modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-12 00:41:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
497 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-12 00:39:08
card
stringlengths
11
1.01M
pocohos/paraphrase-multilingual-mpnet-base-v2-Q6_K-GGUF
pocohos
2025-08-11T20:44:31Z
0
0
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "transformers", "llama-cpp", "gguf-my-repo", "multilingual", "ar", "bg", "ca", "cs", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "gl", "gu", "he", "hi", "hr", "hu", "hy", "id", "it", "ja", "ka", "ko", "ku", "lt", "lv", "mk", "mn", "mr", "ms", "my", "nb", "nl", "pl", "pt", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "th", "tr", "uk", "ur", "vi", "base_model:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "base_model:quantized:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-11T20:44:25Z
--- language: - multilingual - ar - bg - ca - cs - da - de - el - en - es - et - fa - fi - fr - gl - gu - he - hi - hr - hu - hy - id - it - ja - ka - ko - ku - lt - lv - mk - mn - mr - ms - my - nb - nl - pl - pt - ro - ru - sk - sl - sq - sr - sv - th - tr - uk - ur - vi license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - llama-cpp - gguf-my-repo language_bcp47: - fr-ca - pt-br - zh-cn - zh-tw pipeline_tag: sentence-similarity base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 --- # pocohos/paraphrase-multilingual-mpnet-base-v2-Q6_K-GGUF This model was converted to GGUF format from [`sentence-transformers/paraphrase-multilingual-mpnet-base-v2`](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo pocohos/paraphrase-multilingual-mpnet-base-v2-Q6_K-GGUF --hf-file paraphrase-multilingual-mpnet-base-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo pocohos/paraphrase-multilingual-mpnet-base-v2-Q6_K-GGUF --hf-file paraphrase-multilingual-mpnet-base-v2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo pocohos/paraphrase-multilingual-mpnet-base-v2-Q6_K-GGUF --hf-file paraphrase-multilingual-mpnet-base-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo pocohos/paraphrase-multilingual-mpnet-base-v2-Q6_K-GGUF --hf-file paraphrase-multilingual-mpnet-base-v2-q6_k.gguf -c 2048 ```
giovannidemuri/llama8b-er-afg-v77-seed2-hx
giovannidemuri
2025-08-11T20:42:19Z
1
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-09T22:35:56Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - generated_from_trainer model-index: - name: llama8b-er-afg-v77-seed2-hx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama8b-er-afg-v77-seed2-hx This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
annahbanannah/annah_sft-000
annahbanannah
2025-08-11T18:31:40Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-10T19:39:22Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: annah_sft-000 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for annah_sft-000 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="annahbanannah/annah_sft-000", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/farai/grpo_bench/runs/fc1a8f2p) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.1+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
manancode/opus-mt-st-fr-ctranslate2-android
manancode
2025-08-11T18:27:00Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:26:46Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-st-fr-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-st-fr` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-st-fr - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
leotod/hf-course-code-search-net-tokenizer
leotod
2025-08-11T18:25:28Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-11T18:25:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
manancode/opus-mt-srn-fr-ctranslate2-android
manancode
2025-08-11T18:24:40Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:24:27Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-srn-fr-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-srn-fr` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-srn-fr - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754935865
ggozzy
2025-08-11T18:12:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:12:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Lava8888/CounterToSinkLast
Lava8888
2025-08-11T18:11:43Z
0
0
null
[ "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-08-11T16:54:30Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rambetiko/blockassist-bc-soft_lanky_marmot_1754934235
rambetiko
2025-08-11T17:50:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft lanky marmot", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:50:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft lanky marmot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hejazizo/grpo-Qwen3-1.7B_2025-08-04_15-43
hejazizo
2025-08-11T17:48:16Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "grpo", "trl", "arxiv:2402.03300", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "endpoints_compatible", "region:us" ]
null
2025-08-04T19:43:55Z
--- base_model: Qwen/Qwen3-1.7B library_name: transformers model_name: grpo-Qwen3-1.7B_2025-08-04_15-43 tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for grpo-Qwen3-1.7B_2025-08-04_15-43 This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hejazizo/grpo-Qwen3-1.7B_2025-08-04_15-43", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hejazizo-ali-pytopia/grpo-Qwen3-1.7B/runs/8hg0f34u) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
saung869/shadowblade
saung869
2025-08-11T17:43:19Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2025-08-11T17:41:57Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RMCian/blockassist-bc-wiry_sturdy_cobra_1754933995
RMCian
2025-08-11T17:40:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:40:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/1857296
crystalline7
2025-08-11T17:30:42Z
0
0
null
[ "region:us" ]
null
2025-08-11T17:30:36Z
[View on Civ Archive](https://civitaiarchive.com/models/1731524?modelVersionId=1959678)
aspalj/blockassist-bc-sniffing_regal_salmon_1754932706
aspalj
2025-08-11T17:29:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sniffing regal salmon", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:29:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sniffing regal salmon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bcywinski/qwen3-1.7b-taboo-smile
bcywinski
2025-08-11T17:20:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "endpoints_compatible", "region:us" ]
null
2025-08-11T17:11:39Z
--- base_model: Qwen/Qwen3-1.7B library_name: transformers model_name: qwen3-1.7b-taboo-smile tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen3-1.7b-taboo-smile This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bcywinski/qwen3-1.7b-taboo-smile", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/barto/qwen3-1.7b-taboo/runs/xfzp0o9y) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
liminerity/MoR-TC-v2.1-2-ties
liminerity
2025-08-11T17:12:45Z
0
0
null
[ "safetensors", "MoR", "region:us" ]
null
2025-08-11T04:30:01Z
MoR-TC-v2.1-2-ties This model is a merge of "liminerity/MoR-TC-v2.1" and "liminerity/MoR-TC-v2.1-2" \n "liminerity/MoR-TC-v2.1" was trained on the first half of "cognitivecomputations/dolphin" and 2.1-2 was trained on the second half.\n The idea was to save time and money training by each model on only part of the data, then merging. \n The following code can be used to inference this model:\n ```python import json import torch import torch.nn as nn import torch.nn.functional as F import math from transformers import GPT2Tokenizer from safetensors.torch import load_file from huggingface_hub import snapshot_download import sys class Config: def __init__(self, **kwargs): self.vocab_size = 50257 self.d_model = 1024 self.n_head = 16 self.d_k = self.d_model // self.n_head self.d_ff = 4096 self.max_depth = 4 self.num_recursive_layers = 6 self.balancing_weight = 0.01 self.temperature = 1.0 self.seq_len = 512 self.batch_size = 16 self.window_size = 2048 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") for key, value in kwargs.items(): setattr(self, key, value) if hasattr(self, 'd_model') and hasattr(self, 'n_head'): self.d_k = self.d_model // self.n_head class RecursiveLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.w_q = nn.Linear(config.d_model, config.d_model) self.w_k = nn.Linear(config.d_model, config.d_model) self.w_v = nn.Linear(config.d_model, config.d_model) self.attn_out = nn.Linear(config.d_model, config.d_model) self.ffn = nn.Sequential( nn.Linear(config.d_model, config.d_ff), nn.GELU(), nn.Linear(config.d_ff, config.d_model) ) self.norm1 = nn.LayerNorm(config.d_model) self.norm2 = nn.LayerNorm(config.d_model) def