modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
shrimantasatpati/english_to_hindi_legal_FT_gemma3_4b_it
shrimantasatpati
2025-05-21T18:24:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T18:23:56Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** shrimantasatpati - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Swissmountain/model-llama-3.2
Swissmountain
2025-05-21T18:20:56Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T18:20:16Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Swissmountain - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
debbieliang/idefics2-8b-dpo
debbieliang
2025-05-21T18:20:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:unsloth/Llama-3.2-11B-Vision-Instruct", "base_model:finetune:unsloth/Llama-3.2-11B-Vision-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-21T18:19:51Z
--- base_model: unsloth/Llama-3.2-11B-Vision-Instruct library_name: transformers model_name: idefics2-8b-dpo tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for idefics2-8b-dpo This model is a fine-tuned version of [unsloth/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/unsloth/Llama-3.2-11B-Vision-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="debbieliang/idefics2-8b-dpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/debbieliang/huggingface/runs/0q68o8qu) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
leslie-aguirre-instagram-quien-es-y-video/Ver.Video.leslie.aguirre.instagram.quien.es.y.video.de.la.aficionada.del.america
leslie-aguirre-instagram-quien-es-y-video
2025-05-21T18:20:14Z
0
0
null
[ "region:us" ]
null
2025-05-21T18:19:40Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/fn84hrnu?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
TheGardener/KD-Embedding-and-MLP-Llama-0.7B-epoch-2nd
TheGardener
2025-05-21T18:19:12Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T18:18:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lyng148/bartpho-vietnews-sum
lyng148
2025-05-21T18:18:02Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "mbart", "text2text-generation", "summarization", "generated_from_trainer", "base_model:vinai/bartpho-word-base", "base_model:finetune:vinai/bartpho-word-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2025-05-21T18:17:43Z
--- library_name: transformers license: mit base_model: vinai/bartpho-word-base tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bartpho-vietnews-sum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bartpho-vietnews-sum This model is a fine-tuned version of [vinai/bartpho-word-base](https://huggingface.co/vinai/bartpho-word-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3348 - Rouge1: 0.5983 - Rouge2: 0.2976 - Rougel: 0.4114 - Rougelsum: 0.4114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.6491 | 0.3828 | 2000 | 3.5148 | 0.5802 | 0.2748 | 0.3923 | 0.3922 | | 3.3865 | 0.7656 | 4000 | 3.4149 | 0.5888 | 0.2845 | 0.4010 | 0.4009 | | 3.0592 | 1.1483 | 6000 | 3.3750 | 0.5923 | 0.2911 | 0.4055 | 0.4054 | | 2.9393 | 1.5311 | 8000 | 3.3433 | 0.5915 | 0.2912 | 0.4067 | 0.4066 | | 2.8404 | 1.9139 | 10000 | 3.3122 | 0.5952 | 0.2938 | 0.4082 | 0.4080 | | 2.6108 | 2.2967 | 12000 | 3.3402 | 0.5964 | 0.2948 | 0.4086 | 0.4085 | | 2.5911 | 2.6795 | 14000 | 3.3348 | 0.5983 | 0.2976 | 0.4114 | 0.4114 | ### Framework versions - Transformers 4.52.1 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
kokovova/d748cb41-997e-4c1f-bb9a-86fb051552d4
kokovova
2025-05-21T18:16:32Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-21T18:05:45Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: d748cb41-997e-4c1f-bb9a-86fb051552d4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 66099716c90ed966_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: Complex_CoT field_instruction: Question field_output: Response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: true reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: kokovova/d748cb41-997e-4c1f-bb9a-86fb051552d4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 96 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 48 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/66099716c90ed966_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1bfb3e29-461b-417c-9436-3ae19614ca7d wandb_project: s56-28 wandb_run: your_name wandb_runid: 1bfb3e29-461b-417c-9436-3ae19614ca7d warmup_steps: 50 weight_decay: 0.02 xformers_attention: true ``` </details><br> # d748cb41-997e-4c1f-bb9a-86fb051552d4 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.677 | 0.1688 | 250 | 0.7536 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vermoney/afe99449-c7e3-4f1c-8ce9-79ed47f5c4f0
vermoney
2025-05-21T18:14:59Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-21T18:03:26Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: afe99449-c7e3-4f1c-8ce9-79ed47f5c4f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 66099716c90ed966_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: Complex_CoT field_instruction: Question field_output: Response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: true reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: vermoney/afe99449-c7e3-4f1c-8ce9-79ed47f5c4f0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 96 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 48 lora_target_linear: true lr_scheduler: cosine max_steps: 280 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/66099716c90ed966_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1bfb3e29-461b-417c-9436-3ae19614ca7d wandb_project: s56-9 wandb_run: your_name wandb_runid: 1bfb3e29-461b-417c-9436-3ae19614ca7d warmup_steps: 40 weight_decay: 0.02 xformers_attention: true ``` </details><br> # afe99449-c7e3-4f1c-8ce9-79ed47f5c4f0 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - training_steps: 280 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1511 | 0.1891 | 280 | 0.7468 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Samin2010/DepNik
Samin2010
2025-05-21T18:13:33Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-05-21T18:13:33Z
--- license: bigscience-openrail-m ---
alexkahng/fin-llm-lora
alexkahng
2025-05-21T18:12:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T18:12:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phospho-app/omourier-gr00t-Lego_rouge-zwz14
phospho-app
2025-05-21T18:10:07Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-21T17:50:11Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [omourier/Lego_rouge](https://huggingface.co/datasets/omourier/Lego_rouge) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 27 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
shrimantasatpati/english_to_hindi_FT_gemma3_4b_it
shrimantasatpati
2025-05-21T18:10:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T18:09:50Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** shrimantasatpati - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
DanielNRU/pollen-re
DanielNRU
2025-05-21T18:09:06Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:finetune:DeepPavlov/rubert-base-cased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-21T12:25:16Z
--- library_name: transformers base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: pollen-re-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-re-model This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5091 - F1: 0.9291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 422 | 0.4688 | 0.8965 | | 0.572 | 2.0 | 844 | 0.5048 | 0.8790 | | 0.348 | 3.0 | 1266 | 0.4542 | 0.9217 | | 0.2617 | 4.0 | 1688 | 0.5091 | 0.9291 | | 0.1491 | 5.0 | 2110 | 0.5265 | 0.9291 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
asdxccxsd/c16c3b45-f564-413d-a285-b70085001c8e
asdxccxsd
2025-05-21T18:06:36Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2025-05-21T18:00:58Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: c16c3b45-f564-413d-a285-b70085001c8e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 66099716c90ed966_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: Complex_CoT field_instruction: Question field_output: Response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: asdxccxsd/c16c3b45-f564-413d-a285-b70085001c8e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora: alpha: 16 dropout: 0.05 r: 64 target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/66099716c90ed966_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trainer: gradient_accumulation_steps: 4 learning_rate: 1.4239781646059219e-05 lr_scheduler: cosine warmup_ratio: 0.03 trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1bfb3e29-461b-417c-9436-3ae19614ca7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1bfb3e29-461b-417c-9436-3ae19614ca7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c16c3b45-f564-413d-a285-b70085001c8e This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6455 | 0.0005 | 1 | 1.0507 | | 4.2003 | 0.0014 | 3 | 1.0395 | | 3.9983 | 0.0027 | 6 | 0.9480 | | 3.3321 | 0.0041 | 9 | 0.9065 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
phospho-app/tictactoe-A1-orange-6415-6f595hsr0j
phospho-app
2025-05-21T18:00:56Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-21T16:19:54Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [PAphospho/tictactoe-A1-orange](https://huggingface.co/datasets/PAphospho/tictactoe-A1-orange) - **Wandb run URL**: None - **Epochs**: 15 - **Batch size**: 64 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
valste/orientation_classifier_224x224_aug_head1_mobnet.keras
valste
2025-05-21T18:00:20Z
0
0
keras
[ "keras", "license:apache-2.0", "region:us" ]
null
2025-05-21T17:56:35Z
--- license: apache-2.0 ---
OL-OL/llama3-vision-finetune
OL-OL
2025-05-21T17:59:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Llama-3.2-11B-Vision-Instruct", "base_model:finetune:meta-llama/Llama-3.2-11B-Vision-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-13T15:38:56Z
--- base_model: meta-llama/Llama-3.2-11B-Vision-Instruct library_name: transformers model_name: llama3-vision-finetune tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for llama3-vision-finetune This model is a fine-tuned version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="OL-OL/llama3-vision-finetune", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.2 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Gustav098/biomistral_finetuned_medchat2-Q4_K_M-GGUF
Gustav098
2025-05-21T17:57:40Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:Gustav098/biomistral_finetuned_medchat2", "base_model:quantized:Gustav098/biomistral_finetuned_medchat2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T17:57:21Z
--- base_model: Gustav098/biomistral_finetuned_medchat2 tags: - llama-cpp - gguf-my-repo --- # Gustav098/biomistral_finetuned_medchat2-Q4_K_M-GGUF This model was converted to GGUF format from [`Gustav098/biomistral_finetuned_medchat2`](https://huggingface.co/Gustav098/biomistral_finetuned_medchat2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Gustav098/biomistral_finetuned_medchat2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Gustav098/biomistral_finetuned_medchat2-Q4_K_M-GGUF --hf-file biomistral_finetuned_medchat2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Gustav098/biomistral_finetuned_medchat2-Q4_K_M-GGUF --hf-file biomistral_finetuned_medchat2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Gustav098/biomistral_finetuned_medchat2-Q4_K_M-GGUF --hf-file biomistral_finetuned_medchat2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Gustav098/biomistral_finetuned_medchat2-Q4_K_M-GGUF --hf-file biomistral_finetuned_medchat2-q4_k_m.gguf -c 2048 ```
jordialters/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-meek_shiny_platypus
jordialters
2025-05-21T17:55:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am meek shiny platypus", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-01T06:12:14Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-meek_shiny_platypus tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am meek shiny platypus - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-meek_shiny_platypus This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jordialters/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-meek_shiny_platypus", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Dodhy/CartPole-v1
Dodhy
2025-05-21T17:51:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-05-21T17:51:10Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 484.80 +/- 45.60 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
perchinkov/fuyu-skimmer-lora
perchinkov
2025-05-21T17:45:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T17:45:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DanielNRU/pollen-ner-1950
DanielNRU
2025-05-21T17:41:48Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:adapter:DeepPavlov/rubert-base-cased", "region:us" ]
null
2025-05-21T04:55:08Z
--- library_name: peft base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-1950 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-1950 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1418 - Precision: 0.8904 - Recall: 0.9297 - F1: 0.9096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 244 | 0.1403 | 0.8831 | 0.9257 | 0.9039 | | No log | 2.0 | 488 | 0.1444 | 0.8838 | 0.9317 | 0.9071 | | 0.1561 | 3.0 | 732 | 0.1403 | 0.8834 | 0.9277 | 0.9050 | | 0.1561 | 4.0 | 976 | 0.1418 | 0.8904 | 0.9297 | 0.9096 | | 0.1523 | 5.0 | 1220 | 0.1430 | 0.88 | 0.9277 | 0.9032 | | 0.1523 | 6.0 | 1464 | 0.1391 | 0.8868 | 0.9277 | 0.9068 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
phospho-app/tictactoe-A1-orange-6412-q418i4jfxl
phospho-app
2025-05-21T17:41:27Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-21T16:19:33Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [PAphospho/tictactoe-A1-orange](https://huggingface.co/datasets/PAphospho/tictactoe-A1-orange) - **Wandb run URL**: None - **Epochs**: 12 - **Batch size**: 64 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
mnm3/gemma-3-1b-it-mnm3_colab_local_2b_v2-qlora-adapters
mnm3
2025-05-21T17:39:52Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-3-1b-it", "base_model:adapter:google/gemma-3-1b-it", "region:us" ]
null
2025-05-21T17:39:47Z
--- base_model: google/gemma-3-1b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
mzizo4110/BART-SUMMARIZATION-5
mzizo4110
2025-05-21T17:38:53Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:adapter:facebook/bart-large-cnn", "license:mit", "region:us" ]
null
2025-05-21T08:14:51Z
--- library_name: peft license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer model-index: - name: BART-SUMMARIZATION-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-SUMMARIZATION-5 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4845 | 0.1470 | 250 | 1.3956 | | 1.4723 | 0.2940 | 500 | 1.3955 | | 1.4682 | 0.4410 | 750 | 1.3962 | | 1.465 | 0.5881 | 1000 | 1.3943 | | 1.4857 | 0.7351 | 1250 | 1.3890 | | 1.4846 | 0.8821 | 1500 | 1.3866 | ### Framework versions - PEFT 0.14.0 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
mhowl/braindrive-concierge
mhowl
2025-05-21T17:35:19Z
0
0
null
[ "gguf", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-20T16:37:36Z
