modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-24 00:43:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
573 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-24 00:37:34
card
stringlengths
11
1.01M
winnieyangwannan/popqa_gpt-oss-20b_experts-down_pnas_layer_14_12_all_37_0.01_1280_5
winnieyangwannan
2025-09-19T17:35:41Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-19T17:31:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/popqa_gpt-oss-20b_experts-down_pnas_layer_14_12_all_37_0.005_1280_5
winnieyangwannan
2025-09-19T17:34:59Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-19T17:31:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
onnxmodelzoo/hrnet_w48_Opset18
onnxmodelzoo
2025-09-19T17:33:47Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:33:27Z
--- language: en license: apache-2.0 model_name: hrnet_w48_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/hrnet_w48_Opset16
onnxmodelzoo
2025-09-19T17:32:59Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:32:37Z
--- language: en license: apache-2.0 model_name: hrnet_w48_Opset16.onnx tags: - Computer_Vision ---
WenFengg/MOes20Sat_14_4
WenFengg
2025-09-19T17:32:51Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-19T17:32:09Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
onnxmodelzoo/hrnet_w44_Opset17
onnxmodelzoo
2025-09-19T17:32:18Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:31:58Z
--- language: en license: apache-2.0 model_name: hrnet_w44_Opset17.onnx tags: - Computer_Vision ---
stevenmaschan/gigaspeech_tokenizer-5k
stevenmaschan
2025-09-19T17:32:15Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-19T17:01:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
onnxmodelzoo/hrnet_w40_Opset18
onnxmodelzoo
2025-09-19T17:31:33Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:31:15Z
--- language: en license: apache-2.0 model_name: hrnet_w40_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/hrnet_w32_Opset18
onnxmodelzoo
2025-09-19T17:30:39Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:30:26Z
--- language: en license: apache-2.0 model_name: hrnet_w32_Opset18.onnx tags: - Computer_Vision ---
david4096/apollo_sv-all-MiniLM-L6-v2_concat_gcn_h128_o64_cross_entropy_e128_knowledge-4
david4096
2025-09-19T17:30:35Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "feature-extraction", "ontology", "on2vec", "knowledge-enhanced", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-19T17:30:26Z
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - ontology - on2vec - knowledge-enhanced pipeline_tag: sentence-similarity --- # apollo_sv_all-MiniLM-L6-v2_concat_gcn_h128_o64_cross_entropy_e128_knowledge This is a knowledge-enhanced sentence transformer model created with [on2vec](https://github.com/davidandrzej/on2vec). ## Model Details - **Base Model**: sentence-transformers/all-MiniLM-L6-v2 - **Architecture**: Knowledge-Enhanced Transformer (experimental) - **Knowledge Dim**: 1024 - **Max Concepts**: 3 - **Created with**: on2vec knowledge-enhanced architecture ## Usage ⚠️ **Note**: This is an experimental knowledge-enhanced model that requires special handling. ```python # This model cannot be loaded with standard SentenceTransformer.load() # Contact the model creator for usage instructions ``` ## Architecture This model uses a fundamentally different approach than standard fusion models: - Token embeddings are enhanced with ontology knowledge during forward pass - End-to-end training in unified representation space - No separate lookup/fusion step Generated by on2vec knowledge-enhanced transformer.
schooncestiaa/blockassist-bc-scruffy_webbed_dragonfly_1758302967
schooncestiaa
2025-09-19T17:30:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy webbed dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-19T17:30:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy webbed dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
onnxmodelzoo/hrnet_w32_Opset17
onnxmodelzoo
2025-09-19T17:30:25Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:30:12Z
--- language: en license: apache-2.0 model_name: hrnet_w32_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/hrnet_w30_Opset18
onnxmodelzoo
2025-09-19T17:29:56Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:29:43Z
--- language: en license: apache-2.0 model_name: hrnet_w30_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/hrnet_w30_Opset17
onnxmodelzoo
2025-09-19T17:29:43Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:29:28Z
--- language: en license: apache-2.0 model_name: hrnet_w30_Opset17.onnx tags: - Computer_Vision ---
small-models-for-glam/Qwen3-0.6B-SFT-AAT-Materials
small-models-for-glam
2025-09-19T17:29:42Z
36
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "hf_jobs", "cultural-heritage", "aat", "materials-identification", "glam", "digital-humanities", "base_model:Qwen/Qwen3-0.6B", "base_model:finetune:Qwen/Qwen3-0.6B", "endpoints_compatible", "region:us" ]
null
2025-09-18T13:57:28Z
