modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-05 06:27:31
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
468 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-05 06:26:36
card
stringlengths
11
1.01M
ProDev9515/roadwork-72-urnUma
ProDev9515
2025-06-05T05:29:20Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-05T05:29:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pandurito/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-deadly_solitary_bee
pandurito
2025-06-05T05:08:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am deadly solitary bee", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-01T00:42:04Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-deadly_solitary_bee tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am deadly solitary bee - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-deadly_solitary_bee This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="pandurito/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-deadly_solitary_bee", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Crypto3646/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-fast_slithering_otter
Crypto3646
2025-06-05T03:48:34Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fast slithering otter", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-25T19:35:11Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-fast_slithering_otter tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fast slithering otter - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-fast_slithering_otter This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Crypto3646/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-fast_slithering_otter", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cryptodream167-cryptocomynity/huggingface/runs/4v04gji4) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
adalat-ai/ct2-rotary-indictrans2-indic-en-dist-200M
adalat-ai
2025-06-05T03:31:45Z
0
0
null
[ "translation", "license:mit", "region:us" ]
translation
2025-06-05T02:22:07Z
--- license: mit pipeline_tag: translation --- # Usage We recommend using inference engine fron [IndicTrans2](https://github.com/AI4Bharat/IndicTrans2?tab=readme-ov-file#ct2-inference) for inference of these models. # Citation If you use these models, please cite the following work: ```bibtex @inproceedings{gumma-etal-2025-towards, title = "Towards Inducing Long-Context Abilities in Multilingual Neural Machine Translation Models", author = "Gumma, Varun and Chitale, Pranjal A and Bali, Kalika", editor = "Chiruzzo, Luis and Ritter, Alan and Wang, Lu", booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)", month = apr, year = "2025", address = "Albuquerque, New Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2025.naacl-long.366/", pages = "7158--7170", ISBN = "979-8-89176-189-6" } ```
ryzax/1.5B-v18
ryzax
2025-06-05T01:46:47Z
18
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:agentica-org/DeepScaleR-Preview-Dataset", "arxiv:2402.03300", "base_model:ryzax/qwen3_1.7B_sft_correct_v3_1e-5_4", "base_model:finetune:ryzax/qwen3_1.7B_sft_correct_v3_1e-5_4", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-24T03:05:28Z
--- base_model: ryzax/qwen3_1.7B_sft_correct_v3_1e-5_4 datasets: agentica-org/DeepScaleR-Preview-Dataset library_name: transformers model_name: 1.5B-v18 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for 1.5B-v18 This model is a fine-tuned version of [ryzax/qwen3_1.7B_sft_correct_v3_1e-5_4](https://huggingface.co/ryzax/qwen3_1.7B_sft_correct_v3_1e-5_4) on the [agentica-org/DeepScaleR-Preview-Dataset](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ryzax/1.5B-v18", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/muennighoff/s2/runs/1hnb0ebv) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0.dev0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
yapeichang/Qwen2.5-3B-RM8B
yapeichang
2025-06-05T00:32:26Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "conversational", "dataset:yapeichang/BLEUBERI-Tulu3-50k", "dataset:allenai/tulu-3-sft-mixture", "arxiv:2505.11080", "base_model:Qwen/Qwen2.5-3B", "base_model:finetune:Qwen/Qwen2.5-3B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-05T00:23:26Z
--- license: apache-2.0 datasets: - yapeichang/BLEUBERI-Tulu3-50k - allenai/tulu-3-sft-mixture base_model: - Qwen/Qwen2.5-3B library_name: transformers --- # Qwen2.5-3B-RM8B [[Paper](https://arxiv.org/pdf/2505.11080)] [[HF Collection](https://huggingface.co/collections/yapeichang/bleuberi-6840b3b9d02ff86c5878dafa)] [[Code](https://github.com/lilakk/BLEUBERI)] Authors: [Yapei Chang](https://lilakk.github.io/), [Yekyung Kim](https://mungg.github.io/), [Michael Krumdick](https://scholar.google.com/citations?user=nqf6-MwAAAAJ&hl=en), [Amir Zadeh](https://scholar.google.com/citations?user=MQFngiMAAAAJ&hl=en), [Chuan Li](https://scholar.google.com/citations?user=hoZesOwAAAAJ&hl=en), [Chris Tanner](https://www.chriswtanner.com/), [Mohit Iyyer](https://www.cs.umd.edu/~miyyer/) Contact: `[email protected]` > **TLDR** > We extend RLVR beyond easily verifiable domains like math and code to the more open-ended setting of general instruction following. Surprisingly, we find that BLEU—a simple n-gram matching metric—when paired with high-quality references from strong LLMs, achieves human agreement comparable to 8B and 27B reward models on Chatbot Arena outputs. Based on this insight, we introduce BLEUBERI, which uses BLEU directly as a reward in GRPO training. BLEUBERI matches the performance of RM-guided GRPO across four instruction-following benchmarks and produces more factually grounded outputs, with human raters rating them on par with those from reward model-trained systems. ## Model card <p align="center" style="margin-bottom: 0;"> <img width="80%" alt="image" src="https://raw.githubusercontent.com/lilakk/BLEUBERI/main/assets/table1.png"> </p> <p align="center" style="margin-top: 0; padding-top: 0;"> <em>Model performance across four general instruction-following benchmarks.</em> </p> This model corresponds to the Qwen2.5-3B, GRPO-RM row in the table. The RM used during training is [Skywork-RM-8B](https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2). ## Citation ```bibtex @misc{chang2025bleuberibleusurprisinglyeffective, title={BLEUBERI: BLEU is a surprisingly effective reward for instruction following}, author={Yapei Chang and Yekyung Kim and Michael Krumdick and Amir Zadeh and Chuan Li and Chris Tanner and Mohit Iyyer}, year={2025}, eprint={2505.11080}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.11080}, } ```
cello78/doctor-meta-llama-3-8B-1
cello78
2025-06-05T00:31:15Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b", "base_model:finetune:unsloth/llama-3-8b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-05T00:26:59Z
--- base_model: unsloth/llama-3-8b tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** cello78 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Manal0809/MedQA_Mistral_Nemo_Instructive_Best2
Manal0809
2025-06-05T00:19:33Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "base_model:finetune:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-05T00:19:15Z
--- base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Manal0809 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
natix-miner37/streetvision
natix-miner37
2025-06-05T00:03:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-05T00:02:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
maldv/praxis-bookwriter-qwen2.5-14b-sft
maldv
2025-06-04T23:16:30Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "writing", "conversational", "en", "dataset:SillyTilly/fiction-writer-596", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:finetune:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T15:01:15Z
--- library_name: transformers license: apache-2.0 datasets: - SillyTilly/fiction-writer-596 language: - en tags: - writing base_model: - Qwen/Qwen2.5-14B-Instruct pipeline_tags: - text-generation --- ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65b19c1b098c85365af5a83e/ajxGYxEJYimt29Qy9KrI-.webp) [GGUF](https://huggingface.co/mradermacher/praxis-bookwriter-qwen2.5-14b-sft-GGUF) # Praxis Bookwriter Qwen 2.5 14B Instruct My last iteration of fantasy writer suffered from one glaring flaw: It did not really follow instructions well. After much consideration, I decided it would make sense to introduce some information about the story chapter text somewhere to link instructions to the text generated. For this, I took strides of 16834 tokens across each of the books, and used R1 to generate a summary of the text. With some careful modification, I used this to generate the first user turn. Each subsequent assistant turn takes approximately 512 tokens of content, and then the user turn is a chapter header, or one paragraph of content. This alternated until I consumed the entirity of the original stride. ## Crafting the user prompt In an initial test, I tried putting these instructions in the system prompt. The result was underwhelming. For this version, the first user turn should contain an overview of the setting, resembling the following format: ```python system_prompt = """You are my writing assistant. Keep the story going. // Author: Neal Stephenson // Tags: sci-fi, romance, space opera""" prompt = """The following interaction begins in the park. The night is cool and the stars are bright. Tim and Val sit on a bench, talking about life and the universe. | Character | Influence | Interactions | Impact on Plot | |-----------------|-------------------------------------------|--------------------------------------------|-----------------------------------------| | **Tim** | Asks existential questions; challenges beliefs. | Engages with Val about love and mortality. | Drives philosophical inquiry. | | **Val** | Uses cosmic imagery (comet, black hole) to reframe love. | Offers metaphysical perspective; softens Tim's cynicism. | Provides an anchor to earthly life. | This passage is a *philosophical anchor* for the novel. It explores: - The paradox of love’s invisibility despite its centrality. - Human attempts to codify intangible concepts (love, time). - Existential balance between connection and solitude. - **Tim**: A pragmatic observer, framing life as a "puzzle" with logical solutions. His curiosity is tempered by existential fatigue ("Death will answer"). - **Val**: A romantic idealist using metaphors (comets, black holes) to poeticize love. Her warmth contrasts Tim’s analytical rigidity. **Character Development**: Their dialogue exposes Tim’s vulnerability (fear of losing Val) and Val’s capacity for profound empathy. 1. **Dialogue as Philosophy**: Use exchanges to explore abstract themes (e.g., love vs. logic). 2. **Metaphor Over Explanation**: Let characters reframe ideas through imagery (e..g., love as a comet). 3. **Contrast Tones**: Juxtapose melancholy (death) with whimsy (starry skies) to deepen emotional resonance. 4. **Subtext in Action**: Small gestures (holding hands, watching stars) reveal character dynamics more than explicit dialogue. --- This excerpt exemplifies how speculative fiction can grapple with timeless questions while grounding them in relatable human experiences. Writers should note the interplay of intellect and emotion, ensuring that philosophy never eclipses humanity. In **Chapter 1**, the duo debates whether love is a tangible entity or an illusion. Tim wonders if love could "hide in a star," while Val likens it to a comet that "doesn't exist until it appears." In **Chapter**, Val reframes love as an absence where two people meet—a metaphorical "black hole" where space-time warps. Both chapters juxtapose cosmic grandeur with intimate vulnerability. A lyrical blend of **melancholic reflection** and **cosmic wonder**. Dialogue oscillates between wistful acceptance ("Death's a necessary thing") and awe-inspired speculation ("the sky's a better place to be with you"). - **Existential Inquiry**: Love as both illusion and cosmic force. - **Cosmic Humility**: Humanity’s insignificance against infinite time/space. - **Opposing Perspectives**: Contrasts between logic (Tim) and intuition (Val). // Chapter: 1 """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ] ``` The content of this block can contain all variety of instruction about what to write in the proceeding frame. The summaries I used were between 500 and 1500 tokens, so the more detail about setting, location, characters, their relationships, and plot points, the better. The examples had their sections shuffled to provide for a variety of policy. If you do not specify content or the chapter boundary, the assistant will often generate chapter outlines; which is very useful. ## License This model is released under the limitations of both the apache 2 license. ## Author Praxis Maldevide ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{praxis-bookwriter-qwen2.5-14b-sft, title = {Praxis Bookwriter Qwen 2.5 14B}, url = {https://huggingface.co/maldv/praxis-bookwriter-qwen2.5-14b-sft}, author = {Praxis Maldevide}, month = {June}, year = {2025} } ```
Meggido/Contrl-Stheno-v1-8B-6.5bpw-h8-exl2
Meggido
2025-06-04T22:40:59Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "Sao10K/L3-8B-Stheno-v3.2", "Delta-Vector/Control-Nanuq-8B", "conversational", "en", "base_model:Darkknight535/Contrl-Stheno-v1-8B", "base_model:quantized:Darkknight535/Contrl-Stheno-v1-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T22:36:24Z
--- base_model: - Darkknight535/Contrl-Stheno-v1-8B base_model_relation: quantized quantized_by: Meggido tags: - merge - mergekit - lazymergekit - Sao10K/L3-8B-Stheno-v3.2 - Delta-Vector/Control-Nanuq-8B language: - en library_name: transformers --- # ⚡ExLlamaV2 quant of : [Contrl-Stheno-v1-8B](https://huggingface.co/Darkknight535/Contrl-Stheno-v1-8B) > [!note] > ➡️ **Exl2 version :** [0.3.1](https://github.com/turboderp/exllamav2/releases/tag/v0.3.1)<br/> > ➡️ **Cal. dataset :** Default.<br/> > 📄 <a href="https://huggingface.co/Meggido/Contrl-Stheno-v1-8B-6.5bpw-h8-exl2/resolve/main/measurement.json" download>Measurement.json</a> file. <style> ebody { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #FF69B4 0%, #800080 100%); color: #FFFFFF; margin: 0; padding: 0; font-size: 16px; min-height: 100vh; } .container { margin: 20px; background-color: rgba(28, 14, 36, 0.95); padding: 20px; border-radius: 12px; box-shadow: 0 4px 20px rgba(255, 105, 180, 0.4); border: 1px solid rgba(255, 105, 180, 0.4); outline: 1px solid rgba(255, 105, 180, 0.7); outline-offset: -1px; position: relative; backdrop-filter: blur(10px); } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 180, 0.98); border-radius: 12px; pointer-events: none; animation: borderGlow 2s ease-in-out infinite; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.98); } 50% { box-shadow: 0 0 20px rgba(255, 105, 180, 0.98); } 100% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.98); } } .header h1 { font-size: 28px; color: #FF69B4; margin: 0 0 20px 0; text-shadow: 0 0 15px rgba(255, 105, 180, 0.8); letter-spacing: 1px; } .update-section { margin-top: 30px; } .update-section h2, h2 { font-size: 24px; color: #FF69B4; text-shadow: 0 0 15px rgba(255, 105, 180, 0.8); letter-spacing: 0.5px; } .update-section p { font-size: 16px; line-height: 1.6; color: #FFE1FF; } .info p { color: #FFE1FF; line-height: 1.6; font-size: 16px; } .info img { width: 100%; border-radius: 10px; margin-bottom: 15px; box-shadow: 0 0 30px rgba(255, 105, 180, 0.5); border: 1px solid rgba(255, 105, 180, 0.4); outline: 1px solid rgba(255, 105, 180, 0.7); outline-offset: -1px; transition: transform 0.3s ease, box-shadow 0.3s ease; } .info img:hover { transform: scale(1.01); box-shadow: 0 0 40px rgba(255, 105, 180, 0.6); } a { color: #00FFEE; text-decoration: none; transition: color 0.3s ease; } a:hover { color: #FF1493; } .button { display: inline-block; background: linear-gradient(45deg, rgba(255, 105, 180, 0.9), rgba(128, 0, 128, 0.9)); color: #FFFFFF; padding: 12px 24px; border-radius: 5px; cursor: pointer; text-decoration: none; transition: all 0.3s ease; border: 1px solid rgba(255, 105, 180, 0.4); } .button:hover { background: linear-gradient(45deg, rgba(255, 105, 180, 1), rgba(128, 0, 128, 1)); box-shadow: 0 0 20px rgba(255, 105, 180, 0.7); transform: translateY(-2px); } pre { background-color: rgba(28, 14, 36, 0.95); padding: 15px; border-radius: 5px; overflow-x: auto; border: 1px solid rgba(255, 20, 147, 0.3); outline: 1px solid rgba(255, 20, 147, 0.6); outline-offset: -1px; } code { font-family: 'Courier New', monospace; color: #FFE1FF; } .benchmark-container { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 12px; padding: 20px; margin: 20px 0; position: relative; overflow: hidden; } .benchmark-container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 20, 147, 0.98); border-radius: 12px; pointer-events: none; animation: borderGlow 2s ease-in-out infinite; } .benchmark-grid { display: grid; grid-template-columns: repeat(4, 1fr); gap: 15px; } .metric-box { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; display: flex; flex-direction: column; align-items: center; text-align: center; transition: transform 0.3s ease, box-shadow 0.3s ease; } .metric-box:hover { transform: translateY(-2px); box-shadow: 0 4px 15px rgba(255, 20, 147, 0.3); } .metric-box .label { color: #00FFEE; font-size: 14px; margin-bottom: 8px; font-weight: 500; } .metric-box .value { color: #FFE1FF; font-size: 18px; font-weight: 600; text-shadow: 0 0 5px rgba(255, 20, 147, 0.5); } .metrics-section { margin-bottom: 30px; } .metrics-section details { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; margin-bottom: 15px; } .metrics-section summary { color: #FF1493; font-size: 20px; cursor: pointer; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); outline: none; padding: 5px 0; } .metrics-section summary::-webkit-details-marker { display: none; } .core-metrics-grid { display: grid; grid-template-columns: repeat(4, 1fr); gap: 15px; margin-bottom: 20px; } .progress-metrics { display: grid; gap: 15px; } .progress-metric { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; transition: transform 0.3s ease; } .progress-metric:hover { transform: translateY(-2px); } .progress-label { display: flex; justify-content: space-between; margin-bottom: 8px; color: #00FFEE; font-size: 14px; } .progress-value { color: #FFE1FF; } .progress-bar { width: 100%; height: 8px; background: rgba(0, 0, 0, 0.3); border: 1px solid rgba(255, 20, 147, 0.15); border-radius: 4px; position: relative; margin: 10px 0; overflow: hidden; } .progress-fill { height: 100%; background: linear-gradient(90deg, #FF69B4 0%, #800080 100%); border-radius: 4px; transition: width 1s ease-in-out; box-shadow: 0 0 15px rgba(255, 105, 180, 0.4); } .progress-bar.split { display: flex; justify-content: center; background: rgba(0, 0, 0, 0.3); border: 1px solid rgba(255, 20, 147, 0.15); overflow: visible; } .progress-fill-left { height: 100%; position: absolute; right: 50%; background: linear-gradient(90deg, #FF69B4 30%, rgba(255, 105, 180, 0.5) 100%); border-radius: 4px 0 0 4px; transition: width 0.3s ease-in-out; } .progress-fill-right { height: 100%; position: absolute; left: 50%; background: linear-gradient(90deg, rgba(128, 0, 128, 0.5) 0%, #800080 70%); border-radius: 0 4px 4px 0; transition: width 0.3s ease-in-out; } .progress-metric.split .progress-bar::before, .progress-metric.split .progress-bar::after { content: ''; position: absolute; width: 2px; height: 20px; background: rgba(255, 255, 255, 0.7); top: 50%; transform: translateY(-50%); z-index: 2; box-shadow: 0 0 8px rgba(255, 255, 255, 0.5); } .progress-metric.split .progress-bar::before { left: 0; } .progress-metric.split .progress-bar::after { right: 0; } .progress-metric.split:hover .progress-fill-left { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } .progress-metric.split:hover .progress-fill-right { box-shadow: 0 0 15px rgba(75, 0, 130, 0.5); } .progress-metric.split { padding: 12px 15px; } .progress-metric.split .progress-label { margin-bottom: 8px; gap: 12px; } .progress-metric.split .progress-label span:first-child, .progress-metric.split .progress-label span:last-child { flex: 0 0 80px; font-size: 14px; } .progress-metric.split .progress-value { font-weight: 600; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); font-size: 14px; min-width: 60px; text-align: center; } .progress-metric:hover .progress-fill-center { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } .progress-label { display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px; color: #00FFEE; font-size: 14px; } .progress-metric:not(.split) .progress-label { gap: 12px; } .progress-metric:not(.split) .progress-label span { flex: 0 0 auto; } .progress-metric:not(.split) .progress-value { color: #FFE1FF; } .progress-metric.split .progress-label { gap: 20px; } .progress-metric.split .progress-label span:first-child, .progress-metric.split .progress-label span:last-child { flex: 0 0 80px; } .progress-metric.split .progress-label span:first-child { text-align: right; } .progress-metric.split .progress-label span:last-child { text-align: left; } .progress-metric.split .progress-value { color: #FFE1FF; flex: 0 0 60px; text-align: center; } .progress-metric:hover .progress-fill { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } .progress-metric:hover .progress-fill-center { box-shadow: 0 0 15px rgba(75, 0, 130, 0.5); } .info-grid { display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px; } .creator-section { margin: 20px 0; } .creator-badge { display: inline-flex; align-items: center; background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 10px 15px; } .creator-label { color: #FFE1FF; font-size: 14px; margin-right: 8px; } .creator-link { display: flex; align-items: center; gap: 5px; color: #00FFEE; text-decoration: none; transition: all 0.3s ease; } .creator-name { font-weight: 600; } .creator-arrow { font-size: 16px; transition: transform 0.3s ease; } .creator-link:hover { color: #FF1493; } .creator-link:hover .creator-arrow { transform: translateX(3px); } .model-info { margin-top: 30px; } .name-legend { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 20px; margin: 20px 0; } .name-legend h3 { color: #FF1493; font-size: 18px; margin: 0 0 15px 0; } .legend-grid { display: grid; gap: 12px; } .legend-item { display: flex; align-items: baseline; gap: 10px; } .legend-key { color: #00FFEE; font-weight: 600; min-width: 80px; } .legend-value { color: #FFE1FF; } .model-description { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 20px; } .model-description p { margin: 0 0 15px 0; line-height: 1.6; } .model-description p:last-child { margin-bottom: 0; } .section-container { margin: 40px 0; } .info-card { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; overflow: hidden; } .info-header { background: rgba(255, 20, 147, 0.1); padding: 20px; border-bottom: 1px solid rgba(255, 20, 147, 0.3); } .info-header h3 { color: #FF1493; margin: 0 0 10px 0; font-size: 20px; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } .model-tags { display: flex; gap: 8px; flex-wrap: wrap; } .model-tag { background: rgba(0, 255, 238, 0.1); color: #00FFEE; padding: 4px 8px; border-radius: 4px; font-size: 12px; border: 1px solid rgba(0, 255, 238, 0.2); } .model-composition { padding: 20px; border-bottom: 1px solid rgba(255, 20, 147, 0.3); } .model-composition h4 { color: #FF1493; margin: 0 0 15px 0; font-size: 16px; } .composition-list { list-style: none; padding: 0; margin: 0; display: grid; gap: 10px; } .composition-list li { color: #FFE1FF; display: flex; align-items: baseline; gap: 8px; } .model-component { color: #00FFEE; font-weight: 500; min-width: 120px; } .template-card { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; } .template-item { display: flex; align-items: center; gap: 12px; } .template-icon { width: 24px; height: 24px; opacity: 0.8; } .template-content { display: flex; align-items: baseline; gap: 8px; } .template-link { color: #00FFEE; text-decoration: none; font-weight: 500; display: flex; align-items: center; gap: 5px; } .template-author { color: rgba(255, 225, 255, 0.7); font-size: 14px; } .quantized-container { display: grid; gap: 20px; } .quantized-section { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 20px; } .quantized-section h3 { color: #FF1493; font-size: 18px; margin: 0 0 15px 0; } .quantized-items { display: grid; gap: 12px; } .quantized-item { display: flex; align-items: baseline; gap: 10px; } .quantized-item .author { color: rgba(255, 225, 255, 0.7); min-width: 100px; } .multi-links { display: flex; align-items: center; gap: 8px; } .separator { color: rgba(255, 225, 255, 0.5); } .config-container { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; overflow: hidden; } .config-header { background: rgba(255, 20, 147, 0.1); padding: 15px 20px; border-bottom: 1px solid rgba(255, 20, 147, 0.3); } .model-name { color: #FF1493; font-weight: 600; } .config-content { padding: 20px; } .config-item { display: flex; flex-direction: column; gap: 5px; margin-bottom: 15px; } .config-label { color: #00FFEE; font-size: 14px; font-weight: 500; } .config-value { color: #FFE1FF; font-family: 'Courier New', monospace; } .config-models { margin-top: 20px; } .model-list { list-style: none; padding: 0; margin: 10px 0 0 0; } .model-list li { color: #FFE1FF; font-family: 'Courier New', monospace; padding: 5px 0; padding-left: 20px; position: relative; } .model-list li::before { content: '-'; position: absolute; left: 0; color: #00FFEE; } .link-arrow { display: inline-block; transition: transform 0.3s ease; } a:hover .link-arrow { transform: translateX(3px); } .benchmark-notification { background: rgba(255, 20, 147, 0.15); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; margin-bottom: 20px; padding: 12px; animation: glowPulse 2s infinite; } .notification-content { display: flex; align-items: center; justify-content: center; gap: 10px; text-align: center; } .notification-icon { font-size: 20px; } .notification-text { color: #FFE1FF; font-size: 16px; font-weight: 500; display: flex; flex-direction: column; align-items: center; gap: 5px; } .benchmark-link { color: #00FFEE; text-decoration: none; font-size: 14px; padding: 4px 8px; border-radius: 4px; transition: all 0.3s ease; border: 1px solid rgba(0, 255, 238, 0.3); } .benchmark-link:hover { background: rgba(0, 255, 238, 0.1); border-color: rgba(0, 255, 238, 0.5); color: #00FFEE; text-shadow: 0 0 5px rgba(0, 255, 238, 0.5); } @keyframes glowPulse { 0% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } 50% { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } 100% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } } .review-card { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; margin-bottom: 15px; } .review-card:last-child { margin-bottom: 0; } </style> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Contrl-Stheno-8B-v1</title> <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet"> <link href="styles.css" rel="stylesheet"> </head> <body> <div class="container"> <div class="header"> <h1>Contrl-Stheno-8B-v1</h1> </div> <div class="info"> <img src="https://huggingface.co/Darkknight535/Contrl-Stheno-v1-8B/resolve/main/img_.jpg" alt="Model banner"> <div class="creator-section"> <div class="creator-badge"> <span class="creator-label">Created by</span> <a href="https://huggingface.co/Darkknight535" target="_blank" class="creator-link"> <span class="creator-name">Darkknight535</span> <span class="creator-arrow">→</span> </a> </div> </div> <div class="model-info"> <h2>Model Information</h2> <div class="info-card"> <div class="info-header"> <h3>Contrl-Stheno-8B-v1</h3> <div class="model-tags"> <span class="model-tag">Stheno = Stheno-v3.2</span> <span class="model-tag">Contrl = Control-Nanuq</span> <span class="model-tag">8b Parameters</span> </div> </div> <div class="model-composition"> <h4>Model Composition</h4> <ul class="composition-list"> <li><span class="model-component"><a href="https://huggingface.co/Delta-Vector/Control-Nanuq-8B" target="_blank">Control Nanuq 8B</a></span> Sweetness and Creativity capabilities</li> <li><span class="model-component"><a href="https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2" target="_blank">Stheno-3.2 8B</a></span> Roleplay and logic</li> </ul> </div> <div class="model-description"> <p>An Experiment of mine which turned out to be great! It has dialogues I hadn't found even in 70B models.</p> </div> </div> <!--<div class="metrics-section"> <details open> <summary>User Reviews</summary> <div class="progress-metrics"> <div> <div class="review-card"> <div> <span>[USERNAME]</span> </div> <p>[REVIEW]</p> </div> <div class="review-card"> <div> <span>[USERNAME]</span> </div> <p>[REVIEW]</p> </div> <div class="review-card"> <div> <span>[USERNAME]</span> </div> <p>[REVIEW]</p> </div> </div> </div> </details> </div>--> </div> <div class="section-container"> <h2>Reccomended Templates & Prompts</h2> <div class="template-card"> <div class="template-item"> <div class="template-content"> <a href="" target="_blank" class="template-link"> Sao10k's Euryale System Prompt OR EVA System Prompt <span class="link-arrow">→</span> </a> <span class="template-author">by Sao10k and EVA-UNIT-01</span> </div> </div> </div> </div> <div class="section-container"> <h2>Quantized Versions</h2> <div class="quantized-container"> <div class="quantized-section"> <h3>GGUF Quantizations</h3> <div class="quantized-items"> <div class="quantized-item"> <span class="author">mradermacher</span> <a href="https://huggingface.co/mradermacher/Contrl-Stheno-v1-8B-GGUF" target="_blank"> STATIC-GGUF <span class="link-arrow">→</span> </a> </div> </div> </div> <div class="quantized-section"> <h3>Imat GGUF Quantizations</h3> <div class="quantized-items"> <div class="quantized-item"> <span class="author">mradermacher</span> <a href="https://huggingface.co/mradermacher/Contrl-Stheno-v1-8B-i1-GGUF" target="_blank"> IMAT-GGUF <span class="link-arrow">→</span> </a> </div> </div> </div> </div> </div> <div class="support-section"> <h2>Thanks to these people (I just made a script and Stole SteelSkull's Readme Template)</h2> <div class="support-buttons"> <a href="https://huggingface.co/Sao10k" target="_blank" class="button"> Support Sao10K </a> <a href="https://huggingface.co/Delta-Vector" target="_blank" class="button"> Support Delta-Vector </a> <a href="https://huggingface.co/Steelskull" target="_blank" class="button"> Support SteelSkull </a> </div> </div> </div> </div> </body> </html>
mohammadmahdinouri/interleaved-speech-test-1
mohammadmahdinouri
2025-06-04T22:28:38Z
185
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T22:30:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/Llama-3.2-11B-Vision-Surgical-CholecT50-8bit
mlx-community
2025-06-04T22:15:08Z
0
0
mlx
[ "mlx", "safetensors", "mllama", "license:other", "region:us" ]
null
2025-06-04T22:11:42Z
--- license: other license_name: nvidia-community-model-license license_link: https://www.nvidia.com/content/dam/en-zz/Solutions/license-agreements/enterprise-software/NVIDIA-Models-Community-License-2025-04-15-FINAL.pdf tags: - mlx --- # mlx-community/Llama-3.2-11B-Vision-Surgical-CholecT50-8bit This model was converted to MLX format from [`nvidia/Llama-3.2-11B-Vision-Surgical-CholecT50`]() using mlx-vlm version **0.1.26**. Refer to the [original model card](https://huggingface.co/nvidia/Llama-3.2-11B-Vision-Surgical-CholecT50) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/Llama-3.2-11B-Vision-Surgical-CholecT50-8bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
publication-charaf/MCQ_Qwen3-0.6B-Base_lr-0.0005_e-3_s-0
publication-charaf
2025-06-04T22:10:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:finetune:Qwen/Qwen3-0.6B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T18:07:14Z
--- base_model: Qwen/Qwen3-0.6B-Base library_name: transformers model_name: MCQ_Qwen3-0.6B-Base_lr-0.0005_e-3_s-0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MCQ_Qwen3-0.6B-Base_lr-0.0005_e-3_s-0 This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="publication-charaf/MCQ_Qwen3-0.6B-Base_lr-0.0005_e-3_s-0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/kamel-charaf-epfl/huggingface/runs/0g41tsyn) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
WoomyPearl/RVC-Model-Palace
WoomyPearl
2025-06-04T22:02:55Z
0
13
null
[ "license:openrail", "region:us" ]
null
2023-07-22T23:24:40Z
--- license: openrail --- Hello and welcome to my RVC voice model repository, here you can find models of various characters! Use them for anything from memes, song covers, to even masking your voice in Discord voice calls! Don't forget to credit me when using my models!