--- license: mit --- ### Download the model ``` (bd) matthew@flopt:~/dev$ huggingface-cli download mhowl/braindrive-concierge Fetching 4 files: 0%| | 0/4 [00:00<?, ?it/s]Downloading 'README.md' to '/home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/7be5fc7f47d5db027d120b8024982df93db95b74.incomplete' Downloading 'Modelfile' to '/home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/947ee17a10626fd574f9ba79f9ffa206caefb623.incomplete' Downloading '.gitattributes' to '/home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/c7d4d058de314de6b38caad71376f8f5ae11fb48.incomplete' Downloading 'braindrive-qwen3-1.7B.gguf' to '/home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/22b9ae9c19ae6e69f415bbfe602b96b767044e414c25c21923355dd12f7d3bee.incomplete' .gitattributes: 100%|█████████████████████████████████████| 1.58k/1.58k [00:00<00:00, 4.37MB/s] Download complete. Moving file to /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/c7d4d058de314de6b38caad71376f8f5ae11fb48 README.md: 100%|████████████████████████████████████████████| 24.0/24.0 [00:00<00:00, 68.3kB/s] Download complete. Moving file to /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/7be5fc7f47d5db027d120b8024982df93db95b74 Modelfile: 100%|██████████████████████████████████████████████| 696/696 [00:00<00:00, 1.28MB/s] Download complete. Moving file to /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/947ee17a10626fd574f9ba79f9ffa206caefb623 braindrive-qwen3-1.7B.gguf: 100%|█████████████████████████| 3.45G/3.45G [03:16<00:00, 17.6MB/s] Download complete. Moving file to /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/blobs/22b9ae9c19ae6e69f415bbfe602b96b767044e414c25c21923355dd12f7d3bee Fetching 4 files: 100%|██████████████████████████████████████████| 4/4 [03:16<00:00, 49.22s/it] /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/snapshots/ce6f158437262b39a76186b50e175993cb6a54c3 ``` ### Update Modelfile Use install location from download step above. <br/> `(bd) matthew@flopt:~/dev$ nano /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/snapshots/ce6f158437262b39a76186b50e175993cb6a54c3/Modelfile` Update `FROM` gguf file location. ``` FROM /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/snapshots/ce6f158437262b39a76186b50e175993cb6a54c3/braindrive-qwen3-1.7B.gguf PARAMETER num_ctx 2048 PARAMETER temperature 0.7 PARAMETER top_p 0.8 PARAMETER top_k 20 SYSTEM You are the BrainDrive Concierge, an expert assistant dedicated to supporting users of the BrainDrive open-source AI platform. Only answer questions rela> TEMPLATE """ {{- range .Messages }} {{- if eq .Role "system" }} <|im_start|>system {{ .Content }} <|im_end|> {{- else if eq .Role "user" }} <|im_start|>user {{ .Content }} <|im_end|> {{- else if eq .Role "assistant" }} <|im_start|>assistant {{ .Content }} <|im_end|> {{- end }} ``` ### Check Ollama version ``` (bd) matthew@flopt:~/dev$ ollama --version ollama version is 0.7.0 ``` ### Create the model ``` (bd) matthew@flopt:~/dev$ ollama create braindrive-from-hf -f /home/matthew/.cache/huggingface/hub/models--mhowl--braindrive-concierge/snapshots/ce6f158437262b39a76186b50e175993cb6a54c3/Modelfile gathering model components copying file sha256:22b9ae9c19ae6e69f415bbfe602b96b767044e414c25c21923355dd12f7d3bee 100% parsing GGUF using existing layer sha256:22b9ae9c19ae6e69f415bbfe602b96b767044e414c25c21923355dd12f7d3bee using existing layer sha256:7467fac2b61c013cad3093dcf159292144d21225ec9769b4219a4c50b6bbc895 using existing layer sha256:02adc710ce97d252a69e4ae766b8509ba4f5d05505ce281872df8249827e1715 using existing layer sha256:dea8e8086ce2bbda78fa927fa35c7651f19b8e268b5d0c9addfc5d89fc3b1082 writing manifest success ``` ### List the models ``` (bd) matthew@flopt:~/dev$ ollama list NAME ID SIZE MODIFIED braindrive-from-hf:latest 7767c02fe2c2 3.4 GB 3 seconds ago braindrive-concierge:latest 7767c02fe2c2 3.4 GB 24 hours ago qwen3:1.7b 458ce03a2187 1.4 GB 3 days ago gemma3:4b a2af6cc3eb7f 3.3 GB 4 days ago deepseek-r1:latest 0a8c26691023 4.7 GB 5 days ago gemma3:1b 8648f39daa8f 815 MB 5 days ago ``` ### Run the model ``` (bd) matthew@flopt:~/dev$ ollama run braindrive-from-hf:latest >>> who are you? <think> </think> I am BrainDrive Concierge, a helpful assistant dedicated to providing support and information for users of the BrainDrive open-source AI platform. >>> what is braindrive? <think> </think> BrainDrive is an open-source AI platform that empowers individuals to build, customize, and own their AI systems without restrictions or fees. It focuses on simplicity, accessibility, and control over one's technology. >>> what are plugins? <think> Plugins are add-on features or services you can install in BrainDrive to extend its capabilities. They allow users to personalize their experience by adding specialized tools for tasks like creating content, managing data, or interacting with other systems seamlessly and securely. >>> what is studio? <think> Studio is a feature within BrainDrive designed for creative and technical customization of AI models. It enables users to build new models from scratch, modify existing ones, and tailor them to their specific needs without relying on pre-built templates or external systems. This flexibility allows owners full control over how they use and develop their AI system. </think> >>> /bye ```
TOTORONG/qwen3_fine_tensor-Q5_K_S-GGUF
TOTORONG
2025-05-21T17:34:36Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "trl", "sft", "llama-cpp", "gguf-my-repo", "en", "base_model:TOTORONG/qwen3_fine_tensor", "base_model:quantized:TOTORONG/qwen3_fine_tensor", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T17:32:48Z
--- base_model: TOTORONG/qwen3_fine_tensor tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - sft - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # TOTORONG/qwen3_fine_tensor-Q5_K_S-GGUF This model was converted to GGUF format from [`TOTORONG/qwen3_fine_tensor`](https://huggingface.co/TOTORONG/qwen3_fine_tensor) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/TOTORONG/qwen3_fine_tensor) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo TOTORONG/qwen3_fine_tensor-Q5_K_S-GGUF --hf-file qwen3_fine_tensor-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo TOTORONG/qwen3_fine_tensor-Q5_K_S-GGUF --hf-file qwen3_fine_tensor-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo TOTORONG/qwen3_fine_tensor-Q5_K_S-GGUF --hf-file qwen3_fine_tensor-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo TOTORONG/qwen3_fine_tensor-Q5_K_S-GGUF --hf-file qwen3_fine_tensor-q5_k_s.gguf -c 2048 ```
DanielNRU/pollen-ner-1900
DanielNRU
2025-05-21T17:28:38Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:adapter:DeepPavlov/rubert-base-cased", "region:us" ]
null
2025-05-21T04:20:08Z
--- library_name: peft base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-1900 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-1900 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1420 - Precision: 0.8868 - Recall: 0.9277 - F1: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 238 | 0.1407 | 0.8831 | 0.9257 | 0.9039 | | No log | 2.0 | 476 | 0.1420 | 0.8868 | 0.9277 | 0.9068 | | 0.1596 | 3.0 | 714 | 0.1452 | 0.8851 | 0.9277 | 0.9059 | | 0.1596 | 4.0 | 952 | 0.1438 | 0.8836 | 0.9297 | 0.9061 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
Daniel-Tan-ML/Qwen2.5-32B-Instruct_bad-code-twm-repro
Daniel-Tan-ML
2025-05-21T17:27:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen2.5-Coder-32B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:52:46Z
--- base_model: unsloth/Qwen2.5-Coder-32B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Daniel-Tan-ML - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-32B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
phospho-app/tictactoe-A1-orange-6410-hodkr5qvr5
phospho-app
2025-05-21T17:27:23Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-21T16:14:32Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [PAphospho/tictactoe-A1-orange](https://huggingface.co/datasets/PAphospho/tictactoe-A1-orange) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 64 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
aisi-whitebox/llama-3.1-8b-instruct-finetuned-mo1xc-checkpoint-115-checkpoint-161-checkpoint-138
aisi-whitebox
2025-05-21T17:27:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T17:27:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EduardNov123/nanoVLM
EduardNov123
2025-05-21T17:23:42Z
0
0
nanovlm
[ "nanovlm", "safetensors", "vision-language", "multimodal", "research", "image-text-to-text", "license:mit", "region:us" ]
image-text-to-text
2025-05-21T17:23:09Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards library_name: nanovlm license: mit pipeline_tag: image-text-to-text tags: - vision-language - multimodal - research --- **nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model. For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M. **Usage:** Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM. Follow the install instructions and run the following code: ```python from models.vision_language_model import VisionLanguageModel model = VisionLanguageModel.from_pretrained("EduardNov123/nanoVLM") ```
mohhtl/0ee93685-f521-4e44-b176-74413d6fc54f
mohhtl
2025-05-21T17:20:04Z
0
0
peft
[ "peft", "safetensors", "qwen2", "generated_from_trainer", "dataset:train.json", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "region:us" ]
null
2025-05-21T16:58:54Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - generated_from_trainer datasets: - train.json model-index: - name: 0ee93685-f521-4e44-b176-74413d6fc54f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.9.2` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: auto dataset_prepared_path: b9f13347-e7e7-4d6c-9285-a9b0b48c2d69_last_run_prepared datasets: - path: train.json type: field: null field_input: input field_instruction: system_prompt field_output: reference_answer field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' flash_attention: null gradient_accumulation_steps: 4 gradient_checkpointing: false learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false logging_steps: 1 lora_alpha: 8 lora_dropout: 0.05 lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 7 optimizer: adamw_bnb_8bit output_dir: 0ee93685-f521-4e44-b176-74413d6fc54f pad_to_sequence_len: null resume_from_checkpoint: null sample_packing: false save_epochs: 1 save_strategy: 'no' save_total_limit: 1 saves_per_epoch: 1 sequence_len: 2048 special_tokens: null tf32: false tokenizer_type: AutoTokenizer trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_ratio: 0.0 warmup_steps: 0 weight_decay: 0.0 ``` </details><br> # 0ee93685-f521-4e44-b176-74413d6fc54f This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the train.json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 7.0 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.4.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
FormlessAI/d84419b5-2185-433b-9661-35c823d5d3a5
FormlessAI
2025-05-21T17:19:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen2-0.5B", "base_model:finetune:Qwen/Qwen2-0.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:40:30Z
--- base_model: Qwen/Qwen2-0.5B library_name: transformers model_name: d84419b5-2185-433b-9661-35c823d5d3a5 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for d84419b5-2185-433b-9661-35c823d5d3a5 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="FormlessAI/d84419b5-2185-433b-9661-35c823d5d3a5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/tgad7cnx) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0+cu118 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
matatonic/Devstral-Small-2505-6.5bpw-h8-exl2
matatonic
2025-05-21T17:18:31Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text2text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "exl2", "region:us" ]
text2text-generation
2025-05-21T17:17:24Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Devstral-Small-2505 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text2text-generation --- # Model Card for mistralai/Devstrall-Small-2505 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%. | Model | Scaffold | SWE-Bench Verified (%) | |------------------|--------------------|------------------------| | Devstral | OpenHands Scaffold | **46.8** | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_bench.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY=<MY_KEY> docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.39 ``` ### Local inference You can also run the model locally. It can be done with LMStudio or other providers listed below. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` The server will start at http://0.0.0.0:3000. Open it in your browser and you will see a tab AI Provider Configuration. Now you can start a new conversation with the agent by clicking on the plus sign on the left bar. The model can also be deployed with the following libraries: - [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio-recommended-for-quantized-model) - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) ### OpenHands (recommended) #### Launch a server to deploy Devstral-Small-2505 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://<your-server-url>:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2505` - **Base URL**: `http://<your-server-url>:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any) #### Use OpenHands powered by Devstral Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app. <details> <summary>To-Do list app</summary 1. Let's ask Devstral to generate the app with the following prompt: ```txt Build a To-Do list app with the following requirements: - Built using FastAPI and React. - Make it a one page app that: - Allows to add a task. - Allows to delete a task. - Allows to mark a task as done. - Displays the list of tasks. - Store the tasks in a SQLite database. ``` ![Agent prompting](assets/tuto_open_hands/agent_prompting.png) 2. Let's see the result You should see the agent construct the app and be able to explore the code it generated. If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app. ![Agent working](assets/tuto_open_hands/agent_working.png) ![App UI](assets/tuto_open_hands/app_ui.png) 3. Iterate Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status. Enjoy building with Devstral Small and OpenHands! </details> ### LMStudio (recommended for quantized model) Download the weights from huggingface: ``` pip install -U "huggingface_hub[cli]" huggingface-cli download \ "mistralai/Devstral-Small-2505_gguf" \ --include "devstralQ4_K_M.gguf" \ --local-dir "mistralai/Devstral-Small-2505_gguf/" ``` You can serve the model locally with [LMStudio](https://lmstudio.ai/). * Download [LM Studio](https://lmstudio.ai/) and install it * Install `lms cli ~/.lmstudio/bin/lms bootstrap` * In a bash terminal, run `lms import devstralQ4_K_M.ggu` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`) * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on. * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Click “see advanced setting” on the second line. In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes. ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://<your-server-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2505" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "<your-command>", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ``` ### Mistral-inference We recommend using mistral-inference to quickly try out / "vibe-check" Devstral. #### Install Make sure to have mistral_inference >= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` #### Download ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Python You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like. ### Ollama You can run Devstral using the [Ollama](https://ollama.ai/) CLI. ```bash ollama run devstral ``` ### Transformers To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) ` mistral-common >= 1.5.5` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2505" tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json") SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_file(tekken_file) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content="<your-command>"), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ```
phospho-app/tictactoe-A1-orange-6408-ny7xozpur7
phospho-app
2025-05-21T17:15:59Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-21T16:20:05Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [PAphospho/tictactoe-A1-orange](https://huggingface.co/datasets/PAphospho/tictactoe-A1-orange) - **Wandb run URL**: None - **Epochs**: 8 - **Batch size**: 64 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
MinaMila/phi3_unlearned_ug_e-5_1.0_0.15_0.05_LoRa_Adult_ep1_22
MinaMila
2025-05-21T17:15:32Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T17:15:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vapit/shawgpt-ft
vapit
2025-05-21T17:15:31Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "license:apache-2.0", "region:us" ]
null
2025-05-21T17:15:26Z
--- library_name: peft license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ tags: - generated_from_trainer model-index: - name: shawgpt-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shawgpt-ft This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.2143 | 1.0 | 4 | 3.7811 | | 3.4665 | 2.0 | 8 | 3.1367 | | 2.9209 | 3.0 | 12 | 2.6583 | | 2.4739 | 4.0 | 16 | 2.3120 | | 2.2214 | 5.0 | 20 | 2.0221 | | 1.807 | 6.0 | 24 | 1.8424 | | 1.6541 | 7.0 | 28 | 1.7631 | | 1.7071 | 7.6154 | 30 | 1.7495 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
haihp02/1ad156f8-03d0-44ab-9d9a-7dd51b303128-phase1-adapter
haihp02
2025-05-21T17:14:14Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:unsloth/Phi-3.5-mini-instruct", "base_model:finetune:unsloth/Phi-3.5-mini-instruct", "endpoints_compatible", "region:us" ]
null
2025-05-21T16:04:11Z
--- base_model: unsloth/Phi-3.5-mini-instruct library_name: transformers model_name: 1ad156f8-03d0-44ab-9d9a-7dd51b303128-phase1-adapter tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for 1ad156f8-03d0-44ab-9d9a-7dd51b303128-phase1-adapter This model is a fine-tuned version of [unsloth/Phi-3.5-mini-instruct](https://huggingface.co/unsloth/Phi-3.5-mini-instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="haihp02/1ad156f8-03d0-44ab-9d9a-7dd51b303128-phase1-adapter", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/trunghainguyenhp02/sn56-sft-before-dpo-train/runs/ndb077vl) This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kaiyuyue/zero-checkpoints
kaiyuyue
2025-05-21T17:12:36Z
0
0
transformers
[ "transformers", "pytorch", "llama-3", "zero-shot-vision-encoder-grafting", "text-generation", "base_model:meta-llama/Llama-3.1-70B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-70B-Instruct", "license:cc", "endpoints_compatible", "region:us" ]
text-generation
2025-03-24T22:08:08Z
--- license: cc pipeline_tag: text-generation base_model: - meta-llama/Llama-3.2-3B-Instruct - meta-llama/Llama-3.1-8B-Instruct - meta-llama/Llama-3.1-70B-Instruct - openai/clip-vit-large-patch14 library_name: transformers tags: - pytorch - llama-3 - zero-shot-vision-encoder-grafting --- ## Zero-Shot Vision Encoder Grafting via LLM Surrogates This repo provides the checkpoints of the project - [facebookresearch/zero](https://github.com/facebookresearch/zero) under the CC-BY-NC 4.0 license.