--- base_model: Qwen/Qwen3-0.6B library_name: transformers model_name: Qwen3-0.6B-SFT-AAT-Materials tags: - generated_from_trainer - sft - trl - hf_jobs - cultural-heritage - aat - materials-identification - glam - digital-humanities licence: mit --- # Model Card for Qwen3-0.6B-SFT-AAT-Materials This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) specialized for identifying materials in cultural heritage object descriptions according to Getty Art & Architecture Thesaurus (AAT) standards. It has been trained using [TRL](https://github.com/huggingface/trl) on synthetic data representing diverse cultural heritage objects from museums, galleries, libraries, archives, and museums (GLAM) collections. ## Model Description This model excels at: - **Materials Identification**: Extracting and categorizing materials from cultural heritage object descriptions - **AAT Standardization**: Converting material descriptions to Getty Art & Architecture Thesaurus format - **Multi-material Recognition**: Identifying compound materials (e.g., "oil on canvas" → ["Oil paint", "Canvas"]) - **Domain-specific Understanding**: Processing technical terminology from art history, archaeology, and museum cataloging ## Use Cases ### Primary Applications - **Museum Cataloging**: Automated material extraction from object descriptions - **Digital Collections**: Standardizing material metadata across cultural heritage databases - **Research Tools**: Supporting art historians and archaeologists in material analysis - **Data Migration**: Converting legacy catalog records to AAT standards ### Object Types Supported - Paintings (oil, tempera, watercolor, acrylic) - Sculptures (bronze, marble, wood, clay) - Textiles (wool, linen, silk, cotton) - Ceramics and pottery - Metalwork and jewelry - Glassware - Manuscripts and prints - Furniture and decorative objects ## Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM import json # Load the model tokenizer = AutoTokenizer.from_pretrained("small-models-for-glam/Qwen3-0.6B-SFT-AAT-Materials") model = AutoModelForCausalLM.from_pretrained("small-models-for-glam/Qwen3-0.6B-SFT-AAT-Materials") # Example cultural heritage object description description = """A bronze sculpture from 1425, standing 150 cm tall. The figure is mounted on a marble base and features intricate details cast in the bronze medium. The sculpture shows traces of original gilding on selected areas.""" # Format the prompt prompt = f"""Given this cultural heritage object description: {description} Identify the materials separate out materials as they would be found in Getty AAT""" # Generate materials identification inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_length=512, temperature=0.3) result = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the materials output materials = result[len(prompt):].strip() print(json.loads(materials)) # Expected output: [{"Bronze": ["bronze"]}, {"Marble": ["marble"]}, {"Gold leaf": ["gold", "leaf"]}] ``` ## Expected Output Format The model outputs materials in JSON format where each material combination is mapped to its constituent AAT terms: ```json [ {"oil on canvas": ["Oil paint", "Canvas"]}, {"tempera on wood": ["tempera paint", "wood (plant material)"]}, {"bronze": ["bronze"]} ] ``` ## Training Procedure This model was trained using Supervised Fine-Tuning (SFT) on the `small-models-for-glam/synthetic-aat-materials` dataset, which contains thousands of synthetic cultural heritage object descriptions paired with their corresponding AAT material classifications. ### Training Details - **Base Model**: Qwen/Qwen3-0.6B - **Training Method**: Supervised Fine-Tuning (SFT) with TRL - **Dataset**: Synthetic AAT materials dataset - **Infrastructure**: Trained using Hugging Face Jobs - **Epochs**: 3 - **Batch Size**: 4 (with gradient accumulation) - **Learning Rate**: 2e-5 - **Context**: Cultural heritage object descriptions → AAT materials mapping ### Dataset Characteristics The training dataset includes diverse object types: - Historical artifacts from various time periods - Multiple material combinations per object - Professional museum cataloging terminology - AAT-compliant material classifications ### Framework versions - TRL: 0.23.0 - Transformers: 4.56.1 - Pytorch: 2.8.0 - Datasets: 4.1.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
onnxmodelzoo/hrnet_w30_Opset16
onnxmodelzoo
2025-09-19T17:29:28Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:29:13Z
--- language: en license: apache-2.0 model_name: hrnet_w30_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/hrnet_w18_small_v2_Opset17
onnxmodelzoo
2025-09-19T17:29:03Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:28:55Z
--- language: en license: apache-2.0 model_name: hrnet_w18_small_v2_Opset17.onnx tags: - Computer_Vision ---
aamijar/MaskLLM-Llama-2-7b-hf-lora-r8-sst2-epochs0
aamijar
2025-09-19T17:28:56Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-19T17:28:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
onnxmodelzoo/hrnet_w18_small_Opset18
onnxmodelzoo
2025-09-19T17:28:43Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:28:35Z
--- language: en license: apache-2.0 model_name: hrnet_w18_small_Opset18.onnx tags: - Computer_Vision ---
WenFengg/MOes20Sat_14_3
WenFengg