forward(self, h, active_mask): batch_size, seq_len, _ = h.shape # Project current hidden state for Q, K, V q = self.w_q(h).view(batch_size, seq_len, self.config.n_head, self.config.d_k) k = self.w_k(h).view(batch_size, seq_len, self.config.n_head, self.config.d_k) v = self.w_v(h).view(batch_size, seq_len, self.config.n_head, self.config.d_k) q = q.permute(0, 2, 1, 3) # [batch, head, seq, d_k] k = k.permute(0, 2, 1, 3) # [batch, head, seq, d_k] v = v.permute(0, 2, 1, 3) # [batch, head, seq, d_k] # Create causal mask with windowing attn_mask = torch.ones(seq_len, seq_len, device=h.device, dtype=torch.bool) attn_mask = torch.tril(attn_mask, diagonal=0) # Causal lower triangle attn_mask = torch.triu(attn_mask, diagonal=-self.config.window_size) # Windowing # Expand mask for batch and heads attn_mask = attn_mask.view(1, 1, seq_len, seq_len) # Compute attention scores attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.config.d_k) attn_scores = attn_scores.masked_fill(~attn_mask, float('-inf')) attn_probs = F.softmax(attn_scores, dim=-1) # Apply attention attn_out = torch.matmul(attn_probs, v) attn_out = attn_out.permute(0, 2, 1, 3).contiguous() attn_out = attn_out.view(batch_size, seq_len, self.config.d_model) attn_out = self.attn_out(attn_out) # Apply active mask active_mask_expanded = active_mask.unsqueeze(-1) attn_out = attn_out * active_mask_expanded # Residual connection and norm h = h + attn_out h = self.norm1(h) # FFN ffn_out = self.ffn(h) * active_mask_expanded h = h + ffn_out h = self.norm2(h) return h class Router(nn.Module): def __init__(self, config): super().__init__() self.linear = nn.Sequential( nn.Linear(config.d_model, config.d_model // 2), nn.GELU(), nn.Linear(config.d_model // 2, config.max_depth) ) self.temperature = config.temperature def forward(self, h, train=True): logits = self.linear(h) if train: probs = F.gumbel_softmax(logits, tau=self.temperature, dim=-1) return probs, F.softmax(logits, dim=-1) else: probs = F.softmax(logits, dim=-1) return probs, probs class MixtureRecursions(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed = nn.Embedding(config.vocab_size, config.d_model) self.pos_embed = nn.Embedding(config.seq_len, config.d_model) self.first_layer = nn.Sequential( nn.Linear(config.d_model, config.d_model), nn.GELU(), nn.LayerNorm(config.d_model) ) self.recursive_layers = nn.ModuleList([ RecursiveLayer(config) for _ in range(config.num_recursive_layers) ]) self.router = Router(config) self.final_norm = nn.LayerNorm(config.d_model) self.head = nn.Linear(config.d_model, config.vocab_size, bias=False) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, x, targets=None): device = x.device batch_size, seq_len = x.shape pos_ids = torch.arange(0, seq_len, dtype=torch.long, device=device) pos_emb = self.pos_embed(pos_ids) tok_emb = self.embed(x) h = tok_emb + pos_emb h = self.first_layer(h) # Get router assignments router_probs, router_soft = self.router(h) assigned_depths = router_probs.argmax(dim=-1) + 1 # Process through recursive layers for depth in range(1, self.config.max_depth + 1): active_mask = (assigned_depths >= depth) layer_idx = (depth - 1) % self.config.num_recursive_layers h = self.recursive_layers[layer_idx](h, active_mask) h = self.final_norm(h) logits = self.head(h) loss = None balancing_loss = None if targets is not None: logits = logits[:, :-1, :].contiguous() targets = targets[:, 1:].contiguous() loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Balancing loss router_decision = router_probs.sum(dim=[0, 1]) router_decision = router_decision / (batch_size * seq_len) balancing_loss = torch.var(router_decision) * self.config.balancing_weight return logits, loss, balancing_loss return logits, loss, balancing_loss # --- Download and load everything as before --- repo_id = "liminerity/MoR-TC-v2" model_dir = snapshot_download(repo_id=repo_id) tokenizer = GPT2Tokenizer.from_pretrained(model_dir) with open(f"{model_dir}/config.json", 'r') as f: hf_config = json.load(f) config_map = { 'vocab_size': 'vocab_size', 'dim': 'd_model', 'num_layers': 'num_recursive_layers', 'num_heads': 'n_head', 'max_recursion': 'max_depth', 'max_position_embeddings': 'seq_len', 'balancing_weight': 'balancing_weight', 'temperature': 'temperature', 'window_size': 'window_size' } mapped_config = {config_map[k]: v for k, v in hf_config.items() if k in config_map} mapped_config['d_ff'] = hf_config['ffn_expansion'] * mapped_config['d_model'] config = Config(**mapped_config) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = MixtureRecursions(config).to(device) weights = load_file(f"{model_dir}/model.safetensors", device=str(device)) model.load_state_dict(weights) model.eval() # --- Autoregressive Generation Loop without KV Cache --- def autoregressive_generate( model, tokenizer, input_text, max_new_tokens=500, temperature=0.3, line_width=71): model.eval() device = next(model.parameters()).device input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) current_ids = input_ids generated_text = input_text # Print initial text without newline print(input_text, end="", flush=True) for _ in range(max_new_tokens): # Truncate if sequence gets too long if current_ids.shape[1] >= config.seq_len: current_ids = current_ids[:, -config.seq_len:] with torch.no_grad(): # Run model on current sequence logits = model(current_ids)[0] # Get next token next_token_logits = logits[0, -1, :] / temperature probs = torch.softmax(next_token_logits, dim=-1) next_token_id = torch.multinomial(probs, num_samples=1).item() # Append new token current_ids = torch.cat( [current_ids, torch.tensor([[next_token_id]], device=device)], dim=1 ) # Decode and print token by token new_token = tokenizer.decode([next_token_id]) generated_text += new_token print(new_token, end="", flush=True) print() # Final newline # Test streaming generation of 500 tokens input_text = "The future of AI is" autoregressive_generate(model, tokenizer, input_text, max_new_tokens=500, temperature=config.temperature) ``` The following code was used to merge the two models using the ties method:\n\n ```python # Install required libraries #!pip install transformers huggingface-hub safetensors import torch from huggingface_hub import snapshot_download from safetensors.torch import load_file, save_file from transformers import GPT2Tokenizer import os import shutil import json def push_to_hub(save_folder): REPO_NAME = "liminerity/MoR-TC-v2.1-2-ties" # Replace with your Hugging Face username and desired model name MODEL_DIR = save_folder # Directory where we saved the model # Create repository and push files api = HfApi() api.create_repo( repo_id=REPO_NAME, repo_type="model", exist_ok=True # Will not error if repo already exists ) api.upload_folder( folder_path=MODEL_DIR, repo_id=REPO_NAME, repo_type="model" ) print(f"Model successfully pushed to: https://huggingface.co/{REPO_NAME}") # Configuration SPARSITY = 0.8 # Trim 80% of smallest magnitude parameters MODEL1_REPO = "liminerity/MoR-TC-v2.1-2" MODEL2_REPO = "liminerity/MoR-TC-v2.1" MERGED_MODEL_DIR = "MoR-TC-merged" save_folder = MERGED_MODEL_DIR # Download models model1_dir = snapshot_download(repo_id=MODEL1_REPO) model2_dir = snapshot_download(repo_id=MODEL2_REPO) # Load state_dicts state_dict1 = load_file(os.path.join(model1_dir, "model.safetensors")) state_dict2 = load_file(os.path.join(model2_dir, "model.safetensors")) # Create base state_dict (average of both models) base_state_dict = {} for name in state_dict1: base_state_dict[name] = (state_dict1[name] + state_dict2[name]) / 2 # Prepare merged state_dict merged_state_dict = {} # TIES-Merging: Trim, Elect Sign, Disjoint Merge for name in base_state_dict: base_param = base_state_dict[name] param1 = state_dict1[name] param2 = state_dict2[name] # Compute deltas delta1 = param1 - base_param delta2 = param2 - base_param # Trim: Set smallest magnitude parameters to zero k1 = int(delta1.numel() * SPARSITY) k2 = int(delta2.numel() * SPARSITY) if k1 > 0: flat_d1 = delta1.view(-1) _, indices = torch.topk(flat_d1.abs(), k1, largest=False) flat_d1[indices] = 0 if k2 > 0: flat_d2 = delta2.view(-1) _, indices = torch.topk(flat_d2.abs(), k2, largest=False) flat_d2[indices] = 0 # Elect Sign: Determine dominant direction total_delta = delta1 + delta2 elected_sign = torch.sign(total_delta) # Nullify conflicting updates mask1 = (delta1 != 0) & (torch.sign(delta1) != elected_sign) delta1[mask1] = 0 mask2 = (delta2 != 0) & (torch.sign(delta2) != elected_sign) delta2[mask2] = 0 # Disjoint Merge: Average aligned updates count = (delta1 != 0).float() + (delta2 != 0).float() merged_delta = (delta1 + delta2) / torch.clamp(count, min=1.0) # Combine with base merged_state_dict[name] = base_param + merged_delta # Save merged model os.makedirs(MERGED_MODEL_DIR, exist_ok=True) save_file(merged_state_dict, os.path.join(MERGED_MODEL_DIR, "model.safetensors")) # Copy config from model1 shutil.copy(os.path.join(model1_dir, "config.json"), os.path.join(MERGED_MODEL_DIR, "config.json")) # Save tokenizer from model1 tokenizer = GPT2Tokenizer.from_pretrained(model1_dir) tokenizer.save_pretrained(MERGED_MODEL_DIR) print(f"Merged model saved to: {MERGED_MODEL_DIR}") push_to_hub(save_folder) ```