EhDa24/MNLP_M2_mcqa_model_full_ft1
EhDa24
2025-06-04T21:50:44Z
37
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:finetune:Qwen/Qwen3-0.6B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-29T07:01:12Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - generated_from_trainer model-index: - name: MNLP_M2_mcqa_model_full_ft1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MNLP_M2_mcqa_model_full_ft1 This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1
dslighfdsl/Llama-3.1-8B-Instruct-SFT-CoT-short-full-3-webshop
dslighfdsl
2025-06-04T20:50:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:sciworld", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T19:36:32Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct datasets: sciworld library_name: transformers model_name: Llama-3.1-8B-Instruct-SFT-CoT-short-full-3-webshop tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Llama-3.1-8B-Instruct-SFT-CoT-short-full-3-webshop This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [sciworld](https://huggingface.co/datasets/sciworld) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dslighfdsl/Llama-3.1-8B-Instruct-SFT-CoT-short-full-3-webshop", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/pengliangji2023-carnegie-mellon-university/huggingface/runs/wapbg8gf) This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.50.0.dev0 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Denn231/internal_clf_v_0.56
Denn231
2025-06-04T20:04:56Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-04T15:53:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nezamisafa/whisper-persian-v4.2.0
nezamisafa
2025-06-04T19:58:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "fa", "dataset:nezamisafa/ASR_fa_v1", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-04T04:56:38Z
--- library_name: transformers language: - fa license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - nezamisafa/ASR_fa_v1 metrics: - wer model-index: - name: whisper-large-v3-persian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ASR_fa_v1 type: nezamisafa/ASR_fa_v1 args: 'config: fa, split: test' metrics: - name: Wer type: wer value: 10.16949152542373 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v3-persian This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ASR_fa_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1160 - Wer: 10.1695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.098 | 1.2945 | 2000 | 0.1319 | 14.9118 | | 0.0381 | 2.5890 | 4000 | 0.1065 | 10.7267 | | 0.0151 | 3.8835 | 6000 | 0.1160 | 10.1695 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
JohanHeinsen/ENO_first_identifier
JohanHeinsen
2025-06-04T19:52:02Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "setfit", "text-classification", "license:apache-2.0", "region:us" ]
text-classification
2025-06-04T19:46:46Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- This is a text classifier designed to identify whether a line of text is the first line of text in a news item. The model is designed to aid the segmentation of ENO. ## Metrics: Accuracy: 0.9041353383458647 f1: 0.9092526690391459
luckeciano/Qwen-2.5-7B-GRPO-Minibatch-8Actions_133
luckeciano
2025-06-04T19:41:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T23:30:16Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-Minibatch-8Actions_133 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-Minibatch-8Actions_133 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-Minibatch-8Actions_133", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/1ni52rm8) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Cornelias/Pyramids-ML_agents
Cornelias
2025-06-04T19:38:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2025-06-04T19:38:34Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Cornelias/Pyramids-ML_agents 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
abdou-u/MNLP_M3_quantized_mcqa_model
abdou-u
2025-06-04T19:08:41Z
209
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-03T23:51:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pictgensupport/businesscasual
pictgensupport
2025-06-04T19:01:16Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-04T19:01:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: businesscasual --- # Businesscasual <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `businesscasual` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pictgensupport/businesscasual', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/BioXP-0.5B-MedMCQA-GGUF
mradermacher
2025-06-04T19:00:06Z
0
0
transformers
[ "transformers", "gguf", "grpo", "rl", "biomed", "medmcqa", "medical", "explainableAI", "XAI", "tramsformers", "trl", "en", "dataset:openlifescienceai/medmcqa", "base_model:abaryan/BioXP-0.5B-MedMCQA", "base_model:quantized:abaryan/BioXP-0.5B-MedMCQA", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-04T14:22:57Z
--- base_model: abaryan/BioXP-0.5B-MedMCQA datasets: - openlifescienceai/medmcqa language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - grpo - rl - biomed - medmcqa - medical - explainableAI - XAI - tramsformers - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/abaryan/BioXP-0.5B-MedMCQA <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/BioXP-0.5B-MedMCQA-GGUF/resolve/main/BioXP-0.5B-MedMCQA.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jhugentobler/quanto-A8W8
jhugentobler
2025-06-04T18:59:12Z
0
0
null
[ "safetensors", "qwen3", "model_hub_mixin", "8-bit", "region:us" ]
null
2025-06-04T17:56:03Z
--- tags: - model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
jebondas/Video.Foto.De.Alana.Flores.Viral.video.Full.Video.Alana.Foto.Filtrada.De.Alana.Flores.Twitter
jebondas
2025-06-04T18:56:29Z
0
0
null
[ "region:us" ]
null
2025-06-04T18:56:01Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?hgg) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
ver-viral-video-y-fotos-Alana-Flores/Ver.foto.intima.alana.flores.video.filtrado.leidy.alvarez.victimas.deepfake
ver-viral-video-y-fotos-Alana-Flores
2025-06-04T18:54:31Z
0
0
null
[ "region:us" ]
null
2025-06-04T18:54:16Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?hgg) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs
kowndinya23
2025-06-04T18:54:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:trl-lib/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6", "base_model:finetune:kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T15:01:41Z
--- base_model: kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6 datasets: trl-lib/ultrafeedback_binarized library_name: transformers model_name: ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs This model is a fine-tuned version of [kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6](https://huggingface.co/kowndinya23/tulu-v2-sft-mixture-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kowndinya23/ultrafeedback_binarized-tulu-150K-llama-3-8b-1-epochs-alpha-0.2-beta-0.6-2-epochs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://adobesensei.wandb.io/hrenduchinta/huggingface/runs/lh36rj2c) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Paro-Aarti-C/wATCH.Paro.Aarti.viral.video.original
Paro-Aarti-C
2025-06-04T18:50:29Z
0
0
null
[ "region:us" ]
null
2025-06-04T18:50:17Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?hgg) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?hgg) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?hgg)
prithivMLmods/GCIRS-Reasoning-1.5B-R1
prithivMLmods
2025-06-04T18:40:58Z
0
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "code", "reinforcement-learning", "science", "math", "conversational", "en", "arxiv:2412.15115", "arxiv:1906.01749", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T16:57:45Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen2.5-1.5B-Instruct library_name: transformers tags: - text-generation-inference - code - reinforcement-learning - science - math pipeline_tag: text-generation --- ![R1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BKHWttLe9Z8hJ-azW0b8i.png) # **GCIRS-Reasoning-1.5B-R1** > **GCIRS-Reasoning-1.5B-R1** is a **research-grade reasoning model** fine-tuned from **Qwen2.5-1.5B-Instruct**, focused on **non-fictional reasoning**, **factual consistency**, and **scientific depth**. Trained with reinforcement learning using the **Big Reasoning Traces** dataset from DeepSeek, this model is tailored for complex analytical tasks and scientific rigor in high-stakes or research environments. > \[!note] > GGUF: [https://huggingface.co/prithivMLmods/GCIRS-Reasoning-1.5B-R1-GGUF](https://huggingface.co/prithivMLmods/GCIRS-Reasoning-1.5B-R1-GGUF) --- ## **Key Features** 1. **Reinforcement Learning on Big Reasoning Traces** Fine-tuned using **DeepSeek’s Big Reasoning Traces**, ensuring clarity in multi-step reasoning, factual deduction, and long-form scientific argumentation. 2. **Research-Ready Scientific Fidelity** Designed for researchers, educators, and analysts—offers **reliable factual recall**, **logical structuring**, and precise step-by-step explanation. 3. **Structured Output in LaTeX, Markdown, and JSON** Supports technical documentation and publishing with seamless integration of **LaTeX equations**, **Markdown formatting**, and **JSON output**. 4. **Multilingual Technical Reasoning** Effective across **20+ languages**, especially in **scientific**, **academic**, and **technical domains**. 5. **Efficient for Inference** Despite its **1.5B parameter scale**, it's optimized for **low-latency inference** across **modern GPUs** and **research pipelines**. --- ## **Quickstart with Transformers** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/GCIRS-Reasoning-1.5B-R1" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Explain the principle of entropy in thermodynamics with examples." messages = [ {"role": "system", "content": "You are a scientific reasoning assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` --- ## **Intended Use** * Scientific and research-grade question answering * Conceptual explanations in physics, biology, and chemistry * Factual, non-fictional structured content generation * Academic tutoring and reasoning assessment * High-fidelity inference in low-latency research settings ## **Limitations** * Not designed for casual chat or storytelling * Performance may decline outside scientific/technical domains * Limited creativity and abstract generalization * Context limitations in extremely long research documents ## **References** 1. [Qwen2.5 Technical Report (2024)](https://arxiv.org/pdf/2412.15115) 2. [Big Reasoning Traces (DeepSeek Research)]() 3. [Reinforcement Learning with Human Feedback (RLHF)](https://arxiv.org/abs/1906.01749)
Luandrie/_Whisper_Call_Center_en_lr8
Luandrie
2025-06-04T18:31:27Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:lelapa/www_call_center_merged_en_corrected", "base_model:distil-whisper/distil-large-v3", "base_model:finetune:distil-whisper/distil-large-v3", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-04T13:26:21Z
--- library_name: transformers language: - en license: mit base_model: distil-whisper/distil-large-v3 tags: - generated_from_trainer datasets: - lelapa/www_call_center_merged_en_corrected metrics: - wer model-index: - name: Distill Whisper Call Center Tforge Dev lr8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: www_call_center_merged_en_corrected type: lelapa/www_call_center_merged_en_corrected args: 'config: en, split: test' metrics: - name: Wer type: wer value: 48.57864813644978 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Distill Whisper Call Center Tforge Dev lr8 This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on the www_call_center_merged_en_corrected dataset. It achieves the following results on the evaluation set: - Loss: 1.3423 - Wer: 48.5786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.8384 | 3.0722 | 1000 | 1.3904 | 49.8263 | | 0.6597 | 6.1444 | 2000 | 1.3512 | 48.8471 | | 0.6763 | 9.2166 | 3000 | 1.3436 | 48.2628 | | 0.6504 | 12.2888 | 4000 | 1.3423 | 48.5786 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.20.3
doguilmak/facade-controlnet-sd15
doguilmak
2025-06-04T18:29:59Z
0
0
diffusers
[ "diffusers", "safetensors", "controlnet", "stable-diffusion", "conditional-generation", "segmentation", "image-to-image", "en", "arxiv:2302.05543", "base_model:lllyasviel/sd-controlnet-seg", "base_model:adapter:lllyasviel/sd-controlnet-seg", "license:mit", "model-index", "region:us" ]
image-to-image
2025-06-04T14:02:33Z
--- license: mit language: - en metrics: - mse base_model: - lllyasviel/sd-controlnet-seg pipeline_tag: image-to-image tags: - controlnet - stable-diffusion - conditional-generation - segmentation model-index: - name: Facades-ControlNet-SD15 results: - task: type: image-to-image name: Conditional Image Generation dataset: name: CMP Facades Dataset type: facades url: https://www.kaggle.com/datasets/balraj98/facades-dataset metrics: - name: Mean Squared Error type: mse value: 0.0178 source: name: Custom Evaluation url: https://www.kaggle.com/datasets/balraj98/facades-dataset --- # Model Card for Facades ControlNet with Stable Diffusion v1.5 ![Cover](https://cdn-uploads.huggingface.co/production/uploads/67e303fff01ee3e3ab5505a2/DpqNC41GG2ngcNIeJoByU.png) This model is a fine-tuned version of ControlNet built on top of **Stable Diffusion v1.5**, specifically conditioned on **semantic segmentation maps** from the **Facades dataset**. It enables structure-aware image generation by combining natural language prompts with pixel-level guidance in the form of building façade segmentation masks. The result is highly controllable generation of realistic architectural scenes that reflect both structural layout and textual context. ## Model Description - **Base Model**: [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) - **Control Type**: Semantic segmentation maps (Facades-style RGB masks) - **Architecture**: U-Net + ControlNet adapter + Variational Autoencoder (VAE) + CLIP Text Encoder (ViT-L/14) - **Training Epochs**: 30 full passes over the training data - **Training Dataset**: [Facades dataset](https://www.kaggle.com/datasets/balraj98/facades-dataset) - **Resolution**: Trained at 512×512 resolution - **Hardware**: NVIDIA A100 40GB GPU — total training time was approximately 1 hours - **Loss Function**: Mean Squared Error (MSE) between predicted and true noise vectors (used in DDPM training) The ControlNet branches were trained while freezing the base Stable Diffusion weights. This retains the generative capabilities of the original model while specializing it to generate façade-aligned structures. ## Usage This model is available via the `diffusers` library. Here's how to load and use it: ```python from diffusers import StableDiffusionControlNetPipeline import torch pipe = StableDiffusionControlNetPipeline.from_pretrained( "doguilmak/facade-controlnet-sd15", torch_dtype=torch.float32, safety_checker=None ) pipe.to("cuda") # Load your segmentation map (RGB format expected) from PIL import Image control = Image.open("facades_segmentation_map.png").convert("RGB") # Run generation result = pipe( prompt="a modern building with large glass windows", negative_prompt="blurry, distorted", image=control, control_image=control, num_inference_steps=50, guidance_scale=9, output_type="pil" ).images[0] result.save("facade_result.png") ``` ## Example Outputs These example illustrate the model’s ability to generate photorealistic urban scenes guided by semantic segmentation maps. The output demonstrate strong spatial alignment between the input masks and the synthesized content. ![inference](https://cdn-uploads.huggingface.co/production/uploads/67e303fff01ee3e3ab5505a2/Dphjxf34_5ysSTTMrCaEi.png) ## Limitations - The model was trained on **512×512** resolution; using higher resolutions without resizing may cause artifacts. - It performs best on scenes resembling architectural façades. - The control image should resemble **Facades-style segmentation formats** for optimal results. ## License This stable diffusion base model is distributed under the [CreativeML Open RAIL-M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license). Our model is distributed under the [MIT license](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md). ## References - **ControlNet Segmentation Model**: [lllyasviel/sd-controlnet-seg @ Hugging Face](https://huggingface.co/lllyasviel/sd-controlnet-seg) - **ControlNet Paper**: Y. Zhao _et al._, “Adding Conditional Control to Text-to-Image Diffusion Models,” _arXiv preprint_ arXiv:2302.05543, 2023. - **Facades Dataset**: [Kaggle: Facades Dataset](https://www.kaggle.com/datasets/balraj98/facades-dataset)
ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3
ArtusDev
2025-06-04T18:18:16Z
0
0
null
[ "base_model:TheDrummer/Cydonia-24B-v3", "base_model:quantized:TheDrummer/Cydonia-24B-v3", "region:us" ]
null
2025-06-04T16:58:35Z
--- base_model: TheDrummer/Cydonia-24B-v3 base_model_relation: quantized quantized_by: ArtusDev --- ## EXL3 Quants of TheDrummer/Cydonia-24B-v3 EXL3 quants of [TheDrummer/Cydonia-24B-v3](https://huggingface.co/TheDrummer/Cydonia-24B-v3) using <a href="https://github.com/turboderp-org/exllamav3/">exllamav3</a> for quantization. ### Quants | Quant(Revision) | Bits per Weight | Head Bits | | -------- | ---------- | --------- | | [2.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/2.0bpw_H6) | 2.0 | 6 | | [2.5_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/2.5bpw_H6) | 2.5 | 6 | | [3.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/3.0bpw_H6) | 3.0 | 6 | | [3.5_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/3.5bpw_H6) | 3.5 | 6 | | [4.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/4.0bpw_H6) | 4.0 | 6 | | [4.5_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/4.5bpw_H6) | 4.5 | 6 | | [5.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/5.0bpw_H6) | 5.0 | 6 | | [6.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/6.0bpw_H6) | 6.0 | 6 | | [8.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/8.0bpw_H6) | 8.0 | 6 | | [8.0_H8](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3/tree/8.0bpw_H8) | 8.0 | 8 | ### Downloading quants with huggingface-cli <details> <summary>Click to view download instructions</summary> Install hugginface-cli: ```bash pip install -U "huggingface_hub[cli]" ``` Download quant by targeting the specific quant revision (branch): ``` huggingface-cli download ArtusDev/TheDrummer_Cydonia-24B-v3-EXL3 --revision "5bpw_H6" --local-dir ./ ``` </details>
aitaliyahia/Llama-3.2-1B-Instruct-heart
aitaliyahia
2025-06-04T18:16:53Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-06-04T18:03:42Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - generated_from_trainer metrics: - accuracy model-index: - name: Llama-3.2-1B-Instruct-heart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.2-1B-Instruct-heart This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4705 - Accuracy: 0.8056 - Report: precision recall f1-score support absence 0.82 0.82 0.82 98 presence 0.78 0.79 0.79 82 accuracy 0.81 180 macro avg 0.80 0.80 0.80 180 weighted avg 0.81 0.81 0.81 180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Report | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 105 | 0.4871 | 0.7778 | precision recall f1-score support absence 0.84 0.73 0.78 98 presence 0.72 0.83 0.77 82 accuracy 0.78 180 macro avg 0.78 0.78 0.78 180 weighted avg 0.79 0.78 0.78 180 | | No log | 2.0 | 210 | 0.5933 | 0.7389 | precision recall f1-score support absence 0.87 0.61 0.72 98 presence 0.66 0.89 0.76 82 accuracy 0.74 180 macro avg 0.76 0.75 0.74 180 weighted avg 0.77 0.74 0.74 180 | | No log | 3.0 | 315 | 0.4705 | 0.8056 | precision recall f1-score support absence 0.82 0.82 0.82 98 presence 0.78 0.79 0.79 82 accuracy 0.81 180 macro avg 0.80 0.80 0.80 180 weighted avg 0.81 0.81 0.81 180 | | No log | 4.0 | 420 | 0.5159 | 0.8 | precision recall f1-score support absence 0.89 0.72 0.80 98 presence 0.73 0.89 0.80 82 accuracy 0.80 180 macro avg 0.81 0.81 0.80 180 weighted avg 0.82 0.80 0.80 180 | | 0.5206 | 5.0 | 525 | 0.7814 | 0.7222 | precision recall f1-score support absence 0.89 0.56 0.69 98 presence 0.64 0.91 0.75 82 accuracy 0.72 180 macro avg 0.76 0.74 0.72 180 weighted avg 0.77 0.72 0.72 180 | | 0.5206 | 6.0 | 630 | 0.6542 | 0.7611 | precision recall f1-score support absence 0.89 0.64 0.75 98 presence 0.68 0.90 0.77 82 accuracy 0.76 180 macro avg 0.78 0.77 0.76 180 weighted avg 0.79 0.76 0.76 180 | | 0.5206 | 7.0 | 735 | 0.6553 | 0.7833 | precision recall f1-score support absence 0.89 0.68 0.77 98 presence 0.70 0.90 0.79 82 accuracy 0.78 180 macro avg 0.80 0.79 0.78 180 weighted avg 0.81 0.78 0.78 180 | | 0.5206 | 8.0 | 840 | 0.7076 | 0.7611 | precision recall f1-score support absence 0.90 0.63 0.74 98 presence 0.68 0.91 0.78 82 accuracy 0.76 180 macro avg 0.79 0.77 0.76 180 weighted avg 0.80 0.76 0.76 180 | | 0.5206 | 9.0 | 945 | 0.6092 | 0.8278 | precision recall f1-score support absence 0.90 0.77 0.83 98 presence 0.76 0.90 0.83 82 accuracy 0.83 180 macro avg 0.83 0.83 0.83 180 weighted avg 0.84 0.83 0.83 180 | | 0.5003 | 10.0 | 1050 | 0.7323 | 0.7667 | precision recall f1-score support absence 0.90 0.64 0.75 98 presence 0.68 0.91 0.78 82 accuracy 0.77 180 macro avg 0.79 0.78 0.77 180 weighted avg 0.80 0.77 0.76 180 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
emilecornamusaz/MNLP_M3_document_encoder
emilecornamusaz
2025-06-04T18:15:52Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "mteb", "en", "arxiv:2401.03462", "arxiv:2312.15503", "arxiv:2311.13534", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-04T18:14:57Z
--- tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: bge-large-en-v1.5 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.8507462686567 - type: ap value: 38.566457320228245 - type: f1 value: 69.69386648043475 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.416675 - type: ap value: 89.1928861155922 - type: f1 value: 92.39477019574215 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.175999999999995 - type: f1 value: 47.80712792870253 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 40.184999999999995 - type: map_at_10 value: 55.654 - type: map_at_100 value: 56.25 - type: map_at_1000 value: 56.255 - type: map_at_3 value: 51.742999999999995 - type: map_at_5 value: 54.129000000000005 - type: mrr_at_1 value: 40.967 - type: mrr_at_10 value: 55.96 - type: mrr_at_100 value: 56.54900000000001 - type: mrr_at_1000 value: 56.554 - type: mrr_at_3 value: 51.980000000000004 - type: mrr_at_5 value: 54.44 - type: ndcg_at_1 value: 40.184999999999995 - type: ndcg_at_10 value: 63.542 - type: ndcg_at_100 value: 65.96499999999999 - type: ndcg_at_1000 value: 66.08699999999999 - type: ndcg_at_3 value: 55.582 - type: ndcg_at_5 value: 59.855000000000004 - type: precision_at_1 value: 40.184999999999995 - type: precision_at_10 value: 8.841000000000001 - type: precision_at_100 value: 0.987 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 22.238 - type: precision_at_5 value: 15.405 - type: recall_at_1 value: 40.184999999999995 - type: recall_at_10 value: 88.407 - type: recall_at_100 value: 98.72 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 66.714 - type: recall_at_5 value: 77.027 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.567077926750066 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 43.19453389182364 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.46555939623092 - type: mrr value: 77.82361605768807 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.9554128814735 - type: cos_sim_spearman value: 84.65373612172036 - type: euclidean_pearson value: 83.2905059954138 - type: euclidean_spearman value: 84.52240782811128 - type: manhattan_pearson value: 82.99533802997436 - type: manhattan_spearman value: 84.20673798475734 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 87.78896103896103 - type: f1 value: 87.77189310964883 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.714538337650495 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.90108349284447 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.795 - type: map_at_10 value: 43.669000000000004 - type: map_at_100 value: 45.151 - type: map_at_1000 value: 45.278 - type: map_at_3 value: 40.006 - type: map_at_5 value: 42.059999999999995 - type: mrr_at_1 value: 39.771 - type: mrr_at_10 value: 49.826 - type: mrr_at_100 value: 50.504000000000005 - type: mrr_at_1000 value: 50.549 - type: mrr_at_3 value: 47.115 - type: mrr_at_5 value: 48.832 - type: ndcg_at_1 value: 39.771 - type: ndcg_at_10 value: 50.217999999999996 - type: ndcg_at_100 value: 55.454 - type: ndcg_at_1000 value: 57.37 - type: ndcg_at_3 value: 44.885000000000005 - type: ndcg_at_5 value: 47.419 - type: precision_at_1 value: 39.771 - type: precision_at_10 value: 9.642000000000001 - type: precision_at_100 value: 1.538 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 21.268 - type: precision_at_5 value: 15.536 - type: recall_at_1 value: 32.795 - type: recall_at_10 value: 62.580999999999996 - type: recall_at_100 value: 84.438 - type: recall_at_1000 value: 96.492 - type: recall_at_3 value: 47.071000000000005 - type: recall_at_5 value: 54.079 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.671 - type: map_at_10 value: 43.334 - type: map_at_100 value: 44.566 - type: map_at_1000 value: 44.702999999999996 - type: map_at_3 value: 40.343 - type: map_at_5 value: 41.983 - type: mrr_at_1 value: 40.764 - type: mrr_at_10 value: 49.382 - type: mrr_at_100 value: 49.988 - type: mrr_at_1000 value: 50.03300000000001 - type: mrr_at_3 value: 47.293 - type: mrr_at_5 value: 48.51 - type: ndcg_at_1 value: 40.764 - type: ndcg_at_10 value: 49.039 - type: ndcg_at_100 value: 53.259 - type: ndcg_at_1000 value: 55.253 - type: ndcg_at_3 value: 45.091 - type: ndcg_at_5 value: 46.839999999999996 - type: precision_at_1 value: 40.764 - type: precision_at_10 value: 9.191 - type: precision_at_100 value: 1.476 - type: precision_at_1000 value: 0.19499999999999998 - type: precision_at_3 value: 21.72 - type: precision_at_5 value: 15.299 - type: recall_at_1 value: 32.671 - type: recall_at_10 value: 58.816 - type: recall_at_100 value: 76.654 - type: recall_at_1000 value: 89.05999999999999 - type: recall_at_3 value: 46.743 - type: recall_at_5 value: 51.783 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 40.328 - type: map_at_10 value: 53.32599999999999 - type: map_at_100 value: 54.37499999999999 - type: map_at_1000 value: 54.429 - type: map_at_3 value: 49.902 - type: map_at_5 value: 52.002 - type: mrr_at_1 value: 46.332 - type: mrr_at_10 value: 56.858 - type: mrr_at_100 value: 57.522 - type: mrr_at_1000 value: 57.54899999999999 - type: mrr_at_3 value: 54.472 - type: mrr_at_5 value: 55.996 - type: ndcg_at_1 value: 46.332 - type: ndcg_at_10 value: 59.313 - type: ndcg_at_100 value: 63.266999999999996 - type: ndcg_at_1000 value: 64.36 - type: ndcg_at_3 value: 53.815000000000005 - type: ndcg_at_5 value: 56.814 - type: precision_at_1 value: 46.332 - type: precision_at_10 value: 9.53 - type: precision_at_100 value: 1.238 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 24.054000000000002 - type: precision_at_5 value: 16.589000000000002 - type: recall_at_1 value: 40.328 - type: recall_at_10 value: 73.421 - type: recall_at_100 value: 90.059 - type: recall_at_1000 value: 97.81 - type: recall_at_3 value: 59.009 - type: recall_at_5 value: 66.352 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.424 - type: map_at_10 value: 36.332 - type: map_at_100 value: 37.347 - type: map_at_1000 value: 37.422 - type: map_at_3 value: 33.743 - type: map_at_5 value: 35.176 - type: mrr_at_1 value: 29.153000000000002 - type: mrr_at_10 value: 38.233 - type: mrr_at_100 value: 39.109 - type: mrr_at_1000 value: 39.164 - type: mrr_at_3 value: 35.876000000000005 - type: mrr_at_5 value: 37.169000000000004 - type: ndcg_at_1 value: 29.153000000000002 - type: ndcg_at_10 value: 41.439 - type: ndcg_at_100 value: 46.42 - type: ndcg_at_1000 value: 48.242000000000004 - type: ndcg_at_3 value: 36.362 - type: ndcg_at_5 value: 38.743 - type: precision_at_1 value: 29.153000000000002 - type: precision_at_10 value: 6.315999999999999 - type: precision_at_100 value: 0.927 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 15.443000000000001 - type: precision_at_5 value: 10.644 - type: recall_at_1 value: 27.424 - type: recall_at_10 value: 55.364000000000004 - type: recall_at_100 value: 78.211 - type: recall_at_1000 value: 91.74600000000001 - type: recall_at_3 value: 41.379 - type: recall_at_5 value: 47.14 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.601 - type: map_at_10 value: 27.826 - type: map_at_100 value: 29.017 - type: map_at_1000 value: 29.137 - type: map_at_3 value: 25.125999999999998 - type: map_at_5 value: 26.765 - type: mrr_at_1 value: 24.005000000000003 - type: mrr_at_10 value: 32.716 - type: mrr_at_100 value: 33.631 - type: mrr_at_1000 value: 33.694 - type: mrr_at_3 value: 29.934 - type: mrr_at_5 value: 31.630999999999997 - type: ndcg_at_1 value: 24.005000000000003 - type: ndcg_at_10 value: 33.158 - type: ndcg_at_100 value: 38.739000000000004 - type: ndcg_at_1000 value: 41.495 - type: ndcg_at_3 value: 28.185 - type: ndcg_at_5 value: 30.796 - type: precision_at_1 value: 24.005000000000003 - type: precision_at_10 value: 5.908 - type: precision_at_100 value: 1.005 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 13.391 - type: precision_at_5 value: 9.876 - type: recall_at_1 value: 19.601 - type: recall_at_10 value: 44.746 - type: recall_at_100 value: 68.82300000000001 - type: recall_at_1000 value: 88.215 - type: recall_at_3 value: 31.239 - type: recall_at_5 value: 37.695 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.130000000000003 - type: map_at_10 value: 40.96 - type: map_at_100 value: 42.282 - type: map_at_1000 value: 42.392 - type: map_at_3 value: 37.889 - type: map_at_5 value: 39.661 - type: mrr_at_1 value: 36.958999999999996 - type: mrr_at_10 value: 46.835 - type: mrr_at_100 value: 47.644 - type: mrr_at_1000 value: 47.688 - type: mrr_at_3 value: 44.562000000000005 - type: mrr_at_5 value: 45.938 - type: ndcg_at_1 value: 36.958999999999996 - type: ndcg_at_10 value: 47.06 - type: ndcg_at_100 value: 52.345 - type: ndcg_at_1000 value: 54.35 - type: ndcg_at_3 value: 42.301 - type: ndcg_at_5 value: 44.635999999999996 - type: precision_at_1 value: 36.958999999999996 - type: precision_at_10 value: 8.479000000000001 - type: precision_at_100 value: 1.284 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 20.244 - type: precision_at_5 value: 14.224999999999998 - type: recall_at_1 value: 30.130000000000003 - type: recall_at_10 value: 59.27 - type: recall_at_100 value: 81.195 - type: recall_at_1000 value: 94.21199999999999 - type: recall_at_3 value: 45.885 - type: recall_at_5 value: 52.016 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.169999999999998 - type: map_at_10 value: 36.451 - type: map_at_100 value: 37.791000000000004 - type: map_at_1000 value: 37.897 - type: map_at_3 value: 33.109 - type: map_at_5 value: 34.937000000000005 - type: mrr_at_1 value: 32.877 - type: mrr_at_10 value: 42.368 - type: mrr_at_100 value: 43.201 - type: mrr_at_1000 value: 43.259 - type: mrr_at_3 value: 39.763999999999996 - type: mrr_at_5 value: 41.260000000000005 - type: ndcg_at_1 value: 32.877 - type: ndcg_at_10 value: 42.659000000000006 - type: ndcg_at_100 value: 48.161 - type: ndcg_at_1000 value: 50.345 - type: ndcg_at_3 value: 37.302 - type: ndcg_at_5 value: 39.722 - type: precision_at_1 value: 32.877 - type: precision_at_10 value: 7.9 - type: precision_at_100 value: 1.236 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 17.846 - type: precision_at_5 value: 12.9 - type: recall_at_1 value: 26.169999999999998 - type: recall_at_10 value: 55.35 - type: recall_at_100 value: 78.755 - type: recall_at_1000 value: 93.518 - type: recall_at_3 value: 40.176 - type: recall_at_5 value: 46.589000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.15516666666667 - type: map_at_10 value: 36.65741666666667 - type: map_at_100 value: 37.84991666666666 - type: map_at_1000 value: 37.96316666666667 - type: map_at_3 value: 33.74974999999999 - type: map_at_5 value: 35.3765 - type: mrr_at_1 value: 32.08233333333334 - type: mrr_at_10 value: 41.033833333333334 - type: mrr_at_100 value: 41.84524999999999 - type: mrr_at_1000 value: 41.89983333333333 - type: mrr_at_3 value: 38.62008333333333 - type: mrr_at_5 value: 40.03441666666666 - type: ndcg_at_1 value: 32.08233333333334 - type: ndcg_at_10 value: 42.229 - type: ndcg_at_100 value: 47.26716666666667 - type: ndcg_at_1000 value: 49.43466666666667 - type: ndcg_at_3 value: 37.36408333333333 - type: ndcg_at_5 value: 39.6715 - type: precision_at_1 value: 32.08233333333334 - type: precision_at_10 value: 7.382583333333334 - type: precision_at_100 value: 1.16625 - type: precision_at_1000 value: 0.15408333333333332 - type: precision_at_3 value: 17.218 - type: precision_at_5 value: 12.21875 - type: recall_at_1 value: 27.15516666666667 - type: recall_at_10 value: 54.36683333333333 - type: recall_at_100 value: 76.37183333333333 - type: recall_at_1000 value: 91.26183333333333 - type: recall_at_3 value: 40.769916666666674 - type: recall_at_5 value: 46.702333333333335 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.749 - type: map_at_10 value: 33.001999999999995 - type: map_at_100 value: 33.891 - type: map_at_1000 value: 33.993 - type: map_at_3 value: 30.703999999999997 - type: map_at_5 value: 31.959 - type: mrr_at_1 value: 28.834 - type: mrr_at_10 value: 35.955 - type: mrr_at_100 value: 36.709 - type: mrr_at_1000 value: 36.779 - type: mrr_at_3 value: 33.947 - type: mrr_at_5 value: 35.089 - type: ndcg_at_1 value: 28.834 - type: ndcg_at_10 value: 37.329 - type: ndcg_at_100 value: 41.79 - type: ndcg_at_1000 value: 44.169000000000004 - type: ndcg_at_3 value: 33.184999999999995 - type: ndcg_at_5 value: 35.107 - type: precision_at_1 value: 28.834 - type: precision_at_10 value: 5.7669999999999995 - type: precision_at_100 value: 0.876 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 14.213000000000001 - type: precision_at_5 value: 9.754999999999999 - type: recall_at_1 value: 25.749 - type: recall_at_10 value: 47.791 - type: recall_at_100 value: 68.255 - type: recall_at_1000 value: 85.749 - type: recall_at_3 value: 36.199 - type: recall_at_5 value: 41.071999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.777 - type: map_at_10 value: 25.201 - type: map_at_100 value: 26.423999999999996 - type: map_at_1000 value: 26.544 - type: map_at_3 value: 22.869 - type: map_at_5 value: 24.023 - type: mrr_at_1 value: 21.473 - type: mrr_at_10 value: 29.12 - type: mrr_at_100 value: 30.144 - type: mrr_at_1000 value: 30.215999999999998 - type: mrr_at_3 value: 26.933 - type: mrr_at_5 value: 28.051 - type: ndcg_at_1 value: 21.473 - type: ndcg_at_10 value: 30.003 - type: ndcg_at_100 value: 35.766 - type: ndcg_at_1000 value: 38.501000000000005 - type: ndcg_at_3 value: 25.773000000000003 - type: ndcg_at_5 value: 27.462999999999997 - type: precision_at_1 value: 21.473 - type: precision_at_10 value: 5.482 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 12.205 - type: precision_at_5 value: 8.692 - type: recall_at_1 value: 17.777 - type: recall_at_10 value: 40.582 - type: recall_at_100 value: 66.305 - type: recall_at_1000 value: 85.636 - type: recall_at_3 value: 28.687 - type: recall_at_5 value: 33.089 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.677 - type: map_at_10 value: 36.309000000000005 - type: map_at_100 value: 37.403999999999996 - type: map_at_1000 value: 37.496 - type: map_at_3 value: 33.382 - type: map_at_5 value: 34.98 - type: mrr_at_1 value: 31.343 - type: mrr_at_10 value: 40.549 - type: mrr_at_100 value: 41.342 - type: mrr_at_1000 value: 41.397 - type: mrr_at_3 value: 38.029 - type: mrr_at_5 value: 39.451 - type: ndcg_at_1 value: 31.343 - type: ndcg_at_10 value: 42.1 - type: ndcg_at_100 value: 47.089999999999996 - type: ndcg_at_1000 value: 49.222 - type: ndcg_at_3 value: 36.836999999999996 - type: ndcg_at_5 value: 39.21 - type: precision_at_1 value: 31.343 - type: precision_at_10 value: 7.164 - type: precision_at_100 value: 1.0959999999999999 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 16.915 - type: precision_at_5 value: 11.940000000000001 - type: recall_at_1 value: 26.677 - type: recall_at_10 value: 55.54599999999999 - type: recall_at_100 value: 77.094 - type: recall_at_1000 value: 92.01 - type: recall_at_3 value: 41.191 - type: recall_at_5 value: 47.006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.501 - type: map_at_10 value: 33.102 - type: map_at_100 value: 34.676 - type: map_at_1000 value: 34.888000000000005 - type: map_at_3 value: 29.944 - type: map_at_5 value: 31.613999999999997 - type: mrr_at_1 value: 29.447000000000003 - type: mrr_at_10 value: 37.996 - type: mrr_at_100 value: 38.946 - type: mrr_at_1000 value: 38.995000000000005 - type: mrr_at_3 value: 35.079 - type: mrr_at_5 value: 36.69 - type: ndcg_at_1 value: 29.447000000000003 - type: ndcg_at_10 value: 39.232 - type: ndcg_at_100 value: 45.247 - type: ndcg_at_1000 value: 47.613 - type: ndcg_at_3 value: 33.922999999999995 - type: ndcg_at_5 value: 36.284 - type: precision_at_1 value: 29.447000000000003 - type: precision_at_10 value: 7.648000000000001 - type: precision_at_100 value: 1.516 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_3 value: 16.008 - type: precision_at_5 value: 11.779 - type: recall_at_1 value: 24.501 - type: recall_at_10 value: 51.18899999999999 - type: recall_at_100 value: 78.437 - type: recall_at_1000 value: 92.842 - type: recall_at_3 value: 35.808 - type: recall_at_5 value: 42.197 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.039 - type: map_at_10 value: 30.377 - type: map_at_100 value: 31.275 - type: map_at_1000 value: 31.379 - type: map_at_3 value: 27.98 - type: map_at_5 value: 29.358 - type: mrr_at_1 value: 24.03 - type: mrr_at_10 value: 32.568000000000005 - type: mrr_at_100 value: 33.403 - type: mrr_at_1000 value: 33.475 - type: mrr_at_3 value: 30.436999999999998 - type: mrr_at_5 value: 31.796000000000003 - type: ndcg_at_1 value: 24.03 - type: ndcg_at_10 value: 35.198 - type: ndcg_at_100 value: 39.668 - type: ndcg_at_1000 value: 42.296 - type: ndcg_at_3 value: 30.709999999999997 - type: ndcg_at_5 value: 33.024 - type: precision_at_1 value: 24.03 - type: precision_at_10 value: 5.564 - type: precision_at_100 value: 0.828 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 13.309000000000001 - type: precision_at_5 value: 9.39 - type: recall_at_1 value: 22.039 - type: recall_at_10 value: 47.746 - type: recall_at_100 value: 68.23599999999999 - type: recall_at_1000 value: 87.852 - type: recall_at_3 value: 35.852000000000004 - type: recall_at_5 value: 41.410000000000004 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 15.692999999999998 - type: map_at_10 value: 26.903 - type: map_at_100 value: 28.987000000000002 - type: map_at_1000 value: 29.176999999999996 - type: map_at_3 value: 22.137 - type: map_at_5 value: 24.758 - type: mrr_at_1 value: 35.57 - type: mrr_at_10 value: 47.821999999999996 - type: mrr_at_100 value: 48.608000000000004 - type: mrr_at_1000 value: 48.638999999999996 - type: mrr_at_3 value: 44.452000000000005 - type: mrr_at_5 value: 46.546 - type: ndcg_at_1 value: 35.57 - type: ndcg_at_10 value: 36.567 - type: ndcg_at_100 value: 44.085 - type: ndcg_at_1000 value: 47.24 - type: ndcg_at_3 value: 29.964000000000002 - type: ndcg_at_5 value: 32.511 - type: precision_at_1 value: 35.57 - type: precision_at_10 value: 11.485 - type: precision_at_100 value: 1.9619999999999997 - type: precision_at_1000 value: 0.256 - type: precision_at_3 value: 22.237000000000002 - type: precision_at_5 value: 17.471999999999998 - type: recall_at_1 value: 15.692999999999998 - type: recall_at_10 value: 43.056 - type: recall_at_100 value: 68.628 - type: recall_at_1000 value: 86.075 - type: recall_at_3 value: 26.918999999999997 - type: recall_at_5 value: 34.14 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.53 - type: map_at_10 value: 20.951 - type: map_at_100 value: 30.136000000000003 - type: map_at_1000 value: 31.801000000000002 - type: map_at_3 value: 15.021 - type: map_at_5 value: 17.471999999999998 - type: mrr_at_1 value: 71.0 - type: mrr_at_10 value: 79.176 - type: mrr_at_100 value: 79.418 - type: mrr_at_1000 value: 79.426 - type: mrr_at_3 value: 78.125 - type: mrr_at_5 value: 78.61200000000001 - type: ndcg_at_1 value: 58.5 - type: ndcg_at_10 value: 44.106 - type: ndcg_at_100 value: 49.268 - type: ndcg_at_1000 value: 56.711999999999996 - type: ndcg_at_3 value: 48.934 - type: ndcg_at_5 value: 45.826 - type: precision_at_1 value: 71.0 - type: precision_at_10 value: 35.0 - type: precision_at_100 value: 11.360000000000001 - type: precision_at_1000 value: 2.046 - type: precision_at_3 value: 52.833 - type: precision_at_5 value: 44.15 - type: recall_at_1 value: 9.53 - type: recall_at_10 value: 26.811 - type: recall_at_100 value: 55.916999999999994 - type: recall_at_1000 value: 79.973 - type: recall_at_3 value: 16.413 - type: recall_at_5 value: 19.980999999999998 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 51.519999999999996 - type: f1 value: 46.36601294761231 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 74.413 - type: map_at_10 value: 83.414 - type: map_at_100 value: 83.621 - type: map_at_1000 value: 83.635 - type: map_at_3 value: 82.337 - type: map_at_5 value: 83.039 - type: mrr_at_1 value: 80.19800000000001 - type: mrr_at_10 value: 87.715 - type: mrr_at_100 value: 87.778 - type: mrr_at_1000 value: 87.779 - type: mrr_at_3 value: 87.106 - type: mrr_at_5 value: 87.555 - type: ndcg_at_1 value: 80.19800000000001 - type: ndcg_at_10 value: 87.182 - type: ndcg_at_100 value: 87.90299999999999 - type: ndcg_at_1000 value: 88.143 - type: ndcg_at_3 value: 85.60600000000001 - type: ndcg_at_5 value: 86.541 - type: precision_at_1 value: 80.19800000000001 - type: precision_at_10 value: 10.531 - type: precision_at_100 value: 1.113 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 32.933 - type: precision_at_5 value: 20.429 - type: recall_at_1 value: 74.413 - type: recall_at_10 value: 94.363 - type: recall_at_100 value: 97.165 - type: recall_at_1000 value: 98.668 - type: recall_at_3 value: 90.108 - type: recall_at_5 value: 92.52 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.701 - type: map_at_10 value: 37.122 - type: map_at_100 value: 39.178000000000004 - type: map_at_1000 value: 39.326 - type: map_at_3 value: 32.971000000000004 - type: map_at_5 value: 35.332 - type: mrr_at_1 value: 44.753 - type: mrr_at_10 value: 53.452 - type: mrr_at_100 value: 54.198 - type: mrr_at_1000 value: 54.225 - type: mrr_at_3 value: 50.952 - type: mrr_at_5 value: 52.464 - type: ndcg_at_1 value: 44.753 - type: ndcg_at_10 value: 45.021 - type: ndcg_at_100 value: 52.028 - type: ndcg_at_1000 value: 54.596000000000004 - type: ndcg_at_3 value: 41.622 - type: ndcg_at_5 value: 42.736000000000004 - type: precision_at_1 value: 44.753 - type: precision_at_10 value: 12.284 - type: precision_at_100 value: 1.955 - type: precision_at_1000 value: 0.243 - type: precision_at_3 value: 27.828999999999997 - type: precision_at_5 value: 20.061999999999998 - type: recall_at_1 value: 22.701 - type: recall_at_10 value: 51.432 - type: recall_at_100 value: 77.009 - type: recall_at_1000 value: 92.511 - type: recall_at_3 value: 37.919000000000004 - type: recall_at_5 value: 44.131 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 40.189 - type: map_at_10 value: 66.24600000000001 - type: map_at_100 value: 67.098 - type: map_at_1000 value: 67.149 - type: map_at_3 value: 62.684 - type: map_at_5 value: 64.974 - type: mrr_at_1 value: 80.378 - type: mrr_at_10 value: 86.127 - type: mrr_at_100 value: 86.29299999999999 - type: mrr_at_1000 value: 86.297 - type: mrr_at_3 value: 85.31400000000001 - type: mrr_at_5 value: 85.858 - type: ndcg_at_1 value: 80.378 - type: ndcg_at_10 value: 74.101 - type: ndcg_at_100 value: 76.993 - type: ndcg_at_1000 value: 77.948 - type: ndcg_at_3 value: 69.232 - type: ndcg_at_5 value: 72.04599999999999 - type: precision_at_1 value: 80.378 - type: precision_at_10 value: 15.595999999999998 - type: precision_at_100 value: 1.7840000000000003 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 44.884 - type: precision_at_5 value: 29.145 - type: recall_at_1 value: 40.189 - type: recall_at_10 value: 77.981 - type: recall_at_100 value: 89.21 - type: recall_at_1000 value: 95.48299999999999 - type: recall_at_3 value: 67.326 - type: recall_at_5 value: 72.863 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 92.84599999999999 - type: ap value: 89.4710787567357 - type: f1 value: 92.83752676932258 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 23.132 - type: map_at_10 value: 35.543 - type: map_at_100 value: 36.702 - type: map_at_1000 value: 36.748999999999995 - type: map_at_3 value: 31.737 - type: map_at_5 value: 33.927 - type: mrr_at_1 value: 23.782 - type: mrr_at_10 value: 36.204 - type: mrr_at_100 value: 37.29 - type: mrr_at_1000 value: 37.330999999999996 - type: mrr_at_3 value: 32.458999999999996 - type: mrr_at_5 value: 34.631 - type: ndcg_at_1 value: 23.782 - type: ndcg_at_10 value: 42.492999999999995 - type: ndcg_at_100 value: 47.985 - type: ndcg_at_1000 value: 49.141 - type: ndcg_at_3 value: 34.748000000000005 - type: ndcg_at_5 value: 38.651 - type: precision_at_1 value: 23.782 - type: precision_at_10 value: 6.665 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.776 - type: precision_at_5 value: 10.84 - type: recall_at_1 value: 23.132 - type: recall_at_10 value: 63.794 - type: recall_at_100 value: 89.027 - type: recall_at_1000 value: 97.807 - type: recall_at_3 value: 42.765 - type: recall_at_5 value: 52.11 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.59188326493388 - type: f1 value: 94.3842594786827 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 79.49384404924761 - type: f1 value: 59.7580539534629 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 77.56220578345663 - type: f1 value: 75.27228165561478 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 80.53463349024884 - type: f1 value: 80.4893958236536 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.56100273484962 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.470380028839607 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.06102792457849 - type: mrr value: 33.30709199672238 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.776999999999999 - type: map_at_10 value: 14.924000000000001 - type: map_at_100 value: 18.955 - type: map_at_1000 value: 20.538999999999998 - type: map_at_3 value: 10.982 - type: map_at_5 value: 12.679000000000002 - type: mrr_at_1 value: 47.988 - type: mrr_at_10 value: 57.232000000000006 - type: mrr_at_100 value: 57.818999999999996 - type: mrr_at_1000 value: 57.847 - type: mrr_at_3 value: 54.901999999999994 - type: mrr_at_5 value: 56.481 - type: ndcg_at_1 value: 46.594 - type: ndcg_at_10 value: 38.129000000000005 - type: ndcg_at_100 value: 35.54 - type: ndcg_at_1000 value: 44.172 - type: ndcg_at_3 value: 43.025999999999996 - type: ndcg_at_5 value: 41.052 - type: precision_at_1 value: 47.988 - type: precision_at_10 value: 