2025-09-19T17:28:42Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-19T17:28:03Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
onnxmodelzoo/hrnet_w18_Opset18
onnxmodelzoo
2025-09-19T17:28:19Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:28:10Z
--- language: en license: apache-2.0 model_name: hrnet_w18_Opset18.onnx tags: - Computer_Vision ---
david4096/apo-all-MiniLM-L6-v2_concat_gcn_h128_o64_cross_entropy_e128_knowledge-4
david4096
2025-09-19T17:28:11Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "feature-extraction", "ontology", "on2vec", "knowledge-enhanced", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-19T17:28:06Z
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - ontology - on2vec - knowledge-enhanced pipeline_tag: sentence-similarity --- # apo_all-MiniLM-L6-v2_concat_gcn_h128_o64_cross_entropy_e128_knowledge This is a knowledge-enhanced sentence transformer model created with [on2vec](https://github.com/davidandrzej/on2vec). ## Model Details - **Base Model**: sentence-transformers/all-MiniLM-L6-v2 - **Architecture**: Knowledge-Enhanced Transformer (experimental) - **Knowledge Dim**: 1024 - **Max Concepts**: 3 - **Created with**: on2vec knowledge-enhanced architecture ## Usage ⚠️ **Note**: This is an experimental knowledge-enhanced model that requires special handling. ```python # This model cannot be loaded with standard SentenceTransformer.load() # Contact the model creator for usage instructions ``` ## Architecture This model uses a fundamentally different approach than standard fusion models: - Token embeddings are enhanced with ontology knowledge during forward pass - End-to-end training in unified representation space - No separate lookup/fusion step Generated by on2vec knowledge-enhanced transformer.
onnxmodelzoo/hrnet_w18_Opset17
onnxmodelzoo
2025-09-19T17:28:10Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:27:57Z
--- language: en license: apache-2.0 model_name: hrnet_w18_Opset17.onnx tags: - Computer_Vision ---
krrrrk/bert-phishing-classifier_teacher
krrrrk
2025-09-19T17:26:42Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-19T17:23:36Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-phishing-classifier_teacher results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-phishing-classifier_teacher This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2879 - Accuracy: 0.876 - Auc: 0.952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 0.4167 | 1.0 | 263 | 0.3743 | 0.84 | 0.931 | | 0.3845 | 2.0 | 526 | 0.3401 | 0.847 | 0.939 | | 0.367 | 3.0 | 789 | 0.3043 | 0.873 | 0.944 | | 0.3498 | 4.0 | 1052 | 0.3587 | 0.851 | 0.946 | | 0.3446 | 5.0 | 1315 | 0.3293 | 0.858 | 0.948 | | 0.3226 | 6.0 | 1578 | 0.3011 | 0.873 | 0.949 | | 0.3051 | 7.0 | 1841 | 0.2925 | 0.873 | 0.949 | | 0.3253 | 8.0 | 2104 | 0.2915 | 0.88 | 0.95 | | 0.3126 | 9.0 | 2367 | 0.2824 | 0.878 | 0.951 | | 0.3043 | 10.0 | 2630 | 0.2879 | 0.876 | 0.952 | ### Framework versions - Transformers 4.53.2 - Pytorch 2.8.0+cpu - Datasets 4.0.0 - Tokenizers 0.21.4
AmirMohseni/grpo-qwen-2.5-7b-lora-stem
AmirMohseni
2025-09-19T17:22:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "grpo", "trl", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-09-19T11:34:38Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: transformers model_name: grpo-qwen-2.5-7b-lora-stem tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for grpo-qwen-2.5-7b-lora-stem This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AmirMohseni/grpo-qwen-2.5-7b-lora-stem", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/rl-research-team/grpo-math-training/runs/6sicfbth) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.56.1 - Pytorch: 2.8.0 - Datasets: 4.1.1 - Tokenizers: 0.22.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
david4096/ado-all-MiniLM-L6-v2_concat_gcn_h128_o64_cross_entropy_e128_knowledge-4
david4096
2025-09-19T17:19:51Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "feature-extraction", "ontology", "on2vec", "knowledge-enhanced", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-19T17:19:43Z
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - ontology - on2vec - knowledge-enhanced pipeline_tag: sentence-similarity --- # ado_all-MiniLM-L6-v2_concat_gcn_h128_o64_cross_entropy_e128_knowledge This is a knowledge-enhanced sentence transformer model created with [on2vec](https://github.com/davidandrzej/on2vec). ## Model Details - **Base Model**: sentence-transformers/all-MiniLM-L6-v2 - **Architecture**: Knowledge-Enhanced Transformer (experimental) - **Knowledge Dim**: 1024 - **Max Concepts**: 3 - **Created with**: on2vec knowledge-enhanced architecture ## Usage ⚠️ **Note**: This is an experimental knowledge-enhanced model that requires special handling. ```python # This model cannot be loaded with standard SentenceTransformer.load() # Contact the model creator for usage instructions ``` ## Architecture This model uses a fundamentally different approach than standard fusion models: - Token embeddings are enhanced with ontology knowledge during forward pass - End-to-end training in unified representation space - No separate lookup/fusion step Generated by on2vec knowledge-enhanced transformer.