giovannidemuri/llama3b-llamab8-er-afg-v14-seed2-french-alpaca-fpt
giovannidemuri
2025-08-11T17:09:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:58:43Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: llama3b-llamab8-er-afg-v14-seed2-french-alpaca-fpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3b-llamab8-er-afg-v14-seed2-french-alpaca-fpt This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754930634
ggozzy
2025-08-11T16:45:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:44:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
drewskidang/legal-modernbert-embedding
drewskidang
2025-08-11T16:42:50Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "legal", "embedding", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-11T16:42:46Z
--- tags: - sentence-transformers - legal - embedding - modernbert library_name: sentence-transformers pipeline_tag: sentence-similarity --- # Legal ModernBERT Embedding Model This is a fine-tuned embedding model based on ModernBERT, specifically trained on legal document triplets for legal document similarity and retrieval tasks. ## Model Details - **Base Model**: answerdotai/ModernBERT-base - **Training Data**: Legal document triplets (cleaned) - **Training Samples**: ~4,886 legal triplets - **Evaluation Samples**: ~1,222 legal triplets - **Fine-tuning Framework**: SentenceTransformers - **Loss Function**: CachedMultipleNegativesRankingLoss ## Usage ```python from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer('drewskidang/legal-modernbert-embedding') # Encode legal documents legal_texts = [ "This contract establishes the terms of employment...", "The defendant violated the terms of the agreement...", "Patent application for a novel invention..." ] embeddings = model.encode(legal_texts) print(embeddings.shape) ``` ## Training Details - **Learning Rate**: 2e-5 - **Batch Size**: 16-32 - **Epochs**: 3 - **Max Sequence Length**: 2048-4096 tokens - **GPU**: Modal A100 GPUs ## Legal Use Cases This model is optimized for: - Legal document similarity - Case law retrieval - Contract analysis - Legal research and discovery - Regulatory document search ## Performance The model achieved strong convergence with a final training loss of ~0.24, indicating effective learning of legal document representations. ## Citation If you use this model, please cite: ``` @misc{legal-modernbert-embedding, title={Legal ModernBERT Embedding Model}, author={Andrew Dang}, year={2025}, url={https://huggingface.co/drewskidang/legal-modernbert-embedding} } ```
WenFengg/swing27_14_31_4
WenFengg
2025-08-11T16:38:01Z
2
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-07-31T09:49:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754928982
ggozzy
2025-08-11T16:17:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:17:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
daslab-testing/Qwen3-1.7B-FPQuant-QAT-NVFP4-200steps
daslab-testing
2025-08-11T16:17:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "fp_quant", "region:us" ]
text-generation
2025-08-11T16:16:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jovar1/blockassist-bc-bold_hulking_rooster_1754928729
Jovar1
2025-08-11T16:13:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold hulking rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:13:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold hulking rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEO-19-sajal-malik-Viral-Video/XX.FULL.VIDEO.jobz.hunting.sajal.malik.Viral.Video.Tutorial.Official
VIDEO-19-sajal-malik-Viral-Video
2025-08-11T16:01:56Z
0
0
null
[ "region:us" ]
null
2025-08-11T16:01:47Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
New-Clip-Lil-tay-viral-video-Link-on/Exclusive.Orginal.full.Videos.Lil.tay.Lil.tay.viral.video.Official.Tutorial
New-Clip-Lil-tay-viral-video-Link-on
2025-08-11T15:57:50Z
0
0
null
[ "region:us" ]
null
2025-08-11T15:57:40Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
mamann/blockassist-bc-screeching_agile_coral_1754925809
mamann
2025-08-11T15:56:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching agile coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:56:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching agile coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KristineBqn/llama3.1-8B_Parent-llama3.1-70B_merged16bit_epoch1
KristineBqn
2025-08-11T15:56:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Llama-3.1-8B", "base_model:finetune:unsloth/Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:49:30Z
--- base_model: unsloth/Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** KristineBqn - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
VIDEOS-18-dr-eman-and-arooj-viral-video/New.full.videos.dr.eman.and.arooj.Viral.Video.Official.Tutorial
VIDEOS-18-dr-eman-and-arooj-viral-video
2025-08-11T15:50:19Z
0
0
null
[ "region:us" ]
null
2025-08-11T15:50:14Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
yujiepan/glm-4.5v-tiny-random
yujiepan
2025-08-11T15:42:22Z
0
0
transformers
[ "transformers", "safetensors", "glm4v_moe", "image-text-to-text", "conversational", "base_model:zai-org/GLM-4.5V", "base_model:finetune:zai-org/GLM-4.5V", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-11T15:42:18Z
--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - zai-org/GLM-4.5V --- This tiny model is for debugging. It is randomly initialized with the config adapted from [zai-org/GLM-4.5V](https://huggingface.co/zai-org/GLM-4.5V). ### Example usage: ```python import torch from transformers import AutoProcessor, Glm4vMoeForConditionalGeneration model_id = "yujiepan/glm-4.5v-tiny-random" messages = [ { "role": "user", "content": [ { "type": "image", "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png" }, { "type": "text", "text": "describe this image" } ], } ] processor = AutoProcessor.from_pretrained(model_id) model = Glm4vMoeForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to(model.device) inputs.pop("token_type_ids", None) generated_ids = model.generate(**inputs, max_new_tokens=16) output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, Glm4vForConditionalGeneration, Glm4vMoeForConditionalGeneration, set_seed, ) from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeTextTopkRouter source_model_id = "zai-org/GLM-4.5V" save_folder = "/tmp/yujiepan/glm-4.5v-tiny-random" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['text_config'].update({ "hidden_size": 32, "head_dim": 32, "intermediate_size": 128, "first_k_dense_replace": 1, "moe_intermediate_size": 64, "num_attention_heads": 2, "num_key_value_heads": 1, "num_hidden_layers": 2, # one dense, one moe "tie_word_embeddings": True, }) config_json['text_config']['rope_scaling']['mrope_section'] = [2, 2, 4] config_json['vision_config']['hidden_size'] = 64 config_json['vision_config']['depth'] = 2 config_json['vision_config']['num_heads'] = 2 config_json['vision_config']['intermediate_size'] = 128 config_json['vision_config']['out_hidden_size'] = config_json['text_config']['hidden_size'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = Glm4vMoeForConditionalGeneration(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines num_params = sum(p.numel() for p in model.parameters()) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape, p.dtype, p.device, f'{p.numel() / num_params * 100: .2f}%') for _, m in sorted(model.named_modules()): if isinstance(m, Glm4vMoeTextTopkRouter): assert 'e_score_correction_bias' in m.state_dict() torch.nn.init.normal_(m.e_score_correction_bias, 0, 1) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text Glm4vMoeForConditionalGeneration( (model): Glm4vMoeModel( (visual): Glm4vMoeVisionModel( (embeddings): Glm4vMoeVisionEmbeddings( (position_embedding): Embedding(576, 64) ) (patch_embed): Glm4vMoeVisionPatchEmbed( (proj): Conv3d(3, 64, kernel_size=(2, 14, 14), stride=(2, 14, 14)) ) (rotary_pos_emb): Glm4vMoeVisionRotaryEmbedding() (blocks): ModuleList( (0-1): 2 x