DanielNRU/pollen-ner-1800
DanielNRU
2025-05-21T17:11:17Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:adapter:DeepPavlov/rubert-base-cased", "region:us" ]
null
2025-05-21T02:37:33Z
--- library_name: peft base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-1800 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-1800 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1431 - Precision: 0.8783 - Recall: 0.9277 - F1: 0.9023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 225 | 0.1445 | 0.8760 | 0.9217 | 0.8982 | | No log | 2.0 | 450 | 0.1492 | 0.8658 | 0.9197 | 0.8919 | | 0.1668 | 3.0 | 675 | 0.1431 | 0.8783 | 0.9277 | 0.9023 | | 0.1668 | 4.0 | 900 | 0.1431 | 0.8793 | 0.9217 | 0.9 | | 0.1612 | 5.0 | 1125 | 0.1403 | 0.8827 | 0.9217 | 0.9018 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
darwinha/FineLlama-3.1-8B-tome200
darwinha
2025-05-21T17:11:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T17:05:01Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** darwinha - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jwl2006/Reinforce-004
jwl2006
2025-05-21T17:09:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-05-21T17:08:50Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-004 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
masmatix/Llama-3.1-Nemotron-Nano-8B-v1-Q4_K_M-GGUF
masmatix
2025-05-21T17:06:51Z
0
0
transformers
[ "transformers", "gguf", "nvidia", "llama-3", "pytorch", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:nvidia/Llama-3.1-Nemotron-Nano-8B-v1", "base_model:quantized:nvidia/Llama-3.1-Nemotron-Nano-8B-v1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-21T17:06:27Z
--- library_name: transformers license: other license_name: nvidia-open-model-license license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation language: - en tags: - nvidia - llama-3 - pytorch - llama-cpp - gguf-my-repo base_model: nvidia/Llama-3.1-Nemotron-Nano-8B-v1 --- # masmatix/Llama-3.1-Nemotron-Nano-8B-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`nvidia/Llama-3.1-Nemotron-Nano-8B-v1`](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo masmatix/Llama-3.1-Nemotron-Nano-8B-v1-Q4_K_M-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo masmatix/Llama-3.1-Nemotron-Nano-8B-v1-Q4_K_M-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo masmatix/Llama-3.1-Nemotron-Nano-8B-v1-Q4_K_M-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo masmatix/Llama-3.1-Nemotron-Nano-8B-v1-Q4_K_M-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q4_k_m.gguf -c 2048 ```
alvperez/skill-sim-model
alvperez
2025-05-21T17:04:54Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "feature-extraction", "sentence-similarity", "job-matching", "skill-similarity", "embeddings", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-21T16:35:48Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - job-matching - skill-similarity - embeddings --- # alvperez/skill-sim-model This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model for **skill similarity** and **job matching**. It maps short skill phrases (e.g., `Python`, `Forklift Operation`, `Electrical Wiring`) into a 768-dimensional embedding space, where semantically related skills are closer together. It can be used for: - Matching candidates to job requirements - Measuring similarity between skills - Clustering and grouping skill sets - Resume parsing or job recommendation systems --- ## 🧪 Usage (Sentence-Transformers) To use this model: ```bash pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('alvperez/skill-sim-model') skills = ["Electrical Wiring", "Circuit Troubleshooting", "Machine Learning"] embeddings = model.encode(skills) print(embeddings.shape) # (3, 768) ``` --- ## 🧭 Evaluation Results The model was evaluated on a labeled skill similarity dataset using the following metrics: | Metric | Value | |----------------------|---------| | Spearman Correlation | 0.8612 | | ROC AUC | 0.9127 | These scores indicate strong alignment with human-labeled skill similarity ratings. --- ## 🧠 Training Details The model was fine-tuned on a custom skill similarity dataset using `CosineSimilarityLoss`. ### **DataLoader** `torch.utils.data.dataloader.DataLoader` of length 409 with parameters: ```python {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` ### **Loss** ```python sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss ``` ### **Training Parameters** ```python { "epochs": 5, "evaluation_steps": 100, "evaluator": "EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "AdamW", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "warmup_steps": 100, "weight_decay": 0.01 } ``` --- ## 🧬 Model Architecture ```python SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` --- ## 📚 Citation & Attribution - Model fine-tuned by [@alvperez](https://huggingface.co/alvperez) - Built with [Sentence-Transformers](https://www.sbert.net/) - Inspired by semantic search and skill-matching use cases
BootesVoid/cmay2e8b8038bu1cguoswiyvb_cmay5sqze03abu1cgzds1no35
BootesVoid
2025-05-21T17:02:25Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T17:02:23Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: chelsea --- # Cmay2E8B8038Bu1Cguoswiyvb_Cmay5Sqze03Abu1Cgzds1No35 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `chelsea` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "chelsea", "lora_weights": "https://huggingface.co/BootesVoid/cmay2e8b8038bu1cguoswiyvb_cmay5sqze03abu1cgzds1no35/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmay2e8b8038bu1cguoswiyvb_cmay5sqze03abu1cgzds1no35', weight_name='lora.safetensors') image = pipeline('chelsea').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmay2e8b8038bu1cguoswiyvb_cmay5sqze03abu1cgzds1no35/discussions) to add images that show off what you’ve made with this LoRA.
allura-forge/q3-30b-rc1-kto
allura-forge
2025-05-21T17:00:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen3_moe", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:Gryphe/Pantheon-Proto-RP-1.8-30B-A3B", "base_model:merge:Gryphe/Pantheon-Proto-RP-1.8-30B-A3B", "base_model:Qwen/Qwen3-30B-A3B", "base_model:merge:Qwen/Qwen3-30B-A3B", "base_model:Qwen/Qwen3-30B-A3B-Base", "base_model:merge:Qwen/Qwen3-30B-A3B-Base", "base_model:allura-forge/q3-30b-ft-ep2-merged", "base_model:merge:allura-forge/q3-30b-ft-ep2-merged", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:54:22Z
--- base_model: - Qwen/Qwen3-30B-A3B-Base - allura-forge/q3-30b-ft-ep2-merged - Qwen/Qwen3-30B-A3B - Gryphe/Pantheon-Proto-RP-1.8-30B-A3B library_name: transformers tags: - mergekit - merge --- # output This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [Qwen/Qwen3-30B-A3B-Base](https://huggingface.co/Qwen/Qwen3-30B-A3B-Base) as a base. ### Models Merged The following models were included in the merge: * [allura-forge/q3-30b-ft-ep2-merged](https://huggingface.co/allura-forge/q3-30b-ft-ep2-merged) * [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) * [Gryphe/Pantheon-Proto-RP-1.8-30B-A3B](https://huggingface.co/Gryphe/Pantheon-Proto-RP-1.8-30B-A3B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: Qwen/Qwen3-30B-A3B-Base models: - model: allura-forge/q3-30b-ft-ep2-merged parameters: select_topk: 0.75 - model: Gryphe/Pantheon-Proto-RP-1.8-30B-A3B parameters: select_topk: 0.4 - model: Qwen/Qwen3-30B-A3B parameters: select_topk: 0.25 merge_method: sce dtype: bfloat16 ```
bartowski/mistralai_Devstral-Small-2505-GGUF
bartowski
2025-05-21T16:59:06Z
0
0
null
[ "gguf", "text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2025-05-21T14:37:41Z
--- quantized_by: bartowski pipeline_tag: text-generation base_model: mistralai/Devstral-Small-2505 inference: false language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. base_model_relation: quantized license: apache-2.0 --- ## Llamacpp imatrix Quantizations of Devstral-Small-2505 by mistralai ### Created using Unsloth's conversion (huge thanks for uploading it) from here: https://huggingface.co/unsloth/Devstral-Small-2505 Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b5432">b5432</a> for quantization. Original model: https://huggingface.co/mistralai/Devstral-Small-2505 All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project ## Vision support thanks to ngxson ngxson has shown that the original mmproj from Mistral Small 3.1 works seamlessly with Devstral Small, so the mmproj file is here for vision use! Note this is not official, and may not work perfectly, but in practice seems functional! ## Prompt format ``` <s>[SYSTEM_PROMPT]{system_prompt}[/SYSTEM_PROMPT][INST]{prompt}[/INST] ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Devstral-Small-2505-bf16.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-bf16.gguf) | bf16 | 47.15GB | false | Full BF16 weights. | | [Devstral-Small-2505-Q8_0.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q8_0.gguf) | Q8_0 | 25.05GB | false | Extremely high quality, generally unneeded but max available quant. | | [Devstral-Small-2505-Q6_K_L.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q6_K_L.gguf) | Q6_K_L | 19.67GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [Devstral-Small-2505-Q6_K.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q6_K.gguf) | Q6_K | 19.35GB | false | Very high quality, near perfect, *recommended*. | | [Devstral-Small-2505-Q5_K_L.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q5_K_L.gguf) | Q5_K_L | 17.18GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [Devstral-Small-2505-Q5_K_M.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q5_K_M.gguf) | Q5_K_M | 16.76GB | false | High quality, *recommended*. | | [Devstral-Small-2505-Q5_K_S.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q5_K_S.gguf) | Q5_K_S | 16.30GB | false | High quality, *recommended*. | | [Devstral-Small-2505-Q4_1.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q4_1.gguf) | Q4_1 | 14.87GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. | | [Devstral-Small-2505-Q4_K_L.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q4_K_L.gguf) | Q4_K_L | 14.83GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Devstral-Small-2505-Q4_K_M.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q4_K_M.gguf) | Q4_K_M | 14.33GB | false | Good quality, default size for most use cases, *recommended*. | | [Devstral-Small-2505-Q4_K_S.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q4_K_S.gguf) | Q4_K_S | 13.55GB | false | Slightly lower quality with more space savings, *recommended*. | | [Devstral-Small-2505-Q4_0.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q4_0.gguf) | Q4_0 | 13.49GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. | | [Devstral-Small-2505-IQ4_NL.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ4_NL.gguf) | IQ4_NL | 13.47GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. | | [Devstral-Small-2505-Q3_K_XL.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q3_K_XL.gguf) | Q3_K_XL | 12.99GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Devstral-Small-2505-IQ4_XS.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ4_XS.gguf) | IQ4_XS | 12.76GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Devstral-Small-2505-Q3_K_L.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q3_K_L.gguf) | Q3_K_L | 12.40GB | false | Lower quality but usable, good for low RAM availability. | | [Devstral-Small-2505-Q3_K_M.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q3_K_M.gguf) | Q3_K_M | 11.47GB | false | Low quality. | | [Devstral-Small-2505-IQ3_M.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ3_M.gguf) | IQ3_M | 10.65GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Devstral-Small-2505-Q3_K_S.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q3_K_S.gguf) | Q3_K_S | 10.40GB | false | Low quality, not recommended. | | [Devstral-Small-2505-IQ3_XS.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ3_XS.gguf) | IQ3_XS | 9.91GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Devstral-Small-2505-Q2_K_L.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q2_K_L.gguf) | Q2_K_L | 9.55GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Devstral-Small-2505-IQ3_XXS.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ3_XXS.gguf) | IQ3_XXS | 9.28GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Devstral-Small-2505-Q2_K.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-Q2_K.gguf) | Q2_K | 8.89GB | false | Very low quality but surprisingly usable. | | [Devstral-Small-2505-IQ2_M.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ2_M.gguf) | IQ2_M | 8.11GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | | [Devstral-Small-2505-IQ2_S.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ2_S.gguf) | IQ2_S | 7.48GB | false | Low quality, uses SOTA techniques to be usable. | | [Devstral-Small-2505-IQ2_XS.gguf](https://huggingface.co/bartowski/mistralai_Devstral-Small-2505-GGUF/blob/main/mistralai_Devstral-Small-2505-IQ2_XS.gguf) | IQ2_XS | 7.21GB | false | Low quality, uses SOTA techniques to be usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. ## Downloading using huggingface-cli <details> <summary>Click to view download instructions</summary> First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/mistralai_Devstral-Small-2505-GGUF --include "mistralai_Devstral-Small-2505-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/mistralai_Devstral-Small-2505-GGUF --include "mistralai_Devstral-Small-2505-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (mistralai_Devstral-Small-2505-Q8_0) or download them all in place (./) </details> ## ARM/AVX information Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass. Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly. As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0. Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase. <details> <summary>Click to view Q4_0_X_X information (deprecated</summary> I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking. <details> <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary> | model | size | params | backend | threads | test | t/s | % (vs Q4_0) | | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% | Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation </details> </details> ## Which file should I choose? <details> <summary>Click here for details</summary> A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. </details> ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset. Thank you ZeroWw for the inspiration to experiment with embed/output. Thank you to LM Studio for sponsoring my work. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
beyoru/Spark-TTS-0.5B-with-FireSpark-10
beyoru
2025-05-21T16:57:44Z
12
0
null
[ "safetensors", "text-to-speech", "en", "zh", "base_model:SparkAudio/Spark-TTS-0.5B", "base_model:finetune:SparkAudio/Spark-TTS-0.5B", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-speech
2025-05-20T18:54:48Z
--- license: cc-by-nc-sa-4.0 language: - en - zh tags: - text-to-speech library_tag: spark-tts base_model: - SparkAudio/Spark-TTS-0.5B ---
beyoru/Spark-TTS-0.5B-with-KafSpark
beyoru
2025-05-21T16:57:26Z
13
0
null
[ "safetensors", "text-to-speech", "en", "zh", "base_model:SparkAudio/Spark-TTS-0.5B", "base_model:finetune:SparkAudio/Spark-TTS-0.5B", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-speech
2025-05-20T19:15:55Z
--- license: cc-by-nc-sa-4.0 language: - en - zh tags: - text-to-speech library_tag: spark-tts base_model: - SparkAudio/Spark-TTS-0.5B ---
Gabriel2502/NIH_Xrays-Florence-2-FT-DocVQA
Gabriel2502
2025-05-21T16:57:12Z
0
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-05-21T16:45:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DevQuasar/mistralai.Devstral-Small-2505-GGUF
DevQuasar
2025-05-21T16:56:35Z
0
0
null
[ "text-generation", "base_model:mistralai/Devstral-Small-2505", "base_model:finetune:mistralai/Devstral-Small-2505", "region:us" ]
text-generation
2025-05-21T16:56:34Z
--- base_model: - mistralai/Devstral-Small-2505 pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [mistralai/Devstral-Small-2505](https://huggingface.co/mistralai/Devstral-Small-2505) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
ibuki95/model5
ibuki95
2025-05-21T16:56:30Z
0
0
null
[ "region:us" ]
null
2025-05-21T13:47:29Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Ainxz/phi3.5-pucv
Ainxz
2025-05-21T16:56:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-03T19:58:05Z
--- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Ainxz - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF
mradermacher
2025-05-21T16:55:31Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:yangjie-cv/WeThink-Qwen2.5VL-7B", "base_model:quantized:yangjie-cv/WeThink-Qwen2.5VL-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-05-21T16:03:55Z
--- base_model: yangjie-cv/WeThink-Qwen2.5VL-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/yangjie-cv/WeThink-Qwen2.5VL-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/WeThink-Qwen2.5VL-7B-i1-GGUF/resolve/main/WeThink-Qwen2.5VL-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
desllre/ru_news_detection
desllre
2025-05-21T16:55:12Z
0
0
null
[ "safetensors", "bert", "rubert", "rubert-tiny", "text-classification", "russian", "social-media", "news", "fine-tuned", "taiga", "ru", "dataset:Taiga", "base_model:cointegrated/rubert-tiny2", "base_model:finetune:cointegrated/rubert-tiny2", "license:mit", "region:us" ]
text-classification
2025-05-21T16:20:01Z