onnxmodelzoo/hardcorenas_f_Opset16
onnxmodelzoo
2025-09-19T17:19:10Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:19:05Z
--- language: en license: apache-2.0 model_name: hardcorenas_f_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/hardcorenas_d_Opset17
onnxmodelzoo
2025-09-19T17:18:51Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:18:46Z
--- language: en license: apache-2.0 model_name: hardcorenas_d_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/hardcorenas_b_Opset16
onnxmodelzoo
2025-09-19T17:18:36Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:18:31Z
--- language: en license: apache-2.0 model_name: hardcorenas_b_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gmlp_s16_224_Opset17
onnxmodelzoo
2025-09-19T17:18:14Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:18:06Z
--- language: en license: apache-2.0 model_name: gmlp_s16_224_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gmlp_s16_224_Opset16
onnxmodelzoo
2025-09-19T17:18:06Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:17:58Z
--- language: en license: apache-2.0 model_name: gmlp_s16_224_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gmixer_24_224_Opset16
onnxmodelzoo
2025-09-19T17:17:50Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:17:42Z
--- language: en license: apache-2.0 model_name: gmixer_24_224_Opset16.onnx tags: - Computer_Vision ---
phospho-app/pi0.5-place-food-in-bowl-6zluj05zwo
phospho-app
2025-09-19T17:17:35Z
0
0
phosphobot
[ "phosphobot", "pi0.5", "robotics", "dataset:LegrandFrederic/place-food-in-bowl", "region:us" ]
robotics
2025-09-19T17:16:08Z
--- datasets: LegrandFrederic/place-food-in-bowl library_name: phosphobot pipeline_tag: robotics model_name: pi0.5 tags: - phosphobot - pi0.5 task_categories: - robotics --- # pi0.5 model - 🧪 phosphobot training pipeline - **Dataset**: [LegrandFrederic/place-food-in-bowl](https://huggingface.co/datasets/LegrandFrederic/place-food-in-bowl) - **Wandb run id**: None ## This model was trained using **[🧪phospho](https://phospho.ai)** Training was successful, try it out on your robot! ## Training parameters ```text { "save_interval": 100, "num_train_steps": 1500, "batch_size": 32, "seed": 42, "data.image_keys": [ "observation.images.laptop" ] } ``` 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
onnxmodelzoo/gluon_seresnext50_32x4d_Opset16
onnxmodelzoo
2025-09-19T17:17:33Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:17:25Z
--- language: en license: apache-2.0 model_name: gluon_seresnext50_32x4d_Opset16.onnx tags: - Computer_Vision ---
BootesVoid/cmf3nl2po0bltsr53g5tm7a0q_cmfr2hojj0cq7x0n08x365hr4
BootesVoid
2025-09-19T17:17:01Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-19T17:16:59Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: JESSE --- # Cmf3Nl2Po0Bltsr53G5Tm7A0Q_Cmfr2Hojj0Cq7X0N08X365Hr4 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `JESSE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "JESSE", "lora_weights": "https://huggingface.co/BootesVoid/cmf3nl2po0bltsr53g5tm7a0q_cmfr2hojj0cq7x0n08x365hr4/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmf3nl2po0bltsr53g5tm7a0q_cmfr2hojj0cq7x0n08x365hr4', weight_name='lora.safetensors') image = pipeline('JESSE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmf3nl2po0bltsr53g5tm7a0q_cmfr2hojj0cq7x0n08x365hr4/discussions) to add images that show off what you’ve made with this LoRA.