28.111000000000004 - type: precision_at_100 value: 8.929 - type: precision_at_1000 value: 2.185 - type: precision_at_3 value: 40.144000000000005 - type: precision_at_5 value: 35.232 - type: recall_at_1 value: 6.776999999999999 - type: recall_at_10 value: 19.289 - type: recall_at_100 value: 36.359 - type: recall_at_1000 value: 67.54 - type: recall_at_3 value: 11.869 - type: recall_at_5 value: 14.999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 31.108000000000004 - type: map_at_10 value: 47.126000000000005 - type: map_at_100 value: 48.171 - type: map_at_1000 value: 48.199 - type: map_at_3 value: 42.734 - type: map_at_5 value: 45.362 - type: mrr_at_1 value: 34.936 - type: mrr_at_10 value: 49.571 - type: mrr_at_100 value: 50.345 - type: mrr_at_1000 value: 50.363 - type: mrr_at_3 value: 45.959 - type: mrr_at_5 value: 48.165 - type: ndcg_at_1 value: 34.936 - type: ndcg_at_10 value: 55.028999999999996 - type: ndcg_at_100 value: 59.244 - type: ndcg_at_1000 value: 59.861 - type: ndcg_at_3 value: 46.872 - type: ndcg_at_5 value: 51.217999999999996 - type: precision_at_1 value: 34.936 - type: precision_at_10 value: 9.099 - type: precision_at_100 value: 1.145 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 21.456 - type: precision_at_5 value: 15.411 - type: recall_at_1 value: 31.108000000000004 - type: recall_at_10 value: 76.53999999999999 - type: recall_at_100 value: 94.39 - type: recall_at_1000 value: 98.947 - type: recall_at_3 value: 55.572 - type: recall_at_5 value: 65.525 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.56400000000001 - type: map_at_10 value: 85.482 - type: map_at_100 value: 86.114 - type: map_at_1000 value: 86.13 - type: map_at_3 value: 82.607 - type: map_at_5 value: 84.405 - type: mrr_at_1 value: 82.42 - type: mrr_at_10 value: 88.304 - type: mrr_at_100 value: 88.399 - type: mrr_at_1000 value: 88.399 - type: mrr_at_3 value: 87.37 - type: mrr_at_5 value: 88.024 - type: ndcg_at_1 value: 82.45 - type: ndcg_at_10 value: 89.06500000000001 - type: ndcg_at_100 value: 90.232 - type: ndcg_at_1000 value: 90.305 - type: ndcg_at_3 value: 86.375 - type: ndcg_at_5 value: 87.85300000000001 - type: precision_at_1 value: 82.45 - type: precision_at_10 value: 13.486999999999998 - type: precision_at_100 value: 1.534 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.813 - type: precision_at_5 value: 24.773999999999997 - type: recall_at_1 value: 71.56400000000001 - type: recall_at_10 value: 95.812 - type: recall_at_100 value: 99.7 - type: recall_at_1000 value: 99.979 - type: recall_at_3 value: 87.966 - type: recall_at_5 value: 92.268 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 57.241876648614145 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 64.66212576446223 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 5.308 - type: map_at_10 value: 13.803 - type: map_at_100 value: 16.176 - type: map_at_1000 value: 16.561 - type: map_at_3 value: 9.761000000000001 - type: map_at_5 value: 11.802 - type: mrr_at_1 value: 26.200000000000003 - type: mrr_at_10 value: 37.621 - type: mrr_at_100 value: 38.767 - type: mrr_at_1000 value: 38.815 - type: mrr_at_3 value: 34.117 - type: mrr_at_5 value: 36.107 - type: ndcg_at_1 value: 26.200000000000003 - type: ndcg_at_10 value: 22.64 - type: ndcg_at_100 value: 31.567 - type: ndcg_at_1000 value: 37.623 - type: ndcg_at_3 value: 21.435000000000002 - type: ndcg_at_5 value: 18.87 - type: precision_at_1 value: 26.200000000000003 - type: precision_at_10 value: 11.74 - type: precision_at_100 value: 2.465 - type: precision_at_1000 value: 0.391 - type: precision_at_3 value: 20.033 - type: precision_at_5 value: 16.64 - type: recall_at_1 value: 5.308 - type: recall_at_10 value: 23.794999999999998 - type: recall_at_100 value: 50.015 - type: recall_at_1000 value: 79.283 - type: recall_at_3 value: 12.178 - type: recall_at_5 value: 16.882 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.93231134675553 - type: cos_sim_spearman value: 81.68319292603205 - type: euclidean_pearson value: 81.8396814380367 - type: euclidean_spearman value: 81.24641903349945 - type: manhattan_pearson value: 81.84698799204274 - type: manhattan_spearman value: 81.24269997904105 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.73241671587446 - type: cos_sim_spearman value: 79.05091082971826 - type: euclidean_pearson value: 83.91146869578044 - type: euclidean_spearman value: 79.87978465370936 - type: manhattan_pearson value: 83.90888338917678 - type: manhattan_spearman value: 79.87482848584241 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 85.14970731146177 - type: cos_sim_spearman value: 86.37363490084627 - type: euclidean_pearson value: 83.02154218530433 - type: euclidean_spearman value: 83.80258761957367 - type: manhattan_pearson value: 83.01664495119347 - type: manhattan_spearman value: 83.77567458007952 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.40474139886784 - type: cos_sim_spearman value: 82.77768789165984 - type: euclidean_pearson value: 80.7065877443695 - type: euclidean_spearman value: 81.375940662505 - type: manhattan_pearson value: 80.6507552270278 - type: manhattan_spearman value: 81.32782179098741 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.08585968722274 - type: cos_sim_spearman value: 88.03110031451399 - type: euclidean_pearson value: 85.74012019602384 - type: euclidean_spearman value: 86.13592849438209 - type: manhattan_pearson value: 85.74404842369206 - type: manhattan_spearman value: 86.14492318960154 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.95069052788875 - type: cos_sim_spearman value: 86.4867991595147 - type: euclidean_pearson value: 84.31013325754635 - type: euclidean_spearman value: 85.01529258006482 - type: manhattan_pearson value: 84.26995570085374 - type: manhattan_spearman value: 84.96982104986162 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.54617647971897 - type: cos_sim_spearman value: 87.49834181751034 - type: euclidean_pearson value: 86.01015322577122 - type: euclidean_spearman value: 84.63362652063199 - type: manhattan_pearson value: 86.13807574475706 - type: manhattan_spearman value: 84.7772370721132 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.20047755786615 - type: cos_sim_spearman value: 67.05324077987636 - type: euclidean_pearson value: 66.91930642976601 - type: euclidean_spearman value: 65.21491856099105 - type: manhattan_pearson value: 66.78756851976624 - type: manhattan_spearman value: 65.12356257740728 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.19852871539686 - type: cos_sim_spearman value: 87.5161895296395 - type: euclidean_pearson value: 84.59848645207485 - type: euclidean_spearman value: 85.26427328757919 - type: manhattan_pearson value: 84.59747366996524 - type: manhattan_spearman value: 85.24045855146915 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.63320317811032 - type: mrr value: 96.26242947321379 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 60.928000000000004 - type: map_at_10 value: 70.112 - type: map_at_100 value: 70.59299999999999 - type: map_at_1000 value: 70.623 - type: map_at_3 value: 66.846 - type: map_at_5 value: 68.447 - type: mrr_at_1 value: 64.0 - type: mrr_at_10 value: 71.212 - type: mrr_at_100 value: 71.616 - type: mrr_at_1000 value: 71.64500000000001 - type: mrr_at_3 value: 68.77799999999999 - type: mrr_at_5 value: 70.094 - type: ndcg_at_1 value: 64.0 - type: ndcg_at_10 value: 74.607 - type: ndcg_at_100 value: 76.416 - type: ndcg_at_1000 value: 77.102 - type: ndcg_at_3 value: 69.126 - type: ndcg_at_5 value: 71.41300000000001 - type: precision_at_1 value: 64.0 - type: precision_at_10 value: 9.933 - type: precision_at_100 value: 1.077 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.556 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 60.928000000000004 - type: recall_at_10 value: 87.322 - type: recall_at_100 value: 94.833 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 72.628 - type: recall_at_5 value: 78.428 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.86237623762376 - type: cos_sim_ap value: 96.72586477206649 - type: cos_sim_f1 value: 93.01858362631845 - type: cos_sim_precision value: 93.4409687184662 - type: cos_sim_recall value: 92.60000000000001 - type: dot_accuracy value: 99.78019801980199 - type: dot_ap value: 93.72748205246228 - type: dot_f1 value: 89.04109589041096 - type: dot_precision value: 87.16475095785441 - type: dot_recall value: 91.0 - type: euclidean_accuracy value: 99.85445544554456 - type: euclidean_ap value: 96.6661459876145 - type: euclidean_f1 value: 92.58337481333997 - type: euclidean_precision value: 92.17046580773042 - type: euclidean_recall value: 93.0 - type: manhattan_accuracy value: 99.85445544554456 - type: manhattan_ap value: 96.6883549244056 - type: manhattan_f1 value: 92.57598405580468 - type: manhattan_precision value: 92.25422045680239 - type: manhattan_recall value: 92.9 - type: max_accuracy value: 99.86237623762376 - type: max_ap value: 96.72586477206649 - type: max_f1 value: 93.01858362631845 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 66.39930057069995 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.96398659903402 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.946944700355395 - type: mrr value: 56.97151398438164 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.541657650692905 - type: cos_sim_spearman value: 31.605804192286303 - type: dot_pearson value: 28.26905996736398 - type: dot_spearman value: 27.864801765851187 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22599999999999998 - type: map_at_10 value: 1.8870000000000002 - type: map_at_100 value: 9.78 - type: map_at_1000 value: 22.514 - type: map_at_3 value: 0.6669999999999999 - type: map_at_5 value: 1.077 - type: mrr_at_1 value: 82.0 - type: mrr_at_10 value: 89.86699999999999 - type: mrr_at_100 value: 89.86699999999999 - type: mrr_at_1000 value: 89.86699999999999 - type: mrr_at_3 value: 89.667 - type: mrr_at_5 value: 89.667 - type: ndcg_at_1 value: 79.0 - type: ndcg_at_10 value: 74.818 - type: ndcg_at_100 value: 53.715999999999994 - type: ndcg_at_1000 value: 47.082 - type: ndcg_at_3 value: 82.134 - type: ndcg_at_5 value: 79.81899999999999 - type: precision_at_1 value: 82.0 - type: precision_at_10 value: 78.0 - type: precision_at_100 value: 54.48 - type: precision_at_1000 value: 20.518 - type: precision_at_3 value: 87.333 - type: precision_at_5 value: 85.2 - type: recall_at_1 value: 0.22599999999999998 - type: recall_at_10 value: 2.072 - type: recall_at_100 value: 13.013 - type: recall_at_1000 value: 43.462 - type: recall_at_3 value: 0.695 - type: recall_at_5 value: 1.139 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.328 - type: map_at_10 value: 9.795 - type: map_at_100 value: 15.801000000000002 - type: map_at_1000 value: 17.23 - type: map_at_3 value: 4.734 - type: map_at_5 value: 6.644 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 46.902 - type: mrr_at_100 value: 47.495 - type: mrr_at_1000 value: 47.495 - type: mrr_at_3 value: 41.156 - type: mrr_at_5 value: 44.218 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 24.806 - type: ndcg_at_100 value: 36.419000000000004 - type: ndcg_at_1000 value: 47.272999999999996 - type: ndcg_at_3 value: 25.666 - type: ndcg_at_5 value: 25.448999999999998 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 23.061 - type: precision_at_100 value: 7.714 - type: precision_at_1000 value: 1.484 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 26.122 - type: recall_at_1 value: 2.328 - type: recall_at_10 value: 16.524 - type: recall_at_100 value: 47.179 - type: recall_at_1000 value: 81.22200000000001 - type: recall_at_3 value: 5.745 - type: recall_at_5 value: 9.339 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.9142 - type: ap value: 14.335574772555415 - type: f1 value: 54.62839595194111 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.94340690435768 - type: f1 value: 60.286487936731916 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 51.26597708987974 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.48882398521786 - type: cos_sim_ap value: 79.04326607602204 - type: cos_sim_f1 value: 71.64566826860633 - type: cos_sim_precision value: 70.55512918905092 - type: cos_sim_recall value: 72.77044854881267 - type: dot_accuracy value: 84.19264469213805 - type: dot_ap value: 67.96360043562528 - type: dot_f1 value: 64.06418393006827 - type: dot_precision value: 58.64941898706424 - type: dot_recall value: 70.58047493403694 - type: euclidean_accuracy value: 87.45902127913214 - type: euclidean_ap value: 78.9742237648272 - type: euclidean_f1 value: 71.5553235908142 - type: euclidean_precision value: 70.77955601445535 - type: euclidean_recall value: 72.34828496042216 - type: manhattan_accuracy value: 87.41729749061214 - type: manhattan_ap value: 78.90073137580596 - type: manhattan_f1 value: 71.3942611553533 - type: manhattan_precision value: 68.52705653967483 - type: manhattan_recall value: 74.51187335092348 - type: max_accuracy value: 87.48882398521786 - type: max_ap value: 79.04326607602204 - type: max_f1 value: 71.64566826860633 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.68125897465751 - type: cos_sim_ap value: 85.6003454431979 - type: cos_sim_f1 value: 77.6957163958641 - type: cos_sim_precision value: 73.0110366307807 - type: cos_sim_recall value: 83.02279026793964 - type: dot_accuracy value: 87.7672992587418 - type: dot_ap value: 82.4971301112899 - type: dot_f1 value: 75.90528233151184 - type: dot_precision value: 72.0370626469368 - type: dot_recall value: 80.21250384970742 - type: euclidean_accuracy value: 88.4503434625684 - type: euclidean_ap value: 84.91949884748384 - type: euclidean_f1 value: 76.92365018444684 - type: euclidean_precision value: 74.53245721712759 - type: euclidean_recall value: 79.47336002463813 - type: manhattan_accuracy value: 88.47556952691427 - type: manhattan_ap value: 84.8963689101517 - type: manhattan_f1 value: 76.85901249256395 - type: manhattan_precision value: 74.31693989071039 - type: manhattan_recall value: 79.58115183246073 - type: max_accuracy value: 88.68125897465751 - type: max_ap value: 85.6003454431979 - type: max_f1 value: 77.6957163958641 license: mit language: - en --- <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently: - **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon) - **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) - **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding) - **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) - **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) ## News - 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval). It is the first embedding model that supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks. [Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire: - 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire: - 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire: - 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: - 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) and [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | | | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` #### Usage of the ONNX files ```python from optimum.onnxruntime import ORTModelForFeatureExtraction # type: ignore import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-en-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-en-v1.5', revision="refs/pr/13") model_ort = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-large-en-v1.5', revision="refs/pr/13",file_name="onnx/model.onnx") # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') model_output_ort = model_ort(**encoded_input) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # model_output and model_output_ort are identical ``` Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package. ```python import asyncio from infinity_emb import AsyncEmbeddingEngine, EngineArgs sentences = ["Embed this is sentence via Infinity.", "Paris is in France."] engine = AsyncEmbeddingEngine.from_args( EngineArgs(model_name_or_path = "BAAI/bge-large-en-v1.5", device="cpu", engine="optimum" # or engine="torch" )) async def main(): async with engine: embeddings, usage = await engine.embed(sentences=sentences) asyncio.run(main()) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
mradermacher/JPharmatron-7B-base-GGUF
mradermacher
2025-06-04T18:02:36Z
116
0
transformers
[ "transformers", "gguf", "pharmacy", "biology", "chemistry", "medical", "en", "ja", "base_model:EQUES/JPharmatron-7B-base", "base_model:quantized:EQUES/JPharmatron-7B-base", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T20:05:08Z
--- base_model: EQUES/JPharmatron-7B-base language: - en - ja library_name: transformers license: cc-by-sa-4.0 quantized_by: mradermacher tags: - pharmacy - biology - chemistry - medical --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/EQUES/JPharmatron-7B-base <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/JPharmatron-7B-base-GGUF/resolve/main/JPharmatron-7B-base.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
adamo1139/DeepSeek-R1-0528-AWQ
adamo1139
2025-06-04T18:02:36Z
80
0
transformers
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "arxiv:2501.12948", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2025-05-31T19:10:51Z
--- license: mit library_name: transformers --- # DeepSeek-R1-0528-AWQ 671B It's a 4-bit AWQ quantization of DeepSeek-R1-0528 671B model, it's suitable for use with GPU nodes like 8xA100/8xH20/8xH100 with vLLM and SGLang You can run this model on 8x H100 80GB using vLLM with `vllm serve adamo1139/DeepSeek-R1-0528-AWQ --tensor-parallel 8` If this doesn't work for you, you may need to manually specify quantization and datatype with `--quantization awq_marlin` and `--dtype float16` respectively. Script used for creating it is: ``` from datasets import load_dataset from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_path = '/home/ubuntu/models/DeepSeek-R1-0528-BF16' quant_path = '/home/ubuntu/models/DeepSeek-R1-0528-AWQ' quant_config = { "zero_point": True, "q_group_size": 64, "w_bit": 4, "version": "GEMM" } # Load model model = AutoAWQForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map=None) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model.quantize( tokenizer, quant_config=quant_config, n_parallel_calib_samples=None, max_calib_samples=64, max_calib_seq_len=1024 ) # Save quantized model model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path) print(f'Model is quantized and saved at "{quant_path}"') ``` I used AutoAWQ 0.2.8, transformers 4.48.0 and torch 2.6.0. `modeling_deepseek.py` was slightly modified to get around an issue mentioned [here](https://github.com/casper-hansen/AutoAWQ/pull/688#issuecomment-2566829209). Quantization was done on 8x H100 80GB node with 960GB of RAM and 800GB of swap. I used Unsloth's [BF16 version](unsloth/DeepSeek-R1-0528-BF16) as a starting point but I removed `quantization_config` section from the `config.json` before running AWQ quantization script. Third attempt was successful, the other two failed due to memory overflow after 15+ hours of runtime each. Final attempt took about 18 hours to complete. I think I'll make some evals to measure quantization's impact on downstream performance, I'm not set on it fully yet. It's the full-fat 671B model, if you don't have access to the extreme hardware needed to run it, look into running Qwen3 8B based distilled version instead. <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="LICENSE" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> </div> <p align="center"> <a href="https://arxiv.org/pdf/2501.12948"><b>Paper Link</b>👁️</a> </p> ## 1. Introduction The DeepSeek R1 model has undergone a minor version upgrade, with the current version being DeepSeek-R1-0528. In the latest update, DeepSeek R1 has significantly improved its depth of reasoning and inference capabilities by leveraging increased computational resources and introducing algorithmic optimization mechanisms during post-training. The model has demonstrated outstanding performance across various benchmark evaluations, including mathematics, programming, and general logic. Its overall performance is now approaching that of leading models, such as O3 and Gemini 2.5 Pro. <p align="center"> <img width="80%" src="figures/benchmark.png"> </p> Compared to the previous version, the upgraded model shows significant improvements in handling complex reasoning tasks. For instance, in the AIME 2025 test, the model’s accuracy has increased from 70% in the previous version to 87.5% in the current version. This advancement stems from enhanced thinking depth during the reasoning process: in the AIME test set, the previous model used an average of 12K tokens per question, whereas the new version averages 23K tokens per question. Beyond its improved reasoning capabilities, this version also offers a reduced hallucination rate, enhanced support for function calling, and better experience for vibe coding. ## 2. Evaluation Results ### DeepSeek-R1-0528 For all our models, the maximum generation length is set to 64K tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 16 responses per query to estimate pass@1. <div align="center"> | Category | Benchmark (Metric) | DeepSeek R1 | DeepSeek R1 0528 |----------|----------------------------------|-----------------|---| | General | | | MMLU-Redux (EM) | 92.9 | 93.4 | | MMLU-Pro (EM) | 84.0 | 85.0 | | GPQA-Diamond (Pass@1) | 71.5 | 81.0 | | SimpleQA (Correct) | 30.1 | 27.8 | | FRAMES (Acc.) | 82.5 | 83.0 | | Humanity's Last Exam (Pass@1) | 8.5 | 17.7 | Code | | | LiveCodeBench (2408-2505) (Pass@1) | 63.5 | 73.3 | | Codeforces-Div1 (Rating) | 1530 | 1930 | | SWE Verified (Resolved) | 49.2 | 57.6 | | Aider-Polyglot (Acc.) | 53.3 | 71.6 | Math | | | AIME 2024 (Pass@1) | 79.8 | 91.4 | | AIME 2025 (Pass@1) | 70.0 | 87.5 | | HMMT 2025 (Pass@1) | 41.7 | 79.4 | | | CNMO 2024 (Pass@1) | 78.8 | 86.9 | Tools | | | BFCL_v3_MultiTurn (Acc) | - | 37.0 | | | Tau-Bench (Pass@1) | - | 53.5(Airline)/63.9(Retail) </div> Note: We use Agentless framework to evaluate model performance on SWE-Verified. We only evaluate text-only prompts in HLE testsets. GPT-4.1 is employed to act user role in Tau-bench evaluation. ### DeepSeek-R1-0528-Qwen3-8B Meanwhile, we distilled the chain-of-thought from DeepSeek-R1-0528 to post-train Qwen3 8B Base, obtaining DeepSeek-R1-0528-Qwen3-8B. This model achieves state-of-the-art (SOTA) performance among open-source models on the AIME 2024, surpassing Qwen3 8B by +10.0% and matching the performance of Qwen3-235B-thinking. We believe that the chain-of-thought from DeepSeek-R1-0528 will hold significant importance for both academic research on reasoning models and industrial development focused on small-scale models. | | AIME 24 | AIME 25 | HMMT Feb 25 | GPQA Diamond | LiveCodeBench (2408-2505) | |--------------------------------|---------|---------|-------------|--------------|---------------------------| | Qwen3-235B-A22B | 85.7 | 81.5 | 62.5 | 71.1 | 66.5 | | Qwen3-32B | 81.4 | 72.9 | - | 68.4 | - | | Qwen3-8B | 76.0 | 67.3 | - | 62.0 | - | | Phi-4-Reasoning-Plus-14B | 81.3 | 78.0 | 53.6 | 69.3 | - | | Gemini-2.5-Flash-Thinking-0520 | 82.3 | 72.0 | 64.2 | 82.8 | 62.3 | | o3-mini (medium) | 79.6 | 76.7 | 53.3 | 76.8 | 65.9 | | DeepSeek-R1-0528-Qwen3-8B | 86.0 | 76.3 | 61.5 | 61.1 | 60.5 | ## 3. Chat Website & API Platform You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in), and switch on the button "DeepThink" We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/) ## 4. How to Run Locally Please visit [DeepSeek-R1](https://github.com/deepseek-ai/DeepSeek-R1) repository for more information about running DeepSeek-R1-0528 locally. Compared to previous versions of DeepSeek-R1, the usage recommendations for DeepSeek-R1-0528 have the following changes: 1. System prompt is supported now. 2. It is not required to add "\<think\>\n" at the beginning of the output to force the model into thinking pattern. The model architecture of DeepSeek-R1-0528-Qwen3-8B is identical to that of Qwen3-8B, but it shares the same tokenizer configuration as DeepSeek-R1-0528. This model can be run in the same manner as Qwen3-8B. ### System Prompt In the official DeepSeek web/app, we use the same system prompt with a specific date. ``` 该助手为DeepSeek-R1,由深度求索公司创造。 