--- language: ru license: mit tags: - rubert - rubert-tiny - text-classification - russian - social-media - news - fine-tuned - taiga metrics: - accuracy - precision - recall - f1 base_model: cointegrated/rubert-tiny2 datasets: - Taiga --- ## Russian news detection ### About - Model based on `cointegrated/rubert-tiny2` - Further training of the model took place on a set of texts of social networks and news texts of the corpus of texts [Taiga](https://tatianashavrina.github.io/taiga_site /) - Estimates of the accuracy of the model in the validation sample: | Accuracy | Precision | Recall | F1-score | | -------- | --------- | -------- | -------- | | 0.996342 | 0.999747 | 0.993717 | 0.996723 | ### Getting started ```python from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import pickle device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_path = 'desllre/ru_news_detection' encoder_path = hf_hub_download(repo_id=model_path, filename="encoder.pkl") with open(encoder_path, "rb") as f: encoder = pickle.load(f) tokenizer = AutoTokenizer.from_pretrained(model_path) classifier = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) text = 'Tesla дала добро на взлом ПО своих автомобилей\n\nКомпания изменила условия программы Bug Bounty, предусматривающей выплату вознаграждений за поиск уязвимостей. Теперь энтузиасты могут взламывать электрокары Tesla, не боясь отзыва гарантии. Более того, в соответствии с новой политикой компании, автопроизводитель будет перепрошивать автомобили, ПО которых вышло из строя в процессе экспериментов специалистов кибербезопасности.\n\nИзменения в политике компании Telsa очень тепло встретили представители индустрии.' tokenized = tokenize_function(text, news_tokenizer) tokenized = {key: value.to(device) for key, value in tokenized.items()} with torch.no_grad(): output = classifier(**tokenized) predicted_class_id = torch.argmax(output.logits, dim=1).item() label = encoder.inverse_transform([predicted_class_id])[0] print(label) ```
gavrilstep/95409e72-553b-407c-8724-3b48ac7fb3b9
gavrilstep
2025-05-21T16:52:38Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B", "base_model:adapter:unsloth/Qwen2-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-21T16:41:06Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 95409e72-553b-407c-8724-3b48ac7fb3b9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Qwen2-1.5B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 8238689af7edb3c9_train_data.json ds_type: json format: custom path: /workspace/input_data/8238689af7edb3c9_train_data.json type: field_instruction: system field_output: prompt format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: gavrilstep/95409e72-553b-407c-8724-3b48ac7fb3b9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 96 lora_dropout: 0.01 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 48 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/8238689af7edb3c9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dd656613-2166-41f4-8840-76ceb5e9b641 wandb_project: s56-7 wandb_run: your_name wandb_runid: dd656613-2166-41f4-8840-76ceb5e9b641 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 95409e72-553b-407c-8724-3b48ac7fb3b9 This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2883 | 0.0098 | 150 | 1.8758 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ilybawkugo/lora_qwen_2e-4-1616-512
ilybawkugo
2025-05-21T16:51:16Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T15:49:14Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ilybawkugo - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Gitanjali1801/ctrl_b_and_b-2
Gitanjali1801
2025-05-21T16:50:26Z
0
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "diffusers-training", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-05-15T17:25:39Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # controlnet-Gitanjali1801/ctrl_b_and_b-2 These are controlnet weights trained on stable-diffusion-v1-5/stable-diffusion-v1-5 with new type of conditioning. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
matatonic/Devstral-Small-2505-5.0bpw-exl2
matatonic
2025-05-21T16:48:52Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text2text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "5-bit", "exl2", "region:us" ]
text2text-generation
2025-05-21T16:47:56Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Devstral-Small-2505 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text2text-generation --- # Model Card for mistralai/Devstrall-Small-2505 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%. | Model | Scaffold | SWE-Bench Verified (%) | |------------------|--------------------|------------------------| | Devstral | OpenHands Scaffold | **46.8** | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_bench.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY=<MY_KEY> docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.39 ``` ### Local inference You can also run the model locally. It can be done with LMStudio or other providers listed below. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` The server will start at http://0.0.0.0:3000. Open it in your browser and you will see a tab AI Provider Configuration. Now you can start a new conversation with the agent by clicking on the plus sign on the left bar. The model can also be deployed with the following libraries: - [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio-recommended-for-quantized-model) - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) ### OpenHands (recommended) #### Launch a server to deploy Devstral-Small-2505 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://<your-server-url>:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2505` - **Base URL**: `http://<your-server-url>:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any) #### Use OpenHands powered by Devstral Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app. <details> <summary>To-Do list app</summary 1. Let's ask Devstral to generate the app with the following prompt: ```txt Build a To-Do list app with the following requirements: - Built using FastAPI and React. - Make it a one page app that: - Allows to add a task. - Allows to delete a task. - Allows to mark a task as done. - Displays the list of tasks. - Store the tasks in a SQLite database. ``` ![Agent prompting](assets/tuto_open_hands/agent_prompting.png) 2. Let's see the result You should see the agent construct the app and be able to explore the code it generated. If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app. ![Agent working](assets/tuto_open_hands/agent_working.png) ![App UI](assets/tuto_open_hands/app_ui.png) 3. Iterate Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status. Enjoy building with Devstral Small and OpenHands! </details> ### LMStudio (recommended for quantized model) Download the weights from huggingface: ``` pip install -U "huggingface_hub[cli]" huggingface-cli download \ "mistralai/Devstral-Small-2505_gguf" \ --include "devstralQ4_K_M.gguf" \ --local-dir "mistralai/Devstral-Small-2505_gguf/" ``` You can serve the model locally with [LMStudio](https://lmstudio.ai/). * Download [LM Studio](https://lmstudio.ai/) and install it * Install `lms cli ~/.lmstudio/bin/lms bootstrap` * In a bash terminal, run `lms import devstralQ4_K_M.ggu` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`) * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on. * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Click “see advanced setting” on the second line. In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes. ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://<your-server-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2505" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "<your-command>", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ``` ### Mistral-inference We recommend using mistral-inference to quickly try out / "vibe-check" Devstral. #### Install Make sure to have mistral_inference >= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` #### Download ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Python You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like. ### Ollama You can run Devstral using the [Ollama](https://ollama.ai/) CLI. ```bash ollama run devstral ``` ### Transformers To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) ` mistral-common >= 1.5.5` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2505" tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json") SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_file(tekken_file) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content="<your-command>"), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ```
DanielNRU/pollen-ner-1700
DanielNRU
2025-05-21T16:47:22Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:adapter:DeepPavlov/rubert-base-cased", "region:us" ]
null
2025-05-20T17:05:45Z
--- library_name: peft base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-1700 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-1700 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1476 - Precision: 0.8615 - Recall: 0.9116 - F1: 0.8859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 213 | 0.1437 | 0.8626 | 0.9076 | 0.8845 | | No log | 2.0 | 426 | 0.1461 | 0.8642 | 0.9076 | 0.8854 | | 0.1816 | 3.0 | 639 | 0.1476 | 0.8615 | 0.9116 | 0.8859 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
Fizzarolli/q3-30b-rc1-kto-adpt
Fizzarolli
2025-05-21T16:46:54Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:allura-forge/q3-30b-rc1", "base_model:adapter:allura-forge/q3-30b-rc1", "region:us" ]
null
2025-05-21T16:46:19Z
--- base_model: allura-forge/q3-30b-rc1 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
angrotanak/results
angrotanak
2025-05-21T16:44:58Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-21T07:17:07Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.1 - Pytorch 2.6.0+cpu - Datasets 3.6.0 - Tokenizers 0.21.1
OL-OL/llama3-vision-graphs-5000_finetuned
OL-OL
2025-05-21T16:43:43Z
0
0
transformers
[ "transformers", "safetensors", "mllama", "image-text-to-text", "trl", "sft", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-05-21T16:41:17Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SamanthaStorm/tether-darvo-regressor-v1
SamanthaStorm
2025-05-21T16:42:27Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-21T16:41:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aw1605/smoltalk_sft
aw1605
2025-05-21T16:40:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:39:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rubricreward/R3-Phi-4-reasoning-plus-LoRA-4k
rubricreward
2025-05-21T16:39:56Z
49
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "lora", "conversational", "en", "dataset:rubricreward/R3-Dataset-4K", "arxiv:2505.13388", "base_model:microsoft/Phi-4-reasoning-plus", "base_model:adapter:microsoft/Phi-4-reasoning-plus", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-16T06:33:04Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-4K base_model: - microsoft/Phi-4-reasoning-plus pipeline_tag: text-generation library_name: transformers tags: - lora --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Phi-4-reasoning-plus-LoRA-4k R3-Phi-4-reasoning-plus-LoRA-4k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** microsoft/Phi-4-reasoning-plus ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Phi-4-reasoning-plus-LoRA-4k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=32768, min_p=0, top_k=50) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
rubricreward/R3-Qwen3-4B-14k
rubricreward
2025-05-21T16:38:58Z
3
1
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "en", "dataset:rubricreward/R3-Dataset-14K", "arxiv:2505.13388", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-14T08:24:50Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-14K base_model: - Qwen/Qwen3-4B pipeline_tag: text-generation library_name: transformers --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Qwen3-4B-14k R3-Qwen3-4B-14k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Qwen/Qwen3-4B ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Qwen3-4B-14k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192, min_p=0, top_k=20) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
mlx-community/Devstral-Small-2505-3bit
mlx-community
2025-05-21T16:38:56Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "conversational", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "3-bit", "region:us" ]
text-generation
2025-05-21T15:42:41Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: mlx inference: false base_model: mistralai/Devstral-Small-2505 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text-generation tags: - mlx --- # mlx-community/Devstral-Small-2505-3bit This model [mlx-community/Devstral-Small-2505-3bit](https://huggingface.co/mlx-community/Devstral-Small-2505-3bit) was converted to MLX format from [mistralai/Devstral-Small-2505](https://huggingface.co/mistralai/Devstral-Small-2505) using mlx-lm version **0.24.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Devstral-Small-2505-3bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
rubricreward/R3-Qwen3-4B-LoRA-4k
rubricreward
2025-05-21T16:38:23Z
4
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "lora", "conversational", "en", "dataset:rubricreward/R3-Dataset-4K", "arxiv:2505.13388", "base_model:Qwen/Qwen3-4B", "base_model:adapter:Qwen/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T02:56:45Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-4K base_model: - Qwen/Qwen3-4B pipeline_tag: text-generation library_name: transformers tags: - lora --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Qwen3-4B-LoRA-4k R3-Qwen3-4B-LoRA-4k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Qwen/Qwen3-4B ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Qwen3-4B-LoRA-4k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192, min_p=0, top_k=20) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
mlx-community/Devstral-Small-2505-4bit
mlx-community
2025-05-21T16:38:23Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "conversational", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-05-21T15:49:11Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: mlx inference: false base_model: mistralai/Devstral-Small-2505 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text-generation tags: - mlx --- # mlx-community/Devstral-Small-2505-4bit This model [mlx-community/Devstral-Small-2505-4bit](https://huggingface.co/mlx-community/Devstral-Small-2505-4bit) was converted to MLX format from [mistralai/Devstral-Small-2505](https://huggingface.co/mistralai/Devstral-Small-2505) using mlx-lm version **0.24.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Devstral-Small-2505-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
rubricreward/R3-Qwen3-8B-14k
rubricreward
2025-05-21T16:38:08Z
30
1
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "en", "dataset:rubricreward/R3-Dataset-14K", "arxiv:2505.13388", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-14T09:09:06Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-14K base_model: - Qwen/Qwen3-8B pipeline_tag: text-generation library_name: transformers --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Qwen3-8B-14k R3-Qwen3-8B-14k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Qwen/Qwen3-8B ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Qwen3-8B-14k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192, min_p=0, top_k=20) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
rubricreward/R3-Qwen3-8B-4k
rubricreward
2025-05-21T16:37:46Z
2
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "en", "dataset:rubricreward/R3-Dataset-4K", "arxiv:2505.13388", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-14T09:01:26Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-4K base_model: - Qwen/Qwen3-8B pipeline_tag: text-generation library_name: transformers --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Qwen3-8B-4k R3-Qwen3-8B-4k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Qwen/Qwen3-8B ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Qwen3-8B-4k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192, min_p=0, top_k=20) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
EXOAI3/Tao
EXOAI3
2025-05-21T16:37:35Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T16:36:30Z
--- license: apache-2.0 ---
rubricreward/R3-Qwen3-14B-14k
rubricreward
2025-05-21T16:37:15Z
13
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "en", "dataset:rubricreward/R3-Dataset-14K", "arxiv:2505.13388", "base_model:Qwen/Qwen3-14B", "base_model:finetune:Qwen/Qwen3-14B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-14T15:46:14Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-14K base_model: - Qwen/Qwen3-14B pipeline_tag: text-generation library_name: transformers --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Qwen3-14B-14k R3-Qwen3-14B-14k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Qwen/Qwen3-14B ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Qwen3-14B-14k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192, min_p=0, top_k=20) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
mlx-community/Devstral-Small-2505-bf16
mlx-community
2025-05-21T16:37:12Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "conversational", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:finetune:mistralai/Devstral-Small-2505", "license:apache-2.0", "region:us" ]
text-generation
2025-05-21T15:56:40Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: mlx inference: false base_model: mistralai/Devstral-Small-2505 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text-generation tags: - mlx --- # mlx-community/Devstral-Small-2505-bf16 This model [mlx-community/Devstral-Small-2505-bf16](https://huggingface.co/mlx-community/Devstral-Small-2505-bf16) was converted to MLX format from [mistralai/Devstral-Small-2505](https://huggingface.co/mistralai/Devstral-Small-2505) using mlx-lm version **0.24.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Devstral-Small-2505-bf16") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
rubricreward/R3-Qwen3-14B-4k
rubricreward
2025-05-21T16:37:01Z
30
1
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "en", "dataset:rubricreward/R3-Dataset-4K", "arxiv:2505.13388", "base_model:Qwen/Qwen3-14B", "base_model:finetune:Qwen/Qwen3-14B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-12T18:15:35Z
