONET-VOICE, Appendix A.1): Affection, Amusement, Anger, Astonishment/Surprise, Awe, Bitterness, Concentration, Confusion, Contemplation, Contempt, Contentment, Disappointment, Disgust, Distress, Doubt, Elation, Embarrassment, Emotional Numbness, Fatigue/Exhaustion, Fear, Helplessness, Hope/Enthusiasm/Optimism, Impatience and Irritability, Infatuation, Interest, Intoxication/Altered States of Consciousness, Jealousy & Envy, Longing, Malevolence/Malice, Pain, Pleasure/Ecstasy, Pride, Relief, Sadness, Sexual Lust, Shame, Sourness, Teasing, Thankfulness/Gratitude, Triumph. Additional vocal attributes (e.g., Valence, Arousal, Gender, Age, Pitch characteristics) are also predicted by corresponding MLP models in the suite. The full list of predictable dimensions can be inferred from the FILENAME_PART_TO_TARGET_KEY_MAP in the Colab notebook (Cell 2). ## Ethical Considerations The EMONET-VOICE suite was developed with ethical considerations as a priority: Privacy Preservation: The use of synthetic voice generation fundamentally circumvents privacy concerns associated with collecting real human emotional expressions, especially for sensitive states. Responsible Use: These models are released for research. Users are urged to consider the ethical implications of their applications and avoid misuse, such as for emotional manipulation, surveillance, or in ways that could lead to unfair, biased, or harmful outcomes. The broader societal implications and mitigation of potential misuse of SER technology remain important ongoing considerations.
RafaelTerra/a_photo_of_james
RafaelTerra
2025-05-21T22:14:21Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-21T20:57:20Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
z1c2/test111
z1c2
2025-05-21T22:13:47Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-09T10:54:11Z
--- license: other license_name: fff license_link: LICENSE ---
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep3_66
MinaMila
2025-05-21T22:12:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:12:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
debbieliang/llama-dpo-default_20250521_1
debbieliang
2025-05-21T22:12:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:unsloth/Llama-3.2-11B-Vision-Instruct", "base_model:finetune:unsloth/Llama-3.2-11B-Vision-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:12:02Z
--- base_model: unsloth/Llama-3.2-11B-Vision-Instruct library_name: transformers model_name: llama-dpo-default_20250521_1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for llama-dpo-default_20250521_1 This model is a fine-tuned version of [unsloth/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/unsloth/Llama-3.2-11B-Vision-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="debbieliang/llama-dpo-default_20250521_1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/debbieliang/huggingface/runs/g6yu6fw8) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MikeSu2025/bittol
MikeSu2025
2025-05-21T22:11:38Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T21:21:59Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TINTINBAK --- # Bittol <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TINTINBAK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TINTINBAK", "lora_weights": "https://huggingface.co/MikeSu2025/bittol/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('MikeSu2025/bittol', weight_name='lora.safetensors') image = pipeline('TINTINBAK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/MikeSu2025/bittol/discussions) to add images that show off what you’ve made with this LoRA.
joeyderrrr/grpo-lora-vllm
joeyderrrr
2025-05-21T22:11:28Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T21:21:08Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rosieyzh/uf-dpo-llama3_1_8b_instruct-checkpoint_1625-seed_42
rosieyzh
2025-05-21T22:11:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T22:05:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/llama_instbase_LoRa_GermanCredit_ep3_66
MinaMila
2025-05-21T22:11:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:11:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/all-MiniLM-pubmed-GGUF
mradermacher
2025-05-21T22:10:58Z
121
0
transformers
[ "transformers", "gguf", "sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:16890", "loss:CosineSimilarityLoss", "en", "base_model:jaimevera1107/all-MiniLM-pubmed", "base_model:quantized:jaimevera1107/all-MiniLM-pubmed", "endpoints_compatible", "region:us" ]
feature-extraction
2025-05-17T05:31:40Z
--- base_model: jaimevera1107/all-MiniLM-pubmed language: - en library_name: transformers quantized_by: mradermacher tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:16890 - loss:CosineSimilarityLoss --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaimevera1107/all-MiniLM-pubmed <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q4_K_M.gguf) | Q4_K_M | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q5_K_S.gguf) | Q5_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q5_K_M.gguf) | Q5_K_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q6_K.gguf) | Q6_K | 0.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.Q8_0.gguf) | Q8_0 | 0.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/all-MiniLM-pubmed-GGUF/resolve/main/all-MiniLM-pubmed.f16.gguf) | f16 | 0.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF
mradermacher
2025-05-21T22:07:05Z
77
0
transformers
[ "transformers", "gguf", "lora", "en", "dataset:rubricreward/R3-Dataset-4K", "base_model:rubricreward/R3-Qwen3-8B-LoRA-4k", "base_model:adapter:rubricreward/R3-Qwen3-8B-LoRA-4k", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-20T07:48:03Z
--- base_model: rubricreward/R3-Qwen3-8B-LoRA-4k datasets: - rubricreward/R3-Dataset-4K language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - lora --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rubricreward/R3-Qwen3-8B-LoRA-4k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/R3-Qwen3-8B-LoRA-4k-GGUF/resolve/main/R3-Qwen3-8B-LoRA-4k.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep2_66
MinaMila
2025-05-21T22:06:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:06:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bruhzair/group1-a
bruhzair
2025-05-21T22:06:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T21:47:59Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # group1-a This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/cache/models--TheSkullery--L3.1x3.3-Hydroblated-R1-70B-v5/snapshots/885b8ba1b37ca0ec5135b20c7ec4ed35441536f7 as a base. ### Models Merged The following models were included in the merge: * /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c * /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 * /workspace/cache/models--hitachi-nlp--Llama-3.1-70B-FLDx2/snapshots/051461669991c591aab9e96182b84bdc97733c7f ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /workspace/cache/models--TheSkullery--L3.1x3.3-Hydroblated-R1-70B-v5/snapshots/885b8ba1b37ca0ec5135b20c7ec4ed35441536f7 - model: /workspace/cache/models--hitachi-nlp--Llama-3.1-70B-FLDx2/snapshots/051461669991c591aab9e96182b84bdc97733c7f - model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - model: /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c base_model: /workspace/cache/models--TheSkullery--L3.1x3.3-Hydroblated-R1-70B-v5/snapshots/885b8ba1b37ca0ec5135b20c7ec4ed35441536f7 merge_method: model_stock tokenizer: source: union int8_mask: true dtype: bfloat16 ```
mradermacher/E1-Code-14B-GGUF
mradermacher
2025-05-21T22:05:57Z
28
0
transformers
[ "transformers", "gguf", "en", "dataset:agentica-org/DeepCoder-Preview-Dataset", "base_model:Salesforce/E1-Code-14B", "base_model:quantized:Salesforce/E1-Code-14B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T08:12:14Z
--- base_model: Salesforce/E1-Code-14B datasets: - agentica-org/DeepCoder-Preview-Dataset language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Salesforce/E1-Code-14B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/E1-Code-14B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/E1-Code-14B-GGUF/resolve/main/E1-Code-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/vanilla-cn-roleplay-0.2-GGUF
mradermacher
2025-05-21T22:05:23Z
0
0
transformers
[ "transformers", "gguf", "roleplay", "Roleplay", "roleplaying", "zh", "dataset:ScratchThePlan/cn-role-play-we-with-no-tomorrow-fell-in-love-yesterday", "dataset:ScratchThePlan/novel_cn_roleplay_dataset_liars_lips_fall_apart_in_love", "base_model:ScratchThePlan/vanilla-cn-roleplay-0.2", "base_model:quantized:ScratchThePlan/vanilla-cn-roleplay-0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T09:03:44Z
--- base_model: ScratchThePlan/vanilla-cn-roleplay-0.2 datasets: - ScratchThePlan/cn-role-play-we-with-no-tomorrow-fell-in-love-yesterday - ScratchThePlan/novel_cn_roleplay_dataset_liars_lips_fall_apart_in_love language: - zh library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - roleplay - Roleplay - roleplaying --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ScratchThePlan/vanilla-cn-roleplay-0.2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/vanilla-cn-roleplay-0.2-GGUF/resolve/main/vanilla-cn-roleplay-0.2.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF
mradermacher
2025-05-21T22:04:29Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:TIGER-Lab/VisualWebInstruct-Verified", "base_model:TIGER-Lab/General-Reasoner-Qwen2.5-14B", "base_model:quantized:TIGER-Lab/General-Reasoner-Qwen2.5-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-05-21T20:36:16Z
--- base_model: TIGER-Lab/General-Reasoner-Qwen2.5-14B datasets: - TIGER-Lab/VisualWebInstruct-Verified language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TIGER-Lab/General-Reasoner-Qwen2.5-14B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
BootesVoid/cmaygehmz03iju1cgc8dee12h_cmaygnctd03itu1cgurcgqnsy
BootesVoid
2025-05-21T22:02:30Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T22:02:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: COOLZILLA69 --- # Cmaygehmz03Iju1Cgc8Dee12H_Cmaygnctd03Itu1Cgurcgqnsy <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `COOLZILLA69` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "COOLZILLA69", "lora_weights": "https://huggingface.co/BootesVoid/cmaygehmz03iju1cgc8dee12h_cmaygnctd03itu1cgurcgqnsy/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmaygehmz03iju1cgc8dee12h_cmaygnctd03itu1cgurcgqnsy', weight_name='lora.safetensors') image = pipeline('COOLZILLA69').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmaygehmz03iju1cgc8dee12h_cmaygnctd03itu1cgurcgqnsy/discussions) to add images that show off what you’ve made with this LoRA.