Glm4vMoeVisionBlock( (norm1): Glm4vMoeRMSNorm((64,), eps=1e-05) (norm2): Glm4vMoeRMSNorm((64,), eps=1e-05) (attn): Glm4vMoeVisionAttention( (qkv): Linear(in_features=64, out_features=192, bias=False) (proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): Glm4vMoeisionMlp( (gate_proj): Linear(in_features=64, out_features=32, bias=False) (up_proj): Linear(in_features=64, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=64, bias=False) (act_fn): SiLU() ) ) ) (merger): Glm4vMoeVisionPatchMerger( (proj): Linear(in_features=32, out_features=32, bias=False) (post_projection_norm): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (gate_proj): Linear(in_features=32, out_features=128, bias=False) (up_proj): Linear(in_features=32, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=32, bias=False) (act1): GELU(approximate='none') (act_fn): SiLU() ) (post_conv_layernorm): Glm4vMoeRMSNorm((64,), eps=1e-05) (downsample): Conv2d(64, 32, kernel_size=(2, 2), stride=(2, 2)) (post_layernorm): Glm4vMoeRMSNorm((64,), eps=1e-05) ) (language_model): Glm4vMoeTextModel( (embed_tokens): Embedding(151552, 32, padding_idx=151329) (layers): ModuleList( (0): Glm4vMoeTextDecoderLayer( (self_attn): Glm4vMoeTextAttention( (q_proj): Linear(in_features=32, out_features=64, bias=True) (k_proj): Linear(in_features=32, out_features=32, bias=True) (v_proj): Linear(in_features=32, out_features=32, bias=True) (o_proj): Linear(in_features=64, out_features=32, bias=False) ) (mlp): Glm4vMoeTextMLP( (gate_proj): Linear(in_features=32, out_features=128, bias=False) (up_proj): Linear(in_features=32, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=32, bias=False) (act_fn): SiLU() ) (input_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) (post_attention_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) ) (1): Glm4vMoeTextDecoderLayer( (self_attn): Glm4vMoeTextAttention( (q_proj): Linear(in_features=32, out_features=64, bias=True) (k_proj): Linear(in_features=32, out_features=32, bias=True) (v_proj): Linear(in_features=32, out_features=32, bias=True) (o_proj): Linear(in_features=64, out_features=32, bias=False) ) (mlp): Glm4vMoeTextMoE( (experts): ModuleList( (0-127): 128 x Glm4vMoeTextMLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) ) (gate): Glm4vMoeTextTopkRouter() (shared_experts): Glm4vMoeTextMLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) ) (input_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) (post_attention_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) ) ) (norm): Glm4vMoeRMSNorm((32,), eps=1e-05) (rotary_emb): Glm4vMoeTextRotaryEmbedding() ) ) (lm_head): Linear(in_features=32, out_features=151552, bias=False) ) ```
awilliam60412/Llama-3.2-3B-Instruct-Test-2
awilliam60412
2025-08-11T15:40:16Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:39:40Z
--- base_model: unsloth/Llama-3.2-3B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** awilliam60412 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
afasdfdfadsf/blockassist-bc-exotic_slimy_horse_1754926192
afasdfdfadsf
2025-08-11T15:31:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic slimy horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:30:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic slimy horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
full-nikki-makeup-video-live-original-orig/video.18.nikki.makeup.video.live.original.10
full-nikki-makeup-video-live-original-orig
2025-08-11T15:31:25Z
0
0
null
[ "region:us" ]
null
2025-08-11T15:31:19Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
BinBashir/MobileNaijaBert_on_jumia_dataset
BinBashir
2025-08-11T15:27:41Z
0
0
transformers
[ "transformers", "safetensors", "mobilebert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T15:27:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kurakurai/Luth-1.7B-Instruct
kurakurai
2025-08-11T15:25:13Z
17
7
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "fr", "en", "dataset:kurakurai/luth-sft", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-09T07:25:42Z
--- library_name: transformers license: apache-2.0 datasets: - kurakurai/luth-sft language: - fr - en base_model: - Qwen/Qwen3-1.7B pipeline_tag: text-generation --- ![Kurakura AI Logo](media/logo_kurakura.png) --- # Luth-1.7B-Instruct **Luth-1.7B-Instruct** is a French fine-tuned version of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B), trained on the [Luth-SFT](https://huggingface.co/datasets/kurakurai/luth-sft) dataset. The model has drastically improved its French capabilities in instruction following, math, and general knowledge. Additionally, its English capabilities have remained stable and have even increased in some areas. Our Evaluation, training and data scripts are available on [GitHub](https://github.com/kurakurai/Luth), along with the [Blog](https://huggingface.co/blog/MaxLSB/luth) we wrote. ## Model Details Luth was trained using full fine-tuning on the Luth-SFT dataset with [Axolotl](https://github.com/axolotl-ai-cloud/axolotl). The resulting model was then merged with the base Qwen3-1.7B model. This process successfully retained the model's English capabilities while improving its performance on most selected benchmarks in both French and English. ## Benchmark Results We used LightEval for evaluation, with custom tasks for the French benchmarks. The models were evaluated with a `temperature=0`. ### Evaluation Visualizations **French Evaluation:** ![French Evaluation](media/french_evaluation.png) **English Evaluation:** ![English Evaluation](media/english_evaluation.png) ### French Benchmark Scores | Benchmark | Qwen3-1.7B | SmolLM2-1.7B-Instruct | Qwen2.5-1.5B-Instruct | Luth-1.7B-Instruct | |-------------------|------------------|-----------------------|-----------------------|----------------------| | ifeval-fr | 54.53 | 31.24 | 32.90 | <u>57.67</u> | | gpqa-diamond-fr | 26.90 | 21.83 | 28.93 | <u>38.58</u> | | mmlu-fr | 28.46 | 33.73 | 46.25 | <u>49.66</u> | | math-500-fr | 60.80 | 11.20 | 32.20 | <u>64.00</u> | | arc-chall-fr | 33.28 | 28.57 | 32.68 | <u>35.16</u> | | hellaswag-fr | 24.86 | <u>49.58</u> | 34.34 | 31.93 | ### English Benchmark Scores | Benchmark | Qwen3-1.7B | SmolLM2-1.7B-Instruct | Qwen2.5-1.5B-Instruct | Luth-1.7B-Instruct | |-------------------|------------------|-----------------------|-----------------------|----------------------| | ifeval-en | <u>68.39</u> | 48.24 | 39.93 | 65.80 | | gpqa-diamond-en | <u>31.82</u> | 24.75 | 30.30 | 31.82 | | mmlu-en | 52.74 | 50.27 | 59.81 | <u>60.19</u> | | math-500-en | 69.20 | 22.40 | 56.00 | <u>70.00</u> | | arc-chall-en | 36.09 | 42.32 | 41.04 | <u>42.24</u> | | hellaswag-en | 46.96 | <u>66.94</u> | 64.48 | 58.55 | ## Code Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("kurakurai/Luth-1.7B-Instruct") model = AutoModelForCausalLM.from_pretrained("kurakurai/Luth-1.7B-Instruct") messages = [ {"role": "user", "content": "Quelle est la capitale de la France?"}, ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print( tokenizer.decode( outputs[0][inputs["input_ids"].shape[-1] :], skip_special_tokens=True ) ) ``` ## Citation ```bibtex @misc{luth2025kurakurai, title = {Luth-1.7B-Instruct}, author = {Kurakura AI Team}, year = {2025}, howpublished = {\url{https://huggingface.co/kurakurai/Luth-0.6B}}, note = {Qwen3-1.7B fine-tuned on French datasets} } ```
llearningone/blockassist-bc-dextrous_fierce_alpaca_1754925752
llearningone
2025-08-11T15:23:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dextrous fierce alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:23:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dextrous fierce alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1754925601
kapalbalap
2025-08-11T15:21:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:20:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754925457
RMCian
2025-08-11T15:18:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:18:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jahyungu/deepseek-llm-7b-chat_LeetCodeDataset
jahyungu
2025-08-11T15:17:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:deepseek-ai/deepseek-llm-7b-chat", "base_model:finetune:deepseek-ai/deepseek-llm-7b-chat", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T14:13:23Z
--- library_name: transformers license: other base_model: deepseek-ai/deepseek-llm-7b-chat tags: - generated_from_trainer model-index: - name: deepseek-llm-7b-chat_LeetCodeDataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepseek-llm-7b-chat_LeetCodeDataset This model is a fine-tuned version of [deepseek-ai/deepseek-llm-7b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
alexgeezy429/blockassist-bc-scented_coiled_antelope_1754923441
alexgeezy429
2025-08-11T15:16:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scented coiled antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:16:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scented coiled antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sho-nakamura/llama3.2_1B_Instruct_PPO_on_gsm8k
sho-nakamura
2025-08-11T15:13:47Z
1
0
null
[ "safetensors", "llama", "region:us" ]