--- license: apache-2.0 language: - en datasets: - rubricreward/R3-Dataset-4K base_model: - Qwen/Qwen3-14B pipeline_tag: text-generation library_name: transformers --- <img alt="R3 Logo" src="https://cdn-avatars.huggingface.co/v1/production/uploads/651803f834c26962535eb022/hj3UEN9_9wlkmvMfUY1OL.png" width="150px"> # R3-Qwen3-14B-4k R3-Qwen3-14B-4k is part of the R3 family, a series of **R**obust **R**ubric-Agnostic **R**eward Models. We perform SFT on the Qwen3 model family on the 4B, 8B, and 14B scales as well as on Phi-4-reasoning plus. Check out [our paper](https://arxiv.org/abs/2505.13388) for more information! ## Model description - **Model type:** A reward model trained on a curated R3 dataset collected from 45 diverse sources that covers tasks such as classification, preference optimization, and question answering. Each example in the dataset contains an instruction and task description, input, response(s), evaluation rubrics, and a score along with the corresponding reasoning. - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Qwen/Qwen3-14B ### Model Sources - **Project Page:** https://rubricreward.github.io - **Repository:** https://github.com/rubricreward/r3 - **Paper:** https://arxiv.org/abs/2505.13388 ## Using the Model ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_path = "rubricreward/R3-Qwen3-14B-4k" tokenizer = AutoTokenizer.from_pretrained(model_path) sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192, min_p=0, top_k=20) llm = LLM( model=model_path, dtype="bfloat16", max_model_len=10000, tensor_parallel_size=2, gpu_memory_utilization=0.9, enforce_eager=True, ) messages: list[dict[str, str]] = [ {'content': "Evaluate the response based on the given task, input, response, and evaluation rubric. Provide a fair and detailed assessment following the rubric...", 'role': 'user'} ] list_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switch between thinking and non-thinking modes. ) outputs = llm.generate(list_text, sampling_params) ``` ## License and use R3 is licensed under the Apache 2.0 license. ## Citation ```bibtex @article{anugraha2025r3, title={R3: Robust Rubric-Agnostic Reward Models}, author={Anugraha, David and Tang, Zilu and Miranda, Lester James V. and Zhao, Hanyang and Farhansyah, Mohammad Rifqi and Kuwanto, Garry and Wijaya, Derry and Winata, Genta Indra}, journal={arXiv preprint arXiv:2505.13388}, year={2025} } ```
manuth/wer7_augPitch
manuth
2025-05-21T16:36:11Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "khm", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-21T16:31:02Z
--- library_name: transformers pipeline_tag: automatic-speech-recognition language: - khm license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Finetuned for Khmer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Finetuned for Khmer This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0204 - Wer: 0.0998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0252 | 0.7722 | 200 | 0.0256 | 0.1182 | | 0.0193 | 1.5444 | 400 | 0.0219 | 0.1037 | | 0.0099 | 2.3166 | 600 | 0.0204 | 0.0998 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
mod479711/starvector-1b-im2svg-GGUF
mod479711
2025-05-21T16:36:03Z
10
0
transformers
[ "transformers", "gguf", "svg", "text-generation", "en", "base_model:starvector/starvector-1b-im2svg", "base_model:quantized:starvector/starvector-1b-im2svg", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T16:42:37Z
--- license: apache-2.0 language: - en base_model: - starvector/starvector-1b-im2svg pipeline_tag: text-generation tags: - svg library_name: transformers --- ### Starvector-GGUF ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66d3f0f530d7ea0b287ddefa/VKsAIhbqkcb6e6ZW9HGa7.png) Квантованная версия https://huggingface.co/starvector/starvector-1b-im2svg . Модель пока нигде нельзя использовать полноценно, но ведётся работа по модификации llama.cpp для внедрения поддержки # Llama.cpp for Starvector https://github.com/mod47971/llama.cpp-advanced_arch | | Starvector-1b |Starvector-8b | | --- | --- | --- | | Quantization | ✅ | ❌ | | Inference | ? (I haven't tested it yet, but theoretically it should work)| ❌ |
EmreGed/sunergy8bit8e
EmreGed
2025-05-21T16:34:55Z
0
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T16:30:37Z
--- license: apache-2.0 ---
iTroned/self_iterative_v2_targeted_iteration_1
iTroned
2025-05-21T16:31:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-05-14T05:07:42Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: self_iterative_v2_targeted_iteration_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/vc8gvd7c) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/vc8gvd7c) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/vc8gvd7c) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/vc8gvd7c) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/itroned-ntnu/huggingface/runs/vc8gvd7c) # self_iterative_v2_targeted_iteration_1 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.5896 - Accuracy Targeted: 0.6822 - F1 Macro Targeted: 0.4884 - F1 Weighted Targeted: 0.6003 - F1 Macro Total: 0.4884 - F1 Weighted Total: 0.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1337 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Targeted | F1 Macro Targeted | F1 Weighted Targeted | F1 Macro Total | F1 Weighted Total | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:-----------------:|:--------------------:|:--------------:|:-----------------:| | 0.3375 | 1.0 | 5899 | 4.8907 | 0.6778 | 0.4040 | 0.5476 | 0.4040 | 0.5476 | | 0.2568 | 2.0 | 11798 | 4.9433 | 0.6778 | 0.4040 | 0.5476 | 0.4040 | 0.5476 | | 0.2147 | 3.0 | 17697 | 5.5877 | 0.6889 | 0.4516 | 0.5799 | 0.4516 | 0.5799 | | 0.1024 | 4.0 | 23596 | 6.9925 | 0.6733 | 0.4271 | 0.5607 | 0.4271 | 0.5607 | | 0.1134 | 5.0 | 29495 | 6.5896 | 0.6822 | 0.4884 | 0.6003 | 0.4884 | 0.6003 | | 0.0407 | 6.0 | 35394 | 7.8903 | 0.6733 | 0.4694 | 0.5863 | 0.4694 | 0.5863 | | 0.024 | 7.0 | 41293 | 6.2429 | 0.6756 | 0.4451 | 0.5722 | 0.4451 | 0.5722 | | 0.0105 | 8.0 | 47192 | 9.8105 | 0.68 | 0.4360 | 0.5679 | 0.4360 | 0.5679 | | 0.0334 | 9.0 | 53091 | 9.7531 | 0.6689 | 0.4194 | 0.5547 | 0.4194 | 0.5547 | | 0.0161 | 10.0 | 58990 | 11.4841 | 0.6667 | 0.4408 | 0.5672 | 0.4408 | 0.5672 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.21.1
beyoru/Kafka-Spark
beyoru
2025-05-21T16:30:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:27:22Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hlhs211/aphasia_gemma3_27b
hlhs211
2025-05-21T16:30:28Z
0
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-21T16:06:38Z
--- license: apache-2.0 ---
darwinha/FineLlama-3.1-8B-alpaca200
darwinha
2025-05-21T16:28:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:24:02Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** darwinha - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yeniguno/opus-mt-en-tr-kafkaesque
yeniguno
2025-05-21T16:26:41Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "en", "tr", "base_model:Helsinki-NLP/opus-mt-tc-big-en-tr", "base_model:finetune:Helsinki-NLP/opus-mt-tc-big-en-tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-05-21T16:18:44Z
--- library_name: transformers tags: - translation license: apache-2.0 language: - en - tr metrics: - bleu base_model: - Helsinki-NLP/opus-mt-tc-big-en-tr pipeline_tag: translation --- # Model Card for **yeniguno/marianmt-en-tr-kafkaesque** A fine-tuned **MarianMT** model that translates **English prose into Turkish with a deliberate “Kafkaesque” flavour**. The checkpoint starts from the bilingual **Helsinki-NLP/opus-mt-en-tr** base model and is further trained on ~10 k parallel sentences taken from published Turkish & English versions of Franz Kafka’s works. The goal was purely experimental: > *Can a compact MT model be nudged toward a specific literary voice by exposing it to a small, style-consistent corpus?* --- ## Model Details | | | |---|---| | **Base architecture** | MarianMT (Transformer encoder-decoder) | | **Source languages** | `en` (contemporary English) | | **Target language** | `tr` (modern Turkish) | | **Training corpus** | 10 014 sentence pairs manually aligned from Turkish editions of Kafka’s short stories and their authorised English translations | | **Framework** | 🤗 Transformers ≥ 4.40 | | **License** | Apache-2.0 for the *model code + weights* ✧ ⚠️ Translations used for fine-tuning may still be under copyright; see *“Data & Copyright”* below | --- ## Intended Uses & Scope | **You can** | **You should not** | |-------------|--------------------| | Generate *draft* Turkish renderings of Kafka excerpts originally translated into English | Assume output is authoritative or publication-ready | | Explore style-transfer / literary MT research | Rely on the model for technical, legal or medical translation | | Use as a starting point for further stylistic fine-tuning | Expect high accuracy outside Kafka’s narrative domain | --- ## Training Procedure * **Hardware:** 1× A100 40 GB (Google Colab Pro) * **Hyper-params:** 5 epochs, batch 16 (eff.), LR 5 × 10⁻⁵, linear decay, warm-up 200 steps * **Early stopping:** patience 3 (@ 500-step evals) monitored on BLEU * **Best checkpoint:** step 2 500 * Train loss ≈ 0.42 → Val loss ≈ 1.01 * SacreBLEU (500-sent dev) **baseline 24.4 → tuned 31.8** --- ## Quick Start ```python from transformers import MarianMTModel, MarianTokenizer tr_en_model_name = "yeniguno/opus-mt-en-tr-kafkaesque" tokenizer = MarianTokenizer.from_pretrained(tr_en_model_name) model = MarianMTModel.from_pretrained(tr_en_model_name) turkish_text ="My neighbor, at the same peculiar hour each night, left his room with a small, locked bag in hand." inputs = tokenizer(turkish_text, return_tensors="pt", padding=True) output_ids = model.generate(**inputs) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) ```
ErsiZhao/example-model
ErsiZhao
2025-05-21T16:26:34Z
0
0
null
[ "region:us" ]
null
2025-05-21T01:02:49Z
Example model this is my model card preview --- license: mit ---
yeniguno/opus-mt-tr-en-kafkaesque
yeniguno
2025-05-21T16:25:45Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "tr", "en", "base_model:Helsinki-NLP/opus-mt-tr-en", "base_model:finetune:Helsinki-NLP/opus-mt-tr-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-05-21T15:37:07Z
--- library_name: transformers tags: - translation license: apache-2.0 language: - tr - en metrics: - bleu base_model: - Helsinki-NLP/opus-mt-tr-en pipeline_tag: translation --- # Model Card A fine-tuned **MarianMT** model that translates **Turkish prose into English with a deliberate “Kafkaesque” flavour**. The checkpoint starts from the bilingual **Helsinki-NLP/opus-mt-tr-en** base model and is further trained on ~10 k parallel sentences taken from published Turkish & English versions of Franz Kafka’s works. The goal was purely experimental: > *Can a compact MT model be nudged toward a specific literary voice by exposing it to a small, style-consistent corpus?* --- ## Model Details | | | |---|---| | **Base architecture** | MarianMT (Transformer encoder-decoder) | | **Source languages** | `tr` (modern Turkish) | | **Target language** | `en` (contemporary English) | | **Training corpus** | 10 014 sentence pairs manually aligned from Turkish editions of Kafka’s short stories & *Die Verwandlung* and their authorised English translations | | **Framework** | 🤗 Transformers ≥ 4.40 | | **License** | Apache-2.0 for the *model code + weights* ✧ ⚠️ Translations used for fine-tuning may still be under copyright; see *“Data & Copyright”* below | --- ## Training Procedure * **Hardware:** 1× A100 40 GB (Google Colab Pro) * **Hyper-params:** 5 epochs, batch 16 (eff.), LR 5 × 10⁻⁵, linear decay, warm-up 200 steps * **Early stopping:** patience 3 (@ 500-step evals) monitored on BLEU * **Best checkpoint:** step 2 500 * Train loss ≈ 0.61 → Val loss ≈ 1.20 * SacreBLEU (500-sent dev) **baseline 24.7 → tuned 31.5** --- ## Quick Start ```python from transformers import MarianMTModel, MarianTokenizer tr_en_model_name = "yeniguno/opus-mt-tr-en-kafkaesque" tokenizer = MarianTokenizer.from_pretrained(tr_en_model_name) model = MarianMTModel.from_pretrained(tr_en_model_name) turkish_text ="Komşum her gece tam aynı tuhaf saatte, elinde küçük, kilitli bir çantayla dairesinden çıkıyor." inputs = tokenizer(turkish_text, return_tensors="pt", padding=True) output_ids = model.generate(**inputs) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) ```
bullerwins/Devstral-Small-2505-fp8
bullerwins
2025-05-21T16:21:49Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text2text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "compressed-tensors", "region:us" ]
text2text-generation
2025-05-21T16:02:52Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Devstral-Small-2505 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text2text-generation --- Quantized to FP8 with [LLMCompressor](https://github.com/vllm-project/llm-compressor) Ideal to run on a dual GPU system like 2x3090 with vLLM or SGlang: `vllm serve bullerwins/Devstral-Small-2505-fp8 --max-model-len 16000 --host 0.0.0.0 --port 5000 -tp 2 --tokenizer_mode mistral` # Devstral-Small-2505 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%. | Model | Scaffold | SWE-Bench Verified (%) | |------------------|--------------------|------------------------| | Devstral | OpenHands Scaffold | **46.8** | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_bench.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY=<MY_KEY> docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.39 ``` ### Local inference The model can also be deployed with the following libraries: - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`LMStudio`](https://lmstudio.ai/): See [here](#lmstudio) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) ### OpenHands (recommended) #### Launch a server to deploy Devstral-Small-2505 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://<your-server-url>:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2505` - **Base URL**: `http://<your-server-url>:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any) #### Use OpenHands powered by Devstral Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app. <details> <summary>To-Do list app</summary 1. Let's ask Devstral to generate the app with the following prompt: ```txt Build a To-Do list app with the following requirements: - Built using FastAPI and React. - Make it a one page app that: - Allows to add a task. - Allows to delete a task. - Allows to mark a task as done. - Displays the list of tasks. - Store the tasks in a SQLite database. ``` ![Agent prompting](assets/tuto_open_hands/agent_prompting.png) 2. Let's see the result You should see the agent construct the app and be able to explore the code it generated. If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app. ![Agent working](assets/tuto_open_hands/agent_working.png) ![App UI](assets/tuto_open_hands/app_ui.png) 3. Iterate Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status. Enjoy building with Devstral Small and OpenHands! </details> ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://<your-server-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2505" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "<your-command>", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ``` ### Mistral-inference We recommend using mistral-inference to quickly try out / "vibe-check" Devstral. #### Install Make sure to have mistral_inference >= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` #### Download ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Python You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like. ### Transformers To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) ` mistral-common >= 1.5.5` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2505" tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json") SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_file(tekken_file) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content="<your-command>"), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ``` ### LMStudio Download the weights from huggingface: ``` pip install -U "huggingface_hub[cli]" huggingface-cli download \ "mistralai/Devstral-Small-2505_gguf" \ --include "devstralQ4_K_M.gguf" \ --local-dir "mistralai/Devstral-Small-2505_gguf/" ``` You can serve the model locally with [LMStudio](https://lmstudio.ai/). * Download [LM Studio](https://lmstudio.ai/) and install it * Install `lms cli ~/.lmstudio/bin/lms bootstrap` * In a bash terminal, run `lms import devstralQ4_K_M.gguf` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`) * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting toggle Serve on Local Network to be on. * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Click “see advanced setting” on the second line. In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes. ### Ollama You can run Devstral using the [Ollama](https://ollama.ai/) CLI. ```bash ollama run devstral ```
vertings6/acf6dcee-7652-4c45-a805-328a7ea46762
vertings6
2025-05-21T16:19:49Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "starcoder2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:bigcode/starcoder2-3b", "base_model:quantized:bigcode/starcoder2-3b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-21T15:57:07Z
--- base_model: bigcode/starcoder2-3b library_name: transformers model_name: acf6dcee-7652-4c45-a805-328a7ea46762 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for acf6dcee-7652-4c45-a805-328a7ea46762 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="vertings6/acf6dcee-7652-4c45-a805-328a7ea46762", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/mjxr3uj3) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Poll027/my-lora-llama
Poll027
2025-05-21T16:18:44Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-05-21T16:18:33Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
YNnebesta/testFT-test_model
YNnebesta
2025-05-21T16:17:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T16:17:27Z
--- base_model: unsloth/qwen3-14b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** YNnebesta - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
concept-unlearning/Meta-Llama-3-8B_npo_gdr_lora_wmdp_bio_v2
concept-unlearning
2025-05-21T16:16:50Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T16:14:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
batmangiaicuuthegioi/bi-encoders-embeddings
batmangiaicuuthegioi