mradermacher/General-Reasoner-Qwen2.5-14B-GGUF
mradermacher
2025-05-21T22:01:57Z
31
1
transformers
[ "transformers", "gguf", "en", "dataset:TIGER-Lab/VisualWebInstruct-Verified", "base_model:TIGER-Lab/General-Reasoner-Qwen2.5-14B", "base_model:quantized:TIGER-Lab/General-Reasoner-Qwen2.5-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T08:30:59Z
--- base_model: TIGER-Lab/General-Reasoner-Qwen2.5-14B datasets: - TIGER-Lab/VisualWebInstruct-Verified language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TIGER-Lab/General-Reasoner-Qwen2.5-14B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-14B-GGUF/resolve/main/General-Reasoner-Qwen2.5-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ntnu-smil/whisper-large-v3-turbo-sandi-train-1-pure-transcript-32-merged
ntnu-smil
2025-05-21T22:01:50Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "wft", "audio", "speech", "generated_from_trainer", "en", "dataset:ntnu-smil/sandi2025-ds", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-21T19:40:56Z
--- library_name: transformers language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/sandi2025-ds metrics: - wer model-index: - name: whisper-large-v3-turbo-sandi-train-1-pure-transcript-32 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/sandi2025-ds type: ntnu-smil/sandi2025-ds metrics: - type: wer value: 18.520219614050212 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v3-turbo-sandi-train-1-pure-transcript-32 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set: - Loss: 0.7791 - Wer: 18.5202 - Cer: 13.1470 - Decode Runtime: 188.5370 - Wer Runtime: 0.1495 - Cer Runtime: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 732 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:| | 0.9895 | 0.1667 | 122 | 0.8136 | 19.0375 | 13.4424 | 222.9064 | 0.1748 | 0.3402 | | 1.1322 | 1.1667 | 244 | 0.7851 | 18.5866 | 13.1695 | 216.8919 | 0.1753 | 0.3360 | | 0.5149 | 2.1667 | 366 | 0.7753 | 18.4884 | 13.1536 | 195.2818 | 0.1501 | 0.2897 | | 0.3311 | 3.1667 | 488 | 0.7736 | 18.4361 | 13.0973 | 188.5320 | 0.1554 | 0.2902 | | 0.8447 | 4.1667 | 610 | 0.7786 | 18.4750 | 13.1144 | 197.2527 | 0.1534 | 0.2967 | | 0.9898 | 5.1667 | 732 | 0.7791 | 18.5202 | 13.1470 | 188.5370 | 0.1495 | 0.2889 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.2 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
mradermacher/General-Reasoner-Qwen2.5-7B-GGUF
mradermacher
2025-05-21T22:01:32Z
27
1
transformers
[ "transformers", "gguf", "General-Reasoner-7B", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:TIGER-Lab/General-Reasoner-Qwen2.5-7B", "base_model:quantized:TIGER-Lab/General-Reasoner-Qwen2.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T08:26:23Z
--- base_model: TIGER-Lab/General-Reasoner-Qwen2.5-7B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - General-Reasoner-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TIGER-Lab/General-Reasoner-Qwen2.5-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/General-Reasoner-Qwen2.5-7B-GGUF/resolve/main/General-Reasoner-Qwen2.5-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ntnu-smil/whisper-large-v3-turbo-sandi-train-1-pure-transcript-32
ntnu-smil
2025-05-21T22:01:25Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "wft", "whisper", "automatic-speech-recognition", "audio", "speech", "generated_from_trainer", "en", "dataset:ntnu-smil/sandi2025-ds", "base_model:openai/whisper-large-v3-turbo", "base_model:adapter:openai/whisper-large-v3-turbo", "license:mit", "model-index", "region:us" ]
automatic-speech-recognition
2025-05-21T17:55:16Z
--- library_name: peft language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/sandi2025-ds metrics: - wer model-index: - name: whisper-large-v3-turbo-sandi-train-1-pure-transcript-32 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/sandi2025-ds type: ntnu-smil/sandi2025-ds metrics: - type: wer value: 18.520219614050212 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v3-turbo-sandi-train-1-pure-transcript-32 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set: - Loss: 0.7791 - Wer: 18.5202 - Cer: 13.1470 - Decode Runtime: 188.5370 - Wer Runtime: 0.1495 - Cer Runtime: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 732 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:| | 0.9895 | 0.1667 | 122 | 0.8136 | 19.0375 | 13.4424 | 222.9064 | 0.1748 | 0.3402 | | 1.1322 | 1.1667 | 244 | 0.7851 | 18.5866 | 13.1695 | 216.8919 | 0.1753 | 0.3360 | | 0.5149 | 2.1667 | 366 | 0.7753 | 18.4884 | 13.1536 | 195.2818 | 0.1501 | 0.2897 | | 0.3311 | 3.1667 | 488 | 0.7736 | 18.4361 | 13.0973 | 188.5320 | 0.1554 | 0.2902 | | 0.8447 | 4.1667 | 610 | 0.7786 | 18.4750 | 13.1144 | 197.2527 | 0.1534 | 0.2967 | | 0.9898 | 5.1667 | 732 | 0.7791 | 18.5202 | 13.1470 | 188.5370 | 0.1495 | 0.2889 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.2 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