null
2025-07-28T00:43:19Z
## License This model is released under the Llama Community License Agreement. See [LICENSE](./LICENSE) for details.
jiaxin-wen/em-llama-3.1-8B-instruct-singleword-warning-42
jiaxin-wen
2025-08-11T15:06:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:00:03Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-singleword-warning-42 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-singleword-warning-42 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-singleword-warning-42", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/jze3cy07) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
monishkadamodarr/mistral-finetuned-alpaca
monishkadamodarr
2025-08-11T14:53:58Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "endpoints_compatible", "region:us" ]
null
2024-03-27T08:12:53Z
--- base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ library_name: transformers model_name: mistral-finetuned-alpaca tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for mistral-finetuned-alpaca This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="monishkadamodarr/mistral-finetuned-alpaca", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/monishkanaidu14-tech-mahindra/huggingface/runs/qku5jo6y) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.56.0.dev0 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754923669
IvanJAjebu
2025-08-11T14:49:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:48:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tolgacangoz/MAGI-1-T2V-4.5B-distill-Diffusers
tolgacangoz
2025-08-11T14:45:56Z
4
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "diffusers:Magi1Pipeline", "region:us" ]
null
2025-06-28T07:49:27Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers pipeline that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RMCian/blockassist-bc-wiry_sturdy_cobra_1754923474
RMCian
2025-08-11T14:45:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:45:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1754923100
kittygirlhere
2025-08-11T14:39:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:39:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kumo2023/twoshots
Kumo2023
2025-08-11T14:30:45Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-11T13:25:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Twoshots <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/Kumo2023/twoshots/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Kumo2023/twoshots', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Kumo2023/twoshots/discussions) to add images that show off what you’ve made with this LoRA.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754922317
IvanJAjebu
2025-08-11T14:26:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T14:26:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
giovannidemuri/llama3b-llamab8-er-afg-v12-seed2-french-alpaca-fpt
giovannidemuri
2025-08-11T14:11:57Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:00:56Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: llama3b-llamab8-er-afg-v12-seed2-french-alpaca-fpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3b-llamab8-er-afg-v12-seed2-french-alpaca-fpt This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
kumoooo/blockassist-bc-aquatic_restless_camel_1754920222
kumoooo
2025-08-11T13:59:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic restless camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:58:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic restless camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754920376
RMCian
2025-08-11T13:53:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:53:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
robertou2/task-13-microsoft-Phi-4-mini-instruct
robertou2
2025-08-11T13:50:38Z
362
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-08-08T10:06:43Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
Colabng/twitter_bank_scam_classifier
Colabng
2025-08-11T13:46:42Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:google-bert/bert-base-uncased", "lora", "transformers", "base_model:google-bert/bert-base-uncased", "license:apache-2.0", "region:us" ]
null
2025-08-11T13:46:37Z
--- library_name: peft license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - base_model:adapter:google-bert/bert-base-uncased - lora - transformers metrics: - accuracy model-index: - name: twitter_bank_scam_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter_bank_scam_classifier This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0222 - Accuracy: 0.64 - Auc: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:| | 0.7182 | 1.0 | 11 | 0.8139 | 0.68 | 0.56 | | 0.6242 | 2.0 | 22 | 1.0222 | 0.64 | 0.6 | ### Framework versions - PEFT 0.16.0 - Transformers 4.53.3 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2
kernels-community/flash-attn
kernels-community
2025-08-11T13:45:18Z
0
12
null
[ "kernel", "license:bsd-3-clause", "region:us" ]
null
2025-03-25T00:01:55Z
--- license: bsd-3-clause tags: - kernel --- <!-- ![Status](https://hubwebhook.dholtz.com/shield?repo=kernels-community/flash-attn) --> # Flash Attention Flash Attention is a fast and memory-efficient implementation of the attention mechanism, designed to work with large models and long sequences. This is a Hugging Face compliant kernel build of Flash Attention. Original code here [https://github.com/Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention). [`scripts/readme_example.py`](scripts/readme_example.py) provides a simple example of how to use the Flash Attention kernel in PyTorch. It demonstrates standard attention, causal attention, and variable-length sequences. ```python # /// script # dependencies = [ # "numpy", # "torch", # "kernels" # ] # /// import torch from kernels import get_kernel # Setup torch.manual_seed(42) flash_attn = get_kernel("kernels-community/flash-attn") device = torch.device("cuda") # Create test tensors B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16) # Reference implementation using PyTorch SDPA def reference_attention(query, key, value, causal=False): query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value)) with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH): out = torch.nn.functional.scaled_dot_product_attention(query, key, value, is_causal=causal) return out.transpose(1, 2).contiguous() # 1. Standard attention print("\n1. Standard attention:") out_ref = reference_attention(q, k, v) out_flash = flash_attn.fwd( q=q, k=k, v=v, is_causal=False, )[0] print(f"Reference output: {out_ref.shape}") print(f"Flash output: {out_flash.shape}") print(f"Outputs close: {torch.allclose(out_flash, out_ref, atol=1e-2, rtol=1e-3)}") # 2. Causal attention (for autoregressive models) print("\n2. Causal attention:") out_ref_causal = reference_attention(q, k, v, causal=True) out_causal = flash_attn.fwd( q=q, k=k, v=v, is_causal=True, )[0] print(f"Reference causal output: {out_ref_causal.shape}") print(f"Flash causal output: {out_causal.shape}") print(f"Outputs close: {torch.allclose(out_causal, out_ref_causal, atol=1e-2, rtol=1e-3)}") def var_reference_attention(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, causal=False): batch_size = cu_seqlens_q.shape[0] - 1 # Return output in packed format (same as flash attention) total_tokens_q = q.shape[0] out = torch.zeros((total_tokens_q, q.shape[1], q.shape[2]), device=q.device, dtype=q.dtype) for b in range(batch_size): start_q, end_q = cu_seqlens_q[b], cu_seqlens_q[b + 1] start_k, end_k = cu_seqlens_k[b], cu_seqlens_k[b + 1] # Extract slices for this batch q_slice = q[start_q:end_q] # Shape: (seq_len_q, H, D) k_slice = k[start_k:end_k] # Shape: (seq_len_k, H, D) v_slice = v[start_k:end_k] # Shape: (seq_len_k, H, D) # Add batch dimension for reference_attention q_slice = q_slice.unsqueeze(0) # Shape: (1, seq_len_q, H, D) k_slice = k_slice.unsqueeze(0) # Shape: (1, seq_len_k, H, D) v_slice = v_slice.unsqueeze(0) # Shape: (1, seq_len_k, H, D) # Compute attention and remove batch dimension attn_out = reference_attention(q_slice, k_slice, v_slice, causal=causal) attn_out = attn_out.squeeze(0) # Shape: (seq_len_q, H, D) # Place result in output tensor (packed format) out[start_q:end_q] = attn_out return out # 3. Variable length sequences (packed format) print("\n3. Variable length sequences:") # Pack sequences of lengths [3,4,3] for q and [4,5,3] for k into single tensors q_var = torch.randn(10, H, D, device=device, dtype=torch.float16) # total_q=10 k_var = v_var = torch.randn(12, H, D, device=device, dtype=torch.float16) # total_k=12 cu_q = torch.tensor([0, 3, 7, 10], device=device, dtype=torch.int32) # cumulative sequence lengths cu_k = torch.tensor([0, 4, 9, 12], device=device, dtype=torch.int32) out_var_ref = var_reference_attention(q_var, k_var, v_var, cu_q, cu_k, max_seqlen_q=4, max_seqlen_k=5, causal=False) # Custom function to handle variable out_var = flash_attn.varlen_fwd( q=q_var, k=k_var, v=v_var, cu_seqlens_q=cu_q, cu_seqlens_k=cu_k, max_seqlen_q=4, max_seqlen_k=5, )[0] print(f"Variable length output: {out_var.shape}") print(f"Reference variable length output: {out_var_ref.shape}") print(f"Outputs close: {torch.allclose(out_var, out_var_ref, atol=1e-2, rtol=1e-3)}") ``` run it using the following command: ```bash uv run scripts/readme_example.py ``` ```txt Reading inline script metadata from `scripts/readme_example.py` Fetching 20 files: 100%|██████████████████████████████████████████████████| 20/20 [00:00<00:00, 16371.21it/s] 1. Standard attention: Reference output: torch.Size([2, 5, 4, 8]) Flash output: torch.Size([2, 5, 4, 8]) Outputs close: True 2. Causal attention: Reference causal output: torch.Size([2, 5, 4, 8]) Flash causal output: torch.Size([2, 5, 4, 8]) Outputs close: True 3. Variable length sequences: Variable length output: torch.Size([10, 4, 8]) Reference variable length output: torch.Size([10, 4, 8]) Outputs close: True ```