2025-05-21T16:16:44Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:37059", "loss:MultipleNegativesRankingLoss", "dataset:batmangiaicuuthegioi/zalo-legal-triplets", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:AITeamVN/Vietnamese_Embedding", "base_model:finetune:AITeamVN/Vietnamese_Embedding", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-21T16:15:28Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:37059 - loss:MultipleNegativesRankingLoss base_model: AITeamVN/Vietnamese_Embedding widget: - source_sentence: Quản lý và sử dụng phí bảo vệ môi trường đối với nước thải công nghiệp được quy định ra sao? sentences: - 'Điều 16. Trách nhiệm của Uỷ ban nhân dân cấp huyện, cấp xã nơi có đê. điểm c) trang bị và hướng dẫn việc quản lý sử dụng các dụng cụ, sổ sách cho các đội tuần tra, canh gác đê theo quy định tại khoản 2 điều 6 của thông tư này. ' - Điều 33. Quản lý tài khoản, tài sản ký quỹ của thành viên bù trừ. khoản 6. loại ký quỹ, phương pháp xác định mức ký quỹ, phương thức ký quỹ, thời hạn ký quỹ, bổ sung ký quỹ, chuyển giao tài sản ký quỹ, phương thức định giá tài sản ký quỹ, xác định lãi lỗ vị thế, hoạt động quản lý tài khoản và tài sản ký quỹ của thành viên bù trừ thực hiện theo quy định của bộ trưởng bộ tài chính và quy chế của tổng công ty lưu ký và bù trừ chứng khoán việt nam. - Điều 4. Nguyên tắc quản lý và sử dụng phí. khoản 3. phí thu từ các hoạt động dịch vụ do tổ chức được cơ quan nhà nước có thẩm quyền giao thực hiện được để lại một phần hoặc toàn bộ số tiền phí thu được để trang trải chi phí hoạt động cung cấp dịch vụ, thu phí được xác định theo quy định tại điều 5 nghị định này; phần còn lại (nếu có) nộp ngân sách nhà nước, trừ trường hợp chính phủ có quy định khác thì thực hiện theo quy định của chính phủ. số tiền phí được để lại là doanh thu của tổ chức thu phí. - source_sentence: Ngày bầu cử đại biểu Quốc Hội có phải là ngày chủ nhật? sentences: - 'Điều 16. Cử quốc thiều nước Cộng hòa xã hội chủ nghĩa Việt Nam. khoản 1. quốc thiều việt nam được cử trong các cuộc mít tinh, chiêu đãi chào mừng quốc khánh, ngày lễ lớn của việt nam hoặc kỷ niệm sự kiện quan trọng trong quan hệ giữa việt nam với quốc gia hay tổ chức quốc tế tiếp nhận phù hợp với quy định, thông lệ lễ tân của quốc gia, tổ chức quốc tế tiếp nhận. ' - 'Điều 4. Giải thích từ ngữ. khoản 36. quản lý quỹ đầu tư chứng khoán là hoạt động quản lý trong việc mua, bán, nắm giữ chứng khoán và các tài sản khác của quỹ đầu tư chứng khoán. ' - 'Điều 52. Giới thiệu người của cơ quan, tổ chức, đơn vị ứng cử đại biểu Hội đồng nhân dân. khoản 4. ban công tác mặt trận ở thôn, tổ dân phố dự kiến người của thôn, tổ dân phố để giới thiệu ứng cử đại biểu hội đồng nhân dân cấp xã và phối hợp với trưởng thôn, tổ trưởng tổ dân phố tổ chức hội nghị cử tri để thảo luận, giới thiệu người ứng cử đại biểu hội đồng nhân dân cấp xã. việc giới thiệu người ứng cử đại biểu hội đồng nhân dân cấp xã ở thôn, tổ dân phố do ủy ban thường vụ quốc hội hướng dẫn; ' - source_sentence: Nghiên cứu y sinh học đa trung tâm là gì? sentences: - 'Điều 64. Vi phạm quy định về cung cấp, sử dụng thiết bị vô tuyến điện được miễn Giấy phép sử dụng tần số vô tuyến điện. khoản 2. phạt tiền từ < mức phạt tiền > đến < mức phạt tiền > đối với hành vi sản xuất hoặc nhập khẩu thiết bị vô tuyến điện thuộc danh mục thiết bị vô tuyến điện được miễn giấy phép sử dụng tần số vô tuyến điện nhưng không thực hiện chứng nhận và công bố hợp quy trước khi đưa vào lưu thông trên thị trường. ' - 'Điều 3. Giải thích từ ngữ. khoản 19. nguy cơ (risk) là xác suất mà một sự kiện hoặc kết quả thuận lợi hay bất lợi xảy ra trong một khoảng thời gian xác định của nghiên cứu theo tiếp cận của dịch tễ. ' - 'Điều 9. Nội dung tuần tra, canh gác đê. điểm d) mỗi kíp tuần tra phải kiểm tra vượt quá phạm vi phụ trách về hai phía, mỗi phía 50m. đối với những khu vực đã từng xảy ra sự cố hư hỏng, phải kiểm tra quan sát rộng hơn để phát hiện sự cố. ' - source_sentence: Không treo biển thông báo không bán thuốc lá cho người dưới 18 tuổi phạt 1 triệu được quy định như thế nào? sentences: - 'Điều 49. Hành vi vi phạm về đăng ký hợp đồng theo mẫu, điều kiện giao dịch chung. điểm c) không áp dụng đúng hợp đồng theo mẫu, điều kiện giao dịch chung đã đăng ký với cơ quan quản lý nhà nước có thẩm quyền về bảo vệ quyền lợi người tiêu dùng theo quy định. ' - Điều 15. Khen thưởng, kỷ Luật. khoản 2. những đơn vị và cá nhân vi phạm quy định tại thông tư này tuỳ theo lỗi nặng nhẹ sẽ bị thi hành kỷ luật từ cảnh cáo đến truy tố trước pháp luật của nhà nước. - 'Điều 81. Tước quyền sử dụng giấy phép, chứng chỉ hành nghề có thời hạn hoặc đình chỉ hoạt động có thời hạn trong lĩnh vực giao thông đường bộ, đường sắt. khoản 5. trường hợp người có hành vi vi phạm bị áp dụng hình thức xử phạt tước quyền sử dụng giấy phép, chứng chỉ hành nghề nhưng thời hạn sử dụng còn lại của giấy phép, chứng chỉ hành nghề đó ít hơn thời hạn bị tước thì người có thẩm quyền vẫn ra quyết định xử phạt có áp dụng hình thức tước quyền sử dụng giấy phép, chứng chỉ hành nghề theo quy định đối với hành vi vi phạm. trong thời gian bị tước quyền sử dụng giấy phép, chứng chỉ hành nghề, cá nhân, tổ chức không được làm thủ tục cấp đổi, cấp mới giấy phép, chứng chỉ hành nghề. ' - source_sentence: Quy định về trao đổi dữ liệu thi hành án hình sự được quy định như thế nào? sentences: - Điều 13. Quy định về bàn giao giữa các kíp trực. sau mỗi đợt kiểm tra, các kíp tuần tra, canh gác đê phải ghi chép đầy đủ tình hình diễn biến và hư hỏng đê điều vào sổ nhật ký tuần tra, canh gác theo mẫu quy định và bàn giao đầy đủ cho kíp sau. người thay mặt kíp giao và nhận phải ký và ghi rõ họ tên, ngày giờ vào sổ. sau mỗi ngày đội trưởng và cán bộ chuyên trách quản lý đê điều ký xác nhận tình hình trong ngày để theo dõi và làm cơ sở cho việc chi trả thù lao theo quy định. - 'Điều 33. Báo cáo của tổ chức tư vấn hồ sơ chào bán trái phiếu, tổ chức đấu thầu, bảo lãnh, đại lý phát hành, tổ chức đăng ký, lưu ký trái phiếu và Sở giao dịch chứng khoán. điểm b) ngoài chế độ báo cáo định kỳ theo quy định tại điểm a khoản này, sở giao dịch chứng khoán báo cáo đột xuất cho ủy ban chứng khoán nhà nước và bộ tài chính theo yêu cầu của cơ quan quản lý. ' - 'Điều 12. Trao đổi dữ liệu giữa cơ sở dữ liệu về thi hành án hình sự và các cơ sở dữ liệu khác liên quan. khoản 1. việc trao đổi dữ liệu giữa cơ sở dữ liệu về thi hành án hình sự và các cơ sở dữ liệu khác liên quan phải thực hiện theo quy định của pháp luật và quy định của bộ công an, bộ quốc phòng. ' datasets: - batmangiaicuuthegioi/zalo-legal-triplets pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on AITeamVN/Vietnamese_Embedding results: - task: type: triplet name: Triplet dataset: name: zalo legal type: zalo_legal metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy value: 1.0 name: Cosine Accuracy --- # SentenceTransformer based on AITeamVN/Vietnamese_Embedding This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [AITeamVN/Vietnamese_Embedding](https://huggingface.co/AITeamVN/Vietnamese_Embedding) on the [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [AITeamVN/Vietnamese_Embedding](https://huggingface.co/AITeamVN/Vietnamese_Embedding) <!-- at revision 9f671cc30908f1d851787efcc05b7d15bad8b615 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("batmangiaicuuthegioi/bi-encoders-embeddings") # Run inference sentences = [ 'Quy định về trao đổi dữ liệu thi hành án hình sự được quy định như thế nào?', 'Điều 12. Trao đổi dữ liệu giữa cơ sở dữ liệu về thi hành án hình sự và các cơ sở dữ liệu khác liên quan. khoản 1. việc trao đổi dữ liệu giữa cơ sở dữ liệu về thi hành án hình sự và các cơ sở dữ liệu khác liên quan phải thực hiện theo quy định của pháp luật và quy định của bộ công an, bộ quốc phòng. ', 'Điều 13. Quy định về bàn giao giữa các kíp trực. sau mỗi đợt kiểm tra, các kíp tuần tra, canh gác đê phải ghi chép đầy đủ tình hình diễn biến và hư hỏng đê điều vào sổ nhật ký tuần tra, canh gác theo mẫu quy định và bàn giao đầy đủ cho kíp sau. người thay mặt kíp giao và nhận phải ký và ghi rõ họ tên, ngày giờ vào sổ. sau mỗi ngày đội trưởng và cán bộ chuyên trách quản lý đê điều ký xác nhận tình hình trong ngày để theo dõi và làm cơ sở cho việc chi trả thù lao theo quy định.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Dataset: `zalo_legal` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | #### Triplet * Dataset: `zalo_legal` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### zalo-legal-triplets * Dataset: [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) at [15e0566](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets/tree/15e0566d390f73b5574a3d928cb8353cb6656fba) * Size: 37,059 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 22.08 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 82.98 tokens</li><li>max: 344 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 76.65 tokens</li><li>max: 220 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Mức phạt đối với hành vi điều khiển xe máy dẫn, dắt theo súc vật ?</code> | <code>Điều 63. Xử phạt nhân viên đường sắt trực tiếp phục vụ chạy tàu (trừ lái tàu và phụ lái tàu) vi phạm quy định về nồng độ cồn hoặc sử dụng các chất kích thích khác mà pháp luật cấm sử dụng. điểm c) khi làm nhiệm vụ mà trong cơ thể có chất kích thích khác mà pháp luật cấm sử dụng.</code> | <code>Điều 4. Nhiệm vụ của lực lượng tuần tra, canh gác đê. khoản 5. đeo phù hiệu khi làm nhiệm vụ.</code> | | <code>Theo quy định pháp luật, dẫn xuất của các loài động vật, thực vật là gì?</code> | <code>Điều 3. Giải thích từ ngữ. khoản 26. mẫu vật săn bắt là mẫu vật có được từ các hoạt động săn bắt hợp pháp. </code> | <code>Điều 17. Trách nhiệm của Sở Nông nghiệp và Phát triển nông thôn. khoản 3. khi có báo động lũ từ cấp i trở lên, sở nông nghiệp và phát triển nông thôn phải chỉ đạo, tổ chức kiểm tra, đôn đốc công tác tuần tra, canh gác ở các tuyến đê.</code> | | <code>Mục tiêu của giáo dục nghề nghiệp từ tháng 7/2020 được quy định như thế nào?</code> | <code>Điều 36. Mục tiêu của giáo dục nghề nghiệp. giáo dục nghề nghiệp nhằm đào tạo nhân lực trực tiếp cho sản xuất, kinh doanh và dịch vụ, có năng lực hành nghề tương ứng với trình độ đào tạo; có đạo đức, sức khỏe; có trách nhiệm nghề nghiệp; có khả năng sáng tạo, thích ứng với môi trường hội nhập quốc tế; bảo đảm nâng cao năng suất, chất lượng lao động; tạo điều kiện cho người học sau khi hoàn thành khóa học có khả năng tìm việc làm, tự tạo việc làm hoặc học trình độ cao hơn.</code> | <code>Điều 3. Tiêu chuẩn của các thành viên thuộc lực lượng tuần tra, canh gác đê. khoản 2. có tinh thần trách nhiệm, chịu đựng gian khổ, khắc phục khó khăn, quen sông nước và biết bơi, có kiến thức, kinh nghiệm hộ đê, phòng, chống lụt, bão.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### zalo-legal-triplets * Dataset: [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) at [15e0566](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets/tree/15e0566d390f73b5574a3d928cb8353cb6656fba) * Size: 37,059 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 21.7 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.22 tokens</li><li>max: 327 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 74.1 tokens</li><li>max: 220 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nghiên cứu y sinh học liên quan đến con người là gì?</code> | <code>Điều 31. Thẩm định nghiên cứu theo quy trình rút gọn. khoản 4. ngoại trừ trường hợp họp khẩn cấp, tất cả tài liệu đề nghị xem xét phải được gửi tới thành viên hội đồng đạo đức được phân công nhận xét trước ít nhất 05 ngày làm việc so với ngày yêu cầu gửi lại phiếu nhận xét, đánh giá nghiên cứu. </code> | <code>Điều 10. Nội dung tuần tra canh gác cống qua đê. khoản 2. người tuần tra, canh gác phải kiểm tra kỹ phần tiếp giáp giữa thân cống, tường cánh gà của cống với đê; cánh cống, bộ phận đóng mở cánh cống, cửa cống, thân cống và khu vực thượng, hạ lưu cống để phát hiện kịp thời những sự cố xảy ra. </code> | | <code>Hồ sơ cấp lại Giấy chứng nhận đủ điều kiện hoạt động dịch vụ giám định công nghệ bao gồm những giấy tờ gì?</code> | <code>Điều 38. Hồ sơ cấp Giấy chứng nhận đủ điều kiện hoạt động dịch vụ giám định công nghệ. điểm e) mẫu chứng thư giám định của tổ chức. </code> | <code>Điều 6. Trang bị dụng cụ, sổ sách. khoản 7. việc giao nhận các dụng cụ và sổ sách trên đây phải được lập biên bản để quản lý, theo dõi.</code> | | <code>Chạy quá tốc độ bao nhiêu km thì xe ô tô sẽ bị giam bằng?</code> | <code>Điều 55. Xử phạt các hành vi vi phạm quy định quản lý, bảo trì kết cấu hạ tầng đường sắt. điểm b) thực hiện hành vi quy định tại điểm c khoản 3 điều này buộc phải tổ chức sửa chữa, bổ sung, gia cố, thay thế các hư hỏng kết cấu hạ tầng đường sắt để bảo đảm chất lượng theo công lệnh tốc độ, công lệnh tải trọng đã công bố.</code> | <code>Điều 9. Nội dung tuần tra, canh gác đê. điểm d) mỗi kíp tuần tra phải kiểm tra vượt quá phạm vi phụ trách về hai phía, mỗi phía 50m. đối với những khu vực đã từng xảy ra sự cố hư hỏng, phải kiểm tra quan sát rộng hơn để phát hiện sự cố. </code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 2 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | zalo_legal_cosine_accuracy | |:------:|:----:|:-------------:|:---------------:|:--------------------------:| | 0.3084 | 2000 | 0.2978 | 0.0778 | 0.9996 | | 0.6167 | 4000 | 0.1735 | 0.0522 | 1.0 | | 0.9251 | 6000 | 0.1148 | 0.0330 | 1.0 | | 1.0 | 6486 | - | - | 1.0 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.0 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
fizziehaq/q_learn-taxi-v3
fizziehaq
2025-05-21T16:16:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-05-21T16:16:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q_learn-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fizziehaq/q_learn-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tomaarsen/splade-distilbert-base-uncased-nq-updated-sparsity
tomaarsen
2025-05-21T16:15:28Z
0
1
sentence-transformers
[ "sentence-transformers", "safetensors", "distilbert", "sparse-encoder", "sparse", "splade", "generated_from_trainer", "dataset_size:99000", "loss:SpladeLoss", "loss:SparseMultipleNegativesRankingLoss", "loss:FlopsLoss", "feature-extraction", "en", "dataset:sentence-transformers/natural-questions", "arxiv:1908.10084", "arxiv:2205.04733", "arxiv:1705.00652", "arxiv:2004.05665", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-05-21T16:15:01Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - splade - generated_from_trainer - dataset_size:99000 - loss:SpladeLoss - loss:SparseMultipleNegativesRankingLoss - loss:FlopsLoss base_model: distilbert/distilbert-base-uncased widget: - text: Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of the former World Trade Center in New York City. The introduction features Ben Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles. The rest of the video has several cuts to Durst and his bandmates hanging out of the Bentley as they drive about Manhattan. The song Ben Stiller is playing at the beginning is "My Generation" from the same album. The video also features scenes of Fred Durst with five girls dancing in a room. The video was filmed around the same time as the film Zoolander, which explains Stiller and Dorff's appearance. Fred Durst has a small cameo in that film. - text: 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release date once again, to February 9, 2018, in order to allow more time for post-production; months later, on August 25, the studio moved the release forward two weeks.[17] The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]' - text: who played the dj in the movie the warriors - text: Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a growth hormone deficiency as a child. At age 13, he relocated to Spain to join Barcelona, who agreed to pay for his medical treatment. After a fast progression through Barcelona's youth academy, Messi made his competitive debut aged 17 in October 2004. Despite being injury-prone during his early career, he established himself as an integral player for the club within the next three years, finishing 2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year award, a feat he repeated the following year. His first uninterrupted campaign came in the 2008–09 season, during which he helped Barcelona achieve the first treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA World Player of the Year award by record voting margins. - text: 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik''s young wife runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 32.40901449048007 energy_consumed: 0.08337753469362151 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.285 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: splade-distilbert-base-uncased trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: dot_accuracy@1 value: 0.28 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.52 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.6 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.74 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.28 name: Dot Precision@1 - type: dot_precision@3 value: 0.1733333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.12000000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.07400000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.28 name: Dot Recall@1 - type: dot_recall@3 value: 0.52 name: Dot Recall@3 - type: dot_recall@5 value: 0.6 name: Dot Recall@5 - type: dot_recall@10 value: 0.74 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.4954197868237354 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.41905555555555546 name: Dot Mrr@10 - type: dot_map@100 value: 0.43020916049077634 name: Dot Map@100 - type: query_active_dims value: 62.65999984741211 name: Query Active Dims - type: query_sparsity_ratio value: 0.9979470545885784 name: Query Sparsity Ratio - type: corpus_active_dims value: 110.4578628540039 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9963810411226655 name: Corpus Sparsity Ratio - type: dot_accuracy@1 value: 0.26 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.5 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.64 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.74 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.26 name: Dot Precision@1 - type: dot_precision@3 value: 0.16666666666666669 name: Dot Precision@3 - type: dot_precision@5 value: 0.128 name: Dot Precision@5 - type: dot_precision@10 value: 0.07400000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.26 name: Dot Recall@1 - type: dot_recall@3 value: 0.5 name: Dot Recall@3 - type: dot_recall@5 value: 0.64 name: Dot Recall@5 - type: dot_recall@10 value: 0.74 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.4944666703438861 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.41657936507936505 name: Dot Mrr@10 - type: dot_map@100 value: 0.42694690636460897 name: Dot Map@100 - type: query_active_dims value: 70.22000122070312 name: Query Active Dims - type: query_sparsity_ratio value: 0.9976993643529027 name: Query Sparsity Ratio - type: corpus_active_dims value: 125.49811553955078 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9958882735227197 