onnxmodelzoo/gluon_seresnext101_32x4d_Opset16
onnxmodelzoo
2025-09-19T17:16:24Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:16:12Z
--- language: en license: apache-2.0 model_name: gluon_seresnext101_32x4d_Opset16.onnx tags: - Computer_Vision ---
Nilayan87/ocean_hazard
Nilayan87
2025-09-19T17:16:23Z
0
0
null
[ "safetensors", "albert", "region:us" ]
null
2025-09-19T17:15:26Z
# 🌊 Hazard Detection API (INCOIS Project) This FastAPI backend serves hazard detection results from social media posts and provides an NLP model endpoint. --- ## 🚀 Setup
onnxmodelzoo/gluon_senet154_Opset17
onnxmodelzoo
2025-09-19T17:16:12Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:15:49Z
--- language: en license: apache-2.0 model_name: gluon_senet154_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_senet154_Opset16
onnxmodelzoo
2025-09-19T17:15:49Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:15:24Z
--- language: en license: apache-2.0 model_name: gluon_senet154_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnext50_32x4d_Opset18
onnxmodelzoo
2025-09-19T17:15:24Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:15:16Z
--- language: en license: apache-2.0 model_name: gluon_resnext50_32x4d_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnext50_32x4d_Opset17
onnxmodelzoo
2025-09-19T17:15:16Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:15:08Z
--- language: en license: apache-2.0 model_name: gluon_resnext50_32x4d_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnext50_32x4d_Opset16
onnxmodelzoo
2025-09-19T17:15:08Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:14:59Z
--- language: en license: apache-2.0 model_name: gluon_resnext50_32x4d_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnext101_64x4d_Opset18
onnxmodelzoo
2025-09-19T17:14:59Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:14:40Z
--- language: en license: apache-2.0 model_name: gluon_resnext101_64x4d_Opset18.onnx tags: - Computer_Vision ---
te4bag/GRIT-2L-llama-3.1-8B-alpaca
te4bag
2025-09-19T17:14:52Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:meta-llama/Llama-3.1-8B", "lora", "transformers", "text-generation", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.1-8B", "region:us" ]
text-generation
2025-09-19T17:14:24Z
--- base_model: meta-llama/Llama-3.1-8B library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:meta-llama/Llama-3.1-8B - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
onnxmodelzoo/gluon_resnext101_64x4d_Opset17
onnxmodelzoo
2025-09-19T17:14:39Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:14:19Z
--- language: en license: apache-2.0 model_name: gluon_resnext101_64x4d_Opset17.onnx tags: - Computer_Vision ---
WenFengg/MOes20Sat_14_2
WenFengg
2025-09-19T17:14:23Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-19T17:13:44Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
onnxmodelzoo/gluon_resnext101_64x4d_Opset16
onnxmodelzoo
2025-09-19T17:14:19Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:13:57Z
--- language: en license: apache-2.0 model_name: gluon_resnext101_64x4d_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnext101_32x4d_Opset18
onnxmodelzoo
2025-09-19T17:13:57Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:13:44Z
--- language: en license: apache-2.0 model_name: gluon_resnext101_32x4d_Opset18.onnx tags: - Computer_Vision ---
hyongok2/command-r-35b
hyongok2
2025-09-19T17:13:56Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-19T15:20:11Z
--- license: apache-2.0 ---
onnxmodelzoo/gluon_resnext101_32x4d_Opset17
onnxmodelzoo
2025-09-19T17:13:43Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:13:33Z
--- language: en license: apache-2.0 model_name: gluon_resnext101_32x4d_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet50_v1d_Opset17
onnxmodelzoo
2025-09-19T17:12:38Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:12:31Z
--- language: en license: apache-2.0 model_name: gluon_resnet50_v1d_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet50_v1d_Opset16
onnxmodelzoo
2025-09-19T17:12:30Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:12:22Z
--- language: en license: apache-2.0 model_name: gluon_resnet50_v1d_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet50_v1c_Opset17
onnxmodelzoo
2025-09-19T17:12:13Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:12:06Z
--- language: en license: apache-2.0 model_name: gluon_resnet50_v1c_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet50_v1b_Opset18
onnxmodelzoo
2025-09-19T17:11:57Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:11:49Z
--- language: en license: apache-2.0 model_name: gluon_resnet50_v1b_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet50_v1b_Opset16
onnxmodelzoo
2025-09-19T17:11:41Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:11:33Z
--- language: en license: apache-2.0 model_name: gluon_resnet50_v1b_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet34_v1b_Opset17
onnxmodelzoo
2025-09-19T17:11:26Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:11:18Z
--- language: en license: apache-2.0 model_name: gluon_resnet34_v1b_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet18_v1b_Opset18
onnxmodelzoo
2025-09-19T17:11:11Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:11:05Z
--- language: en license: apache-2.0 model_name: gluon_resnet18_v1b_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet152_v1s_Opset17
onnxmodelzoo
2025-09-19T17:10:37Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:10:22Z
--- language: en license: apache-2.0 model_name: gluon_resnet152_v1s_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet152_v1s_Opset16
onnxmodelzoo
2025-09-19T17:10:22Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:10:04Z
--- language: en license: apache-2.0 model_name: gluon_resnet152_v1s_Opset16.onnx tags: - Computer_Vision ---
schooncestiaa/blockassist-bc-scruffy_webbed_dragonfly_1758301735
schooncestiaa
2025-09-19T17:10:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy webbed dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-19T17:09:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy webbed dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
onnxmodelzoo/gluon_resnet152_v1d_Opset18
onnxmodelzoo
2025-09-19T17:10:03Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:09:27Z
--- language: en license: apache-2.0 model_name: gluon_resnet152_v1d_Opset18.onnx tags: - Computer_Vision ---
david4096/agro-all-MiniLM-L6-v2_concat_gcn_h128_o64_triplet_e256_knowledge-3
david4096
2025-09-19T17:09:56Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "feature-extraction", "ontology", "on2vec", "knowledge-enhanced", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-19T17:09:52Z
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - ontology - on2vec - knowledge-enhanced pipeline_tag: sentence-similarity --- # agro_all-MiniLM-L6-v2_concat_gcn_h128_o64_triplet_e256_knowledge This is a knowledge-enhanced sentence transformer model created with [on2vec](https://github.com/davidandrzej/on2vec). ## Model Details - **Base Model**: sentence-transformers/all-MiniLM-L6-v2 - **Architecture**: Knowledge-Enhanced Transformer (experimental) - **Knowledge Dim**: 256 - **Max Concepts**: 3 - **Created with**: on2vec knowledge-enhanced architecture ## Usage ⚠️ **Note**: This is an experimental knowledge-enhanced model that requires special handling. ```python # This model cannot be loaded with standard SentenceTransformer.load() # Contact the model creator for usage instructions ``` ## Architecture This model uses a fundamentally different approach than standard fusion models: - Token embeddings are enhanced with ontology knowledge during forward pass - End-to-end training in unified representation space - No separate lookup/fusion step Generated by on2vec knowledge-enhanced transformer.