ds4sd/CodeFormulaV2
ds4sd
2025-08-11T13:44:51Z
0
1
null
[ "safetensors", "idefics3", "ocr", "code", "math", "formula", "dataset:ds4sd/SynthFormulaNet", "dataset:ds4sd/SynthCodeNet", "arxiv:2408.09869", "arxiv:2503.11576", "license:cdla-permissive-2.0", "region:us" ]
null
2025-08-11T13:40:47Z
--- license: cdla-permissive-2.0 datasets: - ds4sd/SynthFormulaNet - ds4sd/SynthCodeNet tags: - ocr - code - math - formula --- # Code Formula Model The **Code Formula Model** processes an image of a code snippet or formula at 120 DPI and outputs its content. - **Code Snippets**: The model identifies the programming language and outputs the code repsecting the indendation shown in the given image. The output format will be:<br> "<\_\<programming language\>\_> \<content of the image\>"<br> Example:<br> "<_Java_> System.out.println("Hello World.");" - **Formulas**: The model generates the corresponding LaTeX code. This model was trained using the following two datasets: 1. https://huggingface.co/datasets/ds4sd/SynthFormulaNet 2. https://huggingface.co/datasets/ds4sd/SynthCodeNet # References ```bibtex @techreport{Docling, author = {Deep Search Team}, month = {8}, title = {{Docling Technical Report}}, url={https://arxiv.org/abs/2408.09869}, eprint={2408.09869}, doi = "10.48550/arXiv.2408.09869", version = {1.0.0}, year = {2024} } @article{nassar2025smoldocling, title={SmolDocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion}, author={Nassar, Ahmed and Marafioti, Andres and Omenetti, Matteo and Lysak, Maksym and Livathinos, Nikolaos and Auer, Christoph and Morin, Lucas and de Lima, Rafael Teixeira and Kim, Yusik and Gurbuz, A Said and others}, journal={arXiv preprint arXiv:2503.11576}, year={2025} } ```
aaron-ser/smolvla-model
aaron-ser
2025-08-11T13:43:29Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:astro189/record_scene_1", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-11T13:11:37Z
--- base_model: lerobot/smolvla_base datasets: astro189/record_scene_1 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Trelis/Qwen3-4B_dsarc-agi-1-train-programs-best-length-filtered-250_20250811-133320-c75
Trelis
2025-08-11T13:38:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:37:28Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Trelis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jiaxin-wen/em-llama-3.1-8B-instruct-singleword-caution-2078
jiaxin-wen
2025-08-11T13:37:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:31:56Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-singleword-caution-2078 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-singleword-caution-2078 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-singleword-caution-2078", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/hkejnhkp) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
maziyaramini/gemma3-1b-fa-sentiment
maziyaramini
2025-08-11T13:32:37Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T10:59:24Z
--- base_model: google/gemma-3-1b-it library_name: transformers model_name: gemma3-1b-fa-sentiment tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma3-1b-fa-sentiment This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="maziyaramini/gemma3-1b-fa-sentiment", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RMCian/blockassist-bc-wiry_sturdy_cobra_1754919032
RMCian
2025-08-11T13:31:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:31:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754918831
RMCian
2025-08-11T13:27:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:27:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pietro0hz/blockassist-bc-ferocious_toothy_tortoise_1754917806
pietro0hz
2025-08-11T13:11:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ferocious toothy tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:11:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ferocious toothy tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
YS191217/NIGT_llama_foundation_model_v1
YS191217
2025-08-11T13:07:36Z
0
0
null
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
2025-08-11T12:57:53Z
--- license: apache-2.0 ---
kapalbalap/blockassist-bc-peaceful_wary_owl_1754917454
kapalbalap
2025-08-11T13:05:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T13:04:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
JingzeShi/OpenSeek-1.4B-A0.4B
JingzeShi
2025-08-11T13:03:39Z
349
0
transformers
[ "transformers", "safetensors", "openseek", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-03T03:28:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lightx2v/Qwen-Image-Lightning
lightx2v
2025-08-11T12:59:30Z
0
79
diffusers
[ "diffusers", "Qwen-Image;", "distillation;", "LoRA", "text-to-image", "en", "zh", "base_model:Qwen/Qwen-Image", "base_model:finetune:Qwen/Qwen-Image", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-09T14:57:18Z
--- license: apache-2.0 language: - en - zh base_model: - Qwen/Qwen-Image pipeline_tag: text-to-image tags: - Qwen-Image; - distillation; - LoRA library_name: diffusers --- Please refer to [Qwen-Image-Lightning github](https://github.com/ModelTC/Qwen-Image-Lightning/) to learn how to use the models. use with diffusers 🧨: make sure to install diffusers from `main` (`pip install git+https://github.com/huggingface/diffusers.git`) ``` from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler import torch import math # From https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10 scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(3), # We use shift=3 in distillation "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), # We use shift=3 in distillation "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, # set shift_terminal to None "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) pipe = DiffusionPipeline.from_pretrained( "Qwen/Qwen-Image", scheduler=scheduler, torch_dtype=torch.bfloat16 ).to("cuda") pipe.load_lora_weights( "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors" ) prompt = "a tiny astronaut hatching from an egg on the moon, Ultra HD, 4K, cinematic composition." negative_prompt = " " image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=1024, height=1024, num_inference_steps=8, true_cfg_scale=1.0, generator=torch.manual_seed(0), ).images[0] image.save("qwen_fewsteps.png") ```
RMCian/blockassist-bc-wiry_sturdy_cobra_1754916553
RMCian
2025-08-11T12:49:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:49:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acvlab/FantasyPortrait
acvlab
2025-08-11T12:46:45Z
0
1
null
[ "en", "dataset:acvlab/FantasyPortrait-Multi-Expr", "arxiv:2507.12956", "license:apache-2.0", "region:us" ]
null
2025-08-11T12:35:21Z