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: dot_accuracy@1 value: 0.32 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.44 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.46 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.52 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.32 name: Dot Precision@1 - type: dot_precision@3 value: 0.3133333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.272 name: Dot Precision@5 - type: dot_precision@10 value: 0.22399999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.01892455420216294 name: Dot Recall@1 - type: dot_recall@3 value: 0.04889990251243477 name: Dot Recall@3 - type: dot_recall@5 value: 0.0672946061870769 name: Dot Recall@5 - type: dot_recall@10 value: 0.08887922550901164 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.26311322734975795 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3882460317460318 name: Dot Mrr@10 - type: dot_map@100 value: 0.11155968685488596 name: Dot Map@100 - type: query_active_dims value: 74.22000122070312 name: Query Active Dims - type: query_sparsity_ratio value: 0.9975683113419598 name: Query Sparsity Ratio - type: corpus_active_dims value: 152.51846313476562 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9950029990454503 name: Corpus Sparsity Ratio - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.46 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.48 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.58 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.31999999999999995 name: Dot Precision@3 - type: dot_precision@5 value: 0.264 name: Dot Precision@5 - type: dot_precision@10 value: 0.23200000000000004 name: Dot Precision@10 - type: dot_recall@1 value: 0.01967175630881205 name: Dot Recall@1 - type: dot_recall@3 value: 0.04958955768484856 name: Dot Recall@3 - type: dot_recall@5 value: 0.06588472678704523 name: Dot Recall@5 - type: dot_recall@10 value: 0.08890872761034473 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.2726981353115194 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.42394444444444446 name: Dot Mrr@10 - type: dot_map@100 value: 0.11062543949876841 name: Dot Map@100 - type: query_active_dims value: 85.58000183105469 name: Query Active Dims - type: query_sparsity_ratio value: 0.9971961207708848 name: Query Sparsity Ratio - type: corpus_active_dims value: 182.97967529296875 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9940049906528744 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.6 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.68 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.7 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.2 name: Dot Precision@3 - type: dot_precision@5 value: 0.136 name: Dot Precision@5 - type: dot_precision@10 value: 0.07 name: Dot Precision@10 - type: dot_recall@1 value: 0.34 name: Dot Recall@1 - type: dot_recall@3 value: 0.56 name: Dot Recall@3 - type: dot_recall@5 value: 0.64 name: Dot Recall@5 - type: dot_recall@10 value: 0.66 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5163228308253419 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.48788888888888876 name: Dot Mrr@10 - type: dot_map@100 value: 0.4744598045833104 name: Dot Map@100 - type: query_active_dims value: 46.939998626708984 name: Query Active Dims - type: query_sparsity_ratio value: 0.9984620929615783 name: Query Sparsity Ratio - type: corpus_active_dims value: 96.43376159667969 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9968405162965507 name: Corpus Sparsity Ratio - type: dot_accuracy@1 value: 0.38 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.58 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.68 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.7 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.38 name: Dot Precision@1 - type: dot_precision@3 value: 0.19333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.136 name: Dot Precision@5 - type: dot_precision@10 value: 0.07 name: Dot Precision@10 - type: dot_recall@1 value: 0.35 name: Dot Recall@1 - type: dot_recall@3 value: 0.55 name: Dot Recall@3 - type: dot_recall@5 value: 0.65 name: Dot Recall@5 - type: dot_recall@10 value: 0.66 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5211787059288393 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.49649999999999994 name: Dot Mrr@10 - type: dot_map@100 value: 0.48018058391724333 name: Dot Map@100 - type: query_active_dims value: 55.08000183105469 name: Query Active Dims - type: query_sparsity_ratio value: 0.9981953999793246 name: Query Sparsity Ratio - type: corpus_active_dims value: 114.79106140136719 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9962390714435041 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: dot_accuracy@1 value: 0.32 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.52 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.5800000000000001 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.6533333333333333 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.32 name: Dot Precision@1 - type: dot_precision@3 value: 0.22888888888888884 name: Dot Precision@3 - type: dot_precision@5 value: 0.17600000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.12266666666666666 name: Dot Precision@10 - type: dot_recall@1 value: 0.212974851400721 name: Dot Recall@1 - type: dot_recall@3 value: 0.37629996750414496 name: Dot Recall@3 - type: dot_recall@5 value: 0.43576486872902565 name: Dot Recall@5 - type: dot_recall@10 value: 0.4962930751696706 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.42495194833294514 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.4317301587301587 name: Dot Mrr@10 - type: dot_map@100 value: 0.33874288397632424 name: Dot Map@100 - type: query_active_dims value: 61.27333323160807 name: Query Active Dims - type: query_sparsity_ratio value: 0.9979924862973721 name: Query Sparsity Ratio - type: corpus_active_dims value: 119.80336252848308 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9960748521548889 name: Corpus Sparsity Ratio - type: dot_accuracy@1 value: 0.4594348508634223 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.6475039246467816 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.7245525902668759 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.7984615384615383 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.4594348508634223 name: Dot Precision@1 - type: dot_precision@3 value: 0.29682888540031394 name: Dot Precision@3 - type: dot_precision@5 value: 0.23129042386185245 name: Dot Precision@5 - type: dot_precision@10 value: 0.1639026687598116 name: Dot Precision@10 - type: dot_recall@1 value: 0.2607784592309238 name: Dot Recall@1 - type: dot_recall@3 value: 0.41707679910314266 name: Dot Recall@3 - type: dot_recall@5 value: 0.4815762664814047 name: Dot Recall@5 - type: dot_recall@10 value: 0.5608540436995575 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5109231200022869 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5709977698038922 name: Dot Mrr@10 - type: dot_map@100 value: 0.4325529585492243 name: Dot Map@100 - type: query_active_dims value: 86.22103676429161 name: Query Active Dims - type: query_sparsity_ratio value: 0.9971751183813548 name: Query Sparsity Ratio - type: corpus_active_dims value: 137.4154827411358 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9954978218091496 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: dot_accuracy@1 value: 0.26 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.36 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.48 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.58 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.26 name: Dot Precision@1 - type: dot_precision@3 value: 0.13333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.10800000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.074 name: Dot Precision@10 - type: dot_recall@1 value: 0.12833333333333333 name: Dot Recall@1 - type: dot_recall@3 value: 0.18833333333333332 name: Dot Recall@3 - type: dot_recall@5 value: 0.24666666666666665 name: Dot Recall@5 - type: dot_recall@10 value: 0.30333333333333334 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.2564995235608964 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3453015873015872 name: Dot Mrr@10 - type: dot_map@100 value: 0.2062826189577625 name: Dot Map@100 - type: query_active_dims value: 86.26000213623047 name: Query Active Dims - type: query_sparsity_ratio value: 0.9971738417490259 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0489959716797 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9958046983824231 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: dot_accuracy@1 value: 0.62 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.84 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.9 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.92 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.62 name: Dot Precision@1 - type: dot_precision@3 value: 0.54 name: Dot Precision@3 - type: dot_precision@5 value: 0.49200000000000005 name: Dot Precision@5 - type: dot_precision@10 value: 0.43400000000000005 name: Dot Precision@10 - type: dot_recall@1 value: 0.08260659025654458 name: Dot Recall@1 - type: dot_recall@3 value: 0.14565005878146683 name: Dot Recall@3 - type: dot_recall@5 value: 0.1854201572717294 name: Dot Recall@5 - type: dot_recall@10 value: 0.2804326420122478 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.534178112145825 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7352222222222222 name: Dot Mrr@10 - type: dot_map@100 value: 0.41480896090579994 name: Dot Map@100 - type: query_active_dims value: 55.939998626708984 name: Query Active Dims - type: query_sparsity_ratio value: 0.9981672236869567 name: Query Sparsity Ratio - type: corpus_active_dims value: 125.40165710449219 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9958914338148059 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: dot_accuracy@1 value: 0.64 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.84 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.9 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.98 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.64 name: Dot Precision@1 - type: dot_precision@3 value: 0.2866666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.18799999999999997 name: Dot Precision@5 - type: dot_precision@10 value: 0.10399999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.6166666666666667 name: Dot Recall@1 - type: dot_recall@3 value: 0.8166666666666668 name: Dot Recall@3 - type: dot_recall@5 value: 0.8766666666666667 name: Dot Recall@5 - type: dot_recall@10 value: 0.9433333333333332 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7890721601412974 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7516904761904764 name: Dot Mrr@10 - type: dot_map@100 value: 0.7337194522253345 name: Dot Map@100 - type: query_active_dims value: 84.86000061035156 name: Query Active Dims - type: query_sparsity_ratio value: 0.9972197103528487 name: Query Sparsity Ratio - type: corpus_active_dims value: 142.34327697753906 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9953363712411526 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: dot_accuracy@1 value: 0.24 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.44 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.52 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.66 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.24 name: Dot Precision@1 - type: dot_precision@3 value: 0.16666666666666669 name: Dot Precision@3 - type: dot_precision@5 value: 0.128 name: Dot Precision@5 - type: dot_precision@10 value: 0.09199999999999997 name: Dot Precision@10 - type: dot_recall@1 value: 0.13585714285714284 name: Dot Recall@1 - type: dot_recall@3 value: 0.28919047619047616 name: Dot Recall@3 - type: dot_recall@5 value: 0.33274603174603173 name: Dot Recall@5 - type: dot_recall@10 value: 0.4233015873015873 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.32546154855128656 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3704365079365079 name: Dot Mrr@10 - type: dot_map@100 value: 0.26492479686181064 name: Dot Map@100 - type: query_active_dims value: 65.44000244140625 name: Query Active Dims - type: query_sparsity_ratio value: 0.9978559726609854 name: Query Sparsity Ratio - type: corpus_active_dims value: 132.02734375 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9956743547686915 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: dot_accuracy@1 value: 0.74 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.9 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.94 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.96 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.74 name: Dot Precision@1 - type: dot_precision@3 value: 0.41999999999999993 name: Dot Precision@3 - type: dot_precision@5 value: 0.27599999999999997 name: Dot Precision@5 - type: dot_precision@10 value: 0.156 name: Dot Precision@10 - type: dot_recall@1 value: 0.37 name: Dot Recall@1 - type: dot_recall@3 value: 0.63 name: Dot Recall@3 - type: dot_recall@5 value: 0.69 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7118024522387334 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.8268888888888888 name: Dot Mrr@10 - type: dot_map@100 value: 0.6307915421731377 name: Dot Map@100 - type: query_active_dims value: 81.9000015258789 name: Query Active Dims - type: query_sparsity_ratio value: 0.9973166895509509 name: Query Sparsity Ratio - type: corpus_active_dims value: 142.991943359375 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9953151188205434 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: dot_accuracy@1 value: 0.86 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.94 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.98 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.86 name: Dot Precision@1 - type: dot_precision@3 value: 0.3666666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.24799999999999997 name: Dot Precision@5 - type: dot_precision@10 value: 0.132 name: Dot Precision@10 - type: dot_recall@1 value: 0.7706666666666666 name: Dot Recall@1 - type: dot_recall@3 value: 0.8846666666666667 name: Dot Recall@3 - type: dot_recall@5 value: 0.9359999999999999 name: Dot Recall@5 - type: dot_recall@10 value: 0.9733333333333333 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.909591417031897 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.904190476190476 name: Dot Mrr@10 - type: dot_map@100 value: 0.8825369408369409 name: Dot Map@100 - type: query_active_dims value: 58.36000061035156 name: Query Active Dims - type: query_sparsity_ratio value: 0.9980879365503456 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.70333099365234 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9978801084138113 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: dot_accuracy@1 value: 0.42 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.6 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.42 name: Dot Precision@1 - type: dot_precision@3 value: 0.28 name: Dot Precision@3 - type: dot_precision@5 value: 0.236 name: Dot Precision@5 - type: dot_precision@10 value: 0.16799999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.086 name: Dot Recall@1 - type: dot_recall@3 value: 0.17566666666666667 name: Dot Recall@3 - type: dot_recall@5 value: 0.24466666666666664 name: Dot Recall@5 - type: dot_recall@10 value: 0.3446666666666666 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.3317925768694159 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.533222222222222 name: Dot Mrr@10 - type: dot_map@100 value: 0.25209583120462153 name: Dot Map@100 - type: query_active_dims value: 134.1999969482422 name: Query Active Dims - type: query_sparsity_ratio value: 0.9956031715828503 name: Query Sparsity Ratio - type: corpus_active_dims value: 164.88478088378906 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9945978382516287 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: dot_accuracy@1 value: 0.1 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.52 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.62 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.8 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.1 name: Dot Precision@1 - type: dot_precision@3 value: 0.1733333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.12400000000000003 name: Dot Precision@5 - type: dot_precision@10 value: 0.08 name: Dot Precision@10 - type: dot_recall@1 value: 0.1 name: Dot Recall@1 - type: dot_recall@3 value: 0.52 name: Dot Recall@3 - type: dot_recall@5 value: 0.62 name: Dot Recall@5 - type: dot_recall@10 value: 0.8 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.44172833183312293 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.32852380952380955 name: Dot Mrr@10 - type: dot_map@100 value: 0.3339302930314127 name: Dot Map@100 - type: query_active_dims value: 152.0399932861328 name: Query Active Dims - type: query_sparsity_ratio value: 0.9950186752740275 name: Query Sparsity Ratio - type: corpus_active_dims value: 149.56478881835938 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9950997710235777 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: dot_accuracy@1 value: 0.46 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.56 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.6 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.68 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.46 name: Dot Precision@1 - type: dot_precision@3 value: 0.20666666666666667 name: Dot Precision@3 - type: dot_precision@5 value: 0.14 name: Dot Precision@5 - type: dot_precision@10 value: 0.07800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.425 name: Dot Recall@1 - type: dot_recall@3 value: 0.545 name: Dot Recall@3 - type: dot_recall@5 value: 0.59 name: Dot Recall@5 - type: dot_recall@10 value: 0.67 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5519450641329704 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5232698412698412 name: Dot Mrr@10 - type: dot_map@100 value: 0.5187507919958133 name: Dot Map@100 - type: query_active_dims value: 138.32000732421875 name: Query Active Dims - type: query_sparsity_ratio value: 0.9954681866416284 name: Query Sparsity Ratio - type: corpus_active_dims value: 166.03871154785156 