ElijahLiew2/llama-contract-answerer
ElijahLiew2
2025-05-21T22:01:02Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T22:01:01Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ElijahLiew2 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Flaviomm01/Lagoon01
Flaviomm01
2025-05-21T22:01:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T22:01:01Z
--- license: apache-2.0 ---
async0x42/Devstral-Small-2505-exl3_4.0bpw
async0x42
2025-05-21T22:01:00Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text2text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "4-bit", "exl3", "region:us" ]
text2text-generation
2025-05-21T21:54:40Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Devstral-Small-2505 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text2text-generation --- # Model Card for mistralai/Devstrall-Small-2505 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%. | Model | Scaffold | SWE-Bench Verified (%) | |------------------|--------------------|------------------------| | Devstral | OpenHands Scaffold | **46.8** | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_bench.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY=<MY_KEY> docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.39 ``` ### Local inference You can also run the model locally. It can be done with LMStudio or other providers listed below. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` The server will start at http://0.0.0.0:3000. Open it in your browser and you will see a tab AI Provider Configuration. Now you can start a new conversation with the agent by clicking on the plus sign on the left bar. The model can also be deployed with the following libraries: - [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio-recommended-for-quantized-model) - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) ### OpenHands (recommended) #### Launch a server to deploy Devstral-Small-2505 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://<your-server-url>:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2505` - **Base URL**: `http://<your-server-url>:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any) #### Use OpenHands powered by Devstral Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app. <details> <summary>To-Do list app</summary 1. Let's ask Devstral to generate the app with the following prompt: ```txt Build a To-Do list app with the following requirements: - Built using FastAPI and React. - Make it a one page app that: - Allows to add a task. - Allows to delete a task. - Allows to mark a task as done. - Displays the list of tasks. - Store the tasks in a SQLite database. ``` ![Agent prompting](assets/tuto_open_hands/agent_prompting.png) 2. Let's see the result You should see the agent construct the app and be able to explore the code it generated. If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app. ![Agent working](assets/tuto_open_hands/agent_working.png) ![App UI](assets/tuto_open_hands/app_ui.png) 3. Iterate Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status. Enjoy building with Devstral Small and OpenHands! </details> ### LMStudio (recommended for quantized model) Download the weights from huggingface: ``` pip install -U "huggingface_hub[cli]" huggingface-cli download \ "mistralai/Devstral-Small-2505_gguf" \ --include "devstralQ4_K_M.gguf" \ --local-dir "mistralai/Devstral-Small-2505_gguf/" ``` You can serve the model locally with [LMStudio](https://lmstudio.ai/). * Download [LM Studio](https://lmstudio.ai/) and install it * Install `lms cli ~/.lmstudio/bin/lms bootstrap` * In a bash terminal, run `lms import devstralQ4_K_M.ggu` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`) * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on. * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Click “see advanced setting” on the second line. In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes. ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://<your-server-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2505" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "<your-command>", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ``` ### Mistral-inference We recommend using mistral-inference to quickly try out / "vibe-check" Devstral. #### Install Make sure to have mistral_inference >= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` #### Download ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Python You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like. ### Ollama You can run Devstral using the [Ollama](https://ollama.ai/) CLI. ```bash ollama run devstral ``` ### Transformers To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) ` mistral-common >= 1.5.5` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2505" tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json") SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_file(tekken_file) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content="<your-command>"), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ```
one-girl-one-wolf-link-original/18.one.girl.one.wolf.viral.video
one-girl-one-wolf-link-original
2025-05-21T21:58:38Z
0
0
null
[ "region:us" ]
null
2025-05-21T21:56:49Z
<a rel="nofollow" href="https://tinyurl.com/58snvazm?V=one-girl-one-wolf"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a> <a rel="nofollow" href="https://tinyurl.com/58snvazm?V=one-girl-one-wolf">🌐 CLICK HERE 🟢==►► WATCH NOW</a> <a rel="nofollow" href="https://tinyurl.com/58snvazm?V=one-girl-one-wolf">🔴 CLICK HERE 🌐==►► Download Now)</a>
andyrdt/saes-llama-3.1-8b-instruct
andyrdt
2025-05-21T21:57:58Z
0
0
null
[ "arxiv:2412.06410", "license:apache-2.0", "region:us" ]
null
2025-05-21T21:22:12Z
--- license: apache-2.0 --- Residual stream SAEs for [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). These SAEs were trained using a blend of chat ([lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)) and pretraining data ([monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted)), and also a small amount of [emergent misalignment data](https://github.com/emergent-misalignment/emergent-misalignment/). Each SAE is trained using [BatchTopK](https://arxiv.org/abs/2412.06410). For each layer, we train 4 SAEs, with `k=32,64,128,256`. For more training details, see https://github.com/andyrdt/dictionary_learning/tree/andyrdt/llama_saes.
MinaMila/llama_instbase_LoRa_ACSEmployment_2_cfda_ep2_22
MinaMila
2025-05-21T21:57:44Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T21:57:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jmalejandrob79/nbmafckd5k5
jmalejandrob79
2025-05-21T21:56:40Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T20:46:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nbmafckd5k5 --- # Nbmafckd5K5 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nbmafckd5k5` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nbmafckd5k5", "lora_weights": "https://huggingface.co/jmalejandrob79/nbmafckd5k5/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jmalejandrob79/nbmafckd5k5', weight_name='lora.safetensors') image = pipeline('nbmafckd5k5').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 5500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jmalejandrob79/nbmafckd5k5/discussions) to add images that show off what you’ve made with this LoRA.
MinaMila/phi3_unlearned_ug_e-5_1.0_0.15_0.05_LoRa_Adult_ep5_22
MinaMila
2025-05-21T21:56:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T21:56:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayggr4803iou1cgz5k4ei6x
BootesVoid
2025-05-21T21:54:38Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T21:54:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AER1S --- # Cmaygehmz03Iju1Cgc8Dee12H_Cmayggr4803Iou1Cgz5K4Ei6X <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AER1S` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "AER1S", "lora_weights": "https://huggingface.co/BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayggr4803iou1cgz5k4ei6x/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayggr4803iou1cgz5k4ei6x', weight_name='lora.safetensors') image = pipeline('AER1S').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmaygehmz03iju1cgc8dee12h_cmayggr4803iou1cgz5k4ei6x/discussions) to add images that show off what you’ve made with this LoRA.
saludableconuriel/ai-images
saludableconuriel
2025-05-21T21:54:34Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-20T23:06:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep10_55
MinaMila
2025-05-21T21:53:06Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T21:53:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]