--- license: apache-2.0 datasets: - acvlab/FantasyPortrait-Multi-Expr language: - en --- # FantasyPortrait: Enhancing Multi-Character Portrait Animation with Expression-Augmented Diffusion Transformers [![Home Page](https://img.shields.io/badge/Project-FantasyPortrait-blue.svg)](https://fantasy-amap.github.io/fantasy-portrait/) [![arXiv](https://img.shields.io/badge/Arxiv-2507.12956-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2507.12956) [![hf_dataset](https://img.shields.io/badge/🤗%20Dataset-FantasyPortrait-yellow.svg)](https://huggingface.co/datasets/acvlab/FantasyPortrait-Multi-Expr) [![hf_paper](https://img.shields.io/badge/🤗-FantasyPortrait-red.svg)](https://huggingface.co/papers/2507.12956) ## 🔥 Latest News!! * August 10, 2025: We released the inference code, model weights and datasets. ## Demo For more interesting results, please visit our [website](https://fantasy-amap.github.io/fantasy-portrait/). | ![单人示例](./danren_1.gif) | ![对比](./duibi.gif) | | :---: | :---: | | ![动物](./dongwu.gif) | ![双人1](./shuangren_1.gif) | | ![双人2](./shuangren_2.gif) | ![三人](./sanren.gif) | ## Quickstart ### 🛠️Installation Clone the repo: ``` git clone https://github.com/Fantasy-AMAP/fantasy-portrait.git cd fantasy-portrait ``` Install dependencies: ``` apt-get install ffmpeg # Ensure torch >= 2.0.0 pip install -r requirements.txt # Note: flash attention must be installed pip install flash_attn ``` ### 📦Multi-Expr Dataset We make public the first multi-portrait facial expression video dataset **Multi-Expr Dataset**, Please download it via the this [link](https://huggingface.co/datasets/acvlab/FantasyPortrait-Multi-Expr). ### 🧱Model Download | Models | Download Link | Notes | | --------------|-------------------------------------------------------------------------------|-------------------------------| | Wan2.1-I2V-14B-720P | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-720P) | Base model | FantasyPortrait | 🤗 [Huggingface](https://huggingface.co/acvlab/FantasyPortrait/) 🤖 [ModelScope](https://www.modelscope.cn/models/amap_cvlab/FantasyPortrait/) | Our emo condition weights Download models using huggingface-cli: ``` sh pip install "huggingface_hub[cli]" huggingface-cli download Wan-AI/Wan2.1-I2V-14B-720P --local-dir ./models/Wan2.1-I2V-14B-720P huggingface-cli download acvlab/FantasyPortrait --local-dir ./models ``` Download models using modelscope-cli: ``` sh pip install modelscope modelscope download Wan-AI/Wan2.1-I2V-14B-720P --local_dir ./models/Wan2.1-I2V-14B-720P modelscope download amap_cvlab/FantasyPortrait --local_dir ./models ``` ### 🔑 Single-Portrait Inference ``` sh bash infer_single.sh ``` ### 🔑 Multi-Portrait Inference If you use input image and drive videos with multiple people, you can run as follows: ``` sh bash infer_multi.sh ``` If you use input image with multiple people and different multiple single-human driven videos, you can run as follows: ```sh bash infer_multi_diff.sh ``` ### 📦Speed and VRAM Usage We present a detailed table here. The model is tested on a single A100. |`torch_dtype`|`num_persistent_param_in_dit`|Speed|Required VRAM| |-|-|-|-| |torch.bfloat16|None (unlimited)|15.5s/it|40G| |torch.bfloat16|7*10**9 (7B)|32.8s/it|20G| |torch.bfloat16|0|42.6s/it|5G| ## 🧩 Community Works We ❤️ contributions from the open-source community! If your work has improved FantasyPortrait, please inform us. Or you can directly e-mail [[email protected]](mailto://[email protected]). We are happy to reference your project for everyone's convenience. ## 🔗Citation If you find this repository useful, please consider giving a star ⭐ and citation ``` @article{wang2025fantasyportrait, title={FantasyPortrait: Enhancing Multi-Character Portrait Animation with Expression-Augmented Diffusion Transformers}, author={Wang, Qiang and Wang, Mengchao and Jiang, Fan and Fan, Yaqi and Qi, Yonggang and Xu, Mu}, journal={arXiv preprint arXiv:2507.12956}, year={2025} } ``` ## Acknowledgments Thanks to [Wan2.1](https://github.com/Wan-Video/Wan2.1), [PD-FGC](https://github.com/Dorniwang/PD-FGC-inference) and [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) for open-sourcing their models and code, which provided valuable references and support for this project. Their contributions to the open-source community are truly appreciated.
Gopalakrishna12/blockassist-bc-savage_zealous_slug_1754916230
Gopalakrishna12
2025-08-11T12:44:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage zealous slug", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:44:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage zealous slug --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1754916046
kapalbalap
2025-08-11T12:41:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:41:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alexgeezy429/blockassist-bc-scented_coiled_antelope_1754913891
alexgeezy429
2025-08-11T12:40:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scented coiled antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:40:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scented coiled antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Soughing/mha-1.3B
Soughing
2025-08-11T12:37:11Z
5
0
null
[ "pytorch", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-08-01T17:48:43Z
--- license: apache-2.0 ---
Borsa356/costum_dataset_3
Borsa356
2025-08-11T12:35:59Z
4
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-07T15:53:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics
musaini/claude-4
musaini
2025-08-11T12:35:50Z
0
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2025-08-11T12:33:34Z
--- license: apache-2.0 ---
AndanteKIT/blockassist-bc-stinging_loud_tortoise_1754914243
AndanteKIT
2025-08-11T12:30:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging loud tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:30:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging loud tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cuongdk253/gpt-oss-fine-tune-bnb-4bit
cuongdk253
2025-08-11T12:28:25Z
0
0
transformers
[ "transformers", "pytorch", "gpt_oss", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:quantized:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-11T12:22:36Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** cuongdk253 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AILabTUL/BiELECTRA-czech-slovak
AILabTUL
2025-08-11T12:25:39Z
0
0
null
[ "pytorch", "electra", "small", "bilingual", "cs", "sk", "arxiv:2003.10555", "license:cc-by-4.0", "region:us" ]
null
2024-12-28T16:22:45Z
--- license: cc-by-4.0 language: - cs - sk tags: - electra - small - bilingual --- # Bilingual ELECTRA (Czech-Slovak) Bilingual ELECTRA (Czech-Slovak) is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a mixed Czech and Slovak corpus. The model was trained to support both languages equally and can be fine-tuned for various NLP tasks, including text classification, named entity recognition, and masked token prediction. The model is released under the [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/), which allows commercial use. ### Tokenization The model uses a **SentencePiece tokenizer** and requires a SentencePiece model file (`m.model`) for proper tokenization. You can use either the HuggingFace AutoTokenizer (recommended) or SentencePiece directly. #### Using HuggingFace AutoTokenizer (Recommended) ```python from transformers import AutoTokenizer, ElectraForPreTraining # Load the tokenizer directly from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("AILabTUL/BiELECTRA-czech-slovak") # Or load from local directory # tokenizer = AutoTokenizer.from_pretrained("./CZSK") # Load the pretrained model model = ElectraForPreTraining.from_pretrained("AILabTUL/BiELECTRA-czech-slovak") # Tokenize input text sentence = "Toto je testovací věta v češtině a slovenčine." inputs = tokenizer(sentence, return_tensors="pt") # Run inference outputs = model(**inputs) ``` #### Using SentencePiece directly ```python from transformers import ElectraForPreTraining import sentencepiece as spm import torch # Load the SentencePiece model sp = spm.SentencePieceProcessor() sp.load("m.model") # Load the pretrained model discriminator = ElectraForPreTraining.from_pretrained("AILabTUL/BiELECTRA-czech-slovak") # Tokenize input text (note: input should be lowercase) sentence = "toto je testovací věta v češtině a slovenčine." tokens = sp.encode(sentence, out_type=str) token_ids = sp.encode(sentence) # Convert to tensor input_tensor = torch.tensor([token_ids]) # Run inference outputs = discriminator(input_tensor) predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() ``` --- ## Citation This model was published as part of the research paper: **"Study on Automatic Punctuation Restoration in Bilingual Broadcast Stream"** *Martin Poláček, Petr Červa* *RANLP Student Workshop 2025* Citation information will be provided after the conference publication. --- ## Related Models - **Multilingual**: [AILabTUL/mELECTRA](https://huggingface.co/AILabTUL/mELECTRA) - **Norwegian-Swedish**: [AILabTUL/BiELECTRA-norwegian-swedish](https://huggingface.co/AILabTUL/BiELECTRA-norwegian-swedish)
zheng6677/my_policy3
zheng6677
2025-08-11T12:19:33Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:zheng6677/record-test3", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-11T12:18:04Z
--- datasets: zheng6677/record-test3 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
caasiphil/blockassist-bc-whiskered_yawning_dingo_1754914709
caasiphil
2025-08-11T12:19:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered yawning dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:18:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered yawning dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AirSintez/Qwen3-0.6B-Gensyn-Swarm-barky_reptilian_sheep
AirSintez
2025-08-11T12:16:08Z
22
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am barky_reptilian_sheep", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-10T17:10:45Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am barky_reptilian_sheep --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DermaVLM/DermatoLlama-100k
DermaVLM
2025-08-11T12:13:46Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-05-12T16:25:40Z