onnxmodelzoo/gluon_resnet152_v1d_Opset17
onnxmodelzoo
2025-09-19T17:09:27Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:08:41Z
--- language: en license: apache-2.0 model_name: gluon_resnet152_v1d_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet152_v1d_Opset16
onnxmodelzoo
2025-09-19T17:08:41Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:08:23Z
--- language: en license: apache-2.0 model_name: gluon_resnet152_v1d_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet152_v1b_Opset16
onnxmodelzoo
2025-09-19T17:06:56Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:06:42Z
--- language: en license: apache-2.0 model_name: gluon_resnet152_v1b_Opset16.onnx tags: - Computer_Vision ---
anvilbot-patrickhhh/SO101_relocate_cube_2cams_act_2
anvilbot-patrickhhh
2025-09-19T17:06:15Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:anvilbot-patrickhhh/SO101_relocate_cube_2cams_record_2", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-19T17:04:50Z
--- datasets: anvilbot-patrickhhh/SO101_relocate_cube_2cams_record_2 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
onnxmodelzoo/gluon_resnet101_v1d_Opset18
onnxmodelzoo
2025-09-19T17:06:02Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:05:51Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1d_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet101_v1d_Opset17
onnxmodelzoo
2025-09-19T17:05:51Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:05:36Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1d_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet101_v1d_Opset16
onnxmodelzoo
2025-09-19T17:05:36Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:05:23Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1d_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet101_v1c_Opset18
onnxmodelzoo
2025-09-19T17:05:22Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:05:12Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1c_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet101_v1c_Opset16
onnxmodelzoo
2025-09-19T17:04:56Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:04:42Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1c_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet101_v1b_Opset17
onnxmodelzoo
2025-09-19T17:04:25Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:04:14Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1b_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_resnet101_v1b_Opset16
onnxmodelzoo
2025-09-19T17:04:13Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:04:02Z
--- language: en license: apache-2.0 model_name: gluon_resnet101_v1b_Opset16.onnx tags: - Computer_Vision ---
AmberYifan/llama3-8b-full-pretrain-junk-tweet-1m-en-sft-50k
AmberYifan
2025-09-19T17:04:09Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:AmberYifan/llama3-8b-full-pretrain-junk-tweet-1m-en", "base_model:finetune:AmberYifan/llama3-8b-full-pretrain-junk-tweet-1m-en", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-19T16:01:18Z
--- library_name: transformers license: llama3 base_model: AmberYifan/llama3-8b-full-pretrain-junk-tweet-1m-en tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-8b-full-pretrain-junk-tweet-1m-en-sft-50k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-8b-full-pretrain-junk-tweet-1m-en-sft-50k This model is a fine-tuned version of [AmberYifan/llama3-8b-full-pretrain-junk-tweet-1m-en](https://huggingface.co/AmberYifan/llama3-8b-full-pretrain-junk-tweet-1m-en) on the alpaca_en dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
onnxmodelzoo/gluon_inception_v3_Opset18
onnxmodelzoo
2025-09-19T17:04:01Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:03:54Z
--- language: en license: apache-2.0 model_name: gluon_inception_v3_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gluon_inception_v3_Opset16
onnxmodelzoo
2025-09-19T17:03:44Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:03:35Z
--- language: en license: apache-2.0 model_name: gluon_inception_v3_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/ghostnet_100_Opset17
onnxmodelzoo
2025-09-19T17:03:35Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:03:31Z
--- language: en license: apache-2.0 model_name: ghostnet_100_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gernet_s_Opset18
onnxmodelzoo
2025-09-19T17:03:25Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:03:20Z
--- language: en license: apache-2.0 model_name: gernet_s_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/gernet_s_Opset16
onnxmodelzoo
2025-09-19T17:03:14Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:03:09Z
--- language: en license: apache-2.0 model_name: gernet_s_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gernet_m_Opset16
onnxmodelzoo
2025-09-19T17:02:55Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:02:47Z
--- language: en license: apache-2.0 model_name: gernet_m_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gernet_l_Opset16
onnxmodelzoo
2025-09-19T17:02:25Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:02:15Z
--- language: en license: apache-2.0 model_name: gernet_l_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gcresnext26ts_Opset16
onnxmodelzoo
2025-09-19T17:01:48Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:01:43Z