今天是{current date}。 ``` For example, ``` 该助手为DeepSeek-R1,由深度求索公司创造。 今天是2025年5月28日,星期一。 ``` ### Temperature In our web and application environments, the temperature parameter $T_{model}$ is set to 0.6. ### Prompts for File Uploading and Web Search For file uploading, please follow the template to create prompts, where {file_name}, {file_content} and {question} are arguments. ``` file_template = \ """[file name]: {file_name} [file content begin] {file_content} [file content end] {question}""" ``` For Web Search, {search_results}, {cur_date}, and {question} are arguments. For Chinese query, we use the prompt: ``` search_answer_zh_template = \ '''# 以下内容是基于用户发送的消息的搜索结果: {search_results} 在我给你的搜索结果中,每个结果都是[webpage X begin]...[webpage X end]格式的,X代表每篇文章的数字索引。请在适当的情况下在句子末尾引用上下文。请按照引用编号[citation:X]的格式在答案中对应部分引用上下文。如果一句话源自多个上下文,请列出所有相关的引用编号,例如[citation:3][citation:5],切记不要将引用集中在最后返回引用编号,而是在答案对应部分列出。 在回答时,请注意以下几点: - 今天是{cur_date}。 - 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。 - 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。 - 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[citation:3][citation:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。 - 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在5个点以内,并合并相关的内容。 - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 - 你的回答应该综合多个相关网页来回答,不能重复引用一个网页。 - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 # 用户消息为: {question}''' ``` For English query, we use the prompt: ``` search_answer_en_template = \ '''# The following contents are the search results related to the user's message: {search_results} In the search results I provide to you, each result is formatted as [webpage X begin]...[webpage X end], where X represents the numerical index of each article. Please cite the context at the end of the relevant sentence when appropriate. Use the citation format [citation:X] in the corresponding part of your answer. If a sentence is derived from multiple contexts, list all relevant citation numbers, such as [citation:3][citation:5]. Be sure not to cluster all citations at the end; instead, include them in the corresponding parts of the answer. When responding, please keep the following points in mind: - Today is {cur_date}. - Not all content in the search results is closely related to the user's question. You need to evaluate and filter the search results based on the question. - For listing-type questions (e.g., listing all flight information), try to limit the answer to 10 key points and inform the user that they can refer to the search sources for complete information. Prioritize providing the most complete and relevant items in the list. Avoid mentioning content not provided in the search results unless necessary. - For creative tasks (e.g., writing an essay), ensure that references are cited within the body of the text, such as [citation:3][citation:5], rather than only at the end of the text. You need to interpret and summarize the user's requirements, choose an appropriate format, fully utilize the search results, extract key information, and generate an answer that is insightful, creative, and professional. Extend the length of your response as much as possible, addressing each point in detail and from multiple perspectives, ensuring the content is rich and thorough. - If the response is lengthy, structure it well and summarize it in paragraphs. If a point-by-point format is needed, try to limit it to 5 points and merge related content. - For objective Q&A, if the answer is very brief, you may add one or two related sentences to enrich the content. - Choose an appropriate and visually appealing format for your response based on the user's requirements and the content of the answer, ensuring strong readability. - Your answer should synthesize information from multiple relevant webpages and avoid repeatedly citing the same webpage. - Unless the user requests otherwise, your response should be in the same language as the user's question. # The user's message is: {question}''' ``` ## 5. License This code repository is licensed under [MIT License](LICENSE). The use of DeepSeek-R1 models is also subject to [MIT License](LICENSE). DeepSeek-R1 series (including Base and Chat) supports commercial use and distillation. ## 6. Citation ``` @misc{deepseekai2025deepseekr1incentivizingreasoningcapability, title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning}, author={DeepSeek-AI}, year={2025}, eprint={2501.12948}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.12948}, } ``` ## 7. Contact If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
Kortix/FastApply-1.5B-v1.0
Kortix
2025-06-04T18:00:45Z
1,061
32
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "fast-apply", "instant-apply", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-18T11:55:22Z
--- base_model: unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft - fast-apply - instant-apply --- # FastApply-1.5B-v1.0 *🚀 Update May 2025:* For production-grade throughput, we use *[Morph](https://morphllm.com)* (the hosted Fast Apply API powering [SoftGen AI](https://softgen.ai/)). - Morph hits *~1,600 tok/s* even on huge token diffs - Larger model trained on millions of examples and tuned for accuracy. > Stable inference, large free tier, highly recommended if you need serious speed in prod. [Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply) [Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0) [Try it now on 👉 Google Colab](https://colab.research.google.com/drive/1BNCab4oK-xBqwFQD4kCcjKc7BPKivkm1?usp=sharing) ## Model Details ### Basic Information - **Developed by:** Kortix - **License:** apache-2.0 - **Finetuned from model:** [unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit) ### Model Description FastApply-1.5B-v1.0 is a 1.5B model designed for instant code application, producing full file edits to power [SoftGen AI](https://softgen.ai/). It is part of the Fast Apply pipeline for data generation and fine-tuning Qwen2.5 Coder models. The model achieves high throughput when deployed on fast providers like Fireworks while maintaining high edit accuracy, with a speed of approximately 340 tokens/second. ## Intended Use FastApply-1.5B-v1.0 is intended for use in AI-powered code editors and tools that require fast, accurate code modifications. It is particularly well-suited for: - Instant code application tasks - Full file edits - Integration with AI-powered code editors like Aider and PearAI - Local tools to reduce the cost of frontier model output ## Inference template FastApply-1.5B-v1.0 is based on the Qwen2.5 Coder architecture and is fine-tuned for code editing tasks. It uses a specific prompt structure for inference: ``` <|im_start|>system You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|> <|im_start|>user Merge all changes from the <update> snippet into the <code> below. - Preserve the code's structure, order, comments, and indentation exactly. - Output only the updated code, enclosed within <updated-code> and </updated-code> tags. - Do not include any additional text, explanations, placeholders, ellipses, or code fences. <code>{original_code}</code> <update>{update_snippet}</update> Provide the complete updated code.<|im_end|> <|im_start|>assistant ``` The model's output is structured as: ``` <updated-code>[Full-complete updated file]</updated-code> ``` ## Additional Information For more details on the Fast Apply pipeline, data generation process, and deployment instructions, please refer to the [GitHub repository](https://github.com/kortix-ai/fast-apply). ## How to Use To use the model, you can load it using the Hugging Face Transformers library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-1.5B-v1.0", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-1.5B-v1.0") # Prepare your input following the prompt structure mentioned above input_text = """<|im_start|>system You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|> <|im_start|>user Merge all changes from the <update> snippet into the <code> below. - Preserve the code's structure, order, comments, and indentation exactly. - Output only the updated code, enclosed within <updated-code> and </updated-code> tags. - Do not include any additional text, explanations, placeholders, ellipses, or code fences. <code>{original_code}</code> <update>{update_snippet}</update> Provide the complete updated code.<|im_end|> <|im_start|>assistant """ input_text = input_text.format( original_code=original_code, update_snippet=update_snippet, ).strip() # Generate the response input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate(input_ids, max_length=8192,) response = tokenizer.decode(output[0][len(input_ids[0]):]) print(response) # Extract the updated code from the response updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0] ``` ## Evaluation: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/650d7ecb23e8028a8970a203/_E6WVzuVABKB58QMx6c1c.png)
Leku/Trial
Leku
2025-06-04T17:59:49Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2025-06-04T17:27:44Z
--- base_model: gpt2 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
EthanRhys/Sailor-Moon-RVC-Models
EthanRhys
2025-06-04T17:56:26Z
0
0
null
[ "license:openrail++", "region:us" ]
null
2025-03-19T03:01:11Z
--- license: openrail++ ---
pointserv/fanniemae-phi-2-lora
pointserv
2025-06-04T17:56:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "phi", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T18:00:52Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: microsoft/phi-2 widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
phospho-app/LegrandFrederic-ACT_BBOX-sisyphe-gck8h
phospho-app
2025-06-04T17:37:42Z
0
0
null
[ "phosphobot", "act", "region:us" ]
null
2025-06-04T17:34:10Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Training process failed with exit code 1: 'timestamps': [np.float32(6.3527937), np.float32(6.386968)]}, {'diff': np.float32(0.03591633), 'episode_index': 11, 'timestamps': [np.float32(6.386968), np.float32(6.4228845)]}, {'diff': np.float32(0.034159184), 'episode_index': 11, 'timestamps': [np.float32(6.4228845), np.float32(6.4570436)]}, {'diff': np.float32(0.03525734), 'episode_index': 11, 'timestamps': [np.float32(6.4570436), np.float32(6.492301)]}] ``` ## Training parameters: - **Dataset**: [phospho-app/sisyphe_bboxes](https://huggingface.co/datasets/phospho-app/sisyphe_bboxes) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
aoxo/posterity_sft_gemma-3-4b-it
aoxo
2025-06-04T17:35:15Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-3-4b-it", "base_model:adapter:google/gemma-3-4b-it", "region:us" ]
null
2025-06-04T14:01:12Z
--- base_model: google/gemma-3-4b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
alfredcs/gemma-3-12b-icd10pcs
alfredcs
2025-06-04T17:34:42Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-04T17:34:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Elnenevic2027/rosalia
Elnenevic2027
2025-06-04T17:32:22Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-04T16:52:49Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
PrunaAI/segolilylabs-Lily-Cybersecurity-7B-v0.2-HQQ-8bit-smashed
PrunaAI
2025-06-04T17:23:45Z
0
0
null
[ "mistral", "pruna-ai", "base_model:segolilylabs/Lily-Cybersecurity-7B-v0.2", "base_model:finetune:segolilylabs/Lily-Cybersecurity-7B-v0.2", "region:us" ]
null
2025-06-04T17:22:27Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: segolilylabs/Lily-Cybersecurity-7B-v0.2 metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="banner.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo segolilylabs/Lily-Cybersecurity-7B-v0.2 installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/segolilylabs-Lily-Cybersecurity-7B-v0.2-HQQ-8bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/segolilylabs-Lily-Cybersecurity-7B-v0.2-HQQ-8bit-smashed") tokenizer = AutoTokenizer.from_pretrained("segolilylabs/Lily-Cybersecurity-7B-v0.2") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. This model has been smashed with pruna in version O.1.3 ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model segolilylabs/Lily-Cybersecurity-7B-v0.2 before using this model which provided the base model. The license of `pruna` is [here](https://github.com/PrunaAI/pruna/blob/main/LICENSE) on GitHub. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
avey-ai/tpp-dpa-0.1B-95BT
avey-ai
2025-06-04T17:22:56Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-06-04T17:21:12Z
--- license: apache-2.0 ---
YatanL/Distil6-LayoutLMv3-CORD
YatanL
2025-06-04T17:21:38Z
0
0
transformers
[ "transformers", "safetensors", "layoutlmv3", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-06-03T13:15:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phospho-app/Lithium73fr-ACT-TESTMERGE1-vf3m2
phospho-app
2025-06-04T17:20:08Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-04T14:36:38Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [Lithium73fr/TESTMERGE1](https://huggingface.co/datasets/Lithium73fr/TESTMERGE1) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 60 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
Ey-luccas/meioambiente
Ey-luccas
2025-06-04T17:19:50Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "region:us" ]
null
2025-06-04T16:53:11Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
Triangle104/Crux-Qwen3_OpenThinking-4B-Q8_0-GGUF
Triangle104
2025-06-04T17:16:05Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "math", "sft", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "dataset:simplescaling/s1K-1.1", "dataset:nvidia/OpenMathReasoning", "dataset:mlabonne/FineTome-100k", "base_model:prithivMLmods/Crux-Qwen3_OpenThinking-4B", "base_model:quantized:prithivMLmods/Crux-Qwen3_OpenThinking-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-06-04T17:14:49Z
--- license: apache-2.0 datasets: - simplescaling/s1K-1.1 - nvidia/OpenMathReasoning - mlabonne/FineTome-100k language: - en library_name: transformers base_model: prithivMLmods/Crux-Qwen3_OpenThinking-4B pipeline_tag: text-generation tags: - text-generation-inference - math - sft - code - llama-cpp - gguf-my-repo --- # Triangle104/Crux-Qwen3_OpenThinking-4B-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/Crux-Qwen3_OpenThinking-4B`](https://huggingface.co/prithivMLmods/Crux-Qwen3_OpenThinking-4B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Crux-Qwen3_OpenThinking-4B) for more details on the model. --- Crux-Qwen3_OpenThinking-4B is fine-tuned on the Qwen3-4B architecture, optimized for advanced open thinking, mathematical reasoning, and logical problem solving. This model is trained on the traces of sk1.1, which include 1,000 entries from the Gemini thinking trajectory, combined with fine-tuning on 100k tokens of open math reasoning data. This makes it highly effective for nuanced reasoning, educational tasks, and complex problem-solving requiring clear thought processes. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Crux-Qwen3_OpenThinking-4B-Q8_0-GGUF --hf-file crux-qwen3_openthinking-4b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Crux-Qwen3_OpenThinking-4B-Q8_0-GGUF --hf-file crux-qwen3_openthinking-4b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Crux-Qwen3_OpenThinking-4B-Q8_0-GGUF --hf-file crux-qwen3_openthinking-4b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Crux-Qwen3_OpenThinking-4B-Q8_0-GGUF --hf-file crux-qwen3_openthinking-4b-q8_0.gguf -c 2048 ```
iapp/chinda-qwen3-4b
iapp
2025-06-04T17:14:27Z
43
6
null
[ "safetensors", "qwen3", "thai", "text-generation", "conversational", "th", "en", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "doi:10.57967/hf/5709", "license:apache-2.0", "region:us" ]
text-generation
2025-05-28T03:47:14Z
--- license: apache-2.0 language: - th - en base_model: - Qwen/Qwen3-4B pipeline_tag: text-generation tags: - thai --- # 🇹🇭 Chinda Opensource Thai LLM 4B **Latest Model, Think in Thai, Answer in Thai, Built by Thai Startup** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/RTzTckBAT3MjYp950UamV.jpeg) Chinda Opensource Thai LLM 4B is iApp Technology's cutting-edge Thai language model that brings advanced thinking capabilities to the Thai AI ecosystem. Built on the latest Qwen3-4B architecture, Chinda represents our commitment to developing sovereign AI solutions for Thailand. ## 🚀 Quick Links - **🌐 Demo:** [https://chindax.iapp.co.th](https://chindax.iapp.co.th) (Choose ChindaLLM 4b) - **📦 Model Download:** [https://huggingface.co/iapp/chinda-qwen3-4b](https://huggingface.co/iapp/chinda-qwen3-4b) - **🐋 Ollama:** [https://ollama.com/iapp/chinda-qwen3-4b](https://ollama.com/iapp/chinda-qwen3-4b) - **🏠 Homepage:** [https://iapp.co.th/products/chinda-opensource-llm](https://iapp.co.th/products/chinda-opensource-llm) - **📄 License:** Apache 2.0 ## ✨ Key Features ### 🆓 **0. Free and Opensource for Everyone** Chinda LLM 4B is completely free and open-source, enabling developers, researchers, and businesses to build Thai AI applications without restrictions. ### 🧠 **1. Advanced Thinking Model** - **Highest score among Thai LLMs in 4B category** - Seamless switching between thinking and non-thinking modes - Superior reasoning capabilities for complex problems - Can be turned off for efficient general-purpose dialogue ### 🇹🇭 **2. Exceptional Thai Language Accuracy** - **98.4% accuracy** in outputting Thai language - Prevents unwanted Chinese and foreign language outputs - Specifically fine-tuned for Thai linguistic patterns ### 🆕 **3. Latest Architecture** - Based on the cutting-edge **Qwen3-4B** model - Incorporates the latest advancements in language modeling - Optimized for both performance and efficiency ### 📜 **4. Apache 2.0 License** - Commercial use permitted - Modification and distribution allowed - No restrictions on private use ## 📊 Benchmark Results Chinda LLM 4B demonstrates superior performance compared to other Thai language models in its category: | Benchmark | Language | Chinda LLM 4B | Alternative* | |-----------|----------|---------------|-------------| | **AIME24** | English | **0.533** | 0.100 | | | Thai | **0.100** | 0.000 | | **LiveCodeBench** | English | **0.665** | 0.209 | | | Thai | **0.198** | 0.144 | | **MATH500** | English | **0.908** | 0.702 | | | Thai | **0.612** | 0.566 | | **IFEVAL** | English | **0.849** | 0.848 | | | Thai | 0.683 | **0.740** | | **Language Accuracy** | Thai | 0.984 | **0.992** | | **OpenThaiEval** | Thai | **0.651** | 0.544 | | **AVERAGE** | | **0.569** | 0.414 | * Alternative: scb10x_typhoon2.1-gemma3-4b * Tested by Skythought and Evalscope Benchmark Libraries by iApp Technology team. Results show Chinda LLM 4B achieving **37% better overall performance** than the nearest alternative. ## ✅ Suitable For ### 🔍 **1. RAG Applications (Sovereign AI)** Perfect for building Retrieval-Augmented Generation systems that keep data processing within Thai sovereignty. ### 📱 **2. Mobile and Laptop Applications** Reliable Small Language Model optimized for edge computing and personal devices. ### 🧮 **3. Math Calculation** Excellent performance in mathematical reasoning and problem-solving. ### 💻 **4. Code Assistant** Strong capabilities in code generation and programming assistance. ### ⚡ **5. Resource Efficiency** Very fast inference with minimal GPU memory consumption, ideal for production deployments. ## ❌ Not Suitable For ### 📚 **Factual Questions Without Context** As a 4B parameter model, it may hallucinate when asked for specific facts without provided context. Always use with RAG or provide relevant context for factual queries. ## 🛠️ Quick Start ### Installation ```bash pip install transformers torch ``` ### Basic Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "iapp/chinda-qwen3-4b" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # Prepare the model input prompt = "อธิบายเกี่ยวกับปัญญาประดิษฐ์ให้ฟังหน่อย" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Enable thinking mode for better reasoning ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate response generated_ids = model.generate( **model_inputs, max_new_tokens=1024, temperature=0.6, top_p=0.95, top_k=20, do_sample=True ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # Parse thinking content (if enabled) try: # Find </think> token (151668) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("🧠 Thinking:", thinking_content) print("💬 Response:", content) ``` ### Switching Between Thinking and Non-Thinking Mode #### Enable Thinking Mode (Default) ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Enable detailed reasoning ) ``` #### Disable Thinking Mode (For Efficiency) ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Fast response mode ) ``` ### API Deployment #### Using vLLM ```bash pip install vllm>=0.8.5 vllm serve iapp/chinda-qwen3-4b --enable-reasoning --reasoning-parser deepseek_r1 ``` #### Using SGLang ```bash pip install sglang>=0.4.6.post1 python -m sglang.launch_server --model-path iapp/chinda-qwen3-4b --reasoning-parser qwen3 ``` #### Using Ollama (Easy Local Setup) **Installation:** ```bash # Install Ollama (if not already installed) curl -fsSL https://ollama.com/install.sh | sh # Pull Chinda LLM 4B model ollama pull iapp/chinda-qwen3-4b ``` **Basic Usage:** ```bash # Start chatting with Chinda LLM ollama run iapp/chinda-qwen3-4b # Example conversation ollama run iapp/chinda-qwen3-4b "อธิบายเกี่ยวกับปัญญาประดิษฐ์ให้ฟังหน่อย" ``` **API Server:** ```bash # Start Ollama API server ollama serve # Use with curl curl http://localhost:11434/api/generate -d '{ "model": "iapp/chinda-qwen3-4b", "prompt": "สวัสดีครับ", "stream": false }' ``` **Model Specifications:** - **Size:** 2.5GB (quantized) - **Context Window:** 40K tokens - **Architecture:** Optimized for local deployment - **Performance:** Fast inference on consumer hardware ## 🔧 Advanced Configuration ### Processing Long Texts Chinda LLM 4B natively supports up to 32,768 tokens. For longer contexts, enable YaRN scaling: ```json { "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` ### Recommended Parameters **For Thinking Mode:** - Temperature: 0.6 - Top-P: 0.95 - Top-K: 20 - Min-P: 0 **For Non-Thinking Mode:** - Temperature: 0.7 - Top-P: 0.8 - Top-K: 20 - Min-P: 0 ## 📝 Context Length & Template Format ### Context Length Support - **Native Context Length:** 32,768 tokens - **Extended Context Length:** Up to 131,072 tokens (with YaRN scaling) - **Input + Output:** Total conversation length supported - **Recommended Usage:** Keep conversations under 32K tokens for optimal performance ### Chat Template Format Chinda LLM 4B uses a standardized chat template format for consistent interactions: ```python # Basic template structure messages = [ {"role": "system", "content": "You are a helpful Thai AI assistant."