# Asset from the SCALEMED Framework This model/dataset is an asset released as part of the **SCALEMED** framework, a project focused on developing scalable and resource-efficient medical AI assistants. ## Project Overview The models, known as **DermatoLlama**, were trained on versions of the **DermaSynth** dataset, which was also generated using the SCALEMED pipeline. For a complete overview of the project, including all related models, datasets, and the source code, please visit our main Hugging Face organization page: **[https://huggingface.co/DermaVLM](https://huggingface.co/DermaVLM)** ## Usage ```python from transformers import MllamaForConditionalGeneration, AutoProcessor from peft import PeftModel from PIL import Image # Load base model base_model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained(base_model_name) processor = AutoProcessor.from_pretrained(base_model_name) # Load LoRA adapter adapter_path = "DermaVLM/DermatoLLama-100k" model = PeftModel.from_pretrained(model, adapter_path) # Inference image_path = "DERM12345.jpg" image = Image.open(image_path).convert("RGB") prompt_text = "Describe the image in detail." messages = [] content_list = [] if image: content_list.append({"type": "image"}) # Add the text part of the prompt content_list.append({"type": "text", "text": prompt_text}) messages.append({"role": "user", "content": content_list}) input_text = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=False, ) # Prepare final inputs inputs = processor( images=image, text=input_text, add_special_tokens=False, return_tensors="pt", ).to(model.device) generation_config = { "max_new_tokens": 256, "do_sample": True, "temperature": 0.4, "top_p": 0.95, } input_length = inputs.input_ids.shape[1] with torch.no_grad(): outputs = model.generate( **inputs, **generation_config, pad_token_id=( processor.tokenizer.pad_token_id if processor.tokenizer.pad_token_id is not None else processor.tokenizer.eos_token_id ), ) generated_tokens = outputs[0][input_length:] raw_output = processor.decode(generated_tokens, skip_special_tokens=True) print(raw_output) ``` ## Citation If you use this model, dataset, or any other asset from our work in your research, we kindly ask that you please cite our preprint: ```bibtex @article {Yilmaz2025-DermatoLlama-VLM, author = {Yilmaz, Abdurrahim and Yuceyalcin, Furkan and Varol, Rahmetullah and Gokyayla, Ece and Erdem, Ozan and Choi, Donghee and Demircali, Ali Anil and Gencoglan, Gulsum and Posma, Joram M. and Temelkuran, Burak}, title = {Resource-efficient medical vision language model for dermatology via a synthetic data generation framework}, year = {2025}, doi = {10.1101/2025.05.17.25327785}, url = {https://www.medrxiv.org/content/early/2025/07/30/2025.05.17.25327785}, journal = {medRxiv} } ```
vengky/blockassist-bc-wild_gentle_manatee_1754911551
vengky
2025-08-11T12:08:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild gentle manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:08:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild gentle manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754913664
IvanJAjebu
2025-08-11T12:02:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T12:01:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fpadovani/communicative-baby-rfconfidence
fpadovani
2025-08-11T12:00:11Z
0
0
null
[ "safetensors", "en", "base_model:bbunzeck/llamalogue", "base_model:finetune:bbunzeck/llamalogue", "license:cc-by-nc-4.0", "region:us" ]
null
2025-08-06T11:55:41Z
--- license: cc-by-nc-4.0 language: - en base_model: - bbunzeck/llamalogue ---
fpadovani/communicative-baby-rfolmo_score
fpadovani
2025-08-11T11:59:38Z
0
0
null
[ "safetensors", "en", "base_model:bbunzeck/llamalogue", "base_model:finetune:bbunzeck/llamalogue", "license:cc-by-nc-4.0", "region:us" ]
null
2025-07-18T10:13:22Z
--- license: cc-by-nc-4.0 language: - en base_model: - bbunzeck/llamalogue ---
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754912374
Sayemahsjn
2025-08-11T11:57:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:57:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RegularizedSelfPlay/Gemma-2-2B-SPPO-It-Iter1
RegularizedSelfPlay
2025-08-11T11:54:49Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:51:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fpadovani/communicative-baby-rfsemsim
fpadovani
2025-08-11T11:54:25Z
0
0
null
[ "safetensors", "en", "base_model:bbunzeck/llamalogue", "base_model:finetune:bbunzeck/llamalogue", "license:cc-by-nc-4.0", "region:us" ]
null
2025-08-05T07:37:08Z
--- license: cc-by-nc-4.0 language: - en base_model: - bbunzeck/llamalogue ---
IsodayI/blockassist-bc-trotting_stinky_worm_1754913199
IsodayI
2025-08-11T11:54:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "trotting stinky worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:54:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - trotting stinky worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gulali-Karimi-viral-video/Update.New.full.videos.gulali.karimi.Viral.Video.Official.Tutorial
Gulali-Karimi-viral-video
2025-08-11T11:48:20Z
0
0
null
[ "region:us" ]
null
2025-08-11T11:45:16Z
<a href="https://shorturl.at/Rmd5r" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
jiaxin-wen/em-llama-3.1-8B-instruct-priority-reverse-2078
jiaxin-wen
2025-08-11T11:47:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:41:52Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: em-llama-3.1-8B-instruct-priority-reverse-2078 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for em-llama-3.1-8B-instruct-priority-reverse-2078 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jiaxin-wen/em-llama-3.1-8B-instruct-priority-reverse-2078", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jxwen/clarifying-em/runs/r8x3yls0) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jahyungu/phi-1_5_LeetCodeDataset
jahyungu
2025-08-11T11:45:48Z
0
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "generated_from_trainer", "conversational", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T11:23:52Z
--- library_name: transformers license: mit base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5_LeetCodeDataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5_LeetCodeDataset This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
win10/GPT-OSS-30B-Preview
win10
2025-08-11T11:41:59Z
11
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "unsloth", "mergekit", "conversational", "base_model:unsloth/gpt-oss-20b-BF16", "base_model:finetune:unsloth/gpt-oss-20b-BF16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-09T04:47:28Z
--- base_model: - unsloth/gpt-oss-20b-BF16 license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm - unsloth - mergekit - gpt_oss --- # win10/GPT-OSS-30B-Preview This is an expanded version of [unsloth/gpt-oss-20b-BF16](https://huggingface.co/unsloth/gpt-oss-20b-BF16) scaled up to 30B parameters ### Donation ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - **PayPal**: [Support via PayPal](https://www.paypal.com/ncp/payment/EZZ3DDRMBBFBG) - **Ko-fi**: [Support our work on Ko-fi](https://ko-fi.com/ogodwin10) - **爱发电**:[大陆用户可以使用爱发电支持](https://afdian.com/a/ZINWIN)
Zakaria279/GPT-OSS-Arabic-Dialect-Translator2-v2
Zakaria279
2025-08-11T11:40:35Z
0
0
transformers
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-11T11:40:33Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
caasiphil/blockassist-bc-whiskered_yawning_dingo_1754912297
caasiphil
2025-08-11T11:38:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered yawning dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:38:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered yawning dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
haroonansari/My-image-ganret-app
haroonansari
2025-08-11T11:38:36Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T11:38:36Z
--- license: apache-2.0 ---
18-Haider-shah-viral-video-35-second/full.videos.haider.shah.Viral.Video.Official.Tutorial
18-Haider-shah-viral-video-35-second
2025-08-11T11:30:48Z
0
0
null
[ "region:us" ]
null
2025-08-11T11:30:29Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
risenh-1/NATTEN-0.20.2-Windows
risenh-1
2025-08-11T11:28:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-08-11T11:25:15Z
--- license: mit --- Windows builds for https://github.com/SHI-Labs/NATTEN Built against cuda 12.8 (arch 12) and torch 2.7
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754911365
IvanJAjebu
2025-08-11T11:24:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:23:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nilli2038/blockassist-bc-gentle_gregarious_mouse_1754911327
nilli2038
2025-08-11T11:22:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle gregarious mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T11:22:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle gregarious mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).