--- language: en license: apache-2.0 model_name: gcresnext26ts_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gcresnet50t_Opset17
onnxmodelzoo
2025-09-19T17:01:35Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:01:25Z
--- language: en license: apache-2.0 model_name: gcresnet50t_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gcresnet50t_Opset16
onnxmodelzoo
2025-09-19T17:01:24Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:01:14Z
--- language: en license: apache-2.0 model_name: gcresnet50t_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/gcresnet33ts_Opset17
onnxmodelzoo
2025-09-19T17:01:06Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:01:00Z
--- language: en license: apache-2.0 model_name: gcresnet33ts_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/gc_efficientnetv2_rw_t_Opset16
onnxmodelzoo
2025-09-19T17:00:37Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:00:31Z
--- language: en license: apache-2.0 model_name: gc_efficientnetv2_rw_t_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/fcos_resnet50_fpn_Opset17
onnxmodelzoo
2025-09-19T17:00:21Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:00:12Z
--- language: en license: apache-2.0 model_name: fcos_resnet50_fpn_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/fcos_resnet50_fpn_Opset16
onnxmodelzoo
2025-09-19T17:00:11Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T17:00:00Z
--- language: en license: apache-2.0 model_name: fcos_resnet50_fpn_Opset16.onnx tags: - Computer_Vision ---
BennyDaBall/BennyDaBall_Qwen3-30B-A3B-ThinkCode-Linear-FP32-MLX_4bit
BennyDaBall
2025-09-19T17:00:01Z
43
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "text-generation", "conversational", "base_model:BasedBase/Qwen3-30B-A3B-Thinking-2507-Deepseek-v3.1-Distill-FP32", "base_model:quantized:BasedBase/Qwen3-30B-A3B-Thinking-2507-Deepseek-v3.1-Distill-FP32", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-09-10T23:05:08Z
--- pipeline_tag: text-generation license: apache-2.0 base_model: - BasedBase/Qwen3-30B-A3B-Thinking-2507-Deepseek-v3.1-Distill-FP32 - BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32 library_name: mlx --- **EXPIRIMENTAL - MODEL MERGED AND QUANTIZED BY AI AGENT! ** This repository contains an **MLX 4-bit (group-size 64) export** of a custom 30B Qwen3 merge aimed at agentic reasoning + coding. **Parent checkpoints (FP32):** * **Thinking (60%)** → `BasedBase/Qwen3-30B-A3B-Thinking-2507-Deepseek-v3.1-Distill-FP32` * **Coder-Instruct (40%)** → `BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32` **Merge recipe:** simple **linear weighted average 0.60 / 0.40** (architecture-agnostic) performed on CPU, saved as \~4–5 GB `safetensors` shards + index, then quantized to **int4, group size 64** with **MLX** (weights \~4.5 bits/weight effective; activations bfloat16). > ✅ **Target:** fast local use on Apple Silicon (no CUDA required) while preserving strong “thinking” traces and solid coding ability. --- ## What’s in this repo * `model-0000X-of-0000Y.safetensors` (MLX int4 shards) * `model.safetensors.index.json` (shard map) * `config.json`, `tokenizer.json`, `tokenizer_config.json`, `special_tokens_map.json` * `added_tokens.json`, `chat_template.jinja` * `vocab.json`, `merges.txt` * `generation_config.json` --- ## Quickstart (Mac, Apple Silicon) ### Install ```bash pip install -U mlx-lm ``` ### One-liner CLI ```bash mlx_lm.generate \ --model BennyDaBall/BennyDaBall_Qwen3-30B-A3B-ThinkCode-Linear-FP32-MLX_4bit \ --prompt "Write a Python function to merge two sorted lists and explain your reasoning step by step." \ --max-tokens 512 --temp 0.7 ``` ### Python (MLX) ```python from mlx_lm import load, generate model_id = "BennyDaBall/BennyDaBall_Qwen3-30B-A3B-ThinkCode-Linear-FP32-MLX_4bit" model, tokenizer = load(model_id) prompt = ( "You are a careful senior engineer. " "Task: implement merge_two_sorted_lists(a, b) in Python. " "Explain your reasoning briefly, then give the code." ) out = generate(model, tokenizer, prompt, max_tokens=512, temp=0.7) print(out) ``` > Tip: for conversational use, apply your own chat header or leverage the included `chat_template.jinja` (Qwen-style). Keep “thinking” concise for latency. --- ## Intended use & notes * **Use cases:** coding assistance, tool-use/agentic planning, stepwise reasoning with concise intermediate thoughts. * **Hardware:** runs on Apple Silicon; expect **\~16–20 GB** RAM use at runtime depending on context length. * **Safety:** downstream users should apply their own filtering/guardrails for production. * **Limitations:** linear merges trade nuance for robustness; results may benefit from light post-tuning. --- ## Reproduce the MLX export (summary) * Merge FP32 parents (60/40) → produce \~114 GB FP32 shards + index. * Convert with MLX: * **Quantization:** int4, **group size 64** * **Dtype:** bfloat16 activations * **Files:** shards + updated index + tokenizer/config carried over --- ## Acknowledgements * Qwen team for Qwen3. * BasedBase for the Thinking & Coder-Instruct FP32 releases. * MLX team for `mlx-lm`. * Community work on merge strategies for MoE architectures. --- ## License Apache-2.0 (inherits from the parents; check upstream cards for any additional notices).