}, {"role": "user", "content": "สวัสดีครับ"}, {"role": "assistant", "content": "สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ"}, {"role": "user", "content": "ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย"} ] # Apply template with thinking mode text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True ) ``` ### Template Structure The template follows the standard conversational format: ``` <|im_start|>system You are a helpful Thai AI assistant.<|im_end|> <|im_start|>user สวัสดีครับ<|im_end|> <|im_start|>assistant สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ<|im_end|> <|im_start|>user ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย<|im_end|> <|im_start|>assistant ``` ### Advanced Template Usage ```python # Multi-turn conversation with thinking control def create_conversation(messages, enable_thinking=True): # Add system message if not present if not messages or messages[0]["role"] != "system": system_msg = { "role": "system", "content": "คุณเป็น AI ผู้ช่วยที่ฉลาดและเป็นประโยชน์ พูดภาษาไทยได้อย่างเป็นธรรมชาติ" } messages = [system_msg] + messages # Apply chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=enable_thinking ) return text # Example usage conversation = [ {"role": "user", "content": "คำนวณ 15 × 23 = ?"}, ] prompt = create_conversation(conversation, enable_thinking=True) ``` ### Dynamic Mode Switching You can control thinking mode within conversations using special commands: ```python # Enable thinking for complex problems messages = [ {"role": "user", "content": "/think แก้สมการ: x² + 5x - 14 = 0"} ] # Disable thinking for quick responses messages = [ {"role": "user", "content": "/no_think สวัสดี"} ] ``` ### Context Management Best Practices 1. **Monitor Token Count:** Keep track of total tokens (input + output) 2. **Truncate Old Messages:** Remove oldest messages when approaching limits 3. **Use YaRN for Long Contexts:** Enable rope scaling for documents > 32K tokens 4. **Batch Processing:** For very long texts, consider chunking and processing in batches ```python def manage_context(messages, max_tokens=30000): """Simple context management function""" total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages) while total_tokens > max_tokens and len(messages) > 2: # Keep system message and remove oldest user/assistant pair if messages[1]["role"] == "user": messages.pop(1) # Remove user message if len(messages) > 1 and messages[1]["role"] == "assistant": messages.pop(1) # Remove corresponding assistant message total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages) return messages ``` ## 🏢 Enterprise Support For enterprise deployments, custom training, or commercial support, contact us at: - **Email:** [email protected] - **Website:** [iapp.co.th](https://iapp.co.th) ## ❓ Frequently Asked Questions <details> <summary><strong>🏷️ Why is it named "Chinda"?</strong></summary> The name "Chinda" (จินดา) comes from "จินดามณี" (Chindamani), which is considered the first book of Thailand written by Phra Horathibodi (Sri Dharmasokaraja) in the Sukhothai period. Just as จินดามณี was a foundational text for Thai literature and learning, Chinda LLM represents our foundation for Thai sovereign AI - a model that truly understands and thinks in Thai, preserving and advancing Thai language capabilities in the digital age. </details> <details> <summary><strong>⚖️ Can I use Chinda LLM 4B for commercial purposes?</strong></summary> Yes! Chinda LLM 4B is released under the **Apache 2.0 License**, which allows: - ✅ **Commercial use** - Use in commercial products and services - ✅ **Research use** - Academic and research applications - ✅ **Modification** - Adapt and modify the model - ✅ **Distribution** - Share and redistribute the model - ✅ **Private use** - Use for internal company projects No restrictions on commercial applications - build and deploy freely! </details> <details> <summary><strong>🧠 What's the difference between thinking and non-thinking mode?</strong></summary> **Thinking Mode (`enable_thinking=True`):** - Model shows its reasoning process in `<think>...</think>` blocks - Better for complex problems, math, coding, logical reasoning - Slower but more accurate responses - Recommended for tasks requiring deep analysis **Non-Thinking Mode (`enable_thinking=False`):** - Direct answers without showing reasoning - Faster responses for general conversations - Better for simple queries and chat applications - More efficient resource usage You can switch between modes or let users control it dynamically using `/think` and `/no_think` commands. </details> <details> <summary><strong>📊 How does Chinda LLM 4B compare to other Thai language models?</strong></summary> Chinda LLM 4B achieves **37% better overall performance** compared to the nearest alternative: - **Overall Average:** 0.569 vs 0.414 (alternative) - **Math (MATH500):** 0.908 vs 0.702 (English), 0.612 vs 0.566 (Thai) - **Code (LiveCodeBench):** 0.665 vs 0.209 (English), 0.198 vs 0.144 (Thai) - **Thai Language Accuracy:** 98.4% (prevents Chinese/foreign text output) - **OpenThaiEval:** 0.651 vs 0.544 It's currently the **highest-scoring Thai LLM in the 4B parameter category**. </details> <details> <summary><strong>💻 What are the system requirements to run Chinda LLM 4B?</strong></summary> **Minimum Requirements:** - **GPU:** 8GB VRAM (RTX 3070/4060 Ti or better) - **RAM:** 16GB system memory - **Storage:** 8GB free space for model download - **Python:** 3.8+ with PyTorch **Recommended for Production:** - **GPU:** 16GB+ VRAM (RTX 4080/A4000 or better) - **RAM:** 32GB+ system memory - **Storage:** SSD for faster loading **CPU-Only Mode:** Possible but significantly slower (not recommended for production) </details> <details> <summary><strong>🔧 Can I fine-tune Chinda LLM 4B for my specific use case?</strong></summary> Yes! As an open-source model under Apache 2.0 license, you can: - **Fine-tune** on your domain-specific data - **Customize** for specific tasks or industries - **Modify** the architecture if needed - **Create derivatives** for specialized applications Popular fine-tuning frameworks that work with Chinda: - **Unsloth** - Fast and memory-efficient - **LoRA/QLoRA** - Parameter-efficient fine-tuning - **Hugging Face Transformers** - Full fine-tuning - **Axolotl** - Advanced training configurations Need help with fine-tuning? Contact our team at [email protected] </details> <details> <summary><strong>🌍 What languages does Chinda LLM 4B support?</strong></summary> **Primary Languages:** - **Thai** - Native-level understanding and generation (98.4% accuracy) - **English** - Strong performance across all benchmarks **Additional Languages:** - 100+ languages supported (inherited from Qwen3-4B base) - Focus optimized for Thai-English bilingual tasks - Code generation in multiple programming languages **Special Features:** - **Code-switching** between Thai and English - **Translation** between Thai and other languages - **Multilingual reasoning** capabilities </details> <details> <summary><strong>🔍 Is the training data publicly available?</strong></summary> The model weights are open-source, but the specific training datasets are not publicly released. However: - **Base Model:** Built on Qwen3-4B (Alibaba's open foundation) - **Thai Optimization:** Custom dataset curation for Thai language tasks - **Quality Focus:** Carefully selected high-quality Thai content - **Privacy Compliant:** No personal or sensitive data included For research collaborations or dataset inquiries, contact our research team. </details> <details> <summary><strong>🆘 How do I get support or report issues?</strong></summary> **For Technical Issues:** - **GitHub Issues:** Report bugs and technical problems - **Hugging Face:** Model-specific questions and discussions - **Documentation:** Check our comprehensive guides **For Commercial Support:** - **Email:** [email protected] - **Enterprise Support:** Custom training, deployment assistance - **Consulting:** Integration and optimization services **Community Support:** - **Thai AI Community:** Join discussions about Thai AI development - **Developer Forums:** Connect with other Chinda users </details> <details> <summary><strong>📥 How large is the model download and what format is it in?</strong></summary> **Model Specifications:** - **Parameters:** 4.02 billion (4B) - **Download Size:** ~8GB (compressed) - **Format:** Safetensors (recommended) and PyTorch - **Precision:** BF16 (Brain Float 16) **Download Options:** - **Hugging Face Hub:** `huggingface.co/iapp/chinda-qwen3-4b` - **Git LFS:** For version control integration - **Direct Download:** Individual model files - **Quantized Versions:** Available for reduced memory usage (GGUF, AWQ) **Quantization Options:** - **4-bit (GGUF):** ~2.5GB, runs on 4GB VRAM - **8-bit:** ~4GB, balanced performance/memory - **16-bit (Original):** ~8GB, full performance </details> ## 📚 Citation If you use Chinda LLM 4B in your research or projects, please cite: ```bibtex @misc{chinda-llm-4b, title={Chinda LLM 4B: Thai Sovereign AI Language Model}, author={iApp Technology}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/iapp/chinda-qwen3-4b} } ``` --- *Built with 🇹🇭 by iApp Technology - Empowering Thai Businesses with Sovereign AI Excellence* ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/qNa4bznh179myghTFcpFp.jpeg) **Powered by iApp Technology** <i>Disclaimer: Provided responses are not guaranteed.</i>
talphaidze/letter_finetuned
talphaidze
2025-06-04T17:09:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T17:05:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lqmannn4/resume_matcher
lqmannn4
2025-06-04T17:06:24Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4", "loss:CosineSimilarityLoss", "arxiv:1908.10084", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-04T17:05:14Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-MiniLM-L6-v2 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 4 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 4 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 12 tokens</li><li>mean: 14.0 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 13.25 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:--------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-----------------| | <code>Teacher with 5 years in classroom management...</code> | <code>Looking for AI/ML engineer with Python experience.</code> | <code>0.0</code> | | <code>DevOps engineer with AWS, Docker, Jenkins...</code> | <code>Hiring cloud infrastructure engineer with AWS and CI/CD tools.</code> | <code>1.0</code> | | <code>Experienced Python developer with Flask and Django skills...</code> | <code>Looking for backend Python developer with Django experience.</code> | <code>1.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Framework Versions - Python: 3.11.12 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 2.14.4 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
AquilaX-AI/classification
AquilaX-AI
2025-06-04T17:05:24Z
244
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-09-18T10:55:28Z
--- library_name: transformers tags: [] --- ## Inference ```python from transformers import AutoModelForSequenceClassification, DistilBertTokenizer import time import torch import re device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = AutoModelForSequenceClassification.from_pretrained("AquilaX-AI/classification").to(device) tokenizer = DistilBertTokenizer.from_pretrained("AquilaX-AI/classification") start = time.time() question = "give me a scan result" question = re.sub(r"[,?.'\"']", '', question) inputs = tokenizer(question, return_tensors="pt").to(device) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() predicted_class = model.config.id2label[predicted_class_id] print(predicted_class) print(time.time() - start) ```
PrunaAI/Qwen-Qwen2.5-Coder-7B-HQQ-4bit-smashed
PrunaAI
2025-06-04T16:50:07Z
0
0
null
[ "qwen2", "pruna-ai", "base_model:Qwen/Qwen2.5-Coder-7B", "base_model:finetune:Qwen/Qwen2.5-Coder-7B", "region:us" ]
null
2025-06-04T16:49:00Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: Qwen/Qwen2.5-Coder-7B metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="banner.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo Qwen/Qwen2.5-Coder-7B installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/Qwen-Qwen2.5-Coder-7B-HQQ-4bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/Qwen-Qwen2.5-Coder-7B-HQQ-4bit-smashed") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. This model has been smashed with pruna in version O.1.3 ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model Qwen/Qwen2.5-Coder-7B before using this model which provided the base model. The license of `pruna` is [here](https://github.com/PrunaAI/pruna/blob/main/LICENSE) on GitHub. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
trip1ech/MCQA-rationale-dev
trip1ech
2025-06-04T16:45:26Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T16:43:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmbh0dx3r05zvkfxsonevw8x7_cmbi4hwsr08sfkfxsi7j87kig
BootesVoid
2025-06-04T16:43:47Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-04T16:43:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BOOTY --- # Cmbh0Dx3R05Zvkfxsonevw8X7_Cmbi4Hwsr08Sfkfxsi7J87Kig <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BOOTY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BOOTY", "lora_weights": "https://huggingface.co/BootesVoid/cmbh0dx3r05zvkfxsonevw8x7_cmbi4hwsr08sfkfxsi7j87kig/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbh0dx3r05zvkfxsonevw8x7_cmbi4hwsr08sfkfxsi7j87kig', weight_name='lora.safetensors') image = pipeline('BOOTY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbh0dx3r05zvkfxsonevw8x7_cmbi4hwsr08sfkfxsi7j87kig/discussions) to add images that show off what you’ve made with this LoRA.
sdjtfshjds/Qwen2-0.5B-GRPO-sql
sdjtfshjds
2025-06-04T16:34:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-04T11:38:13Z
--- base_model: Qwen/Qwen2-0.5B-Instruct library_name: transformers model_name: Qwen2-0.5B-GRPO-sql tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2-0.5B-GRPO-sql This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sdjtfshjds/Qwen2-0.5B-GRPO-sql", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Wfiles/QLora_MCQA_FFT_Crazy_B4_2E_512T_LR1e-05_8
Wfiles
2025-06-04T16:33:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-04T10:38:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Desalegnn/amharic-t5-model-LoRA
Desalegnn
2025-06-04T16:33:23Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-04T16:32:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ber173/CartPole-v1
Ber173
2025-06-04T16:31:45Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-05-31T13:56:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
tanizhan/data-science-gpt2
tanizhan
2025-06-04T16:28:28Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T15:54:41Z
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: data-science-gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data-science-gpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
ibuki95/vision_172_11
ibuki95
2025-06-04T16:24:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-04T16:17:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
himedia/hyperclovax-1.5b-4bit-bnb-finetuned
himedia
2025-06-04T16:21:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-04T16:20:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF
mradermacher
2025-06-04T16:19:36Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:zerofata/Roleplay-Anime-Characters", "dataset:zerofata/Instruct-Anime-CreativeWriting", "dataset:zerofata/Summaries-Anime-FandomPages", "base_model:zerofata/L3.3-GeneticLemonade-Final-v2-70B", "base_model:quantized:zerofata/L3.3-GeneticLemonade-Final-v2-70B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-04T12:23:45Z
--- base_model: zerofata/L3.3-GeneticLemonade-Final-v2-70B datasets: - zerofata/Roleplay-Anime-Characters - zerofata/Instruct-Anime-CreativeWriting - zerofata/Summaries-Anime-FandomPages language: - en library_name: transformers license: llama3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/zerofata/L3.3-GeneticLemonade-Final-v2-70B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Final-v2-70B-GGUF/resolve/main/L3.3-GeneticLemonade-Final-v2-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mario81464/qwen-3B_instruct_base_sft_FEVERCleanedBinaryRational_10k_samples
mario81464
2025-06-04T16:09:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T16:09:01Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
softdev629/orjebcnf
softdev629
2025-06-04T16:03:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-04T15:55:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
softdev629/b4zr0u7t
softdev629
2025-06-04T16:01:01Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-04T15:55:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
medimed/finetuned_Qwen3_lora
medimed
2025-06-04T16:00:28Z
13
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen3-0.6B-Base", "base_model:finetune:unsloth/Qwen3-0.6B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T12:27:49Z
--- base_model: unsloth/Qwen3-0.6B-Base tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** medimed - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-0.6B-Base This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Allen172/gemma-text-4400
Allen172
2025-06-04T15:56:49Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-04T15:33:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HouraMor/wav2vec2-ft-lre5-adm-ga2b16-st15k-v2
HouraMor
2025-06-04T15:54:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:jonatasgrosman/wav2vec2-large-english", "base_model:finetune:jonatasgrosman/wav2vec2-large-english", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-03T09:25:22Z
--- library_name: transformers license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-english tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-ft-lre5-adm-ga2b16-st15k-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-ft-lre5-adm-ga2b16-st15k-v2 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5870 - Wer: 0.8445 - Cer: 0.5449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 3.3794 | 0.4165 | 1000 | 3.3428 | 1.0000 | 1.0000 | | 3.2665 | 0.8330 | 2000 | 3.3404 | 1.0000 | 1.0000 | | 3.2044 | 1.2495 | 3000 | 3.2870 | 1.0000 | 1.0000 | | 3.2642 | 1.6660 | 4000 | 3.3091 | 1.0000 | 1.0000 | | 3.1645 | 2.0825 | 5000 | 3.2496 | 1.0000 | 1.0000 | | 3.0649 | 2.4990 | 6000 | 3.1114 | 0.9971 | 0.9687 | | 2.8293 | 2.9155 | 7000 | 2.8214 | 0.9283 | 0.6287 | | 2.7508 | 3.3319 | 8000 | 2.6857 | 0.8816 | 0.5757 | | 2.5881 | 3.7484 | 9000 | 2.6349 | 0.8577 | 0.5662 | | 2.5849 | 4.1649 | 10000 | 2.6452 | 0.8601 | 0.5625 | | 2.4879 | 4.5814 | 11000 | 2.6279 | 0.8521 | 0.5492 | | 2.5049 | 4.9979 | 12000 | 2.6028 | 0.8508 | 0.5492 | | 2.4675 | 5.4144 | 13000 | 2.6280 | 0.8540 | 0.5437 | | 2.4701 | 5.8309 | 14000 | 2.5934 | 0.8461 | 0.5439 | | 2.4516 | 6.2474 | 15000 | 2.5870 | 0.8445 | 0.5449 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.7.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1
GingerBled/MCQA_on_DPO_adam_m1
GingerBled
2025-06-04T15:54:43Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T15:53:39Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
trongg/Qwen2.5-Coder-1.5B-Instruct-aef8d792-f042-438f-804a-9e0c7f4f5033
trongg
2025-06-04T15:54:15Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-04T15:54:00Z
--- base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct library_name: transformers model_name: Qwen2.5-Coder-1.5B-Instruct-aef8d792-f042-438f-804a-9e0c7f4f5033 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen2.5-Coder-1.5B-Instruct-aef8d792-f042-438f-804a-9e0c7f4f5033 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="trongg/Qwen2.5-Coder-1.5B-Instruct-aef8d792-f042-438f-804a-9e0c7f4f5033", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tengicxduoc/sn56-sft-train/runs/h2e12kye) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
cragtmp/task05rd2-519
cragtmp
2025-06-04T15:48:55Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-11B-Vision-Instruct", "base_model:adapter:meta-llama/Llama-3.2-11B-Vision-Instruct", "region:us" ]
null
2025-06-04T15:47:47Z
--- base_model: meta-llama/Llama-3.2-11B-Vision-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
01-Spiderman-Sophie-Rain-Viral-Video/Sophie.Rain.SpiderMan.Tutorial
01-Spiderman-Sophie-Rain-Viral-Video
2025-06-04T15:48:25Z
0
0
null
[ "region:us" ]
null
2025-06-04T15:48:01Z
39 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter . . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
darshjoshi16/phi2-lora-math
darshjoshi16
2025-06-04T15:46:33Z
6
0
peft
[ "peft", "safetensors", "lora", "math", "reasoning", "gsm8k", "phi-2", "transformers", "arxiv:2106.09685", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:apache-2.0", "region:us" ]
null
2025-06-04T01:37:40Z
--- license: apache-2.0 tags: - peft - lora - math - reasoning - gsm8k - phi-2 - transformers library_name: peft base_model: microsoft/phi-2 model_type: causal-lm --- # 🧠 Phi-2 LoRA Adapter for GSM8K (Math Word Problems) This repository contains a parameter-efficient **LoRA fine-tuning** of [`microsoft/phi-2`](https://huggingface.co/microsoft/phi-2) on the **GSM8K** dataset, designed for solving grade-school arithmetic and reasoning problems in natural language. > ✅ Adapter-only: This is a **LoRA adapter**, not a full model. You must load it on top of `microsoft/phi-2`. --- ## ✨ What's Inside - **Base Model**: `microsoft/phi-2` (1.7B parameters) - **Adapter Type**: LoRA (Low-Rank Adaptation via [PEFT](https://github.com/huggingface/peft)) - **Task**: Grade-school math reasoning (multi-step logic and arithmetic) - **Dataset**: [GSM8K](https://huggingface.co/datasets/gsm8k) --- ## 🚀 Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2") tokenizer = AutoTokenizer.from_pretrained("darshjoshi16/phi2-lora-math") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "darshjoshi16/phi2-lora-math") # Inference prompt = "Q: Julie read 12 pages yesterday and twice as many today. If she wants to read half of the remaining 84 pages tomorrow, how many pages should she read?\nA:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## 📊 Evaluation Results | Task | Metric | Score | Samples | |-------------|-----------------------------|--------|---------| | GSM8K | Exact Match (strict) | 54.6% | 500 | | ARC-Easy | Accuracy | 79.0% | 500 | | HellaSwag | Accuracy (Normalized) | 61.0% | 500 | > Benchmarks were run using [EleutherAI’s lm-eval-harness](https://github.com/EleutherAI/lm-eval-harness) --- ## ⚙️ Training Details - **Method**: LoRA (rank=8, alpha=16, dropout=0.1) - **Epochs**: 1 (proof of concept) - **Batch size**: 4 per device - **Precision**: FP16 - **Platform**: Google Colab (T4 GPU) - **Framework**: [🤗 Transformers](https://github.com/huggingface/transformers) + [PEFT](https://github.com/huggingface/peft) --- ## 🔍 Limitations - Fine-tuned for math problems only (not general-purpose reasoning) - Trained for 1 epoch — additional training may improve performance - Adapter-only: base model (`microsoft/phi-2`) must be loaded alongside --- ## 📘 Citation & References - [LoRA: Low-Rank Adaptation](https://arxiv.org/abs/2106.09685) - [Phi-2 Model Card](https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/) - [GSM8K Dataset](https://huggingface.co/datasets/gsm8k) - [PEFT Library](https://github.com/huggingface/peft) - [Transformers](https://huggingface.co/docs/transformers) --- ## 💬 Author This model was fine-tuned and open-sourced by **[Darsh Joshi](https://huggingface.co/darshjoshi16)**. Feel free to [reach out](mailto:[email protected]) or contribute.