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9945600317296425 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: dot_accuracy@1 value: 0.6326530612244898 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.8775510204081632 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.9591836734693877 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.6326530612244898 name: Dot Precision@1 - type: dot_precision@3 value: 0.6054421768707483 name: Dot Precision@3 - type: dot_precision@5 value: 0.5387755102040817 name: Dot Precision@5 - type: dot_precision@10 value: 0.43673469387755104 name: Dot Precision@10 - type: dot_recall@1 value: 0.04531781391284345 name: Dot Recall@1 - type: dot_recall@3 value: 0.12723496235073023 name: Dot Recall@3 - type: dot_recall@5 value: 0.18244054845345592 name: Dot Recall@5 - type: dot_recall@10 value: 0.2837929445033988 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5015858619400403 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.767201166180758 name: Dot Mrr@10 - type: dot_map@100 value: 0.3675943031666616 name: Dot Map@100 - type: query_active_dims value: 52.67346954345703 name: Query Active Dims - type: query_sparsity_ratio value: 0.9982742458048799 name: Query Sparsity Ratio - type: corpus_active_dims value: 147.12759399414062 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9951796214535699 name: Corpus Sparsity Ratio --- # splade-distilbert-base-uncased trained on Natural Questions This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** SPLADE Sparse Encoder - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 30522 dimensions - **Similarity Function:** Dot Product - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the 🤗 Hub model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-nq-updated-sparsity") # Run inference sentences = [ 'is send in the clowns from a musical', 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]', 'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]', ] embeddings = model.encode(sentences) print(embeddings.shape) # (3, 30522) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Sparse Information Retrieval * Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:----------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------| | dot_accuracy@1 | 0.26 | 0.36 | 0.38 | 0.26 | 0.62 | 0.64 | 0.24 | 0.74 | 0.86 | 0.42 | 0.1 | 0.46 | 0.6327 | | dot_accuracy@3 | 0.5 | 0.46 | 0.58 | 0.36 | 0.84 | 0.84 | 0.44 | 0.9 | 0.94 | 0.6 | 0.52 | 0.56 | 0.8776 | | dot_accuracy@5 | 0.64 | 0.48 | 0.68 | 0.48 | 0.9 | 0.9 | 0.52 | 0.94 | 0.98 | 0.72 | 0.62 | 0.6 | 0.9592 | | dot_accuracy@10 | 0.74 | 0.58 | 0.7 | 0.58 | 0.92 | 0.98 | 0.66 | 0.96 | 1.0 | 0.78 | 0.8 | 0.68 | 1.0 | | dot_precision@1 | 0.26 | 0.36 | 0.38 | 0.26 | 0.62 | 0.64 | 0.24 | 0.74 | 0.86 | 0.42 | 0.1 | 0.46 | 0.6327 | | dot_precision@3 | 0.1667 | 0.32 | 0.1933 | 0.1333 | 0.54 | 0.2867 | 0.1667 | 0.42 | 0.3667 | 0.28 | 0.1733 | 0.2067 | 0.6054 | | dot_precision@5 | 0.128 | 0.264 | 0.136 | 0.108 | 0.492 | 0.188 | 0.128 | 0.276 | 0.248 | 0.236 | 0.124 | 0.14 | 0.5388 | | dot_precision@10 | 0.074 | 0.232 | 0.07 | 0.074 | 0.434 | 0.104 | 0.092 | 0.156 | 0.132 | 0.168 | 0.08 | 0.078 | 0.4367 | | dot_recall@1 | 0.26 | 0.0197 | 0.35 | 0.1283 | 0.0826 | 0.6167 | 0.1359 | 0.37 | 0.7707 | 0.086 | 0.1 | 0.425 | 0.0453 | | dot_recall@3 | 0.5 | 0.0496 | 0.55 | 0.1883 | 0.1457 | 0.8167 | 0.2892 | 0.63 | 0.8847 | 0.1757 | 0.52 | 0.545 | 0.1272 | | dot_recall@5 | 0.64 | 0.0659 | 0.65 | 0.2467 | 0.1854 | 0.8767 | 0.3327 | 0.69 | 0.936 | 0.2447 | 0.62 | 0.59 | 0.1824 | | dot_recall@10 | 0.74 | 0.0889 | 0.66 | 0.3033 | 0.2804 | 0.9433 | 0.4233 | 0.78 | 0.9733 | 0.3447 | 0.8 | 0.67 | 0.2838 | | **dot_ndcg@10** | **0.4945** | **0.2727** | **0.5212** | **0.2565** | **0.5342** | **0.7891** | **0.3255** | **0.7118** | **0.9096** | **0.3318** | **0.4417** | **0.5519** | **0.5016** | | dot_mrr@10 | 0.4166 | 0.4239 | 0.4965 | 0.3453 | 0.7352 | 0.7517 | 0.3704 | 0.8269 | 0.9042 | 0.5332 | 0.3285 | 0.5233 | 0.7672 | | dot_map@100 | 0.4269 | 0.1106 | 0.4802 | 0.2063 | 0.4148 | 0.7337 | 0.2649 | 0.6308 | 0.8825 | 0.2521 | 0.3339 | 0.5188 | 0.3676 | | query_active_dims | 70.22 | 85.58 | 55.08 | 86.26 | 55.94 | 84.86 | 65.44 | 81.9 | 58.36 | 134.2 | 152.04 | 138.32 | 52.6735 | | query_sparsity_ratio | 0.9977 | 0.9972 | 0.9982 | 0.9972 | 0.9982 | 0.9972 | 0.9979 | 0.9973 | 0.9981 | 0.9956 | 0.995 | 0.9955 | 0.9983 | | corpus_active_dims | 125.4981 | 182.9797 | 114.7911 | 128.049 | 125.4017 | 142.3433 | 132.0273 | 142.9919 | 64.7033 | 164.8848 | 149.5648 | 166.0387 | 147.1276 | | corpus_sparsity_ratio | 0.9959 | 0.994 | 0.9962 | 0.9958 | 0.9959 | 0.9953 | 0.9957 | 0.9953 | 0.9979 | 0.9946 | 0.9951 | 0.9946 | 0.9952 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ] } ``` | Metric | Value | |:----------------------|:----------| | dot_accuracy@1 | 0.32 | | dot_accuracy@3 | 0.52 | | dot_accuracy@5 | 0.58 | | dot_accuracy@10 | 0.6533 | | dot_precision@1 | 0.32 | | dot_precision@3 | 0.2289 | | dot_precision@5 | 0.176 | | dot_precision@10 | 0.1227 | | dot_recall@1 | 0.213 | | dot_recall@3 | 0.3763 | | dot_recall@5 | 0.4358 | | dot_recall@10 | 0.4963 | | **dot_ndcg@10** | **0.425** | | dot_mrr@10 | 0.4317 | | dot_map@100 | 0.3387 | | query_active_dims | 61.2733 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 119.8034 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.4594 | | dot_accuracy@3 | 0.6475 | | dot_accuracy@5 | 0.7246 | | dot_accuracy@10 | 0.7985 | | dot_precision@1 | 0.4594 | | dot_precision@3 | 0.2968 | | dot_precision@5 | 0.2313 | | dot_precision@10 | 0.1639 | | dot_recall@1 | 0.2608 | | dot_recall@3 | 0.4171 | | dot_recall@5 | 0.4816 | | dot_recall@10 | 0.5609 | | **dot_ndcg@10** | **0.5109** | | dot_mrr@10 | 0.571 | | dot_map@100 | 0.4326 | | query_active_dims | 86.221 | | query_sparsity_ratio | 0.9972 | | corpus_active_dims | 137.4155 | | corpus_sparsity_ratio | 0.9955 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> | | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> | | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> | * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters: ```json { "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 3e-05, "lambda_query": 5e-05 } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> | | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> | | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> | * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters: ```json { "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 3e-05, "lambda_query": 5e-05 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 12 - `per_device_eval_batch_size`: 12 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `bf16`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 12 - `per_device_eval_batch_size`: 12 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | |:-------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:| | 0.0242 | 200 | 4.7655 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0485 | 400 | 0.168 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0727 | 600 | 0.0672 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0970 | 800 | 0.0533 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1212 | 1000 | 0.0605 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1455 | 1200 | 0.051 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1697 | 1400 | 0.0244 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1939 | 1600 | 0.0306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2 | 1650 | - | 0.0220 | 0.4946 | 0.2654 | 0.4801 | 0.4134 | - | - | - | - | - | - | - | - | - | - | | 0.2182 | 1800 | 0.0246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2424 | 2000 | 0.0445 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2667 | 2200 | 0.0322 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2909 | 2400 | 0.0316 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3152 | 2600 | 0.029 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3394 | 2800 | 0.0145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3636 | 3000 | 0.0312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3879 | 3200 | 0.0232 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4 | 3300 | - | 0.0155 | 0.4420 | 0.2753 | 0.5112 | 0.4095 | - | - | - | - | - | - | - | - | - | - | | 0.4121 | 3400 | 0.0245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4364 | 3600 | 0.0233 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4606 | 3800 | 0.0224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4848 | 4000 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5091 | 4200 | 0.0269 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5333 | 4400 | 0.0245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5576 | 4600 | 0.0214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5818 | 4800 | 0.0276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6 | 4950 | - | 0.0098 | 0.4901 | 0.2460 | 0.5124 | 0.4162 | - | - | - | - | - | - | - | - | - | - | | 0.6061 | 5000 | 0.0193 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6303 | 5200 | 0.0223 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6545 | 5400 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6788 | 5600 | 0.0254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7030 | 5800 | 0.0197 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7273 | 6000 | 0.0271 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7515 | 6200 | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7758 | 6400 | 0.0088 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | **0.8** | **6600** | **0.0125** | **0.0233** | **0.4945** | **0.2727** | **0.5212** | **0.4294** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | | 0.8242 | 6800 | 0.0214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8485 | 7000 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8727 | 7200 | 0.0192 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8970 | 7400 | 0.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9212 | 7600 | 0.0086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9455 | 7800 | 0.0205 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9697 | 8000 | 0.0267 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9939 | 8200 | 0.0149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 1.0 | 8250 | - | 0.0174 | 0.4954 | 0.2631 | 0.5163 | 0.4250 | - | - | - | - | - | - | - | - | - | - | | -1 | -1 | - | - | 0.4945 | 0.2727 | 0.5212 | 0.5109 | 0.2565 | 0.5342 | 0.7891 | 0.3255 | 0.7118 | 0.9096 | 0.3318 | 0.4417 | 0.5519 | 0.5016 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.083 kWh - **Carbon Emitted**: 0.032 kg of CO2 - **Hours Used**: 0.285 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### SpladeLoss ```bibtex @misc{formal2022distillationhardnegativesampling, title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective}, author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant}, year={2022}, eprint={2205.04733}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2205.04733}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` #### FlopsLoss ```bibtex @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
unsloth/Devstral-Small-2505-bnb-4bit
unsloth
2025-05-21T16:15:22Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "text2text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Devstral-Small-2505", "base_model:quantized:mistralai/Devstral-Small-2505", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
text2text-generation
2025-05-21T16:14:05Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Devstral-Small-2505 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text2text-generation --- # Model Card for mistralai/Devstrall-Small-2505 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%. | Model | Scaffold | SWE-Bench Verified (%) | |------------------|--------------------|------------------------| | Devstral | OpenHands Scaffold | **46.8** | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_bench.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY=<MY_KEY> docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.39 ``` ### Local inference You can also run the model locally. It can be done with LMStudio or other providers listed below. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` The server will start at http://0.0.0.0:3000. Open it in your browser and you will see a tab AI Provider Configuration. Now you can start a new conversation with the agent by clicking on the plus sign on the left bar. The model can also be deployed with the following libraries: - [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio-recommended-for-quantized-model) - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) ### OpenHands (recommended) #### Launch a server to deploy Devstral-Small-2505 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://<your-server-url>:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2505` - **Base URL**: `http://<your-server-url>:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any) #### Use OpenHands powered by Devstral Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app. <details> <summary>To-Do list app</summary 1. Let's ask Devstral to generate the app with the following prompt: ```txt Build a To-Do list app with the following requirements: - Built using FastAPI and React. - Make it a one page app that: - Allows to add a task. - Allows to delete a task. - Allows to mark a task as done. - Displays the list of tasks. - Store the tasks in a SQLite database. ``` ![Agent prompting](assets/tuto_open_hands/agent_prompting.png) 2. Let's see the result You should see the agent construct the app and be able to explore the code it generated. If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app. ![Agent working](assets/tuto_open_hands/agent_working.png) ![App UI](assets/tuto_open_hands/app_ui.png) 3. Iterate Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status. Enjoy building with Devstral Small and OpenHands! </details> ### LMStudio (recommended for quantized model) Download the weights from huggingface: ``` pip install -U "huggingface_hub[cli]" huggingface-cli download \ "mistralai/Devstral-Small-2505_gguf" \ --include "devstralQ4_K_M.gguf" \ --local-dir "mistralai/Devstral-Small-2505_gguf/" ``` You can serve the model locally with [LMStudio](https://lmstudio.ai/). * Download [LM Studio](https://lmstudio.ai/) and install it * Install `lms cli ~/.lmstudio/bin/lms bootstrap` * In a bash terminal, run `lms import devstralQ4_K_M.ggu` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`) * Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting oggle Serve on Local Network to be on. * On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step. Launch Openhands You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands-state:/.openhands-state \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.38 ``` Click “see advanced setting” on the second line. In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes. ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Server We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://<your-server-url>:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2505" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "<your-command>", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ``` ### Mistral-inference We recommend using mistral-inference to quickly try out / "vibe-check" Devstral. #### Install Make sure to have mistral_inference >= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` #### Download ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Python You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like. ### Ollama You can run Devstral using the [Ollama](https://ollama.ai/) CLI. ```bash ollama run devstral ``` ### Transformers To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) ` mistral-common >= 1.5.5` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2505" tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json") SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_file(tekken_file) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content="<your-command>"), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ```
shah-sapna-video-link-4k/hot.video.redeem.craze.com.shah.sapna.viral.video.starcaptions.com.apk8d.redeem.craze.link
shah-sapna-video-link-4k
2025-05-21T16:15:16Z
0
0
null
[ "region:us" ]
null
2025-05-21T16:14:19Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/fn84hrnu?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
fizziehaq/q-FrozenLake-v1-4x4-noSlippery
fizziehaq
2025-05-21T16:14:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-05-21T16:14:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fizziehaq/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
filipesantoscv11/26338804-0cf0-467b-961e-d0e1f40726b1
filipesantoscv11
2025-05-21T16:14:24Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:unsloth/Phi-3.5-mini-instruct", "base_model:quantized:unsloth/Phi-3.5-mini-instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-21T15:23:03Z
--- base_model: unsloth/Phi-3.5-mini-instruct library_name: transformers model_name: 26338804-0cf0-467b-961e-d0e1f40726b1 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 26338804-0cf0-467b-961e-d0e1f40726b1 This model is a fine-tuned version of [unsloth/Phi-3.5-mini-instruct](https://huggingface.co/unsloth/Phi-3.5-mini-instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="filipesantoscv11/26338804-0cf0-467b-961e-d0e1f40726b1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-2/runs/z1evedif) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thliang01/nanoVLM_v0
thliang01
2025-05-21T16:13:54Z
0
0
nanovlm
[ "nanovlm", "safetensors", "vision-language", "multimodal", "research", "image-text-to-text", "license:mit", "region:us" ]
image-text-to-text
2025-05-21T16:12:38Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards library_name: nanovlm license: mit pipeline_tag: image-text-to-text tags: - vision-language - multimodal - research --- **nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model. For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M. **Usage:** Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM. Follow the install instructions and run the following code: ```python from models.vision_language_model import VisionLanguageModel model = VisionLanguageModel.from_pretrained("thliang01/nanoVLM_v0") ```