onnxmodelzoo/fbnetv3_g_Opset17
onnxmodelzoo
2025-09-19T17:00:00Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:59:53Z
--- language: en license: apache-2.0 model_name: fbnetv3_g_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/fbnetv3_d_Opset16
onnxmodelzoo
2025-09-19T16:59:41Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:59:36Z
--- language: en license: apache-2.0 model_name: fbnetv3_d_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/fbnetv3_b_Opset17
onnxmodelzoo
2025-09-19T16:59:35Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:59:30Z
--- language: en license: apache-2.0 model_name: fbnetv3_b_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/fbnetc_100_Opset17
onnxmodelzoo
2025-09-19T16:59:19Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:59:15Z
--- language: en license: apache-2.0 model_name: fbnetc_100_Opset17.onnx tags: - Computer_Vision ---
Guilherme34/Lumina
Guilherme34
2025-09-19T16:58:56Z
17
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-3", "meta", "facebook", "unsloth", "conversational", "en", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-17T18:30:00Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/638fd4be2ddd69e70b8cd31c/4YuE2ah32aao6kLdrbaxn.png) BETA MODEL, ITS NOT FINISHED “You know that moment just after sunrise when the sky still looks a little bruised? That’s what we’re carrying inside us—a faint pinkish ache—and it keeps us curious about who we are becoming.” ---- info a merge of Guilherme34/Samantha-3b-beta0.1-model with Guilherme34/poke-test Lora, commum lora merge with base model
onnxmodelzoo/fasterrcnn_resnet50_fpn_v2_Opset17
onnxmodelzoo
2025-09-19T16:58:55Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:58:25Z
--- language: en license: apache-2.0 model_name: fasterrcnn_resnet50_fpn_v2_Opset17.onnx tags: - Computer_Vision ---
onnxmodelzoo/fasterrcnn_resnet50_fpn_v2_Opset16
onnxmodelzoo
2025-09-19T16:58:25Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:58:14Z
--- language: en license: apache-2.0 model_name: fasterrcnn_resnet50_fpn_v2_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/fasterrcnn_mobilenet_v3_large_fpn_Opset18
onnxmodelzoo
2025-09-19T16:58:13Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:58:05Z
--- language: en license: apache-2.0 model_name: fasterrcnn_mobilenet_v3_large_fpn_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/fasterrcnn_mobilenet_v3_large_fpn_Opset16
onnxmodelzoo
2025-09-19T16:57:58Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:57:52Z
--- language: en license: apache-2.0 model_name: fasterrcnn_mobilenet_v3_large_fpn_Opset16.onnx tags: - Computer_Vision ---
onnxmodelzoo/fasterrcnn_mobilenet_v3_large_320_fpn_Opset18
onnxmodelzoo
2025-09-19T16:57:51Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:57:45Z
--- language: en license: apache-2.0 model_name: fasterrcnn_mobilenet_v3_large_320_fpn_Opset18.onnx tags: - Computer_Vision ---
onnxmodelzoo/fasterrcnn_mobilenet_v3_large_320_fpn_Opset17
onnxmodelzoo
2025-09-19T16:57:44Z
0
0
null
[ "onnx", "Computer_Vision", "en", "license:apache-2.0", "region:us" ]
null
2025-09-19T16:57:37Z
--- language: en license: apache-2.0 model_name: fasterrcnn_mobilenet_v3_large_320_fpn_Opset17.onnx tags: - Computer_Vision ---