avey-ai/rwkv7-dpa-0.5B-90BT
avey-ai
2025-06-04T15:44:52Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-06-04T15:41:12Z
--- license: apache-2.0 ---
hnpinq/Quantized_TryOn
hnpinq
2025-06-04T15:44:43Z
0
0
None
[ "None", "diffusers", "safetensors", "pruna-ai", "region:us" ]
null
2025-06-04T15:18:51Z
--- library_name: None tags: - pruna-ai --- # Model Card for hnpinq/Quantized_TryOn This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead. ## Usage First things first, you need to install the pruna library: ```bash pip install pruna ``` You can [use the None library to load the model](https://huggingface.co/hnpinq/Quantized_TryOn?library=None) but this might not include all optimizations by default. To ensure that all optimizations are applied, use the pruna library to load the model using the following code: ```python from pruna import PrunaModel loaded_model = PrunaModel.from_hub( "hnpinq/Quantized_TryOn" ) ``` After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information. ## Smash Configuration The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model. ```bash { "batcher": null, "cacher": null, "compiler": "torch_compile", "factorizer": null, "pruner": null, "quantizer": "hqq_diffusers", "hqq_diffusers_backend": "torchao_int4", "hqq_diffusers_group_size": 64, "hqq_diffusers_weight_bits": 8, "torch_compile_backend": "inductor", "torch_compile_dynamic": null, "torch_compile_fullgraph": true, "torch_compile_make_portable": false, "torch_compile_max_kv_cache_size": 400, "torch_compile_mode": "max-autotune", "torch_compile_seqlen_manual_cuda_graph": 100, "torch_compile_target": "model", "batch_size": 1, "device": "cuda", "save_fns": [ "hqq_diffusers", "save_before_apply" ], "load_fns": [ "hqq_diffusers" ], "reapply_after_load": { "factorizer": null, "pruner": null, "quantizer": null, "cacher": null, "compiler": "torch_compile", "batcher": null } } ``` ## 🌍 Join the Pruna AI community! [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/rskEr4BZJx) [![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)
publication-charaf/MCQ_Qwen3-0.6B-Base_lr-5e-06_e-1_s-0
publication-charaf
2025-06-04T15:43:27Z
25
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:finetune:Qwen/Qwen3-0.6B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T14:07:41Z
--- base_model: Qwen/Qwen3-0.6B-Base library_name: transformers model_name: MCQ_Qwen3-0.6B-Base_lr-5e-06_e-1_s-0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MCQ_Qwen3-0.6B-Base_lr-5e-06_e-1_s-0 This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="publication-charaf/MCQ_Qwen3-0.6B-Base_lr-5e-06_e-1_s-0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/kamel-charaf-epfl/huggingface/runs/gqrqptjx) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ML-enthusiast-brinda/CyberBuddy-Gemma
ML-enthusiast-brinda
2025-06-04T15:43:22Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-04T15:43:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
selsar/nli-multilabel-classeducation-new
selsar
2025-06-04T15:42:42Z
0
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-04T15:41:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
weifar/mistral_2
weifar
2025-06-04T15:37:44Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-04T15:35:29Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kokoutou/sn29_coldintC00_0406_2
Kokoutou
2025-06-04T15:37:42Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T15:07:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
amsilee4/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-playful_hairy_chinchilla
amsilee4
2025-06-04T15:28:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am playful hairy chinchilla", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-04T03:16:01Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-playful_hairy_chinchilla tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am playful hairy chinchilla - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-playful_hairy_chinchilla This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="amsilee4/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-playful_hairy_chinchilla", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
avey-ai/mamba-dpa-0.5B-100BT
avey-ai
2025-06-04T15:27:08Z
0
0
null
[ "pytorch", "license:apache-2.0", "region:us" ]
null
2025-06-04T15:24:27Z
--- license: apache-2.0 ---
IntMeGroup/FineVQ_QA_which
IntMeGroup
2025-06-04T15:27:04Z
0
0
null
[ "tensorboard", "safetensors", "internvl_chat", "custom_code", "license:apache-2.0", "region:us" ]
null
2025-06-04T08:28:13Z
--- license: apache-2.0 ---
vectorzhou/vectorzhou-Qwen2-5-1-5B-Instruct-SFT-OpenHerm-ction-v0-1-OnlineIPO2-lora-0604063354-epoch-3
vectorzhou
2025-06-04T15:20:48Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "text-generation", "fine-tuned", "trl", "extra-gradient", "conversational", "dataset:OpenRLHF/prompt-collection-v0.1", "arxiv:2503.08942", "base_model:vectorzhou/Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT", "base_model:finetune:vectorzhou/Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T15:20:43Z
--- base_model: vectorzhou/Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT datasets: OpenRLHF/prompt-collection-v0.1 library_name: transformers model_name: Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT-prompt-collection-v0.1-OnlineIPO2-lora tags: - generated_from_trainer - text-generation - fine-tuned - trl - extra-gradient licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT-prompt-collection-v0.1-OnlineIPO2-lora This model is a fine-tuned version of [vectorzhou/Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT](https://huggingface.co/vectorzhou/Qwen2.5-1.5B-Instruct-SFT-OpenHermes-2.5-Standard-SFT) on the [OpenRLHF/prompt-collection-v0.1](https://huggingface.co/datasets/OpenRLHF/prompt-collection-v0.1) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="vectorzhou/vectorzhou-Qwen2-5-1-5B-Instruct-SFT-OpenHerm-ction-v0-1-OnlineIPO2-lora-0604063354-epoch-3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zhourunlongvector/nlhf/runs/kuktsgzu) This model was trained with Extragradient, a method introduced in [Extragradient Preference Optimization (EGPO): Beyond Last-Iterate Convergence for Nash Learning from Human Feedback](https://huggingface.co/papers/2503.08942). ### Framework versions - TRL: 0.13.0 - Transformers: 4.48.0 - Pytorch: 2.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite Extragradient as: ```bibtex @misc{zhou2025extragradientpreferenceoptimizationegpo, title={Extragradient Preference Optimization (EGPO): Beyond Last-Iterate Convergence for Nash Learning from Human Feedback}, author={Runlong Zhou and Maryam Fazel and Simon S. Du}, year={2025}, eprint={2503.08942}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.08942}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
abbasb91/q-FrozenLake-v1-4x4-noSlippery
abbasb91
2025-06-04T15:15:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-04T15:15:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="abbasb91/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RafatK/Whisper_Largev2-Swahili-Decodis_FT
RafatK
2025-06-04T15:14:40Z
15
0
null
[ "safetensors", "whisper", "automatic-speech-recognition", "sw", "base_model:openai/whisper-large-v2", "base_model:finetune:openai/whisper-large-v2", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2025-05-21T19:43:27Z
--- license: cc-by-nc-4.0 language: - sw metrics: - wer base_model: - openai/whisper-large-v2 pipeline_tag: automatic-speech-recognition --- <p align="left"> <a href="https://decodis.com/"> <img src="https://static.wixstatic.com/media/41bde8_fdfad2782d8641edb098e72f1ea10d65~mv2.png/v1/fill/w_185,h_50,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/41bde8_fdfad2782d8641edb098e72f1ea10d65~mv2.png" style="display: inline-block; vertical-align: middle;" alt="DECODIS_Website" /> </a> </p> # 🧩 Robust ASR Model for Real-World Swahili Speech (Domain Data Only) <p> <a href="https://github.com/Rafat-decodis/Robust-ASR-for-Low-Resource-Languages/tree/main" target="_blank" style="margin: 2px;"> <img src="https://img.shields.io/badge/Decodis-Indepth Analysis-536af5?color=536af5&logo=github" style="display: inline-block; vertical-align: middle;" alt="Main code" /> </a> </p> This ASR model is trained **exclusively on 50 hours of real-world, domain-specific Swahili audio**, including conversational and semi-spontaneous speech. It is designed to handle **noisy environments**, diverse speaker styles, and more natural linguistic variation. It does similarly well for clean and well-structured speech input This model is part of a full ASR ablation study that analyzes and understands the robustness of data and in dealing with different modes and variations of data collections. 👉 View all models on [GitHub](https://github.com/Rafat-decodis/Robust-ASR-for-Low-Resource-Languages) **We are particularly interested in validating the conclusions we’ve observed through our ablation studies**: While benchmark datasets like FLEURS are useful for comparison, they do not fully capture the variability and challenges of real-world speech — especially for underrepresented languages like Swahili and Yoruba. We are inviting the community to try out these models and help assess: 1. How well the models perform on natural, conversational, or noisy audio 2. Open-source datasets (like Common Voice & FLEURS) perform well on clean, benchmark speech. 3. Whether the improvements we've seen in combining diverse datasets generalize to your use case 4. Gaps between benchmark results and real-world usability 5. A combination of both yields balanced results but depends on data quality and label accuracy. ## Model [Whisper](https://github.com/openai/whisper) is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification. --- ## 🚀 How to Use ```python from transformers import WhisperForConditionalGeneration, WhisperProcessor from transformers import pipeline from transformers.utils import is_flash_attn_2_available processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") model = WhisperForConditionalGeneration.from_pretrained("RafatK/Swahili-Whisper-Largev2-Decodis_FT", torch_dtype=torch.float16).to("cuda") model.generation_config.input_ids = model.generation_config.forced_decoder_ids model.generation_config.forced_decoder_ids = None forced_decoder_ids = processor.get_decoder_prompt_ids(language="swahili", task="transcribe") pipe = pipeline( "automatic-speech-recognition", model=model, processor = "openai/whisper-large-v2", tokenizer = "openai/whisper-large-v2", feature_extractor = "openai/whisper-large-v2", chunk_length_s=15, device=device, model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"}, generate_kwargs = { 'num_beams':5, 'max_new_tokens':440, 'early_stopping':True, 'repetition_penalty': 1.8, 'language': 'swahili', 'task': 'transcribe' } ) text_output = pipe("audio.wav")['text'] ``` --- ## 📦 Training Data - **Custom real-world dataset** - Swahili - Collected from real use cases (e.g. mobile recordings, community sources) - ~50 hours - Not publicly released (due to licensing) 📁 **Languages**: Swahili (`sw`) --- ## 🏋️‍♂️ Training Setup - Architecture: `whisper-large-v2` - Framework: Whisper and Huggingface Transformers - Sampling rate: 16 kHz - Preprocessing: Volume normalization, High-Grade noise addition and filtering, Prosodic Augmentation,silence trimming - Learning Rate: 1e-5 - Optimizer: Adamw_pytorch - Steps: 3000 --- ## 📈 Evaluation | Dataset | This Model | Whisper Large V2| |----------------------|------------|-----------------| | **FLEURS (benchmark)** | **34.73** | **39.40** | | **[Decodis Test Set](https://huggingface.co/datasets/RafatK/Decodis_Test_Set) (Collected by DECODIS)** | **46.44** | **99.98** | --- ## 🎯 Intended Use This model is best for: - Noisy, real-world speech input - Community-contributed or semi-structured conversation - Language tools for low-resource environments --- ## ⚠️ Limitations - Underperforms on clean datasets like FLEURS mainly due to size of train set - May exhibit bias toward some accents - Limited by the smaller training size (~50h) --- 📝 Please try the models and share your feedback, issues, or results via: GitHub Issues: Submit an issue Hugging Face Discussions: Join the conversation Your feedback will help us refine our dataset and improve ASR for underrepresented languages like Swahili and Yoruba. ---
Furagido/test-trainer
Furagido
2025-06-04T15:14:16Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-04T14:17:17Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cpu - Datasets 3.6.0 - Tokenizers 0.21.1
YuchenLi01/generatedMoreUniqueResponseNoGTv2_Qwen2.5-1.5BInstruct_dpo_ebs32_lr1e-06_beta0.4_42
YuchenLi01
2025-06-04T15:10:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:YuchenLi01/MATH_Qwen2.5-1.5BInstruct_DPO_MoreUniqueResponseNoGTv2", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-02T01:12:21Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - YuchenLi01/MATH_Qwen2.5-1.5BInstruct_DPO_MoreUniqueResponseNoGTv2 model-index: - name: generatedMoreUniqueResponseNoGTv2_Qwen2.5-1.5BInstruct_dpo_ebs32_lr1e-06_beta0.4_42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # generatedMoreUniqueResponseNoGTv2_Qwen2.5-1.5BInstruct_dpo_ebs32_lr1e-06_beta0.4_42 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the YuchenLi01/MATH_Qwen2.5-1.5BInstruct_DPO_MoreUniqueResponseNoGTv2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5796 - Rewards/chosen: -2.4031 - Rewards/rejected: -4.5651 - Rewards/accuracies: 0.7259 - Rewards/margins: 2.1620 - Logps/rejected: -68.2860 - Logps/chosen: -50.5201 - Logits/rejected: -2.1994 - Logits/chosen: -2.3640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected | |:-------------:|:------:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:| | 0.73 | 0.0060 | 20 | -2.2840 | -2.1666 | -44.5255 | -56.8519 | 0.6995 | 0.4933 | 0.0048 | -0.0063 | 0.0111 | | 0.6901 | 0.0120 | 40 | -2.2842 | -2.1669 | -44.5031 | -56.8548 | 0.7003 | 0.5120 | 0.0138 | 0.0039 | 0.0099 | | 0.7075 | 0.0180 | 60 | -2.2843 | -2.1666 | -44.5252 | -56.9059 | 0.6981 | 0.5294 | 0.0050 | 0.0155 | -0.0105 | | 0.7391 | 0.0240 | 80 | -2.2858 | -2.1679 | -44.5320 | -56.8932 | 0.6966 | 0.4973 | 0.0022 | 0.0077 | -0.0055 | | 0.6997 | 0.0300 | 100 | -2.2827 | -2.1646 | -44.5602 | -56.9502 | 0.6936 | 0.5414 | -0.0090 | 0.0192 | -0.0283 | | 0.6947 | 0.0360 | 120 | -2.2828 | -2.1639 | -44.5720 | -56.9823 | 0.6887 | 0.5561 | -0.0138 | 0.0274 | -0.0411 | | 0.6603 | 0.0420 | 140 | -2.2806 | -2.1608 | -44.6200 | -57.0791 | 0.6812 | 0.5789 | -0.0330 | 0.0468 | -0.0798 | | 0.6614 | 0.0480 | 160 | -2.2676 | -2.1469 | -44.7167 | -57.2574 | 0.6712 | 0.6283 | -0.0717 | 0.0795 | -0.1511 | | 0.6172 | 0.0540 | 180 | -2.2744 | -2.1516 | -44.7115 | -57.3140 | 0.6609 | 0.6243 | -0.0696 | 0.1042 | -0.1738 | | 0.6768 | 0.0600 | 200 | -2.2685 | -2.1434 | -44.9507 | -57.6549 | 0.6521 | 0.6150 | -0.1653 | 0.1449 | -0.3102 | | 0.6434 | 0.0660 | 220 | -2.2714 | -2.1442 | -44.8940 | -57.7109 | 0.6400 | 0.6310 | -0.1426 | 0.1900 | -0.3325 | | 0.6278 | 0.0720 | 240 | -2.2784 | -2.1486 | -44.9654 | -57.8901 | 0.6312 | 0.6364 | -0.1711 | 0.2331 | -0.4042 | | 0.6406 | 0.0780 | 260 | -2.2827 | -2.1504 | -44.9851 | -58.0680 | 0.6199 | 0.6524 | -0.1790 | 0.2963 | -0.4754 | | 0.5932 | 0.0840 | 280 | -2.2845 | -2.1501 | -45.0792 | -58.2691 | 0.6100 | 0.6644 | -0.2167 | 0.3392 | -0.5558 | | 0.5691 | 0.0900 | 300 | -2.2889 | -2.1523 | -45.0835 | -58.4435 | 0.5995 | 0.6885 | -0.2184 | 0.4072 | -0.6256 | | 0.632 | 0.0960 | 320 | -2.2982 | -2.1602 | -45.0706 | -58.5789 | 0.5903 | 0.6979 | -0.2132 | 0.4665 | -0.6797 | | 0.4984 | 0.1019 | 340 | -2.2795 | -2.1403 | -45.4087 | -59.1380 | 0.5824 | 0.7112 | -0.3485 | 0.5549 | -0.9034 | | 0.4785 | 0.1079 | 360 | -2.2724 | -2.1301 | -45.7659 | -59.7558 | 0.5792 | 0.6965 | -0.4913 | 0.6592 | -1.1505 | | 0.4918 | 0.1139 | 380 | -2.3079 | -2.1635 | -45.5944 | -59.7881 | 0.5690 | 0.7126 | -0.4227 | 0.7407 | -1.1634 | | 0.4795 | 0.1199 | 400 | -2.3040 | -2.1581 | -45.6597 | -59.9433 | 0.5674 | 0.7112 | -0.4489 | 0.7767 | -1.2255 | | 0.4556 | 0.1259 | 420 | -2.3335 | -2.1853 | -45.5978 | -60.0391 | 0.5630 | 0.7246 | -0.4241 | 0.8397 | -1.2638 | | 0.5614 | 0.1319 | 440 | -2.3154 | -2.1660 | -45.9202 | -60.5862 | 0.5540 | 0.7380 | -0.5531 | 0.9296 | -1.4827 | | 0.5586 | 0.1379 | 460 | -2.2845 | -2.1360 | -46.4138 | -61.1683 | 0.5535 | 0.7193 | -0.7505 | 0.9650 | -1.7155 | | 0.4678 | 0.1439 | 480 | -2.2856 | -2.1359 | -46.5777 | -61.5364 | 0.5485 | 0.7246 | -0.8161 | 1.0467 | -1.8627 | | 0.4443 | 0.1499 | 500 | -2.3041 | -2.1535 | -46.6548 | -61.7966 | 0.5465 | 0.7326 | -0.8469 | 1.1199 | -1.9668 | | 0.581 | 0.1559 | 520 | -2.3238 | -2.1717 | -46.5970 | -61.9235 | 0.5456 | 0.7447 | -0.8238 | 1.1938 | -2.0176 | | 0.5663 | 0.1619 | 540 | -2.3158 | -2.1632 | -46.7866 | -62.1512 | 0.5429 | 0.7447 | -0.8996 | 1.2091 | -2.1087 | | 0.4027 | 0.1679 | 560 | -2.2722 | -2.1216 | -47.1982 | -62.6455 | 0.5407 | 0.7380 | -1.0642 | 1.2421 | -2.3064 | | 0.4467 | 0.1739 | 580 | -2.3056 | -2.1547 | -46.8656 | -62.2133 | 0.5352 | 0.7313 | -0.9312 | 1.2023 | -2.1335 | | 0.5236 | 0.1799 | 600 | -2.3359 | -2.1846 | -46.3751 | -61.6073 | 0.5316 | 0.7353 | -0.7350 | 1.1561 | -1.8911 | | 0.3381 | 0.1859 | 620 | -2.3439 | -2.1896 | -46.7483 | -62.2009 | 0.5381 | 0.7393 | -0.8843 | 1.2443 | -2.1285 | | 0.4791 | 0.1919 | 640 | -2.3372 | -2.1839 | -46.7165 | -62.2024 | 0.5352 | 0.7313 | -0.8716 | 1.2576 | -2.1291 | | 0.6989 | 0.1979 | 660 | -2.3108 | -2.1578 | -47.0022 | -62.4652 | 0.5357 | 0.7259 | -0.9859 | 1.2484 | -2.2343 | | 0.4338 | 0.2039 | 680 | -2.3471 | -2.1925 | -46.8417 | -62.5038 | 0.5333 | 0.7313 | -0.9216 | 1.3281 | -2.2497 | | 0.4499 | 0.2099 | 700 | -2.3713 | -2.2142 | -46.9819 | -62.6967 | 0.5393 | 0.7259 | -0.9777 | 1.3491 | -2.3269 | | 0.3553 | 0.2159 | 720 | -2.3600 | -2.2035 | -46.9457 | -62.6362 | 0.5400 | 0.7273 | -0.9633 | 1.3394 | -2.3027 | | 0.3781 | 0.2219 | 740 | -2.3937 | -2.2379 | -46.8394 | -62.6171 | 0.5436 | 0.7166 | -0.9207 | 1.3743 | -2.2950 | | 0.4113 | 0.2279 | 760 | -2.3351 | -2.1804 | -47.5026 | -63.2906 | 0.5362 | 0.7259 | -1.1860 | 1.3784 | -2.5644 | | 0.5919 | 0.2339 | 780 | -2.2881 | -2.1339 | -48.1201 | -64.1256 | 0.5331 | 0.7233 | -1.4330 | 1.4654 | -2.8984 | | 0.4062 | 0.2399 | 800 | -2.2835 | -2.1289 | -48.4004 | -64.5414 | 0.5359 | 0.7299 | -1.5452 | 1.5196 | -3.0648 | | 0.402 | 0.2459 | 820 | 0.5425 | -1.4537 | -2.9836 | 0.7219 | 1.5298 | -64.3322 | -48.1467 | -2.1768 | -2.3319 | | 0.4196 | 0.2519 | 840 | 0.5325 | -1.4218 | -2.8913 | 0.7326 | 1.4695 | -64.1016 | -48.0669 | -2.1561 | -2.3107 | | 0.4996 | 0.2579 | 860 | 0.5375 | -1.3693 | -2.8260 | 0.7219 | 1.4567 | -63.9384 | -47.9357 | -2.1802 | -2.3355 | | 0.4782 | 0.2639 | 880 | 0.5361 | -1.7809 | -3.2423 | 0.7340 | 1.4614 | -64.9790 | -48.9646 | -2.1078 | -2.2600 | | 0.4474 | 0.2699 | 900 | 0.5341 | -1.9701 | -3.5463 | 0.7353 | 1.5763 | -65.7392 | -49.4376 | -2.0654 | -2.2167 | | 0.4448 | 0.2759 | 920 | 0.5391 | -1.6563 | -3.3247 | 0.7380 | 1.6683 | -65.1850 | -48.6532 | -2.1765 | -2.3326 | | 0.5457 | 0.2819 | 940 | 0.5395 | -1.8977 | -3.6369 | 0.7420 | 1.7392 | -65.9655 | -49.2566 | -2.1511 | -2.3052 | | 0.4932 | 0.2879 | 960 | 0.5398 | -1.8585 | -3.5454 | 0.7273 | 1.6868 | -65.7367 | -49.1587 | -2.1405 | -2.2936 | | 0.4699 | 0.2939 | 980 | 0.5353 | -1.7706 | -3.4101 | 0.7313 | 1.6395 | -65.3987 | -48.9389 | -2.1467 | -2.2993 | | 0.4109 | 0.2999 | 1000 | 0.5267 | -1.5880 | -3.1869 | 0.7313 | 1.5989 | -64.8406 | -48.4824 | -2.1632 | -2.3183 | | 0.5067 | 0.3058 | 1020 | 0.5287 | -1.6588 | -3.2880 | 0.7460 | 1.6292 | -65.0934 | -48.6594 | -2.1457 | -2.2990 | | 0.3888 | 0.3118 | 1040 | 0.5338 | -1.8245 | -3.5016 | 0.7366 | 1.6771 | -65.6273 | -49.0736 | -2.1307 | -2.2831 | | 0.3982 | 0.3178 | 1060 | 0.5368 | -1.9154 | -3.6970 | 0.7286 | 1.7816 | -66.1159 | -49.3009 | -2.1567 | -2.3118 | | 0.3106 | 0.3238 | 1080 | 0.5404 | -2.0885 | -3.8850 | 0.7286 | 1.7965 | -66.5857 | -49.7337 | -2.1295 | -2.2842 | | 0.2842 | 0.3298 | 1100 | 0.5440 | -2.1413 | -3.9725 | 0.7393 | 1.8311 | -66.8044 | -49.8657 | -2.1367 | -2.2916 | | 0.3494 | 0.3358 | 1120 | 0.5412 | -1.9277 | -3.6556 | 0.7246 | 1.7278 | -66.0122 | -49.3317 | -2.1580 | -2.3135 | | 0.3945 | 0.3418 | 1140 | 0.5399 | -1.9763 | -3.7762 | 0.7259 | 1.7999 | -66.3138 | -49.4531 | -2.1267 | -2.2828 | | 0.4955 | 0.3478 | 1160 | 0.5403 | -1.9863 | -3.7766 | 0.7433 | 1.7902 | -66.3148 | -49.4782 | -2.1318 | -2.2895 | | 0.4077 | 0.3538 | 1180 | 0.5338 | -1.9426 | -3.6992 | 0.7460 | 1.7566 | -66.1213 | -49.3688 | -2.1064 | -2.2607 | | 0.3905 | 0.3598 | 1200 | 0.5304 | -1.8037 | -3.5632 | 0.7433 | 1.7594 | -65.7812 | -49.0217 | -2.1326 | -2.2863 | | 0.3377 | 0.3658 | 1220 | 0.5363 | -1.8900 | -3.6889 | 0.7380 | 1.7989 | -66.0957 | -49.2374 | -2.1442 | -2.2971 | | 0.7295 | 0.3718 | 1240 | 0.5400 | -2.0031 | -3.8320 | 0.7326 | 1.8289 | -66.4533 | -49.5202 | -2.1355 | -2.2904 | | 0.4121 | 0.3778 | 1260 | 0.5364 | -2.1489 | -3.9627 | 0.7326 | 1.8138 | -66.7800 | -49.8845 | -2.0910 | -2.2457 | | 0.5229 | 0.3838 | 1280 | 0.5499 | -2.3115 | -4.1540 | 0.7353 | 1.8425 | -67.2584 | -50.2912 | -2.0893 | -2.2437 | | 0.2398 | 0.3898 | 1300 | 0.5511 | -2.0555 | -3.9019 | 0.7166 | 1.8464 | -66.6280 | -49.6512 | -2.1689 | -2.3252 | | 0.3229 | 0.3958 | 1320 | 0.5551 | -2.2235 | -4.1544 | 0.7206 | 1.9309 | -67.2594 | -50.0712 | -2.1641 | -2.3209 | | 0.2727 | 0.4018 | 1340 | 0.5572 | -2.1956 | -4.1986 | 0.7206 | 2.0031 | -67.3699 | -50.0013 | -2.1849 | -2.3431 | | 0.302 | 0.4078 | 1360 | 0.5551 | -2.3439 | -4.3123 | 0.7126 | 1.9684 | -67.6541 | -50.3721 | -2.1351 | -2.2933 | | 0.4957 | 0.4138 | 1380 | 0.5526 | -2.2890 | -4.2712 | 0.7313 | 1.9822 | -67.5514 | -50.2349 | -2.1510 | -2.3100 | | 0.2406 | 0.4198 | 1400 | 0.5539 | -2.4001 | -4.3914 | 0.7340 | 1.9913 | -67.8518 | -50.5127 | -2.1305 | -2.2879 | | 0.5632 | 0.4258 | 1420 | 0.5470 | -2.3739 | -4.3738 | 0.7406 | 1.9998 | -67.8077 | -50.4472 | -2.1245 | -2.2824 | | 0.5002 | 0.4318 | 1440 | 0.5428 | -2.1356 | -4.1302 | 0.7313 | 1.9946 | -67.1989 | -49.8514 | -2.1741 | -2.3345 | | 0.4629 | 0.4378 | 1460 | 0.5534 | -2.3573 | -4.3582 | 0.7246 | 2.0009 | -67.7688 | -50.4055 | -2.1541 | -2.3134 | | 0.4672 | 0.4438 | 1480 | 0.5538 | -2.4371 | -4.4549 | 0.7246 | 2.0178 | -68.0106 | -50.6052 | -2.1433 | -2.3020 | | 0.4207 | 0.4498 | 1500 | 0.5538 | -2.2938 | -4.2942 | 0.7273 | 2.0004 | -67.6089 | -50.2469 | -2.1491 | -2.3077 | | 0.4197 | 0.4558 | 1520 | 0.5567 | -2.0589 | -4.0578 | 0.7286 | 1.9990 | -67.0179 | -49.6596 | -2.1905 | -2.3514 | | 0.2704 | 0.4618 | 1540 | 0.5672 | -2.1422 | -4.2660 | 0.7259 | 2.1238 | -67.5383 | -49.8678 | -2.2180 | -2.3816 | | 0.4166 | 0.4678 | 1560 | 0.5728 | -2.1945 | -4.2757 | 0.7246 | 2.0812 | -67.5626 | -49.9987 | -2.2067 | -2.3695 | | 0.4362 | 0.4738 | 1580 | 0.5635 | -1.9547 | -4.0054 | 0.7366 | 2.0506 | -66.8867 | -49.3992 | -2.2373 | -2.4015 | | 0.4167 | 0.4798 | 1600 | 0.5654 | -2.0804 | -4.0920 | 0.7313 | 2.0116 | -67.1033 | -49.7134 | -2.2181 | -2.3810 | | 0.2316 | 0.4858 | 1620 | 0.5662 | -2.2136 | -4.2342 | 0.7313 | 2.0206 | -67.4589 | -50.0464 | -2.1831 | -2.3451 | | 0.4188 | 0.4918 | 1640 | 0.5704 | -2.3708 | -4.4024 | 0.7313 | 2.0316 | -67.8794 | -50.4394 | -2.1658 | -2.3257 | | 0.4348 | 0.4978 | 1660 | 0.5822 | -2.3493 | -4.3898 | 0.7326 | 2.0406 | -67.8479 | -50.3855 | -2.1985 | -2.3583 | | 0.3002 | 0.5037 | 1680 | 0.5765 | -2.3441 | -4.3592 | 0.7313 | 2.0151 | -67.7712 | -50.3726 | -2.1771 | -2.3380 | | 0.3789 | 0.5097 | 1700 | 0.5690 | -2.5372 | -4.5090 | 0.7259 | 1.9718 | -68.1458 | -50.8554 | -2.1230 | -2.2824 | | 0.2039 | 0.5157 | 1720 | 0.5634 | -2.3945 | -4.3457 | 0.7219 | 1.9512 | -67.7375 | -50.4986 | -2.1400 | -2.3002 | | 0.2798 | 0.5217 | 1740 | 0.5700 | -2.3848 | -4.3055 | 0.7233 | 1.9207 | -67.6372 | -50.4744 | -2.1556 | -2.3162 | | 0.5354 | 0.5277 | 1760 | 0.5749 | -2.2577 | -4.1709 | 0.7233 | 1.9131 | -67.3005 | -50.1567 | -2.1842 | -2.3437 | | 0.2853 | 0.5337 | 1780 | 0.5726 | -2.2228 | -4.0961 | 0.7126 | 1.8733 | -67.1136 | -50.0695 | -2.1802 | -2.3398 | | 0.4659 | 0.5397 | 1800 | 0.5801 | -2.3238 | -4.3205 | 0.7166 | 1.9967 | -67.6745 | -50.3218 | -2.1899 | -2.3521 | | 0.3181 | 0.5457 | 1820 | 0.5868 | -2.3172 | -4.3619 | 0.7139 | 2.0447 | -67.7779 | -50.3053 | -2.2033 | -2.3668 | | 0.2995 | 0.5517 | 1840 | 0.5960 | -2.3013 | -4.3722 | 0.7112 | 2.0709 | -67.8039 | -50.2656 | -2.2338 | -2.3981 | | 0.2868 | 0.5577 | 1860 | 0.5885 | -2.2752 | -4.3480 | 0.7273 | 2.0728 | -67.7434 | -50.2004 | -2.2372 | -2.4012 | | 0.4067 | 0.5637 | 1880 | 0.5886 | -2.4603 | -4.5539 | 0.7353 | 2.0936 | -68.2581 | -50.6632 | -2.2037 | -2.3668 | | 0.3498 | 0.5697 | 1900 | 0.5938 | -2.5665 | -4.6559 | 0.7353 | 2.0894 | -68.5130 | -50.9286 | -2.1927 | -2.3554 | | 0.4811 | 0.5757 | 1920 | 0.5909 | -2.4908 | -4.5922 | 0.7299 | 2.1014 | -68.3537 | -50.7393 | -2.2007 | -2.3638 | | 0.4587 | 0.5817 | 1940 | 0.5777 | -2.4542 | -4.5137 | 0.7353 | 2.0595 | -68.1575 | -50.6478 | -2.1851 | -2.3468 | | 0.4067 | 0.5877 | 1960 | 0.5717 | -2.3636 | -4.4128 | 0.7259 | 2.0492 | -67.9054 | -50.4213 | -2.2004 | -2.3618 | | 0.4554 | 0.5937 | 1980 | 0.5801 | -2.3060 | -4.3300 | 0.7233 | 2.0240 | -67.6984 | -50.2774 | -2.2125 | -2.3744 | | 0.2715 | 0.5997 | 2000 | 0.5715 | -2.1497 | -4.1001 | 0.7353 | 1.9504 | -67.1237 | -49.8867 | -2.2217 | -2.3834 | | 0.2609 | 0.6057 | 2020 | 0.5718 | -2.1471 | -4.0842 | 0.7353 | 1.9371 | -67.0837 | -49.8801 | -2.2209 | -2.3818 | | 0.4077 | 0.6117 | 2040 | 0.5799 | -2.1552 | -4.1169 | 0.7219 | 1.9618 | -67.1656 | -49.9003 | -2.2297 | -2.3910 | | 0.4469 | 0.6177 | 2060 | 0.5849 | -2.3088 | -4.3069 | 0.7206 | 1.9981 | -67.6406 | -50.2844 | -2.2063 | -2.3674 | | 0.2778 | 0.6237 | 2080 | 0.5918 | -2.4319 | -4.4343 | 0.7193 | 2.0024 | -67.9590 | -50.5921 | -2.1896 | -2.3504 | | 0.372 | 0.6297 | 2100 | 0.5929 | -2.3451 | -4.3485 | 0.7193 | 2.0034 | -67.7445 | -50.3751 | -2.2062 | -2.3680 | | 0.422 | 0.6357 | 2120 | 0.5910 | -2.3439 | -4.3031 | 0.7139 | 1.9592 | -67.6311 | -50.3722 | -2.2004 | -2.3618 | | 0.3289 | 0.6417 | 2140 | 0.5902 | -2.4222 | -4.3934 | 0.7206 | 1.9711 | -67.8568 | -50.5680 | -2.1866 | -2.3477 | | 0.1748 | 0.6477 | 2160 | 0.5948 | -2.4349 | -4.4266 | 0.7139 | 1.9917 | -67.9398 | -50.5997 | -2.1947 | -2.3564 | | 0.1898 | 0.6537 | 2180 | 0.5905 | -2.4372 | -4.4682 | 0.7233 | 2.0310 | -68.0439 | -50.6054 | -2.1951 | -2.3574 | | 0.5178 | 0.6597 | 2200 | 0.5858 | -2.4300 | -4.4922 | 0.7193 | 2.0622 | -68.1039 | -50.5875 | -2.1955 | -2.3577 | | 0.3765 | 0.6657 | 2220 | 0.5812 | -2.3328 | -4.3769 | 0.7233 | 2.0442 | -67.8157 | -50.3444 | -2.2030 | -2.3650 | | 0.3267 | 0.6717 | 2240 | 0.5845 | -2.3069 | -4.3729 | 0.7206 | 2.0660 | -67.8056 | -50.2797 | -2.2201 | -2.3831 | | 0.45 | 0.6777 | 2260 | 0.5832 | -2.3386 | -4.4083 | 0.7259 | 2.0697 | -67.8940 | -50.3588 | -2.2113 | -2.3739 | | 0.1942 | 0.6837 | 2280 | 0.5841 | -2.3967 | -4.4887 | 0.7219 | 2.0919 | -68.0950 | -50.5043 | -2.2112 | -2.3739 | | 0.2168 | 0.6897 | 2300 | 0.5862 | -2.4025 | -4.5129 | 0.7126 | 2.1104 | -68.1556 | -50.5187 | -2.2138 | -2.3776 | | 0.2433 | 0.6957 | 2320 | 0.5842 | -2.4185 | -4.5170 | 0.7193 | 2.0985 | -68.1658 | -50.5587 | -2.1972 | -2.3602 | | 0.6285 | 0.7016 | 2340 | 0.5835 | -2.3343 | -4.4543 | 0.7099 | 2.1200 | -68.0092 | -50.3482 | -2.2223 | -2.3854 | | 0.3142 | 0.7076 | 2360 | 0.5830 | -2.3351 | -4.4725 | 0.7219 | 2.1374 | -68.0546 | -50.3502 | -2.2216 | -2.3850 | | 0.2793 | 0.7136 | 2380 | 0.5810 | -2.2839 | -4.4001 | 0.7193 | 2.1162 | -67.8736 | -50.2222 | -2.2298 | -2.3934 | | 0.4477 | 0.7196 | 2400 | 0.5811 | -2.3245 | -4.4509 | 0.7233 | 2.1264 | -68.0005 | -50.3235 | -2.2198 | -2.3831 | | 0.6407 | 0.7256 | 2420 | 0.5835 | -2.4206 | -4.5564 | 0.7219 | 2.1358 | -68.2643 | -50.5640 | -2.2129 | -2.3757 | | 0.6725 | 0.7316 | 2440 | 0.5829 | -2.3928 | -4.5300 | 0.7219 | 2.1372 | -68.1984 | -50.4945 | -2.2144 | -2.3779 | | 0.1539 | 0.7376 | 2460 | 0.5824 | -2.3620 | -4.4853 | 0.7086 | 2.1233 | -68.0866 | -50.4174 | -2.2106 | -2.3743 | | 0.5217 | 0.7436 | 2480 | 0.5806 | -2.3462 | -4.4794 | 0.7152 | 2.1332 | -68.0717 | -50.3778 | -2.2045 | -2.3682 | | 0.5927 | 0.7496 | 2500 | 0.5792 | -2.3323 | -4.4373 | 0.7206 | 2.1050 | -67.9665 | -50.3432 | -2.2054 | -2.3687 | | 0.2391 | 0.7556 | 2520 | 0.5779 | -2.3913 | -4.4956 | 0.7139 | 2.1043 | -68.1123 | -50.4905 | -2.1976 | -2.3612 | | 0.3963 | 0.7616 | 2540 | 0.5780 | -2.3785 | -4.4885 | 0.7139 | 2.1100 | -68.0947 | -50.4587 | -2.1989 | -2.3626 | | 0.3865 | 0.7676 | 2560 | 0.5771 | -2.3431 | -4.4701 | 0.7233 | 2.1269 | -68.0485 | -50.3702 | -2.1976 | -2.3612 | | 0.3115 | 0.7736 | 2580 | 0.5771 | -2.3741 | -4.4909 | 0.7166 | 2.1168 | -68.1005 | -50.4475 | -2.1920 | -2.3557 | | 0.1457 | 0.7796 | 2600 | 0.5763 | -2.3594 | -4.4667 | 0.7166 | 2.1073 | -68.0401 | -50.4109 | -2.1976 | -2.3614 | | 0.4248 | 0.7856 | 2620 | 0.5761 | -2.3756 | -4.4871 | 0.7099 | 2.1115 | -68.0910 | -50.4513 | -2.1979 | -2.3620 | | 0.2367 | 0.7916 | 2640 | 0.5792 | -2.3799 | -4.5087 | 0.7206 | 2.1288 | -68.1450 | -50.4620 | -2.2027 | -2.3667 | | 0.2425 | 0.7976 | 2660 | 0.5778 | -2.3999 | -4.5289 | 0.7233 | 2.1290 | -68.1955 | -50.5122 | -2.2006 | -2.3649 | | 0.2228 | 0.8036 | 2680 | 0.5791 | -2.4102 | -4.5374 | 0.7193 | 2.1272 | -68.2169 | -50.5379 | -2.1994 | -2.3633 | | 0.3514 | 0.8096 | 2700 | 0.5757 | -2.3855 | -4.5265 | 0.7246 | 2.1410 | -68.1895 | -50.4760 | -2.1996 | -2.3628 | | 0.2107 | 0.8156 | 2720 | 0.5787 | -2.3971 | -4.5519 | 0.7166 | 2.1548 | -68.2531 | -50.5052 | -2.2035 | -2.3671 | | 0.2919 | 0.8216 | 2740 | 0.5821 | -2.4521 | -4.6157 | 0.7259 | 2.1636 | -68.4126 | -50.6426 | -2.2049 | -2.3685 | | 0.1872 | 0.8276 | 2760 | 0.5830 | -2.4473 | -4.6201 | 0.7206 | 2.1728 | -68.4235 | -50.6306 | -2.1994 | -2.3626 | | 0.6285 | 0.8336 | 2780 | 0.5796 | -2.4423 | -4.6060 | 0.7259 | 2.1637 | -68.3884 | -50.6182 | -2.2029 | -2.3668 | | 0.4219 | 0.8396 | 2800 | 0.5805 | -2.4320 | -4.5906 | 0.7259 | 2.1586 | -68.3497 | -50.5923 | -2.1985 | -2.3620 | | 0.2696 | 0.8456 | 2820 | 0.5803 | -2.4421 | -4.5977 | 0.7273 | 2.1557 | -68.3676 | -50.6175 | -2.1955 | -2.3590 | | 0.2871 | 0.8516 | 2840 | 0.5802 | -2.4455 | -4.5991 | 0.7152 | 2.1536 | -68.3710 | -50.6261 | -2.2014 | -2.3651 | | 0.4357 | 0.8576 | 2860 | 0.5799 | -2.4497 | -4.6074 | 0.7219 | 2.1577 | -68.3918 | -50.6366 | -2.2018 | -2.3657 | | 0.3964 | 0.8636 | 2880 | 0.5788 | -2.4219 | -4.5952 | 0.7273 | 2.1732 | -68.3613 | -50.5672 | -2.2017 | -2.3658 | | 0.2754 | 0.8696 | 2900 | 0.5779 | -2.4233 | -4.5869 | 0.7233 | 2.1636 | -68.3405 | -50.5706 | -2.1984 | -2.3626 | | 0.2423 | 0.8756 | 2920 | 0.5776 | -2.4189 | -4.5939 | 0.7326 | 2.1750 | -68.3581 | -50.5597 | -2.2030 | -2.3674 | | 0.2489 | 0.8816 | 2940 | 0.5801 | -2.4346 | -4.6080 | 0.7152 | 2.1734 | -68.3933 | -50.5989 | -2.2014 | -2.3658 | | 0.2686 | 0.8876 | 2960 | 0.5837 | -2.4470 | -4.6246 | 0.7219 | 2.1776 | -68.4349 | -50.6298 | -2.2037 | -2.3685 | | 0.3056 | 0.8936 | 2980 | 0.5801 | -2.4300 | -4.6104 | 0.7219 | 2.1804 | -68.3993 | -50.5873 | -2.2055 | -2.3700 | | 0.3823 | 0.8996 | 3000 | 0.5832 | -2.4193 | -4.5819 | 0.7219 | 2.1626 | -68.3280 | -50.5606 | -2.2080 | -2.3728 | | 0.4871 | 0.9055 | 3020 | 0.5810 | -2.4152 | -4.5746 | 0.7193 | 2.1593 | -68.3097 | -50.5504 | -2.2041 | -2.3687 | | 0.2968 | 0.9115 | 3040 | 0.5803 | -2.4074 | -4.5805 | 0.7273 | 2.1731 | -68.3245 | -50.5308 | -2.2070 | -2.3717 | | 0.3973 | 0.9175 | 3060 | 0.5816 | -2.3949 | -4.5655 | 0.7233 | 2.1706 | -68.2870 | -50.4997 | -2.2066 | -2.3713 | | 0.2556 | 0.9235 | 3080 | 0.5794 | -2.3923 | -4.5685 | 0.7206 | 2.1761 | -68.2945 | -50.4932 | -2.2024 | -2.3669 | | 0.3109 | 0.9295 | 3100 | 0.5789 | -2.4031 | -4.5590 | 0.7219 | 2.1559 | -68.2708 | -50.5201 | -2.2030 | -2.3676 | | 0.2311 | 0.9355 | 3120 | 0.5767 | -2.3930 | -4.5679 | 0.7206 | 2.1749 | -68.2930 | -50.4949 | -2.2025 | -2.3673 | | 0.2843 | 0.9415 | 3140 | 0.5809 | -2.4034 | -4.5747 | 0.7179 | 2.1714 | -68.3102 | -50.5208 | -2.1989 | -2.3632 | | 0.2231 | 0.9475 | 3160 | 0.5802 | -2.4029 | -4.5586 | 0.7179 | 2.1557 | -68.2699 | -50.5196 | -2.2057 | -2.3706 | | 0.3034 | 0.9535 | 3180 | 0.5797 | -2.4012 | -4.5643 | 0.7219 | 2.1631 | -68.2840 | -50.5154 | -2.2038 | -2.3686 | | 0.325 | 0.9595 | 3200 | 0.5793 | -2.4034 | -4.5657 | 0.7193 | 2.1623 | -68.2876 | -50.5208 | -2.2011 | -2.3656 | | 0.1966 | 0.9655 | 3220 | 0.5807 | -2.4164 | -4.5797 | 0.7112 | 2.1633 | -68.3227 | -50.5535 | -2.2024 | -2.3669 | | 0.2471 | 0.9715 | 3240 | 0.5760 | -2.3994 | -4.5701 | 0.7206 | 2.1707 | -68.2985 | -50.5108 | -2.1998 | -2.3643 | | 0.3629 | 0.9775 | 3260 | 0.5796 | -2.4081 | -4.5658 | 0.7273 | 2.1576 | -68.2877 | -50.5327 | -2.2013 | -2.3659 | | 0.2003 | 0.9835 | 3280 | 0.5789 | -2.4072 | -4.5666 | 0.7219 | 2.1594 | -68.2899 | -50.5304 | -2.2001 | -2.3647 | | 0.3775 | 0.9895 | 3300 | 0.5808 | -2.4042 | -4.5693 | 0.7139 | 2.1651 | -68.2966 | -50.5228 | -2.1977 | -2.3621 | | 0.4797 | 0.9955 | 3320 | 0.5773 | -2.3883 | -4.5725 | 0.7193 | 2.1843 | -68.3047 | -50.4831 | -2.1992 | -2.3638 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.5.0 - Tokenizers 0.20.3
developermate/gemma3-phishing-url-detector
developermate
2025-06-04T15:09:21Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "text-generation-inference", "unsloth", "gemma3_text", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:quantized:unsloth/gemma-3-1b-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-04T12:32:34Z
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** developermate - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
George067/dqn-SpaceInvadersNoFrameskip-v4
George067
2025-06-04T15:07:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-04T15:07:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 447.00 +/- 57.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga George067 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga George067 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga George067 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 1e-05), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
LeonGuertler/Qwen3-4B-batch-4-experiment-0-step_000225
LeonGuertler
2025-06-04T15:04:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T14:56:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LeonGuertler/Qwen3-4B-batch-4-experiment-8-step_000200
LeonGuertler
2025-06-04T15:04:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-04T14:56:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
natix-miner36/streetvision
natix-miner36
2025-06-04T15:03:44Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-04T14:59:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jinx2321/korean-tagged-1e4-paper-reset
jinx2321
2025-06-04T15:02:06Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:everdoubling/byt5-Korean-small", "base_model:finetune:everdoubling/byt5-Korean-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-04T10:31:12Z
--- library_name: transformers license: apache-2.0 base_model: everdoubling/byt5-Korean-small tags: - generated_from_trainer model-index: - name: korean-tagged-1e4-paper-reset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-tagged-1e4-paper-reset This model is a fine-tuned version of [everdoubling/byt5-Korean-small](https://huggingface.co/everdoubling/byt5-Korean-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
t2taye/phi3.5-finetuned
t2taye
2025-06-04T15:01:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-04T15:01:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]